]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_fq.c
Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_fq.c
1 /*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for localy generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55
56 /*
57 * Per flow structure, dynamically allocated
58 */
59 struct fq_flow {
60 struct sk_buff *head; /* list of skbs for this flow : first skb */
61 union {
62 struct sk_buff *tail; /* last skb in the list */
63 unsigned long age; /* jiffies when flow was emptied, for gc */
64 };
65 struct rb_node fq_node; /* anchor in fq_root[] trees */
66 struct sock *sk;
67 int qlen; /* number of packets in flow queue */
68 int credit;
69 u32 socket_hash; /* sk_hash */
70 struct fq_flow *next; /* next pointer in RR lists, or &detached */
71
72 struct rb_node rate_node; /* anchor in q->delayed tree */
73 u64 time_next_packet;
74 };
75
76 struct fq_flow_head {
77 struct fq_flow *first;
78 struct fq_flow *last;
79 };
80
81 struct fq_sched_data {
82 struct fq_flow_head new_flows;
83
84 struct fq_flow_head old_flows;
85
86 struct rb_root delayed; /* for rate limited flows */
87 u64 time_next_delayed_flow;
88
89 struct fq_flow internal; /* for non classified or high prio packets */
90 u32 quantum;
91 u32 initial_quantum;
92 u32 flow_refill_delay;
93 u32 flow_max_rate; /* optional max rate per flow */
94 u32 flow_plimit; /* max packets per flow */
95 struct rb_root *fq_root;
96 u8 rate_enable;
97 u8 fq_trees_log;
98
99 u32 flows;
100 u32 inactive_flows;
101 u32 throttled_flows;
102
103 u64 stat_gc_flows;
104 u64 stat_internal_packets;
105 u64 stat_tcp_retrans;
106 u64 stat_throttled;
107 u64 stat_flows_plimit;
108 u64 stat_pkts_too_long;
109 u64 stat_allocation_errors;
110 struct qdisc_watchdog watchdog;
111 };
112
113 /* special value to mark a detached flow (not on old/new list) */
114 static struct fq_flow detached, throttled;
115
116 static void fq_flow_set_detached(struct fq_flow *f)
117 {
118 f->next = &detached;
119 f->age = jiffies;
120 }
121
122 static bool fq_flow_is_detached(const struct fq_flow *f)
123 {
124 return f->next == &detached;
125 }
126
127 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
128 {
129 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
130
131 while (*p) {
132 struct fq_flow *aux;
133
134 parent = *p;
135 aux = container_of(parent, struct fq_flow, rate_node);
136 if (f->time_next_packet >= aux->time_next_packet)
137 p = &parent->rb_right;
138 else
139 p = &parent->rb_left;
140 }
141 rb_link_node(&f->rate_node, parent, p);
142 rb_insert_color(&f->rate_node, &q->delayed);
143 q->throttled_flows++;
144 q->stat_throttled++;
145
146 f->next = &throttled;
147 if (q->time_next_delayed_flow > f->time_next_packet)
148 q->time_next_delayed_flow = f->time_next_packet;
149 }
150
151
152 static struct kmem_cache *fq_flow_cachep __read_mostly;
153
154 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
155 {
156 if (head->first)
157 head->last->next = flow;
158 else
159 head->first = flow;
160 head->last = flow;
161 flow->next = NULL;
162 }
163
164 /* limit number of collected flows per round */
165 #define FQ_GC_MAX 8
166 #define FQ_GC_AGE (3*HZ)
167
168 static bool fq_gc_candidate(const struct fq_flow *f)
169 {
170 return fq_flow_is_detached(f) &&
171 time_after(jiffies, f->age + FQ_GC_AGE);
172 }
173
174 static void fq_gc(struct fq_sched_data *q,
175 struct rb_root *root,
176 struct sock *sk)
177 {
178 struct fq_flow *f, *tofree[FQ_GC_MAX];
179 struct rb_node **p, *parent;
180 int fcnt = 0;
181
182 p = &root->rb_node;
183 parent = NULL;
184 while (*p) {
185 parent = *p;
186
187 f = container_of(parent, struct fq_flow, fq_node);
188 if (f->sk == sk)
189 break;
190
191 if (fq_gc_candidate(f)) {
192 tofree[fcnt++] = f;
193 if (fcnt == FQ_GC_MAX)
194 break;
195 }
196
197 if (f->sk > sk)
198 p = &parent->rb_right;
199 else
200 p = &parent->rb_left;
201 }
202
203 q->flows -= fcnt;
204 q->inactive_flows -= fcnt;
205 q->stat_gc_flows += fcnt;
206 while (fcnt) {
207 struct fq_flow *f = tofree[--fcnt];
208
209 rb_erase(&f->fq_node, root);
210 kmem_cache_free(fq_flow_cachep, f);
211 }
212 }
213
214 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
215 {
216 struct rb_node **p, *parent;
217 struct sock *sk = skb->sk;
218 struct rb_root *root;
219 struct fq_flow *f;
220
221 /* warning: no starvation prevention... */
222 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
223 return &q->internal;
224
225 if (unlikely(!sk)) {
226 /* By forcing low order bit to 1, we make sure to not
227 * collide with a local flow (socket pointers are word aligned)
228 */
229 sk = (struct sock *)(skb_get_hash(skb) | 1L);
230 }
231
232 root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
233
234 if (q->flows >= (2U << q->fq_trees_log) &&
235 q->inactive_flows > q->flows/2)
236 fq_gc(q, root, sk);
237
238 p = &root->rb_node;
239 parent = NULL;
240 while (*p) {
241 parent = *p;
242
243 f = container_of(parent, struct fq_flow, fq_node);
244 if (f->sk == sk) {
245 /* socket might have been reallocated, so check
246 * if its sk_hash is the same.
247 * It not, we need to refill credit with
248 * initial quantum
249 */
250 if (unlikely(skb->sk &&
251 f->socket_hash != sk->sk_hash)) {
252 f->credit = q->initial_quantum;
253 f->socket_hash = sk->sk_hash;
254 f->time_next_packet = 0ULL;
255 }
256 return f;
257 }
258 if (f->sk > sk)
259 p = &parent->rb_right;
260 else
261 p = &parent->rb_left;
262 }
263
264 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
265 if (unlikely(!f)) {
266 q->stat_allocation_errors++;
267 return &q->internal;
268 }
269 fq_flow_set_detached(f);
270 f->sk = sk;
271 if (skb->sk)
272 f->socket_hash = sk->sk_hash;
273 f->credit = q->initial_quantum;
274
275 rb_link_node(&f->fq_node, parent, p);
276 rb_insert_color(&f->fq_node, root);
277
278 q->flows++;
279 q->inactive_flows++;
280 return f;
281 }
282
283
284 /* remove one skb from head of flow queue */
285 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
286 {
287 struct sk_buff *skb = flow->head;
288
289 if (skb) {
290 flow->head = skb->next;
291 skb->next = NULL;
292 flow->qlen--;
293 sch->qstats.backlog -= qdisc_pkt_len(skb);
294 sch->q.qlen--;
295 }
296 return skb;
297 }
298
299 /* We might add in the future detection of retransmits
300 * For the time being, just return false
301 */
302 static bool skb_is_retransmit(struct sk_buff *skb)
303 {
304 return false;
305 }
306
307 /* add skb to flow queue
308 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
309 * We special case tcp retransmits to be transmitted before other packets.
310 * We rely on fact that TCP retransmits are unlikely, so we do not waste
311 * a separate queue or a pointer.
312 * head-> [retrans pkt 1]
313 * [retrans pkt 2]
314 * [ normal pkt 1]
315 * [ normal pkt 2]
316 * [ normal pkt 3]
317 * tail-> [ normal pkt 4]
318 */
319 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
320 {
321 struct sk_buff *prev, *head = flow->head;
322
323 skb->next = NULL;
324 if (!head) {
325 flow->head = skb;
326 flow->tail = skb;
327 return;
328 }
329 if (likely(!skb_is_retransmit(skb))) {
330 flow->tail->next = skb;
331 flow->tail = skb;
332 return;
333 }
334
335 /* This skb is a tcp retransmit,
336 * find the last retrans packet in the queue
337 */
338 prev = NULL;
339 while (skb_is_retransmit(head)) {
340 prev = head;
341 head = head->next;
342 if (!head)
343 break;
344 }
345 if (!prev) { /* no rtx packet in queue, become the new head */
346 skb->next = flow->head;
347 flow->head = skb;
348 } else {
349 if (prev == flow->tail)
350 flow->tail = skb;
351 else
352 skb->next = prev->next;
353 prev->next = skb;
354 }
355 }
356
357 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
358 {
359 struct fq_sched_data *q = qdisc_priv(sch);
360 struct fq_flow *f;
361
362 if (unlikely(sch->q.qlen >= sch->limit))
363 return qdisc_drop(skb, sch);
364
365 f = fq_classify(skb, q);
366 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
367 q->stat_flows_plimit++;
368 return qdisc_drop(skb, sch);
369 }
370
371 f->qlen++;
372 if (skb_is_retransmit(skb))
373 q->stat_tcp_retrans++;
374 sch->qstats.backlog += qdisc_pkt_len(skb);
375 if (fq_flow_is_detached(f)) {
376 fq_flow_add_tail(&q->new_flows, f);
377 if (time_after(jiffies, f->age + q->flow_refill_delay))
378 f->credit = max_t(u32, f->credit, q->quantum);
379 q->inactive_flows--;
380 qdisc_unthrottled(sch);
381 }
382
383 /* Note: this overwrites f->age */
384 flow_queue_add(f, skb);
385
386 if (unlikely(f == &q->internal)) {
387 q->stat_internal_packets++;
388 qdisc_unthrottled(sch);
389 }
390 sch->q.qlen++;
391
392 return NET_XMIT_SUCCESS;
393 }
394
395 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
396 {
397 struct rb_node *p;
398
399 if (q->time_next_delayed_flow > now)
400 return;
401
402 q->time_next_delayed_flow = ~0ULL;
403 while ((p = rb_first(&q->delayed)) != NULL) {
404 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
405
406 if (f->time_next_packet > now) {
407 q->time_next_delayed_flow = f->time_next_packet;
408 break;
409 }
410 rb_erase(p, &q->delayed);
411 q->throttled_flows--;
412 fq_flow_add_tail(&q->old_flows, f);
413 }
414 }
415
416 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
417 {
418 struct fq_sched_data *q = qdisc_priv(sch);
419 u64 now = ktime_to_ns(ktime_get());
420 struct fq_flow_head *head;
421 struct sk_buff *skb;
422 struct fq_flow *f;
423 u32 rate;
424
425 skb = fq_dequeue_head(sch, &q->internal);
426 if (skb)
427 goto out;
428 fq_check_throttled(q, now);
429 begin:
430 head = &q->new_flows;
431 if (!head->first) {
432 head = &q->old_flows;
433 if (!head->first) {
434 if (q->time_next_delayed_flow != ~0ULL)
435 qdisc_watchdog_schedule_ns(&q->watchdog,
436 q->time_next_delayed_flow);
437 return NULL;
438 }
439 }
440 f = head->first;
441
442 if (f->credit <= 0) {
443 f->credit += q->quantum;
444 head->first = f->next;
445 fq_flow_add_tail(&q->old_flows, f);
446 goto begin;
447 }
448
449 if (unlikely(f->head && now < f->time_next_packet)) {
450 head->first = f->next;
451 fq_flow_set_throttled(q, f);
452 goto begin;
453 }
454
455 skb = fq_dequeue_head(sch, f);
456 if (!skb) {
457 head->first = f->next;
458 /* force a pass through old_flows to prevent starvation */
459 if ((head == &q->new_flows) && q->old_flows.first) {
460 fq_flow_add_tail(&q->old_flows, f);
461 } else {
462 fq_flow_set_detached(f);
463 q->inactive_flows++;
464 }
465 goto begin;
466 }
467 prefetch(&skb->end);
468 f->time_next_packet = now;
469 f->credit -= qdisc_pkt_len(skb);
470
471 if (f->credit > 0 || !q->rate_enable)
472 goto out;
473
474 rate = q->flow_max_rate;
475 if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
476 rate = min(skb->sk->sk_pacing_rate, rate);
477
478 if (rate != ~0U) {
479 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
480 u64 len = (u64)plen * NSEC_PER_SEC;
481
482 if (likely(rate))
483 do_div(len, rate);
484 /* Since socket rate can change later,
485 * clamp the delay to 125 ms.
486 * TODO: maybe segment the too big skb, as in commit
487 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
488 */
489 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
490 len = 125 * NSEC_PER_MSEC;
491 q->stat_pkts_too_long++;
492 }
493
494 f->time_next_packet = now + len;
495 }
496 out:
497 qdisc_bstats_update(sch, skb);
498 qdisc_unthrottled(sch);
499 return skb;
500 }
501
502 static void fq_reset(struct Qdisc *sch)
503 {
504 struct fq_sched_data *q = qdisc_priv(sch);
505 struct rb_root *root;
506 struct sk_buff *skb;
507 struct rb_node *p;
508 struct fq_flow *f;
509 unsigned int idx;
510
511 while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
512 kfree_skb(skb);
513
514 if (!q->fq_root)
515 return;
516
517 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
518 root = &q->fq_root[idx];
519 while ((p = rb_first(root)) != NULL) {
520 f = container_of(p, struct fq_flow, fq_node);
521 rb_erase(p, root);
522
523 while ((skb = fq_dequeue_head(sch, f)) != NULL)
524 kfree_skb(skb);
525
526 kmem_cache_free(fq_flow_cachep, f);
527 }
528 }
529 q->new_flows.first = NULL;
530 q->old_flows.first = NULL;
531 q->delayed = RB_ROOT;
532 q->flows = 0;
533 q->inactive_flows = 0;
534 q->throttled_flows = 0;
535 }
536
537 static void fq_rehash(struct fq_sched_data *q,
538 struct rb_root *old_array, u32 old_log,
539 struct rb_root *new_array, u32 new_log)
540 {
541 struct rb_node *op, **np, *parent;
542 struct rb_root *oroot, *nroot;
543 struct fq_flow *of, *nf;
544 int fcnt = 0;
545 u32 idx;
546
547 for (idx = 0; idx < (1U << old_log); idx++) {
548 oroot = &old_array[idx];
549 while ((op = rb_first(oroot)) != NULL) {
550 rb_erase(op, oroot);
551 of = container_of(op, struct fq_flow, fq_node);
552 if (fq_gc_candidate(of)) {
553 fcnt++;
554 kmem_cache_free(fq_flow_cachep, of);
555 continue;
556 }
557 nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
558
559 np = &nroot->rb_node;
560 parent = NULL;
561 while (*np) {
562 parent = *np;
563
564 nf = container_of(parent, struct fq_flow, fq_node);
565 BUG_ON(nf->sk == of->sk);
566
567 if (nf->sk > of->sk)
568 np = &parent->rb_right;
569 else
570 np = &parent->rb_left;
571 }
572
573 rb_link_node(&of->fq_node, parent, np);
574 rb_insert_color(&of->fq_node, nroot);
575 }
576 }
577 q->flows -= fcnt;
578 q->inactive_flows -= fcnt;
579 q->stat_gc_flows += fcnt;
580 }
581
582 static void *fq_alloc_node(size_t sz, int node)
583 {
584 void *ptr;
585
586 ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
587 if (!ptr)
588 ptr = vmalloc_node(sz, node);
589 return ptr;
590 }
591
592 static void fq_free(void *addr)
593 {
594 if (addr && is_vmalloc_addr(addr))
595 vfree(addr);
596 else
597 kfree(addr);
598 }
599
600 static int fq_resize(struct Qdisc *sch, u32 log)
601 {
602 struct fq_sched_data *q = qdisc_priv(sch);
603 struct rb_root *array;
604 u32 idx;
605
606 if (q->fq_root && log == q->fq_trees_log)
607 return 0;
608
609 /* If XPS was setup, we can allocate memory on right NUMA node */
610 array = fq_alloc_node(sizeof(struct rb_root) << log,
611 netdev_queue_numa_node_read(sch->dev_queue));
612 if (!array)
613 return -ENOMEM;
614
615 for (idx = 0; idx < (1U << log); idx++)
616 array[idx] = RB_ROOT;
617
618 if (q->fq_root) {
619 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
620 fq_free(q->fq_root);
621 }
622 q->fq_root = array;
623 q->fq_trees_log = log;
624
625 return 0;
626 }
627
628 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
629 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
630 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
631 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
632 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
633 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
634 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
635 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
636 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
637 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
638 };
639
640 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
641 {
642 struct fq_sched_data *q = qdisc_priv(sch);
643 struct nlattr *tb[TCA_FQ_MAX + 1];
644 int err, drop_count = 0;
645 u32 fq_log;
646
647 if (!opt)
648 return -EINVAL;
649
650 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
651 if (err < 0)
652 return err;
653
654 sch_tree_lock(sch);
655
656 fq_log = q->fq_trees_log;
657
658 if (tb[TCA_FQ_BUCKETS_LOG]) {
659 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
660
661 if (nval >= 1 && nval <= ilog2(256*1024))
662 fq_log = nval;
663 else
664 err = -EINVAL;
665 }
666 if (tb[TCA_FQ_PLIMIT])
667 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
668
669 if (tb[TCA_FQ_FLOW_PLIMIT])
670 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
671
672 if (tb[TCA_FQ_QUANTUM])
673 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
674
675 if (tb[TCA_FQ_INITIAL_QUANTUM])
676 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
677
678 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
679 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
680 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
681
682 if (tb[TCA_FQ_FLOW_MAX_RATE])
683 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
684
685 if (tb[TCA_FQ_RATE_ENABLE]) {
686 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
687
688 if (enable <= 1)
689 q->rate_enable = enable;
690 else
691 err = -EINVAL;
692 }
693
694 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
695 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
696
697 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
698 }
699
700 if (!err)
701 err = fq_resize(sch, fq_log);
702
703 while (sch->q.qlen > sch->limit) {
704 struct sk_buff *skb = fq_dequeue(sch);
705
706 if (!skb)
707 break;
708 kfree_skb(skb);
709 drop_count++;
710 }
711 qdisc_tree_decrease_qlen(sch, drop_count);
712
713 sch_tree_unlock(sch);
714 return err;
715 }
716
717 static void fq_destroy(struct Qdisc *sch)
718 {
719 struct fq_sched_data *q = qdisc_priv(sch);
720
721 fq_reset(sch);
722 fq_free(q->fq_root);
723 qdisc_watchdog_cancel(&q->watchdog);
724 }
725
726 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
727 {
728 struct fq_sched_data *q = qdisc_priv(sch);
729 int err;
730
731 sch->limit = 10000;
732 q->flow_plimit = 100;
733 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
734 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
735 q->flow_refill_delay = msecs_to_jiffies(40);
736 q->flow_max_rate = ~0U;
737 q->rate_enable = 1;
738 q->new_flows.first = NULL;
739 q->old_flows.first = NULL;
740 q->delayed = RB_ROOT;
741 q->fq_root = NULL;
742 q->fq_trees_log = ilog2(1024);
743 qdisc_watchdog_init(&q->watchdog, sch);
744
745 if (opt)
746 err = fq_change(sch, opt);
747 else
748 err = fq_resize(sch, q->fq_trees_log);
749
750 return err;
751 }
752
753 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
754 {
755 struct fq_sched_data *q = qdisc_priv(sch);
756 struct nlattr *opts;
757
758 opts = nla_nest_start(skb, TCA_OPTIONS);
759 if (opts == NULL)
760 goto nla_put_failure;
761
762 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
763
764 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
765 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
766 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
767 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
768 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
769 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
770 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
771 jiffies_to_usecs(q->flow_refill_delay)) ||
772 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
773 goto nla_put_failure;
774
775 nla_nest_end(skb, opts);
776 return skb->len;
777
778 nla_put_failure:
779 return -1;
780 }
781
782 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
783 {
784 struct fq_sched_data *q = qdisc_priv(sch);
785 u64 now = ktime_to_ns(ktime_get());
786 struct tc_fq_qd_stats st = {
787 .gc_flows = q->stat_gc_flows,
788 .highprio_packets = q->stat_internal_packets,
789 .tcp_retrans = q->stat_tcp_retrans,
790 .throttled = q->stat_throttled,
791 .flows_plimit = q->stat_flows_plimit,
792 .pkts_too_long = q->stat_pkts_too_long,
793 .allocation_errors = q->stat_allocation_errors,
794 .flows = q->flows,
795 .inactive_flows = q->inactive_flows,
796 .throttled_flows = q->throttled_flows,
797 .time_next_delayed_flow = q->time_next_delayed_flow - now,
798 };
799
800 return gnet_stats_copy_app(d, &st, sizeof(st));
801 }
802
803 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
804 .id = "fq",
805 .priv_size = sizeof(struct fq_sched_data),
806
807 .enqueue = fq_enqueue,
808 .dequeue = fq_dequeue,
809 .peek = qdisc_peek_dequeued,
810 .init = fq_init,
811 .reset = fq_reset,
812 .destroy = fq_destroy,
813 .change = fq_change,
814 .dump = fq_dump,
815 .dump_stats = fq_dump_stats,
816 .owner = THIS_MODULE,
817 };
818
819 static int __init fq_module_init(void)
820 {
821 int ret;
822
823 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
824 sizeof(struct fq_flow),
825 0, 0, NULL);
826 if (!fq_flow_cachep)
827 return -ENOMEM;
828
829 ret = register_qdisc(&fq_qdisc_ops);
830 if (ret)
831 kmem_cache_destroy(fq_flow_cachep);
832 return ret;
833 }
834
835 static void __exit fq_module_exit(void)
836 {
837 unregister_qdisc(&fq_qdisc_ops);
838 kmem_cache_destroy(fq_flow_cachep);
839 }
840
841 module_init(fq_module_init)
842 module_exit(fq_module_exit)
843 MODULE_AUTHOR("Eric Dumazet");
844 MODULE_LICENSE("GPL");