]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sched/sch_fq.c
Merge branch 'for-3.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-zesty-kernel.git] / net / sched / sch_fq.c
1 /*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for localy generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <net/netlink.h>
51 #include <net/pkt_sched.h>
52 #include <net/sock.h>
53 #include <net/tcp_states.h>
54
55 /*
56 * Per flow structure, dynamically allocated
57 */
58 struct fq_flow {
59 struct sk_buff *head; /* list of skbs for this flow : first skb */
60 union {
61 struct sk_buff *tail; /* last skb in the list */
62 unsigned long age; /* jiffies when flow was emptied, for gc */
63 };
64 struct rb_node fq_node; /* anchor in fq_root[] trees */
65 struct sock *sk;
66 int qlen; /* number of packets in flow queue */
67 int credit;
68 u32 socket_hash; /* sk_hash */
69 struct fq_flow *next; /* next pointer in RR lists, or &detached */
70
71 struct rb_node rate_node; /* anchor in q->delayed tree */
72 u64 time_next_packet;
73 };
74
75 struct fq_flow_head {
76 struct fq_flow *first;
77 struct fq_flow *last;
78 };
79
80 struct fq_sched_data {
81 struct fq_flow_head new_flows;
82
83 struct fq_flow_head old_flows;
84
85 struct rb_root delayed; /* for rate limited flows */
86 u64 time_next_delayed_flow;
87
88 struct fq_flow internal; /* for non classified or high prio packets */
89 u32 quantum;
90 u32 initial_quantum;
91 u32 flow_refill_delay;
92 u32 flow_max_rate; /* optional max rate per flow */
93 u32 flow_plimit; /* max packets per flow */
94 struct rb_root *fq_root;
95 u8 rate_enable;
96 u8 fq_trees_log;
97
98 u32 flows;
99 u32 inactive_flows;
100 u32 throttled_flows;
101
102 u64 stat_gc_flows;
103 u64 stat_internal_packets;
104 u64 stat_tcp_retrans;
105 u64 stat_throttled;
106 u64 stat_flows_plimit;
107 u64 stat_pkts_too_long;
108 u64 stat_allocation_errors;
109 struct qdisc_watchdog watchdog;
110 };
111
112 /* special value to mark a detached flow (not on old/new list) */
113 static struct fq_flow detached, throttled;
114
115 static void fq_flow_set_detached(struct fq_flow *f)
116 {
117 f->next = &detached;
118 f->age = jiffies;
119 }
120
121 static bool fq_flow_is_detached(const struct fq_flow *f)
122 {
123 return f->next == &detached;
124 }
125
126 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
127 {
128 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
129
130 while (*p) {
131 struct fq_flow *aux;
132
133 parent = *p;
134 aux = container_of(parent, struct fq_flow, rate_node);
135 if (f->time_next_packet >= aux->time_next_packet)
136 p = &parent->rb_right;
137 else
138 p = &parent->rb_left;
139 }
140 rb_link_node(&f->rate_node, parent, p);
141 rb_insert_color(&f->rate_node, &q->delayed);
142 q->throttled_flows++;
143 q->stat_throttled++;
144
145 f->next = &throttled;
146 if (q->time_next_delayed_flow > f->time_next_packet)
147 q->time_next_delayed_flow = f->time_next_packet;
148 }
149
150
151 static struct kmem_cache *fq_flow_cachep __read_mostly;
152
153 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
154 {
155 if (head->first)
156 head->last->next = flow;
157 else
158 head->first = flow;
159 head->last = flow;
160 flow->next = NULL;
161 }
162
163 /* limit number of collected flows per round */
164 #define FQ_GC_MAX 8
165 #define FQ_GC_AGE (3*HZ)
166
167 static bool fq_gc_candidate(const struct fq_flow *f)
168 {
169 return fq_flow_is_detached(f) &&
170 time_after(jiffies, f->age + FQ_GC_AGE);
171 }
172
173 static void fq_gc(struct fq_sched_data *q,
174 struct rb_root *root,
175 struct sock *sk)
176 {
177 struct fq_flow *f, *tofree[FQ_GC_MAX];
178 struct rb_node **p, *parent;
179 int fcnt = 0;
180
181 p = &root->rb_node;
182 parent = NULL;
183 while (*p) {
184 parent = *p;
185
186 f = container_of(parent, struct fq_flow, fq_node);
187 if (f->sk == sk)
188 break;
189
190 if (fq_gc_candidate(f)) {
191 tofree[fcnt++] = f;
192 if (fcnt == FQ_GC_MAX)
193 break;
194 }
195
196 if (f->sk > sk)
197 p = &parent->rb_right;
198 else
199 p = &parent->rb_left;
200 }
201
202 q->flows -= fcnt;
203 q->inactive_flows -= fcnt;
204 q->stat_gc_flows += fcnt;
205 while (fcnt) {
206 struct fq_flow *f = tofree[--fcnt];
207
208 rb_erase(&f->fq_node, root);
209 kmem_cache_free(fq_flow_cachep, f);
210 }
211 }
212
213 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
214 {
215 struct rb_node **p, *parent;
216 struct sock *sk = skb->sk;
217 struct rb_root *root;
218 struct fq_flow *f;
219
220 /* warning: no starvation prevention... */
221 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
222 return &q->internal;
223
224 if (unlikely(!sk)) {
225 /* By forcing low order bit to 1, we make sure to not
226 * collide with a local flow (socket pointers are word aligned)
227 */
228 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
229 }
230
231 root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
232
233 if (q->flows >= (2U << q->fq_trees_log) &&
234 q->inactive_flows > q->flows/2)
235 fq_gc(q, root, sk);
236
237 p = &root->rb_node;
238 parent = NULL;
239 while (*p) {
240 parent = *p;
241
242 f = container_of(parent, struct fq_flow, fq_node);
243 if (f->sk == sk) {
244 /* socket might have been reallocated, so check
245 * if its sk_hash is the same.
246 * It not, we need to refill credit with
247 * initial quantum
248 */
249 if (unlikely(skb->sk &&
250 f->socket_hash != sk->sk_hash)) {
251 f->credit = q->initial_quantum;
252 f->socket_hash = sk->sk_hash;
253 f->time_next_packet = 0ULL;
254 }
255 return f;
256 }
257 if (f->sk > sk)
258 p = &parent->rb_right;
259 else
260 p = &parent->rb_left;
261 }
262
263 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
264 if (unlikely(!f)) {
265 q->stat_allocation_errors++;
266 return &q->internal;
267 }
268 fq_flow_set_detached(f);
269 f->sk = sk;
270 if (skb->sk)
271 f->socket_hash = sk->sk_hash;
272 f->credit = q->initial_quantum;
273
274 rb_link_node(&f->fq_node, parent, p);
275 rb_insert_color(&f->fq_node, root);
276
277 q->flows++;
278 q->inactive_flows++;
279 return f;
280 }
281
282
283 /* remove one skb from head of flow queue */
284 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
285 {
286 struct sk_buff *skb = flow->head;
287
288 if (skb) {
289 flow->head = skb->next;
290 skb->next = NULL;
291 flow->qlen--;
292 sch->qstats.backlog -= qdisc_pkt_len(skb);
293 sch->q.qlen--;
294 }
295 return skb;
296 }
297
298 /* We might add in the future detection of retransmits
299 * For the time being, just return false
300 */
301 static bool skb_is_retransmit(struct sk_buff *skb)
302 {
303 return false;
304 }
305
306 /* add skb to flow queue
307 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
308 * We special case tcp retransmits to be transmitted before other packets.
309 * We rely on fact that TCP retransmits are unlikely, so we do not waste
310 * a separate queue or a pointer.
311 * head-> [retrans pkt 1]
312 * [retrans pkt 2]
313 * [ normal pkt 1]
314 * [ normal pkt 2]
315 * [ normal pkt 3]
316 * tail-> [ normal pkt 4]
317 */
318 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
319 {
320 struct sk_buff *prev, *head = flow->head;
321
322 skb->next = NULL;
323 if (!head) {
324 flow->head = skb;
325 flow->tail = skb;
326 return;
327 }
328 if (likely(!skb_is_retransmit(skb))) {
329 flow->tail->next = skb;
330 flow->tail = skb;
331 return;
332 }
333
334 /* This skb is a tcp retransmit,
335 * find the last retrans packet in the queue
336 */
337 prev = NULL;
338 while (skb_is_retransmit(head)) {
339 prev = head;
340 head = head->next;
341 if (!head)
342 break;
343 }
344 if (!prev) { /* no rtx packet in queue, become the new head */
345 skb->next = flow->head;
346 flow->head = skb;
347 } else {
348 if (prev == flow->tail)
349 flow->tail = skb;
350 else
351 skb->next = prev->next;
352 prev->next = skb;
353 }
354 }
355
356 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
357 {
358 struct fq_sched_data *q = qdisc_priv(sch);
359 struct fq_flow *f;
360
361 if (unlikely(sch->q.qlen >= sch->limit))
362 return qdisc_drop(skb, sch);
363
364 f = fq_classify(skb, q);
365 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
366 q->stat_flows_plimit++;
367 return qdisc_drop(skb, sch);
368 }
369
370 f->qlen++;
371 if (skb_is_retransmit(skb))
372 q->stat_tcp_retrans++;
373 sch->qstats.backlog += qdisc_pkt_len(skb);
374 if (fq_flow_is_detached(f)) {
375 fq_flow_add_tail(&q->new_flows, f);
376 if (time_after(jiffies, f->age + q->flow_refill_delay))
377 f->credit = max_t(u32, f->credit, q->quantum);
378 q->inactive_flows--;
379 qdisc_unthrottled(sch);
380 }
381
382 /* Note: this overwrites f->age */
383 flow_queue_add(f, skb);
384
385 if (unlikely(f == &q->internal)) {
386 q->stat_internal_packets++;
387 qdisc_unthrottled(sch);
388 }
389 sch->q.qlen++;
390
391 return NET_XMIT_SUCCESS;
392 }
393
394 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
395 {
396 struct rb_node *p;
397
398 if (q->time_next_delayed_flow > now)
399 return;
400
401 q->time_next_delayed_flow = ~0ULL;
402 while ((p = rb_first(&q->delayed)) != NULL) {
403 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
404
405 if (f->time_next_packet > now) {
406 q->time_next_delayed_flow = f->time_next_packet;
407 break;
408 }
409 rb_erase(p, &q->delayed);
410 q->throttled_flows--;
411 fq_flow_add_tail(&q->old_flows, f);
412 }
413 }
414
415 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
416 {
417 struct fq_sched_data *q = qdisc_priv(sch);
418 u64 now = ktime_to_ns(ktime_get());
419 struct fq_flow_head *head;
420 struct sk_buff *skb;
421 struct fq_flow *f;
422 u32 rate;
423
424 skb = fq_dequeue_head(sch, &q->internal);
425 if (skb)
426 goto out;
427 fq_check_throttled(q, now);
428 begin:
429 head = &q->new_flows;
430 if (!head->first) {
431 head = &q->old_flows;
432 if (!head->first) {
433 if (q->time_next_delayed_flow != ~0ULL)
434 qdisc_watchdog_schedule_ns(&q->watchdog,
435 q->time_next_delayed_flow);
436 return NULL;
437 }
438 }
439 f = head->first;
440
441 if (f->credit <= 0) {
442 f->credit += q->quantum;
443 head->first = f->next;
444 fq_flow_add_tail(&q->old_flows, f);
445 goto begin;
446 }
447
448 if (unlikely(f->head && now < f->time_next_packet)) {
449 head->first = f->next;
450 fq_flow_set_throttled(q, f);
451 goto begin;
452 }
453
454 skb = fq_dequeue_head(sch, f);
455 if (!skb) {
456 head->first = f->next;
457 /* force a pass through old_flows to prevent starvation */
458 if ((head == &q->new_flows) && q->old_flows.first) {
459 fq_flow_add_tail(&q->old_flows, f);
460 } else {
461 fq_flow_set_detached(f);
462 q->inactive_flows++;
463 }
464 goto begin;
465 }
466 prefetch(&skb->end);
467 f->time_next_packet = now;
468 f->credit -= qdisc_pkt_len(skb);
469
470 if (f->credit > 0 || !q->rate_enable)
471 goto out;
472
473 rate = q->flow_max_rate;
474 if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
475 rate = min(skb->sk->sk_pacing_rate, rate);
476
477 if (rate != ~0U) {
478 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
479 u64 len = (u64)plen * NSEC_PER_SEC;
480
481 if (likely(rate))
482 do_div(len, rate);
483 /* Since socket rate can change later,
484 * clamp the delay to 125 ms.
485 * TODO: maybe segment the too big skb, as in commit
486 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
487 */
488 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
489 len = 125 * NSEC_PER_MSEC;
490 q->stat_pkts_too_long++;
491 }
492
493 f->time_next_packet = now + len;
494 }
495 out:
496 qdisc_bstats_update(sch, skb);
497 qdisc_unthrottled(sch);
498 return skb;
499 }
500
501 static void fq_reset(struct Qdisc *sch)
502 {
503 struct fq_sched_data *q = qdisc_priv(sch);
504 struct rb_root *root;
505 struct sk_buff *skb;
506 struct rb_node *p;
507 struct fq_flow *f;
508 unsigned int idx;
509
510 while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
511 kfree_skb(skb);
512
513 if (!q->fq_root)
514 return;
515
516 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
517 root = &q->fq_root[idx];
518 while ((p = rb_first(root)) != NULL) {
519 f = container_of(p, struct fq_flow, fq_node);
520 rb_erase(p, root);
521
522 while ((skb = fq_dequeue_head(sch, f)) != NULL)
523 kfree_skb(skb);
524
525 kmem_cache_free(fq_flow_cachep, f);
526 }
527 }
528 q->new_flows.first = NULL;
529 q->old_flows.first = NULL;
530 q->delayed = RB_ROOT;
531 q->flows = 0;
532 q->inactive_flows = 0;
533 q->throttled_flows = 0;
534 }
535
536 static void fq_rehash(struct fq_sched_data *q,
537 struct rb_root *old_array, u32 old_log,
538 struct rb_root *new_array, u32 new_log)
539 {
540 struct rb_node *op, **np, *parent;
541 struct rb_root *oroot, *nroot;
542 struct fq_flow *of, *nf;
543 int fcnt = 0;
544 u32 idx;
545
546 for (idx = 0; idx < (1U << old_log); idx++) {
547 oroot = &old_array[idx];
548 while ((op = rb_first(oroot)) != NULL) {
549 rb_erase(op, oroot);
550 of = container_of(op, struct fq_flow, fq_node);
551 if (fq_gc_candidate(of)) {
552 fcnt++;
553 kmem_cache_free(fq_flow_cachep, of);
554 continue;
555 }
556 nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
557
558 np = &nroot->rb_node;
559 parent = NULL;
560 while (*np) {
561 parent = *np;
562
563 nf = container_of(parent, struct fq_flow, fq_node);
564 BUG_ON(nf->sk == of->sk);
565
566 if (nf->sk > of->sk)
567 np = &parent->rb_right;
568 else
569 np = &parent->rb_left;
570 }
571
572 rb_link_node(&of->fq_node, parent, np);
573 rb_insert_color(&of->fq_node, nroot);
574 }
575 }
576 q->flows -= fcnt;
577 q->inactive_flows -= fcnt;
578 q->stat_gc_flows += fcnt;
579 }
580
581 static int fq_resize(struct fq_sched_data *q, u32 log)
582 {
583 struct rb_root *array;
584 u32 idx;
585
586 if (q->fq_root && log == q->fq_trees_log)
587 return 0;
588
589 array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
590 if (!array)
591 return -ENOMEM;
592
593 for (idx = 0; idx < (1U << log); idx++)
594 array[idx] = RB_ROOT;
595
596 if (q->fq_root) {
597 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
598 kfree(q->fq_root);
599 }
600 q->fq_root = array;
601 q->fq_trees_log = log;
602
603 return 0;
604 }
605
606 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
607 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
608 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
609 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
610 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
611 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
612 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
613 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
614 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
615 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
616 };
617
618 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
619 {
620 struct fq_sched_data *q = qdisc_priv(sch);
621 struct nlattr *tb[TCA_FQ_MAX + 1];
622 int err, drop_count = 0;
623 u32 fq_log;
624
625 if (!opt)
626 return -EINVAL;
627
628 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
629 if (err < 0)
630 return err;
631
632 sch_tree_lock(sch);
633
634 fq_log = q->fq_trees_log;
635
636 if (tb[TCA_FQ_BUCKETS_LOG]) {
637 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
638
639 if (nval >= 1 && nval <= ilog2(256*1024))
640 fq_log = nval;
641 else
642 err = -EINVAL;
643 }
644 if (tb[TCA_FQ_PLIMIT])
645 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
646
647 if (tb[TCA_FQ_FLOW_PLIMIT])
648 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
649
650 if (tb[TCA_FQ_QUANTUM])
651 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
652
653 if (tb[TCA_FQ_INITIAL_QUANTUM])
654 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
655
656 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
657 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
658 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
659
660 if (tb[TCA_FQ_FLOW_MAX_RATE])
661 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
662
663 if (tb[TCA_FQ_RATE_ENABLE]) {
664 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
665
666 if (enable <= 1)
667 q->rate_enable = enable;
668 else
669 err = -EINVAL;
670 }
671
672 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
673 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
674
675 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
676 }
677
678 if (!err)
679 err = fq_resize(q, fq_log);
680
681 while (sch->q.qlen > sch->limit) {
682 struct sk_buff *skb = fq_dequeue(sch);
683
684 if (!skb)
685 break;
686 kfree_skb(skb);
687 drop_count++;
688 }
689 qdisc_tree_decrease_qlen(sch, drop_count);
690
691 sch_tree_unlock(sch);
692 return err;
693 }
694
695 static void fq_destroy(struct Qdisc *sch)
696 {
697 struct fq_sched_data *q = qdisc_priv(sch);
698
699 fq_reset(sch);
700 kfree(q->fq_root);
701 qdisc_watchdog_cancel(&q->watchdog);
702 }
703
704 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
705 {
706 struct fq_sched_data *q = qdisc_priv(sch);
707 int err;
708
709 sch->limit = 10000;
710 q->flow_plimit = 100;
711 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
712 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
713 q->flow_refill_delay = msecs_to_jiffies(40);
714 q->flow_max_rate = ~0U;
715 q->rate_enable = 1;
716 q->new_flows.first = NULL;
717 q->old_flows.first = NULL;
718 q->delayed = RB_ROOT;
719 q->fq_root = NULL;
720 q->fq_trees_log = ilog2(1024);
721 qdisc_watchdog_init(&q->watchdog, sch);
722
723 if (opt)
724 err = fq_change(sch, opt);
725 else
726 err = fq_resize(q, q->fq_trees_log);
727
728 return err;
729 }
730
731 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
732 {
733 struct fq_sched_data *q = qdisc_priv(sch);
734 struct nlattr *opts;
735
736 opts = nla_nest_start(skb, TCA_OPTIONS);
737 if (opts == NULL)
738 goto nla_put_failure;
739
740 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
741
742 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
743 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
744 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
745 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
746 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
747 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
748 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
749 jiffies_to_usecs(q->flow_refill_delay)) ||
750 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
751 goto nla_put_failure;
752
753 nla_nest_end(skb, opts);
754 return skb->len;
755
756 nla_put_failure:
757 return -1;
758 }
759
760 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
761 {
762 struct fq_sched_data *q = qdisc_priv(sch);
763 u64 now = ktime_to_ns(ktime_get());
764 struct tc_fq_qd_stats st = {
765 .gc_flows = q->stat_gc_flows,
766 .highprio_packets = q->stat_internal_packets,
767 .tcp_retrans = q->stat_tcp_retrans,
768 .throttled = q->stat_throttled,
769 .flows_plimit = q->stat_flows_plimit,
770 .pkts_too_long = q->stat_pkts_too_long,
771 .allocation_errors = q->stat_allocation_errors,
772 .flows = q->flows,
773 .inactive_flows = q->inactive_flows,
774 .throttled_flows = q->throttled_flows,
775 .time_next_delayed_flow = q->time_next_delayed_flow - now,
776 };
777
778 return gnet_stats_copy_app(d, &st, sizeof(st));
779 }
780
781 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
782 .id = "fq",
783 .priv_size = sizeof(struct fq_sched_data),
784
785 .enqueue = fq_enqueue,
786 .dequeue = fq_dequeue,
787 .peek = qdisc_peek_dequeued,
788 .init = fq_init,
789 .reset = fq_reset,
790 .destroy = fq_destroy,
791 .change = fq_change,
792 .dump = fq_dump,
793 .dump_stats = fq_dump_stats,
794 .owner = THIS_MODULE,
795 };
796
797 static int __init fq_module_init(void)
798 {
799 int ret;
800
801 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
802 sizeof(struct fq_flow),
803 0, 0, NULL);
804 if (!fq_flow_cachep)
805 return -ENOMEM;
806
807 ret = register_qdisc(&fq_qdisc_ops);
808 if (ret)
809 kmem_cache_destroy(fq_flow_cachep);
810 return ret;
811 }
812
813 static void __exit fq_module_exit(void)
814 {
815 unregister_qdisc(&fq_qdisc_ops);
816 kmem_cache_destroy(fq_flow_cachep);
817 }
818
819 module_init(fq_module_init)
820 module_exit(fq_module_exit)
821 MODULE_AUTHOR("Eric Dumazet");
822 MODULE_LICENSE("GPL");