]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_fq.c
cls_flower: Fix incorrect idr release when failing to modify rule
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_fq.c
1 /*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for locally generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 /*
58 * Per flow structure, dynamically allocated
59 */
60 struct fq_flow {
61 struct sk_buff *head; /* list of skbs for this flow : first skb */
62 union {
63 struct sk_buff *tail; /* last skb in the list */
64 unsigned long age; /* jiffies when flow was emptied, for gc */
65 };
66 struct rb_node fq_node; /* anchor in fq_root[] trees */
67 struct sock *sk;
68 int qlen; /* number of packets in flow queue */
69 int credit;
70 u32 socket_hash; /* sk_hash */
71 struct fq_flow *next; /* next pointer in RR lists, or &detached */
72
73 struct rb_node rate_node; /* anchor in q->delayed tree */
74 u64 time_next_packet;
75 };
76
77 struct fq_flow_head {
78 struct fq_flow *first;
79 struct fq_flow *last;
80 };
81
82 struct fq_sched_data {
83 struct fq_flow_head new_flows;
84
85 struct fq_flow_head old_flows;
86
87 struct rb_root delayed; /* for rate limited flows */
88 u64 time_next_delayed_flow;
89 unsigned long unthrottle_latency_ns;
90
91 struct fq_flow internal; /* for non classified or high prio packets */
92 u32 quantum;
93 u32 initial_quantum;
94 u32 flow_refill_delay;
95 u32 flow_max_rate; /* optional max rate per flow */
96 u32 flow_plimit; /* max packets per flow */
97 u32 orphan_mask; /* mask for orphaned skb */
98 u32 low_rate_threshold;
99 struct rb_root *fq_root;
100 u8 rate_enable;
101 u8 fq_trees_log;
102
103 u32 flows;
104 u32 inactive_flows;
105 u32 throttled_flows;
106
107 u64 stat_gc_flows;
108 u64 stat_internal_packets;
109 u64 stat_tcp_retrans;
110 u64 stat_throttled;
111 u64 stat_flows_plimit;
112 u64 stat_pkts_too_long;
113 u64 stat_allocation_errors;
114 struct qdisc_watchdog watchdog;
115 };
116
117 /* special value to mark a detached flow (not on old/new list) */
118 static struct fq_flow detached, throttled;
119
120 static void fq_flow_set_detached(struct fq_flow *f)
121 {
122 f->next = &detached;
123 f->age = jiffies;
124 }
125
126 static bool fq_flow_is_detached(const struct fq_flow *f)
127 {
128 return f->next == &detached;
129 }
130
131 static bool fq_flow_is_throttled(const struct fq_flow *f)
132 {
133 return f->next == &throttled;
134 }
135
136 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
137 {
138 if (head->first)
139 head->last->next = flow;
140 else
141 head->first = flow;
142 head->last = flow;
143 flow->next = NULL;
144 }
145
146 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
147 {
148 rb_erase(&f->rate_node, &q->delayed);
149 q->throttled_flows--;
150 fq_flow_add_tail(&q->old_flows, f);
151 }
152
153 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
154 {
155 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
156
157 while (*p) {
158 struct fq_flow *aux;
159
160 parent = *p;
161 aux = rb_entry(parent, struct fq_flow, rate_node);
162 if (f->time_next_packet >= aux->time_next_packet)
163 p = &parent->rb_right;
164 else
165 p = &parent->rb_left;
166 }
167 rb_link_node(&f->rate_node, parent, p);
168 rb_insert_color(&f->rate_node, &q->delayed);
169 q->throttled_flows++;
170 q->stat_throttled++;
171
172 f->next = &throttled;
173 if (q->time_next_delayed_flow > f->time_next_packet)
174 q->time_next_delayed_flow = f->time_next_packet;
175 }
176
177
178 static struct kmem_cache *fq_flow_cachep __read_mostly;
179
180
181 /* limit number of collected flows per round */
182 #define FQ_GC_MAX 8
183 #define FQ_GC_AGE (3*HZ)
184
185 static bool fq_gc_candidate(const struct fq_flow *f)
186 {
187 return fq_flow_is_detached(f) &&
188 time_after(jiffies, f->age + FQ_GC_AGE);
189 }
190
191 static void fq_gc(struct fq_sched_data *q,
192 struct rb_root *root,
193 struct sock *sk)
194 {
195 struct fq_flow *f, *tofree[FQ_GC_MAX];
196 struct rb_node **p, *parent;
197 int fcnt = 0;
198
199 p = &root->rb_node;
200 parent = NULL;
201 while (*p) {
202 parent = *p;
203
204 f = rb_entry(parent, struct fq_flow, fq_node);
205 if (f->sk == sk)
206 break;
207
208 if (fq_gc_candidate(f)) {
209 tofree[fcnt++] = f;
210 if (fcnt == FQ_GC_MAX)
211 break;
212 }
213
214 if (f->sk > sk)
215 p = &parent->rb_right;
216 else
217 p = &parent->rb_left;
218 }
219
220 q->flows -= fcnt;
221 q->inactive_flows -= fcnt;
222 q->stat_gc_flows += fcnt;
223 while (fcnt) {
224 struct fq_flow *f = tofree[--fcnt];
225
226 rb_erase(&f->fq_node, root);
227 kmem_cache_free(fq_flow_cachep, f);
228 }
229 }
230
231 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
232 {
233 struct rb_node **p, *parent;
234 struct sock *sk = skb->sk;
235 struct rb_root *root;
236 struct fq_flow *f;
237
238 /* warning: no starvation prevention... */
239 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
240 return &q->internal;
241
242 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
243 * or a listener (SYNCOOKIE mode)
244 * 1) request sockets are not full blown,
245 * they do not contain sk_pacing_rate
246 * 2) They are not part of a 'flow' yet
247 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
248 * especially if the listener set SO_MAX_PACING_RATE
249 * 4) We pretend they are orphaned
250 */
251 if (!sk || sk_listener(sk)) {
252 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
253
254 /* By forcing low order bit to 1, we make sure to not
255 * collide with a local flow (socket pointers are word aligned)
256 */
257 sk = (struct sock *)((hash << 1) | 1UL);
258 skb_orphan(skb);
259 }
260
261 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
262
263 if (q->flows >= (2U << q->fq_trees_log) &&
264 q->inactive_flows > q->flows/2)
265 fq_gc(q, root, sk);
266
267 p = &root->rb_node;
268 parent = NULL;
269 while (*p) {
270 parent = *p;
271
272 f = rb_entry(parent, struct fq_flow, fq_node);
273 if (f->sk == sk) {
274 /* socket might have been reallocated, so check
275 * if its sk_hash is the same.
276 * It not, we need to refill credit with
277 * initial quantum
278 */
279 if (unlikely(skb->sk &&
280 f->socket_hash != sk->sk_hash)) {
281 f->credit = q->initial_quantum;
282 f->socket_hash = sk->sk_hash;
283 if (fq_flow_is_throttled(f))
284 fq_flow_unset_throttled(q, f);
285 f->time_next_packet = 0ULL;
286 }
287 return f;
288 }
289 if (f->sk > sk)
290 p = &parent->rb_right;
291 else
292 p = &parent->rb_left;
293 }
294
295 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
296 if (unlikely(!f)) {
297 q->stat_allocation_errors++;
298 return &q->internal;
299 }
300 fq_flow_set_detached(f);
301 f->sk = sk;
302 if (skb->sk)
303 f->socket_hash = sk->sk_hash;
304 f->credit = q->initial_quantum;
305
306 rb_link_node(&f->fq_node, parent, p);
307 rb_insert_color(&f->fq_node, root);
308
309 q->flows++;
310 q->inactive_flows++;
311 return f;
312 }
313
314
315 /* remove one skb from head of flow queue */
316 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
317 {
318 struct sk_buff *skb = flow->head;
319
320 if (skb) {
321 flow->head = skb->next;
322 skb->next = NULL;
323 flow->qlen--;
324 qdisc_qstats_backlog_dec(sch, skb);
325 sch->q.qlen--;
326 }
327 return skb;
328 }
329
330 /* We might add in the future detection of retransmits
331 * For the time being, just return false
332 */
333 static bool skb_is_retransmit(struct sk_buff *skb)
334 {
335 return false;
336 }
337
338 /* add skb to flow queue
339 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
340 * We special case tcp retransmits to be transmitted before other packets.
341 * We rely on fact that TCP retransmits are unlikely, so we do not waste
342 * a separate queue or a pointer.
343 * head-> [retrans pkt 1]
344 * [retrans pkt 2]
345 * [ normal pkt 1]
346 * [ normal pkt 2]
347 * [ normal pkt 3]
348 * tail-> [ normal pkt 4]
349 */
350 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
351 {
352 struct sk_buff *prev, *head = flow->head;
353
354 skb->next = NULL;
355 if (!head) {
356 flow->head = skb;
357 flow->tail = skb;
358 return;
359 }
360 if (likely(!skb_is_retransmit(skb))) {
361 flow->tail->next = skb;
362 flow->tail = skb;
363 return;
364 }
365
366 /* This skb is a tcp retransmit,
367 * find the last retrans packet in the queue
368 */
369 prev = NULL;
370 while (skb_is_retransmit(head)) {
371 prev = head;
372 head = head->next;
373 if (!head)
374 break;
375 }
376 if (!prev) { /* no rtx packet in queue, become the new head */
377 skb->next = flow->head;
378 flow->head = skb;
379 } else {
380 if (prev == flow->tail)
381 flow->tail = skb;
382 else
383 skb->next = prev->next;
384 prev->next = skb;
385 }
386 }
387
388 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
389 struct sk_buff **to_free)
390 {
391 struct fq_sched_data *q = qdisc_priv(sch);
392 struct fq_flow *f;
393
394 if (unlikely(sch->q.qlen >= sch->limit))
395 return qdisc_drop(skb, sch, to_free);
396
397 f = fq_classify(skb, q);
398 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
399 q->stat_flows_plimit++;
400 return qdisc_drop(skb, sch, to_free);
401 }
402
403 f->qlen++;
404 if (skb_is_retransmit(skb))
405 q->stat_tcp_retrans++;
406 qdisc_qstats_backlog_inc(sch, skb);
407 if (fq_flow_is_detached(f)) {
408 struct sock *sk = skb->sk;
409
410 fq_flow_add_tail(&q->new_flows, f);
411 if (time_after(jiffies, f->age + q->flow_refill_delay))
412 f->credit = max_t(u32, f->credit, q->quantum);
413 if (sk && q->rate_enable) {
414 if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
415 SK_PACING_FQ))
416 smp_store_release(&sk->sk_pacing_status,
417 SK_PACING_FQ);
418 }
419 q->inactive_flows--;
420 }
421
422 /* Note: this overwrites f->age */
423 flow_queue_add(f, skb);
424
425 if (unlikely(f == &q->internal)) {
426 q->stat_internal_packets++;
427 }
428 sch->q.qlen++;
429
430 return NET_XMIT_SUCCESS;
431 }
432
433 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
434 {
435 unsigned long sample;
436 struct rb_node *p;
437
438 if (q->time_next_delayed_flow > now)
439 return;
440
441 /* Update unthrottle latency EWMA.
442 * This is cheap and can help diagnosing timer/latency problems.
443 */
444 sample = (unsigned long)(now - q->time_next_delayed_flow);
445 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
446 q->unthrottle_latency_ns += sample >> 3;
447
448 q->time_next_delayed_flow = ~0ULL;
449 while ((p = rb_first(&q->delayed)) != NULL) {
450 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
451
452 if (f->time_next_packet > now) {
453 q->time_next_delayed_flow = f->time_next_packet;
454 break;
455 }
456 fq_flow_unset_throttled(q, f);
457 }
458 }
459
460 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
461 {
462 struct fq_sched_data *q = qdisc_priv(sch);
463 u64 now = ktime_get_ns();
464 struct fq_flow_head *head;
465 struct sk_buff *skb;
466 struct fq_flow *f;
467 u32 rate, plen;
468
469 skb = fq_dequeue_head(sch, &q->internal);
470 if (skb)
471 goto out;
472 fq_check_throttled(q, now);
473 begin:
474 head = &q->new_flows;
475 if (!head->first) {
476 head = &q->old_flows;
477 if (!head->first) {
478 if (q->time_next_delayed_flow != ~0ULL)
479 qdisc_watchdog_schedule_ns(&q->watchdog,
480 q->time_next_delayed_flow);
481 return NULL;
482 }
483 }
484 f = head->first;
485
486 if (f->credit <= 0) {
487 f->credit += q->quantum;
488 head->first = f->next;
489 fq_flow_add_tail(&q->old_flows, f);
490 goto begin;
491 }
492
493 skb = f->head;
494 if (unlikely(skb && now < f->time_next_packet &&
495 !skb_is_tcp_pure_ack(skb))) {
496 head->first = f->next;
497 fq_flow_set_throttled(q, f);
498 goto begin;
499 }
500
501 skb = fq_dequeue_head(sch, f);
502 if (!skb) {
503 head->first = f->next;
504 /* force a pass through old_flows to prevent starvation */
505 if ((head == &q->new_flows) && q->old_flows.first) {
506 fq_flow_add_tail(&q->old_flows, f);
507 } else {
508 fq_flow_set_detached(f);
509 q->inactive_flows++;
510 }
511 goto begin;
512 }
513 prefetch(&skb->end);
514 f->credit -= qdisc_pkt_len(skb);
515
516 if (!q->rate_enable)
517 goto out;
518
519 /* Do not pace locally generated ack packets */
520 if (skb_is_tcp_pure_ack(skb))
521 goto out;
522
523 rate = q->flow_max_rate;
524 if (skb->sk)
525 rate = min(skb->sk->sk_pacing_rate, rate);
526
527 if (rate <= q->low_rate_threshold) {
528 f->credit = 0;
529 plen = qdisc_pkt_len(skb);
530 } else {
531 plen = max(qdisc_pkt_len(skb), q->quantum);
532 if (f->credit > 0)
533 goto out;
534 }
535 if (rate != ~0U) {
536 u64 len = (u64)plen * NSEC_PER_SEC;
537
538 if (likely(rate))
539 do_div(len, rate);
540 /* Since socket rate can change later,
541 * clamp the delay to 1 second.
542 * Really, providers of too big packets should be fixed !
543 */
544 if (unlikely(len > NSEC_PER_SEC)) {
545 len = NSEC_PER_SEC;
546 q->stat_pkts_too_long++;
547 }
548 /* Account for schedule/timers drifts.
549 * f->time_next_packet was set when prior packet was sent,
550 * and current time (@now) can be too late by tens of us.
551 */
552 if (f->time_next_packet)
553 len -= min(len/2, now - f->time_next_packet);
554 f->time_next_packet = now + len;
555 }
556 out:
557 qdisc_bstats_update(sch, skb);
558 return skb;
559 }
560
561 static void fq_flow_purge(struct fq_flow *flow)
562 {
563 rtnl_kfree_skbs(flow->head, flow->tail);
564 flow->head = NULL;
565 flow->qlen = 0;
566 }
567
568 static void fq_reset(struct Qdisc *sch)
569 {
570 struct fq_sched_data *q = qdisc_priv(sch);
571 struct rb_root *root;
572 struct rb_node *p;
573 struct fq_flow *f;
574 unsigned int idx;
575
576 sch->q.qlen = 0;
577 sch->qstats.backlog = 0;
578
579 fq_flow_purge(&q->internal);
580
581 if (!q->fq_root)
582 return;
583
584 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
585 root = &q->fq_root[idx];
586 while ((p = rb_first(root)) != NULL) {
587 f = rb_entry(p, struct fq_flow, fq_node);
588 rb_erase(p, root);
589
590 fq_flow_purge(f);
591
592 kmem_cache_free(fq_flow_cachep, f);
593 }
594 }
595 q->new_flows.first = NULL;
596 q->old_flows.first = NULL;
597 q->delayed = RB_ROOT;
598 q->flows = 0;
599 q->inactive_flows = 0;
600 q->throttled_flows = 0;
601 }
602
603 static void fq_rehash(struct fq_sched_data *q,
604 struct rb_root *old_array, u32 old_log,
605 struct rb_root *new_array, u32 new_log)
606 {
607 struct rb_node *op, **np, *parent;
608 struct rb_root *oroot, *nroot;
609 struct fq_flow *of, *nf;
610 int fcnt = 0;
611 u32 idx;
612
613 for (idx = 0; idx < (1U << old_log); idx++) {
614 oroot = &old_array[idx];
615 while ((op = rb_first(oroot)) != NULL) {
616 rb_erase(op, oroot);
617 of = rb_entry(op, struct fq_flow, fq_node);
618 if (fq_gc_candidate(of)) {
619 fcnt++;
620 kmem_cache_free(fq_flow_cachep, of);
621 continue;
622 }
623 nroot = &new_array[hash_ptr(of->sk, new_log)];
624
625 np = &nroot->rb_node;
626 parent = NULL;
627 while (*np) {
628 parent = *np;
629
630 nf = rb_entry(parent, struct fq_flow, fq_node);
631 BUG_ON(nf->sk == of->sk);
632
633 if (nf->sk > of->sk)
634 np = &parent->rb_right;
635 else
636 np = &parent->rb_left;
637 }
638
639 rb_link_node(&of->fq_node, parent, np);
640 rb_insert_color(&of->fq_node, nroot);
641 }
642 }
643 q->flows -= fcnt;
644 q->inactive_flows -= fcnt;
645 q->stat_gc_flows += fcnt;
646 }
647
648 static void fq_free(void *addr)
649 {
650 kvfree(addr);
651 }
652
653 static int fq_resize(struct Qdisc *sch, u32 log)
654 {
655 struct fq_sched_data *q = qdisc_priv(sch);
656 struct rb_root *array;
657 void *old_fq_root;
658 u32 idx;
659
660 if (q->fq_root && log == q->fq_trees_log)
661 return 0;
662
663 /* If XPS was setup, we can allocate memory on right NUMA node */
664 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
665 netdev_queue_numa_node_read(sch->dev_queue));
666 if (!array)
667 return -ENOMEM;
668
669 for (idx = 0; idx < (1U << log); idx++)
670 array[idx] = RB_ROOT;
671
672 sch_tree_lock(sch);
673
674 old_fq_root = q->fq_root;
675 if (old_fq_root)
676 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
677
678 q->fq_root = array;
679 q->fq_trees_log = log;
680
681 sch_tree_unlock(sch);
682
683 fq_free(old_fq_root);
684
685 return 0;
686 }
687
688 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
689 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
690 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
691 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
692 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
693 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
694 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
695 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
696 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
697 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
698 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
699 };
700
701 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
702 {
703 struct fq_sched_data *q = qdisc_priv(sch);
704 struct nlattr *tb[TCA_FQ_MAX + 1];
705 int err, drop_count = 0;
706 unsigned drop_len = 0;
707 u32 fq_log;
708
709 if (!opt)
710 return -EINVAL;
711
712 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy, NULL);
713 if (err < 0)
714 return err;
715
716 sch_tree_lock(sch);
717
718 fq_log = q->fq_trees_log;
719
720 if (tb[TCA_FQ_BUCKETS_LOG]) {
721 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
722
723 if (nval >= 1 && nval <= ilog2(256*1024))
724 fq_log = nval;
725 else
726 err = -EINVAL;
727 }
728 if (tb[TCA_FQ_PLIMIT])
729 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
730
731 if (tb[TCA_FQ_FLOW_PLIMIT])
732 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
733
734 if (tb[TCA_FQ_QUANTUM]) {
735 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
736
737 if (quantum > 0)
738 q->quantum = quantum;
739 else
740 err = -EINVAL;
741 }
742
743 if (tb[TCA_FQ_INITIAL_QUANTUM])
744 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
745
746 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
747 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
748 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
749
750 if (tb[TCA_FQ_FLOW_MAX_RATE])
751 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
752
753 if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
754 q->low_rate_threshold =
755 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
756
757 if (tb[TCA_FQ_RATE_ENABLE]) {
758 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
759
760 if (enable <= 1)
761 q->rate_enable = enable;
762 else
763 err = -EINVAL;
764 }
765
766 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
767 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
768
769 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
770 }
771
772 if (tb[TCA_FQ_ORPHAN_MASK])
773 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
774
775 if (!err) {
776 sch_tree_unlock(sch);
777 err = fq_resize(sch, fq_log);
778 sch_tree_lock(sch);
779 }
780 while (sch->q.qlen > sch->limit) {
781 struct sk_buff *skb = fq_dequeue(sch);
782
783 if (!skb)
784 break;
785 drop_len += qdisc_pkt_len(skb);
786 rtnl_kfree_skbs(skb, skb);
787 drop_count++;
788 }
789 qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
790
791 sch_tree_unlock(sch);
792 return err;
793 }
794
795 static void fq_destroy(struct Qdisc *sch)
796 {
797 struct fq_sched_data *q = qdisc_priv(sch);
798
799 fq_reset(sch);
800 fq_free(q->fq_root);
801 qdisc_watchdog_cancel(&q->watchdog);
802 }
803
804 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
805 {
806 struct fq_sched_data *q = qdisc_priv(sch);
807 int err;
808
809 sch->limit = 10000;
810 q->flow_plimit = 100;
811 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
812 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
813 q->flow_refill_delay = msecs_to_jiffies(40);
814 q->flow_max_rate = ~0U;
815 q->time_next_delayed_flow = ~0ULL;
816 q->rate_enable = 1;
817 q->new_flows.first = NULL;
818 q->old_flows.first = NULL;
819 q->delayed = RB_ROOT;
820 q->fq_root = NULL;
821 q->fq_trees_log = ilog2(1024);
822 q->orphan_mask = 1024 - 1;
823 q->low_rate_threshold = 550000 / 8;
824 qdisc_watchdog_init(&q->watchdog, sch);
825
826 if (opt)
827 err = fq_change(sch, opt);
828 else
829 err = fq_resize(sch, q->fq_trees_log);
830
831 return err;
832 }
833
834 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
835 {
836 struct fq_sched_data *q = qdisc_priv(sch);
837 struct nlattr *opts;
838
839 opts = nla_nest_start(skb, TCA_OPTIONS);
840 if (opts == NULL)
841 goto nla_put_failure;
842
843 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
844
845 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
846 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
847 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
848 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
849 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
850 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
851 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
852 jiffies_to_usecs(q->flow_refill_delay)) ||
853 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
854 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
855 q->low_rate_threshold) ||
856 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
857 goto nla_put_failure;
858
859 return nla_nest_end(skb, opts);
860
861 nla_put_failure:
862 return -1;
863 }
864
865 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
866 {
867 struct fq_sched_data *q = qdisc_priv(sch);
868 struct tc_fq_qd_stats st;
869
870 sch_tree_lock(sch);
871
872 st.gc_flows = q->stat_gc_flows;
873 st.highprio_packets = q->stat_internal_packets;
874 st.tcp_retrans = q->stat_tcp_retrans;
875 st.throttled = q->stat_throttled;
876 st.flows_plimit = q->stat_flows_plimit;
877 st.pkts_too_long = q->stat_pkts_too_long;
878 st.allocation_errors = q->stat_allocation_errors;
879 st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
880 st.flows = q->flows;
881 st.inactive_flows = q->inactive_flows;
882 st.throttled_flows = q->throttled_flows;
883 st.unthrottle_latency_ns = min_t(unsigned long,
884 q->unthrottle_latency_ns, ~0U);
885 sch_tree_unlock(sch);
886
887 return gnet_stats_copy_app(d, &st, sizeof(st));
888 }
889
890 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
891 .id = "fq",
892 .priv_size = sizeof(struct fq_sched_data),
893
894 .enqueue = fq_enqueue,
895 .dequeue = fq_dequeue,
896 .peek = qdisc_peek_dequeued,
897 .init = fq_init,
898 .reset = fq_reset,
899 .destroy = fq_destroy,
900 .change = fq_change,
901 .dump = fq_dump,
902 .dump_stats = fq_dump_stats,
903 .owner = THIS_MODULE,
904 };
905
906 static int __init fq_module_init(void)
907 {
908 int ret;
909
910 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
911 sizeof(struct fq_flow),
912 0, 0, NULL);
913 if (!fq_flow_cachep)
914 return -ENOMEM;
915
916 ret = register_qdisc(&fq_qdisc_ops);
917 if (ret)
918 kmem_cache_destroy(fq_flow_cachep);
919 return ret;
920 }
921
922 static void __exit fq_module_exit(void)
923 {
924 unregister_qdisc(&fq_qdisc_ops);
925 kmem_cache_destroy(fq_flow_cachep);
926 }
927
928 module_init(fq_module_init)
929 module_exit(fq_module_exit)
930 MODULE_AUTHOR("Eric Dumazet");
931 MODULE_LICENSE("GPL");