]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_netem.c
net_sched: fix a NULL pointer deref in ipt action
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_netem.c
1 /*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31
32 #define VERSION "1.3"
33
34 /* Network Emulation Queuing algorithm.
35 ====================================
36
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
40
41 ----------------------------------------------------------------
42
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
50
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
55
56 Correlated Loss Generator models
57
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
60
61 References:
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
66
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70
71 struct netem_sched_data {
72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 struct rb_root t_root;
74
75 /* optional qdisc for classful handling (NULL at netem init) */
76 struct Qdisc *qdisc;
77
78 struct qdisc_watchdog watchdog;
79
80 s64 latency;
81 s64 jitter;
82
83 u32 loss;
84 u32 ecn;
85 u32 limit;
86 u32 counter;
87 u32 gap;
88 u32 duplicate;
89 u32 reorder;
90 u32 corrupt;
91 u64 rate;
92 s32 packet_overhead;
93 u32 cell_size;
94 struct reciprocal_value cell_size_reciprocal;
95 s32 cell_overhead;
96
97 struct crndstate {
98 u32 last;
99 u32 rho;
100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101
102 struct disttable {
103 u32 size;
104 s16 table[0];
105 } *delay_dist;
106
107 enum {
108 CLG_RANDOM,
109 CLG_4_STATES,
110 CLG_GILB_ELL,
111 } loss_model;
112
113 enum {
114 TX_IN_GAP_PERIOD = 1,
115 TX_IN_BURST_PERIOD,
116 LOST_IN_GAP_PERIOD,
117 LOST_IN_BURST_PERIOD,
118 } _4_state_model;
119
120 enum {
121 GOOD_STATE = 1,
122 BAD_STATE,
123 } GE_state_model;
124
125 /* Correlated Loss Generation models */
126 struct clgstate {
127 /* state of the Markov chain */
128 u8 state;
129
130 /* 4-states and Gilbert-Elliot models */
131 u32 a1; /* p13 for 4-states or p for GE */
132 u32 a2; /* p31 for 4-states or r for GE */
133 u32 a3; /* p32 for 4-states or h for GE */
134 u32 a4; /* p14 for 4-states or 1-k for GE */
135 u32 a5; /* p23 used only in 4-states */
136 } clg;
137
138 struct tc_netem_slot slot_config;
139 struct slotstate {
140 u64 slot_next;
141 s32 packets_left;
142 s32 bytes_left;
143 } slot;
144
145 };
146
147 /* Time stamp put into socket buffer control block
148 * Only valid when skbs are in our internal t(ime)fifo queue.
149 *
150 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
151 * and skb->next & skb->prev are scratch space for a qdisc,
152 * we save skb->tstamp value in skb->cb[] before destroying it.
153 */
154 struct netem_skb_cb {
155 u64 time_to_send;
156 };
157
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
159 {
160 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
163 }
164
165 /* init_crandom - initialize correlated random number generator
166 * Use entropy source for initial seed.
167 */
168 static void init_crandom(struct crndstate *state, unsigned long rho)
169 {
170 state->rho = rho;
171 state->last = prandom_u32();
172 }
173
174 /* get_crandom - correlated random number generator
175 * Next number depends on last value.
176 * rho is scaled to avoid floating point.
177 */
178 static u32 get_crandom(struct crndstate *state)
179 {
180 u64 value, rho;
181 unsigned long answer;
182
183 if (state->rho == 0) /* no correlation */
184 return prandom_u32();
185
186 value = prandom_u32();
187 rho = (u64)state->rho + 1;
188 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189 state->last = answer;
190 return answer;
191 }
192
193 /* loss_4state - 4-state model loss generator
194 * Generates losses according to the 4-state Markov chain adopted in
195 * the GI (General and Intuitive) loss model.
196 */
197 static bool loss_4state(struct netem_sched_data *q)
198 {
199 struct clgstate *clg = &q->clg;
200 u32 rnd = prandom_u32();
201
202 /*
203 * Makes a comparison between rnd and the transition
204 * probabilities outgoing from the current state, then decides the
205 * next state and if the next packet has to be transmitted or lost.
206 * The four states correspond to:
207 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 * LOST_IN_GAP_PERIOD => lost packets within a burst period
210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
211 */
212 switch (clg->state) {
213 case TX_IN_GAP_PERIOD:
214 if (rnd < clg->a4) {
215 clg->state = LOST_IN_BURST_PERIOD;
216 return true;
217 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218 clg->state = LOST_IN_GAP_PERIOD;
219 return true;
220 } else if (clg->a1 + clg->a4 < rnd) {
221 clg->state = TX_IN_GAP_PERIOD;
222 }
223
224 break;
225 case TX_IN_BURST_PERIOD:
226 if (rnd < clg->a5) {
227 clg->state = LOST_IN_GAP_PERIOD;
228 return true;
229 } else {
230 clg->state = TX_IN_BURST_PERIOD;
231 }
232
233 break;
234 case LOST_IN_GAP_PERIOD:
235 if (rnd < clg->a3)
236 clg->state = TX_IN_BURST_PERIOD;
237 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238 clg->state = TX_IN_GAP_PERIOD;
239 } else if (clg->a2 + clg->a3 < rnd) {
240 clg->state = LOST_IN_GAP_PERIOD;
241 return true;
242 }
243 break;
244 case LOST_IN_BURST_PERIOD:
245 clg->state = TX_IN_GAP_PERIOD;
246 break;
247 }
248
249 return false;
250 }
251
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253 * Generates losses according to the Gilbert-Elliot loss model or
254 * its special cases (Gilbert or Simple Gilbert)
255 *
256 * Makes a comparison between random number and the transition
257 * probabilities outgoing from the current state, then decides the
258 * next state. A second random number is extracted and the comparison
259 * with the loss probability of the current state decides if the next
260 * packet will be transmitted or lost.
261 */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264 struct clgstate *clg = &q->clg;
265
266 switch (clg->state) {
267 case GOOD_STATE:
268 if (prandom_u32() < clg->a1)
269 clg->state = BAD_STATE;
270 if (prandom_u32() < clg->a4)
271 return true;
272 break;
273 case BAD_STATE:
274 if (prandom_u32() < clg->a2)
275 clg->state = GOOD_STATE;
276 if (prandom_u32() > clg->a3)
277 return true;
278 }
279
280 return false;
281 }
282
283 static bool loss_event(struct netem_sched_data *q)
284 {
285 switch (q->loss_model) {
286 case CLG_RANDOM:
287 /* Random packet drop 0 => none, ~0 => all */
288 return q->loss && q->loss >= get_crandom(&q->loss_cor);
289
290 case CLG_4_STATES:
291 /* 4state loss model algorithm (used also for GI model)
292 * Extracts a value from the markov 4 state loss generator,
293 * if it is 1 drops a packet and if needed writes the event in
294 * the kernel logs
295 */
296 return loss_4state(q);
297
298 case CLG_GILB_ELL:
299 /* Gilbert-Elliot loss model algorithm
300 * Extracts a value from the Gilbert-Elliot loss generator,
301 * if it is 1 drops a packet and if needed writes the event in
302 * the kernel logs
303 */
304 return loss_gilb_ell(q);
305 }
306
307 return false; /* not reached */
308 }
309
310
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312 * std deviation sigma. Uses table lookup to approximate the desired
313 * distribution, and a uniformly-distributed pseudo-random source.
314 */
315 static s64 tabledist(s64 mu, s32 sigma,
316 struct crndstate *state,
317 const struct disttable *dist)
318 {
319 s64 x;
320 long t;
321 u32 rnd;
322
323 if (sigma == 0)
324 return mu;
325
326 rnd = get_crandom(state);
327
328 /* default uniform distribution */
329 if (dist == NULL)
330 return (rnd % (2 * sigma)) - sigma + mu;
331
332 t = dist->table[rnd % dist->size];
333 x = (sigma % NETEM_DIST_SCALE) * t;
334 if (x >= 0)
335 x += NETEM_DIST_SCALE/2;
336 else
337 x -= NETEM_DIST_SCALE/2;
338
339 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
340 }
341
342 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
343 {
344 len += q->packet_overhead;
345
346 if (q->cell_size) {
347 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
348
349 if (len > cells * q->cell_size) /* extra cell needed for remainder */
350 cells++;
351 len = cells * (q->cell_size + q->cell_overhead);
352 }
353
354 return div64_u64(len * NSEC_PER_SEC, q->rate);
355 }
356
357 static void tfifo_reset(struct Qdisc *sch)
358 {
359 struct netem_sched_data *q = qdisc_priv(sch);
360 struct rb_node *p = rb_first(&q->t_root);
361
362 while (p) {
363 struct sk_buff *skb = rb_to_skb(p);
364
365 p = rb_next(p);
366 rb_erase(&skb->rbnode, &q->t_root);
367 rtnl_kfree_skbs(skb, skb);
368 }
369 }
370
371 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
372 {
373 struct netem_sched_data *q = qdisc_priv(sch);
374 u64 tnext = netem_skb_cb(nskb)->time_to_send;
375 struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
376
377 while (*p) {
378 struct sk_buff *skb;
379
380 parent = *p;
381 skb = rb_to_skb(parent);
382 if (tnext >= netem_skb_cb(skb)->time_to_send)
383 p = &parent->rb_right;
384 else
385 p = &parent->rb_left;
386 }
387 rb_link_node(&nskb->rbnode, parent, p);
388 rb_insert_color(&nskb->rbnode, &q->t_root);
389 sch->q.qlen++;
390 }
391
392 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
393 * when we statistically choose to corrupt one, we instead segment it, returning
394 * the first packet to be corrupted, and re-enqueue the remaining frames
395 */
396 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
397 struct sk_buff **to_free)
398 {
399 struct sk_buff *segs;
400 netdev_features_t features = netif_skb_features(skb);
401
402 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
403
404 if (IS_ERR_OR_NULL(segs)) {
405 qdisc_drop(skb, sch, to_free);
406 return NULL;
407 }
408 consume_skb(skb);
409 return segs;
410 }
411
412 static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
413 {
414 skb->next = qh->head;
415
416 if (!qh->head)
417 qh->tail = skb;
418 qh->head = skb;
419 qh->qlen++;
420 }
421
422 /*
423 * Insert one skb into qdisc.
424 * Note: parent depends on return value to account for queue length.
425 * NET_XMIT_DROP: queue length didn't change.
426 * NET_XMIT_SUCCESS: one skb was queued.
427 */
428 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
429 struct sk_buff **to_free)
430 {
431 struct netem_sched_data *q = qdisc_priv(sch);
432 /* We don't fill cb now as skb_unshare() may invalidate it */
433 struct netem_skb_cb *cb;
434 struct sk_buff *skb2;
435 struct sk_buff *segs = NULL;
436 unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
437 int nb = 0;
438 int count = 1;
439 int rc = NET_XMIT_SUCCESS;
440 int rc_drop = NET_XMIT_DROP;
441
442 /* Do not fool qdisc_drop_all() */
443 skb->prev = NULL;
444
445 /* Random duplication */
446 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
447 ++count;
448
449 /* Drop packet? */
450 if (loss_event(q)) {
451 if (q->ecn && INET_ECN_set_ce(skb))
452 qdisc_qstats_drop(sch); /* mark packet */
453 else
454 --count;
455 }
456 if (count == 0) {
457 qdisc_qstats_drop(sch);
458 __qdisc_drop(skb, to_free);
459 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
460 }
461
462 /* If a delay is expected, orphan the skb. (orphaning usually takes
463 * place at TX completion time, so _before_ the link transit delay)
464 */
465 if (q->latency || q->jitter || q->rate)
466 skb_orphan_partial(skb);
467
468 /*
469 * If we need to duplicate packet, then re-insert at top of the
470 * qdisc tree, since parent queuer expects that only one
471 * skb will be queued.
472 */
473 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
474 struct Qdisc *rootq = qdisc_root(sch);
475 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
476
477 q->duplicate = 0;
478 rootq->enqueue(skb2, rootq, to_free);
479 q->duplicate = dupsave;
480 rc_drop = NET_XMIT_SUCCESS;
481 }
482
483 /*
484 * Randomized packet corruption.
485 * Make copy if needed since we are modifying
486 * If packet is going to be hardware checksummed, then
487 * do it now in software before we mangle it.
488 */
489 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
490 if (skb_is_gso(skb)) {
491 segs = netem_segment(skb, sch, to_free);
492 if (!segs)
493 return rc_drop;
494 } else {
495 segs = skb;
496 }
497
498 skb = segs;
499 segs = segs->next;
500
501 skb = skb_unshare(skb, GFP_ATOMIC);
502 if (unlikely(!skb)) {
503 qdisc_qstats_drop(sch);
504 goto finish_segs;
505 }
506 if (skb->ip_summed == CHECKSUM_PARTIAL &&
507 skb_checksum_help(skb)) {
508 qdisc_drop(skb, sch, to_free);
509 goto finish_segs;
510 }
511
512 skb->data[prandom_u32() % skb_headlen(skb)] ^=
513 1<<(prandom_u32() % 8);
514 }
515
516 if (unlikely(sch->q.qlen >= sch->limit)) {
517 qdisc_drop_all(skb, sch, to_free);
518 return rc_drop;
519 }
520
521 qdisc_qstats_backlog_inc(sch, skb);
522
523 cb = netem_skb_cb(skb);
524 if (q->gap == 0 || /* not doing reordering */
525 q->counter < q->gap - 1 || /* inside last reordering gap */
526 q->reorder < get_crandom(&q->reorder_cor)) {
527 u64 now;
528 s64 delay;
529
530 delay = tabledist(q->latency, q->jitter,
531 &q->delay_cor, q->delay_dist);
532
533 now = ktime_get_ns();
534
535 if (q->rate) {
536 struct netem_skb_cb *last = NULL;
537
538 if (sch->q.tail)
539 last = netem_skb_cb(sch->q.tail);
540 if (q->t_root.rb_node) {
541 struct sk_buff *t_skb;
542 struct netem_skb_cb *t_last;
543
544 t_skb = skb_rb_last(&q->t_root);
545 t_last = netem_skb_cb(t_skb);
546 if (!last ||
547 t_last->time_to_send > last->time_to_send) {
548 last = t_last;
549 }
550 }
551
552 if (last) {
553 /*
554 * Last packet in queue is reference point (now),
555 * calculate this time bonus and subtract
556 * from delay.
557 */
558 delay -= last->time_to_send - now;
559 delay = max_t(s64, 0, delay);
560 now = last->time_to_send;
561 }
562
563 delay += packet_time_ns(qdisc_pkt_len(skb), q);
564 }
565
566 cb->time_to_send = now + delay;
567 ++q->counter;
568 tfifo_enqueue(skb, sch);
569 } else {
570 /*
571 * Do re-ordering by putting one out of N packets at the front
572 * of the queue.
573 */
574 cb->time_to_send = ktime_get_ns();
575 q->counter = 0;
576
577 netem_enqueue_skb_head(&sch->q, skb);
578 sch->qstats.requeues++;
579 }
580
581 finish_segs:
582 if (segs) {
583 while (segs) {
584 skb2 = segs->next;
585 segs->next = NULL;
586 qdisc_skb_cb(segs)->pkt_len = segs->len;
587 last_len = segs->len;
588 rc = qdisc_enqueue(segs, sch, to_free);
589 if (rc != NET_XMIT_SUCCESS) {
590 if (net_xmit_drop_count(rc))
591 qdisc_qstats_drop(sch);
592 } else {
593 nb++;
594 len += last_len;
595 }
596 segs = skb2;
597 }
598 sch->q.qlen += nb;
599 if (nb > 1)
600 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
601 }
602 return NET_XMIT_SUCCESS;
603 }
604
605 /* Delay the next round with a new future slot with a
606 * correct number of bytes and packets.
607 */
608
609 static void get_slot_next(struct netem_sched_data *q, u64 now)
610 {
611 q->slot.slot_next = now + q->slot_config.min_delay +
612 (prandom_u32() *
613 (q->slot_config.max_delay -
614 q->slot_config.min_delay) >> 32);
615 q->slot.packets_left = q->slot_config.max_packets;
616 q->slot.bytes_left = q->slot_config.max_bytes;
617 }
618
619 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
620 {
621 struct netem_sched_data *q = qdisc_priv(sch);
622 struct sk_buff *skb;
623 struct rb_node *p;
624
625 tfifo_dequeue:
626 skb = __qdisc_dequeue_head(&sch->q);
627 if (skb) {
628 qdisc_qstats_backlog_dec(sch, skb);
629 deliver:
630 qdisc_bstats_update(sch, skb);
631 return skb;
632 }
633 p = rb_first(&q->t_root);
634 if (p) {
635 u64 time_to_send;
636 u64 now = ktime_get_ns();
637
638 skb = rb_to_skb(p);
639
640 /* if more time remaining? */
641 time_to_send = netem_skb_cb(skb)->time_to_send;
642 if (q->slot.slot_next && q->slot.slot_next < time_to_send)
643 get_slot_next(q, now);
644
645 if (time_to_send <= now && q->slot.slot_next <= now) {
646 rb_erase(p, &q->t_root);
647 sch->q.qlen--;
648 qdisc_qstats_backlog_dec(sch, skb);
649 skb->next = NULL;
650 skb->prev = NULL;
651 /* skb->dev shares skb->rbnode area,
652 * we need to restore its value.
653 */
654 skb->dev = qdisc_dev(sch);
655
656 #ifdef CONFIG_NET_CLS_ACT
657 /*
658 * If it's at ingress let's pretend the delay is
659 * from the network (tstamp will be updated).
660 */
661 if (skb->tc_redirected && skb->tc_from_ingress)
662 skb->tstamp = 0;
663 #endif
664
665 if (q->slot.slot_next) {
666 q->slot.packets_left--;
667 q->slot.bytes_left -= qdisc_pkt_len(skb);
668 if (q->slot.packets_left <= 0 ||
669 q->slot.bytes_left <= 0)
670 get_slot_next(q, now);
671 }
672
673 if (q->qdisc) {
674 unsigned int pkt_len = qdisc_pkt_len(skb);
675 struct sk_buff *to_free = NULL;
676 int err;
677
678 err = qdisc_enqueue(skb, q->qdisc, &to_free);
679 kfree_skb_list(to_free);
680 if (err != NET_XMIT_SUCCESS &&
681 net_xmit_drop_count(err)) {
682 qdisc_qstats_drop(sch);
683 qdisc_tree_reduce_backlog(sch, 1,
684 pkt_len);
685 }
686 goto tfifo_dequeue;
687 }
688 goto deliver;
689 }
690
691 if (q->qdisc) {
692 skb = q->qdisc->ops->dequeue(q->qdisc);
693 if (skb)
694 goto deliver;
695 }
696
697 qdisc_watchdog_schedule_ns(&q->watchdog,
698 max(time_to_send,
699 q->slot.slot_next));
700 }
701
702 if (q->qdisc) {
703 skb = q->qdisc->ops->dequeue(q->qdisc);
704 if (skb)
705 goto deliver;
706 }
707 return NULL;
708 }
709
710 static void netem_reset(struct Qdisc *sch)
711 {
712 struct netem_sched_data *q = qdisc_priv(sch);
713
714 qdisc_reset_queue(sch);
715 tfifo_reset(sch);
716 if (q->qdisc)
717 qdisc_reset(q->qdisc);
718 qdisc_watchdog_cancel(&q->watchdog);
719 }
720
721 static void dist_free(struct disttable *d)
722 {
723 kvfree(d);
724 }
725
726 /*
727 * Distribution data is a variable size payload containing
728 * signed 16 bit values.
729 */
730
731 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
732 {
733 struct netem_sched_data *q = qdisc_priv(sch);
734 size_t n = nla_len(attr)/sizeof(__s16);
735 const __s16 *data = nla_data(attr);
736 spinlock_t *root_lock;
737 struct disttable *d;
738 int i;
739
740 if (n > NETEM_DIST_MAX)
741 return -EINVAL;
742
743 d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
744 if (!d)
745 return -ENOMEM;
746
747 d->size = n;
748 for (i = 0; i < n; i++)
749 d->table[i] = data[i];
750
751 root_lock = qdisc_root_sleeping_lock(sch);
752
753 spin_lock_bh(root_lock);
754 swap(q->delay_dist, d);
755 spin_unlock_bh(root_lock);
756
757 dist_free(d);
758 return 0;
759 }
760
761 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
762 {
763 const struct tc_netem_slot *c = nla_data(attr);
764
765 q->slot_config = *c;
766 if (q->slot_config.max_packets == 0)
767 q->slot_config.max_packets = INT_MAX;
768 if (q->slot_config.max_bytes == 0)
769 q->slot_config.max_bytes = INT_MAX;
770 q->slot.packets_left = q->slot_config.max_packets;
771 q->slot.bytes_left = q->slot_config.max_bytes;
772 if (q->slot_config.min_delay | q->slot_config.max_delay)
773 q->slot.slot_next = ktime_get_ns();
774 else
775 q->slot.slot_next = 0;
776 }
777
778 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
779 {
780 const struct tc_netem_corr *c = nla_data(attr);
781
782 init_crandom(&q->delay_cor, c->delay_corr);
783 init_crandom(&q->loss_cor, c->loss_corr);
784 init_crandom(&q->dup_cor, c->dup_corr);
785 }
786
787 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
788 {
789 const struct tc_netem_reorder *r = nla_data(attr);
790
791 q->reorder = r->probability;
792 init_crandom(&q->reorder_cor, r->correlation);
793 }
794
795 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
796 {
797 const struct tc_netem_corrupt *r = nla_data(attr);
798
799 q->corrupt = r->probability;
800 init_crandom(&q->corrupt_cor, r->correlation);
801 }
802
803 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
804 {
805 const struct tc_netem_rate *r = nla_data(attr);
806
807 q->rate = r->rate;
808 q->packet_overhead = r->packet_overhead;
809 q->cell_size = r->cell_size;
810 q->cell_overhead = r->cell_overhead;
811 if (q->cell_size)
812 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
813 else
814 q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
815 }
816
817 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
818 {
819 const struct nlattr *la;
820 int rem;
821
822 nla_for_each_nested(la, attr, rem) {
823 u16 type = nla_type(la);
824
825 switch (type) {
826 case NETEM_LOSS_GI: {
827 const struct tc_netem_gimodel *gi = nla_data(la);
828
829 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
830 pr_info("netem: incorrect gi model size\n");
831 return -EINVAL;
832 }
833
834 q->loss_model = CLG_4_STATES;
835
836 q->clg.state = TX_IN_GAP_PERIOD;
837 q->clg.a1 = gi->p13;
838 q->clg.a2 = gi->p31;
839 q->clg.a3 = gi->p32;
840 q->clg.a4 = gi->p14;
841 q->clg.a5 = gi->p23;
842 break;
843 }
844
845 case NETEM_LOSS_GE: {
846 const struct tc_netem_gemodel *ge = nla_data(la);
847
848 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
849 pr_info("netem: incorrect ge model size\n");
850 return -EINVAL;
851 }
852
853 q->loss_model = CLG_GILB_ELL;
854 q->clg.state = GOOD_STATE;
855 q->clg.a1 = ge->p;
856 q->clg.a2 = ge->r;
857 q->clg.a3 = ge->h;
858 q->clg.a4 = ge->k1;
859 break;
860 }
861
862 default:
863 pr_info("netem: unknown loss type %u\n", type);
864 return -EINVAL;
865 }
866 }
867
868 return 0;
869 }
870
871 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
872 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
873 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
874 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
875 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
876 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
877 [TCA_NETEM_ECN] = { .type = NLA_U32 },
878 [TCA_NETEM_RATE64] = { .type = NLA_U64 },
879 [TCA_NETEM_LATENCY64] = { .type = NLA_S64 },
880 [TCA_NETEM_JITTER64] = { .type = NLA_S64 },
881 [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) },
882 };
883
884 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
885 const struct nla_policy *policy, int len)
886 {
887 int nested_len = nla_len(nla) - NLA_ALIGN(len);
888
889 if (nested_len < 0) {
890 pr_info("netem: invalid attributes len %d\n", nested_len);
891 return -EINVAL;
892 }
893
894 if (nested_len >= nla_attr_size(0))
895 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
896 nested_len, policy, NULL);
897
898 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
899 return 0;
900 }
901
902 /* Parse netlink message to set options */
903 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
904 {
905 struct netem_sched_data *q = qdisc_priv(sch);
906 struct nlattr *tb[TCA_NETEM_MAX + 1];
907 struct tc_netem_qopt *qopt;
908 struct clgstate old_clg;
909 int old_loss_model = CLG_RANDOM;
910 int ret;
911
912 if (opt == NULL)
913 return -EINVAL;
914
915 qopt = nla_data(opt);
916 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
917 if (ret < 0)
918 return ret;
919
920 /* backup q->clg and q->loss_model */
921 old_clg = q->clg;
922 old_loss_model = q->loss_model;
923
924 if (tb[TCA_NETEM_LOSS]) {
925 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
926 if (ret) {
927 q->loss_model = old_loss_model;
928 return ret;
929 }
930 } else {
931 q->loss_model = CLG_RANDOM;
932 }
933
934 if (tb[TCA_NETEM_DELAY_DIST]) {
935 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
936 if (ret) {
937 /* recover clg and loss_model, in case of
938 * q->clg and q->loss_model were modified
939 * in get_loss_clg()
940 */
941 q->clg = old_clg;
942 q->loss_model = old_loss_model;
943 return ret;
944 }
945 }
946
947 sch->limit = qopt->limit;
948
949 q->latency = PSCHED_TICKS2NS(qopt->latency);
950 q->jitter = PSCHED_TICKS2NS(qopt->jitter);
951 q->limit = qopt->limit;
952 q->gap = qopt->gap;
953 q->counter = 0;
954 q->loss = qopt->loss;
955 q->duplicate = qopt->duplicate;
956
957 /* for compatibility with earlier versions.
958 * if gap is set, need to assume 100% probability
959 */
960 if (q->gap)
961 q->reorder = ~0;
962
963 if (tb[TCA_NETEM_CORR])
964 get_correlation(q, tb[TCA_NETEM_CORR]);
965
966 if (tb[TCA_NETEM_REORDER])
967 get_reorder(q, tb[TCA_NETEM_REORDER]);
968
969 if (tb[TCA_NETEM_CORRUPT])
970 get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
971
972 if (tb[TCA_NETEM_RATE])
973 get_rate(q, tb[TCA_NETEM_RATE]);
974
975 if (tb[TCA_NETEM_RATE64])
976 q->rate = max_t(u64, q->rate,
977 nla_get_u64(tb[TCA_NETEM_RATE64]));
978
979 if (tb[TCA_NETEM_LATENCY64])
980 q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
981
982 if (tb[TCA_NETEM_JITTER64])
983 q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
984
985 if (tb[TCA_NETEM_ECN])
986 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
987
988 if (tb[TCA_NETEM_SLOT])
989 get_slot(q, tb[TCA_NETEM_SLOT]);
990
991 return ret;
992 }
993
994 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
995 {
996 struct netem_sched_data *q = qdisc_priv(sch);
997 int ret;
998
999 qdisc_watchdog_init(&q->watchdog, sch);
1000
1001 if (!opt)
1002 return -EINVAL;
1003
1004 q->loss_model = CLG_RANDOM;
1005 ret = netem_change(sch, opt);
1006 if (ret)
1007 pr_info("netem: change failed\n");
1008 return ret;
1009 }
1010
1011 static void netem_destroy(struct Qdisc *sch)
1012 {
1013 struct netem_sched_data *q = qdisc_priv(sch);
1014
1015 qdisc_watchdog_cancel(&q->watchdog);
1016 if (q->qdisc)
1017 qdisc_destroy(q->qdisc);
1018 dist_free(q->delay_dist);
1019 }
1020
1021 static int dump_loss_model(const struct netem_sched_data *q,
1022 struct sk_buff *skb)
1023 {
1024 struct nlattr *nest;
1025
1026 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
1027 if (nest == NULL)
1028 goto nla_put_failure;
1029
1030 switch (q->loss_model) {
1031 case CLG_RANDOM:
1032 /* legacy loss model */
1033 nla_nest_cancel(skb, nest);
1034 return 0; /* no data */
1035
1036 case CLG_4_STATES: {
1037 struct tc_netem_gimodel gi = {
1038 .p13 = q->clg.a1,
1039 .p31 = q->clg.a2,
1040 .p32 = q->clg.a3,
1041 .p14 = q->clg.a4,
1042 .p23 = q->clg.a5,
1043 };
1044
1045 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1046 goto nla_put_failure;
1047 break;
1048 }
1049 case CLG_GILB_ELL: {
1050 struct tc_netem_gemodel ge = {
1051 .p = q->clg.a1,
1052 .r = q->clg.a2,
1053 .h = q->clg.a3,
1054 .k1 = q->clg.a4,
1055 };
1056
1057 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1058 goto nla_put_failure;
1059 break;
1060 }
1061 }
1062
1063 nla_nest_end(skb, nest);
1064 return 0;
1065
1066 nla_put_failure:
1067 nla_nest_cancel(skb, nest);
1068 return -1;
1069 }
1070
1071 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1072 {
1073 const struct netem_sched_data *q = qdisc_priv(sch);
1074 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1075 struct tc_netem_qopt qopt;
1076 struct tc_netem_corr cor;
1077 struct tc_netem_reorder reorder;
1078 struct tc_netem_corrupt corrupt;
1079 struct tc_netem_rate rate;
1080 struct tc_netem_slot slot;
1081
1082 qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1083 UINT_MAX);
1084 qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1085 UINT_MAX);
1086 qopt.limit = q->limit;
1087 qopt.loss = q->loss;
1088 qopt.gap = q->gap;
1089 qopt.duplicate = q->duplicate;
1090 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1091 goto nla_put_failure;
1092
1093 if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1094 goto nla_put_failure;
1095
1096 if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1097 goto nla_put_failure;
1098
1099 cor.delay_corr = q->delay_cor.rho;
1100 cor.loss_corr = q->loss_cor.rho;
1101 cor.dup_corr = q->dup_cor.rho;
1102 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1103 goto nla_put_failure;
1104
1105 reorder.probability = q->reorder;
1106 reorder.correlation = q->reorder_cor.rho;
1107 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1108 goto nla_put_failure;
1109
1110 corrupt.probability = q->corrupt;
1111 corrupt.correlation = q->corrupt_cor.rho;
1112 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1113 goto nla_put_failure;
1114
1115 if (q->rate >= (1ULL << 32)) {
1116 if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1117 TCA_NETEM_PAD))
1118 goto nla_put_failure;
1119 rate.rate = ~0U;
1120 } else {
1121 rate.rate = q->rate;
1122 }
1123 rate.packet_overhead = q->packet_overhead;
1124 rate.cell_size = q->cell_size;
1125 rate.cell_overhead = q->cell_overhead;
1126 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1127 goto nla_put_failure;
1128
1129 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1130 goto nla_put_failure;
1131
1132 if (dump_loss_model(q, skb) != 0)
1133 goto nla_put_failure;
1134
1135 if (q->slot_config.min_delay | q->slot_config.max_delay) {
1136 slot = q->slot_config;
1137 if (slot.max_packets == INT_MAX)
1138 slot.max_packets = 0;
1139 if (slot.max_bytes == INT_MAX)
1140 slot.max_bytes = 0;
1141 if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1142 goto nla_put_failure;
1143 }
1144
1145 return nla_nest_end(skb, nla);
1146
1147 nla_put_failure:
1148 nlmsg_trim(skb, nla);
1149 return -1;
1150 }
1151
1152 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1153 struct sk_buff *skb, struct tcmsg *tcm)
1154 {
1155 struct netem_sched_data *q = qdisc_priv(sch);
1156
1157 if (cl != 1 || !q->qdisc) /* only one class */
1158 return -ENOENT;
1159
1160 tcm->tcm_handle |= TC_H_MIN(1);
1161 tcm->tcm_info = q->qdisc->handle;
1162
1163 return 0;
1164 }
1165
1166 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1167 struct Qdisc **old)
1168 {
1169 struct netem_sched_data *q = qdisc_priv(sch);
1170
1171 *old = qdisc_replace(sch, new, &q->qdisc);
1172 return 0;
1173 }
1174
1175 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1176 {
1177 struct netem_sched_data *q = qdisc_priv(sch);
1178 return q->qdisc;
1179 }
1180
1181 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1182 {
1183 return 1;
1184 }
1185
1186 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1187 {
1188 if (!walker->stop) {
1189 if (walker->count >= walker->skip)
1190 if (walker->fn(sch, 1, walker) < 0) {
1191 walker->stop = 1;
1192 return;
1193 }
1194 walker->count++;
1195 }
1196 }
1197
1198 static const struct Qdisc_class_ops netem_class_ops = {
1199 .graft = netem_graft,
1200 .leaf = netem_leaf,
1201 .find = netem_find,
1202 .walk = netem_walk,
1203 .dump = netem_dump_class,
1204 };
1205
1206 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1207 .id = "netem",
1208 .cl_ops = &netem_class_ops,
1209 .priv_size = sizeof(struct netem_sched_data),
1210 .enqueue = netem_enqueue,
1211 .dequeue = netem_dequeue,
1212 .peek = qdisc_peek_dequeued,
1213 .init = netem_init,
1214 .reset = netem_reset,
1215 .destroy = netem_destroy,
1216 .change = netem_change,
1217 .dump = netem_dump,
1218 .owner = THIS_MODULE,
1219 };
1220
1221
1222 static int __init netem_module_init(void)
1223 {
1224 pr_info("netem: version " VERSION "\n");
1225 return register_qdisc(&netem_qdisc_ops);
1226 }
1227 static void __exit netem_module_exit(void)
1228 {
1229 unregister_qdisc(&netem_qdisc_ops);
1230 }
1231 module_init(netem_module_init)
1232 module_exit(netem_module_exit)
1233 MODULE_LICENSE("GPL");