]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sched/sch_netem.c
Merge branch 'fixes-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[mirror_ubuntu-zesty-kernel.git] / net / sched / sch_netem.c
1 /*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/skbuff.h>
22 #include <linux/rtnetlink.h>
23
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26
27 #define VERSION "1.2"
28
29 /* Network Emulation Queuing algorithm.
30 ====================================
31
32 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
33 Network Emulation Tool
34 [2] Luigi Rizzo, DummyNet for FreeBSD
35
36 ----------------------------------------------------------------
37
38 This started out as a simple way to delay outgoing packets to
39 test TCP but has grown to include most of the functionality
40 of a full blown network emulator like NISTnet. It can delay
41 packets and add random jitter (and correlation). The random
42 distribution can be loaded from a table as well to provide
43 normal, Pareto, or experimental curves. Packet loss,
44 duplication, and reordering can also be emulated.
45
46 This qdisc does not do classification that can be handled in
47 layering other disciplines. It does not need to do bandwidth
48 control either since that can be handled by using token
49 bucket or other rate control.
50 */
51
52 struct netem_sched_data {
53 struct Qdisc *qdisc;
54 struct qdisc_watchdog watchdog;
55
56 psched_tdiff_t latency;
57 psched_tdiff_t jitter;
58
59 u32 loss;
60 u32 limit;
61 u32 counter;
62 u32 gap;
63 u32 duplicate;
64 u32 reorder;
65 u32 corrupt;
66
67 struct crndstate {
68 u32 last;
69 u32 rho;
70 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
71
72 struct disttable {
73 u32 size;
74 s16 table[0];
75 } *delay_dist;
76 };
77
78 /* Time stamp put into socket buffer control block */
79 struct netem_skb_cb {
80 psched_time_t time_to_send;
81 };
82
83 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
84 {
85 BUILD_BUG_ON(sizeof(skb->cb) <
86 sizeof(struct qdisc_skb_cb) + sizeof(struct netem_skb_cb));
87 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
88 }
89
90 /* init_crandom - initialize correlated random number generator
91 * Use entropy source for initial seed.
92 */
93 static void init_crandom(struct crndstate *state, unsigned long rho)
94 {
95 state->rho = rho;
96 state->last = net_random();
97 }
98
99 /* get_crandom - correlated random number generator
100 * Next number depends on last value.
101 * rho is scaled to avoid floating point.
102 */
103 static u32 get_crandom(struct crndstate *state)
104 {
105 u64 value, rho;
106 unsigned long answer;
107
108 if (state->rho == 0) /* no correlation */
109 return net_random();
110
111 value = net_random();
112 rho = (u64)state->rho + 1;
113 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
114 state->last = answer;
115 return answer;
116 }
117
118 /* tabledist - return a pseudo-randomly distributed value with mean mu and
119 * std deviation sigma. Uses table lookup to approximate the desired
120 * distribution, and a uniformly-distributed pseudo-random source.
121 */
122 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
123 struct crndstate *state,
124 const struct disttable *dist)
125 {
126 psched_tdiff_t x;
127 long t;
128 u32 rnd;
129
130 if (sigma == 0)
131 return mu;
132
133 rnd = get_crandom(state);
134
135 /* default uniform distribution */
136 if (dist == NULL)
137 return (rnd % (2*sigma)) - sigma + mu;
138
139 t = dist->table[rnd % dist->size];
140 x = (sigma % NETEM_DIST_SCALE) * t;
141 if (x >= 0)
142 x += NETEM_DIST_SCALE/2;
143 else
144 x -= NETEM_DIST_SCALE/2;
145
146 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
147 }
148
149 /*
150 * Insert one skb into qdisc.
151 * Note: parent depends on return value to account for queue length.
152 * NET_XMIT_DROP: queue length didn't change.
153 * NET_XMIT_SUCCESS: one skb was queued.
154 */
155 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
156 {
157 struct netem_sched_data *q = qdisc_priv(sch);
158 /* We don't fill cb now as skb_unshare() may invalidate it */
159 struct netem_skb_cb *cb;
160 struct sk_buff *skb2;
161 int ret;
162 int count = 1;
163
164 pr_debug("netem_enqueue skb=%p\n", skb);
165
166 /* Random duplication */
167 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
168 ++count;
169
170 /* Random packet drop 0 => none, ~0 => all */
171 if (q->loss && q->loss >= get_crandom(&q->loss_cor))
172 --count;
173
174 if (count == 0) {
175 sch->qstats.drops++;
176 kfree_skb(skb);
177 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
178 }
179
180 skb_orphan(skb);
181
182 /*
183 * If we need to duplicate packet, then re-insert at top of the
184 * qdisc tree, since parent queuer expects that only one
185 * skb will be queued.
186 */
187 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
188 struct Qdisc *rootq = qdisc_root(sch);
189 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
190 q->duplicate = 0;
191
192 qdisc_enqueue_root(skb2, rootq);
193 q->duplicate = dupsave;
194 }
195
196 /*
197 * Randomized packet corruption.
198 * Make copy if needed since we are modifying
199 * If packet is going to be hardware checksummed, then
200 * do it now in software before we mangle it.
201 */
202 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
203 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
204 (skb->ip_summed == CHECKSUM_PARTIAL &&
205 skb_checksum_help(skb))) {
206 sch->qstats.drops++;
207 return NET_XMIT_DROP;
208 }
209
210 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
211 }
212
213 cb = netem_skb_cb(skb);
214 if (q->gap == 0 || /* not doing reordering */
215 q->counter < q->gap || /* inside last reordering gap */
216 q->reorder < get_crandom(&q->reorder_cor)) {
217 psched_time_t now;
218 psched_tdiff_t delay;
219
220 delay = tabledist(q->latency, q->jitter,
221 &q->delay_cor, q->delay_dist);
222
223 now = psched_get_time();
224 cb->time_to_send = now + delay;
225 ++q->counter;
226 ret = qdisc_enqueue(skb, q->qdisc);
227 } else {
228 /*
229 * Do re-ordering by putting one out of N packets at the front
230 * of the queue.
231 */
232 cb->time_to_send = psched_get_time();
233 q->counter = 0;
234
235 __skb_queue_head(&q->qdisc->q, skb);
236 q->qdisc->qstats.backlog += qdisc_pkt_len(skb);
237 q->qdisc->qstats.requeues++;
238 ret = NET_XMIT_SUCCESS;
239 }
240
241 if (likely(ret == NET_XMIT_SUCCESS)) {
242 sch->q.qlen++;
243 qdisc_bstats_update(sch, skb);
244 } else if (net_xmit_drop_count(ret)) {
245 sch->qstats.drops++;
246 }
247
248 pr_debug("netem: enqueue ret %d\n", ret);
249 return ret;
250 }
251
252 static unsigned int netem_drop(struct Qdisc* sch)
253 {
254 struct netem_sched_data *q = qdisc_priv(sch);
255 unsigned int len = 0;
256
257 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
258 sch->q.qlen--;
259 sch->qstats.drops++;
260 }
261 return len;
262 }
263
264 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
265 {
266 struct netem_sched_data *q = qdisc_priv(sch);
267 struct sk_buff *skb;
268
269 if (sch->flags & TCQ_F_THROTTLED)
270 return NULL;
271
272 skb = q->qdisc->ops->peek(q->qdisc);
273 if (skb) {
274 const struct netem_skb_cb *cb = netem_skb_cb(skb);
275 psched_time_t now = psched_get_time();
276
277 /* if more time remaining? */
278 if (cb->time_to_send <= now) {
279 skb = qdisc_dequeue_peeked(q->qdisc);
280 if (unlikely(!skb))
281 return NULL;
282
283 #ifdef CONFIG_NET_CLS_ACT
284 /*
285 * If it's at ingress let's pretend the delay is
286 * from the network (tstamp will be updated).
287 */
288 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
289 skb->tstamp.tv64 = 0;
290 #endif
291 pr_debug("netem_dequeue: return skb=%p\n", skb);
292 sch->q.qlen--;
293 return skb;
294 }
295
296 qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
297 }
298
299 return NULL;
300 }
301
302 static void netem_reset(struct Qdisc *sch)
303 {
304 struct netem_sched_data *q = qdisc_priv(sch);
305
306 qdisc_reset(q->qdisc);
307 sch->q.qlen = 0;
308 qdisc_watchdog_cancel(&q->watchdog);
309 }
310
311 /*
312 * Distribution data is a variable size payload containing
313 * signed 16 bit values.
314 */
315 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
316 {
317 struct netem_sched_data *q = qdisc_priv(sch);
318 unsigned long n = nla_len(attr)/sizeof(__s16);
319 const __s16 *data = nla_data(attr);
320 spinlock_t *root_lock;
321 struct disttable *d;
322 int i;
323
324 if (n > 65536)
325 return -EINVAL;
326
327 d = kmalloc(sizeof(*d) + n*sizeof(d->table[0]), GFP_KERNEL);
328 if (!d)
329 return -ENOMEM;
330
331 d->size = n;
332 for (i = 0; i < n; i++)
333 d->table[i] = data[i];
334
335 root_lock = qdisc_root_sleeping_lock(sch);
336
337 spin_lock_bh(root_lock);
338 kfree(q->delay_dist);
339 q->delay_dist = d;
340 spin_unlock_bh(root_lock);
341 return 0;
342 }
343
344 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
345 {
346 struct netem_sched_data *q = qdisc_priv(sch);
347 const struct tc_netem_corr *c = nla_data(attr);
348
349 init_crandom(&q->delay_cor, c->delay_corr);
350 init_crandom(&q->loss_cor, c->loss_corr);
351 init_crandom(&q->dup_cor, c->dup_corr);
352 }
353
354 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
355 {
356 struct netem_sched_data *q = qdisc_priv(sch);
357 const struct tc_netem_reorder *r = nla_data(attr);
358
359 q->reorder = r->probability;
360 init_crandom(&q->reorder_cor, r->correlation);
361 }
362
363 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
364 {
365 struct netem_sched_data *q = qdisc_priv(sch);
366 const struct tc_netem_corrupt *r = nla_data(attr);
367
368 q->corrupt = r->probability;
369 init_crandom(&q->corrupt_cor, r->correlation);
370 }
371
372 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
373 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
374 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
375 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
376 };
377
378 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
379 const struct nla_policy *policy, int len)
380 {
381 int nested_len = nla_len(nla) - NLA_ALIGN(len);
382
383 if (nested_len < 0)
384 return -EINVAL;
385 if (nested_len >= nla_attr_size(0))
386 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
387 nested_len, policy);
388 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
389 return 0;
390 }
391
392 /* Parse netlink message to set options */
393 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
394 {
395 struct netem_sched_data *q = qdisc_priv(sch);
396 struct nlattr *tb[TCA_NETEM_MAX + 1];
397 struct tc_netem_qopt *qopt;
398 int ret;
399
400 if (opt == NULL)
401 return -EINVAL;
402
403 qopt = nla_data(opt);
404 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
405 if (ret < 0)
406 return ret;
407
408 ret = fifo_set_limit(q->qdisc, qopt->limit);
409 if (ret) {
410 pr_debug("netem: can't set fifo limit\n");
411 return ret;
412 }
413
414 q->latency = qopt->latency;
415 q->jitter = qopt->jitter;
416 q->limit = qopt->limit;
417 q->gap = qopt->gap;
418 q->counter = 0;
419 q->loss = qopt->loss;
420 q->duplicate = qopt->duplicate;
421
422 /* for compatibility with earlier versions.
423 * if gap is set, need to assume 100% probability
424 */
425 if (q->gap)
426 q->reorder = ~0;
427
428 if (tb[TCA_NETEM_CORR])
429 get_correlation(sch, tb[TCA_NETEM_CORR]);
430
431 if (tb[TCA_NETEM_DELAY_DIST]) {
432 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
433 if (ret)
434 return ret;
435 }
436
437 if (tb[TCA_NETEM_REORDER])
438 get_reorder(sch, tb[TCA_NETEM_REORDER]);
439
440 if (tb[TCA_NETEM_CORRUPT])
441 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
442
443 return 0;
444 }
445
446 /*
447 * Special case version of FIFO queue for use by netem.
448 * It queues in order based on timestamps in skb's
449 */
450 struct fifo_sched_data {
451 u32 limit;
452 psched_time_t oldest;
453 };
454
455 static int tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
456 {
457 struct fifo_sched_data *q = qdisc_priv(sch);
458 struct sk_buff_head *list = &sch->q;
459 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
460 struct sk_buff *skb;
461
462 if (likely(skb_queue_len(list) < q->limit)) {
463 /* Optimize for add at tail */
464 if (likely(skb_queue_empty(list) || tnext >= q->oldest)) {
465 q->oldest = tnext;
466 return qdisc_enqueue_tail(nskb, sch);
467 }
468
469 skb_queue_reverse_walk(list, skb) {
470 const struct netem_skb_cb *cb = netem_skb_cb(skb);
471
472 if (tnext >= cb->time_to_send)
473 break;
474 }
475
476 __skb_queue_after(list, skb, nskb);
477
478 sch->qstats.backlog += qdisc_pkt_len(nskb);
479 qdisc_bstats_update(sch, nskb);
480
481 return NET_XMIT_SUCCESS;
482 }
483
484 return qdisc_reshape_fail(nskb, sch);
485 }
486
487 static int tfifo_init(struct Qdisc *sch, struct nlattr *opt)
488 {
489 struct fifo_sched_data *q = qdisc_priv(sch);
490
491 if (opt) {
492 struct tc_fifo_qopt *ctl = nla_data(opt);
493 if (nla_len(opt) < sizeof(*ctl))
494 return -EINVAL;
495
496 q->limit = ctl->limit;
497 } else
498 q->limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
499
500 q->oldest = PSCHED_PASTPERFECT;
501 return 0;
502 }
503
504 static int tfifo_dump(struct Qdisc *sch, struct sk_buff *skb)
505 {
506 struct fifo_sched_data *q = qdisc_priv(sch);
507 struct tc_fifo_qopt opt = { .limit = q->limit };
508
509 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
510 return skb->len;
511
512 nla_put_failure:
513 return -1;
514 }
515
516 static struct Qdisc_ops tfifo_qdisc_ops __read_mostly = {
517 .id = "tfifo",
518 .priv_size = sizeof(struct fifo_sched_data),
519 .enqueue = tfifo_enqueue,
520 .dequeue = qdisc_dequeue_head,
521 .peek = qdisc_peek_head,
522 .drop = qdisc_queue_drop,
523 .init = tfifo_init,
524 .reset = qdisc_reset_queue,
525 .change = tfifo_init,
526 .dump = tfifo_dump,
527 };
528
529 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
530 {
531 struct netem_sched_data *q = qdisc_priv(sch);
532 int ret;
533
534 if (!opt)
535 return -EINVAL;
536
537 qdisc_watchdog_init(&q->watchdog, sch);
538
539 q->qdisc = qdisc_create_dflt(sch->dev_queue, &tfifo_qdisc_ops,
540 TC_H_MAKE(sch->handle, 1));
541 if (!q->qdisc) {
542 pr_debug("netem: qdisc create failed\n");
543 return -ENOMEM;
544 }
545
546 ret = netem_change(sch, opt);
547 if (ret) {
548 pr_debug("netem: change failed\n");
549 qdisc_destroy(q->qdisc);
550 }
551 return ret;
552 }
553
554 static void netem_destroy(struct Qdisc *sch)
555 {
556 struct netem_sched_data *q = qdisc_priv(sch);
557
558 qdisc_watchdog_cancel(&q->watchdog);
559 qdisc_destroy(q->qdisc);
560 kfree(q->delay_dist);
561 }
562
563 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
564 {
565 const struct netem_sched_data *q = qdisc_priv(sch);
566 unsigned char *b = skb_tail_pointer(skb);
567 struct nlattr *nla = (struct nlattr *) b;
568 struct tc_netem_qopt qopt;
569 struct tc_netem_corr cor;
570 struct tc_netem_reorder reorder;
571 struct tc_netem_corrupt corrupt;
572
573 qopt.latency = q->latency;
574 qopt.jitter = q->jitter;
575 qopt.limit = q->limit;
576 qopt.loss = q->loss;
577 qopt.gap = q->gap;
578 qopt.duplicate = q->duplicate;
579 NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
580
581 cor.delay_corr = q->delay_cor.rho;
582 cor.loss_corr = q->loss_cor.rho;
583 cor.dup_corr = q->dup_cor.rho;
584 NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
585
586 reorder.probability = q->reorder;
587 reorder.correlation = q->reorder_cor.rho;
588 NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
589
590 corrupt.probability = q->corrupt;
591 corrupt.correlation = q->corrupt_cor.rho;
592 NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
593
594 nla->nla_len = skb_tail_pointer(skb) - b;
595
596 return skb->len;
597
598 nla_put_failure:
599 nlmsg_trim(skb, b);
600 return -1;
601 }
602
603 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
604 .id = "netem",
605 .priv_size = sizeof(struct netem_sched_data),
606 .enqueue = netem_enqueue,
607 .dequeue = netem_dequeue,
608 .peek = qdisc_peek_dequeued,
609 .drop = netem_drop,
610 .init = netem_init,
611 .reset = netem_reset,
612 .destroy = netem_destroy,
613 .change = netem_change,
614 .dump = netem_dump,
615 .owner = THIS_MODULE,
616 };
617
618
619 static int __init netem_module_init(void)
620 {
621 pr_info("netem: version " VERSION "\n");
622 return register_qdisc(&netem_qdisc_ops);
623 }
624 static void __exit netem_module_exit(void)
625 {
626 unregister_qdisc(&netem_qdisc_ops);
627 }
628 module_init(netem_module_init)
629 module_exit(netem_module_exit)
630 MODULE_LICENSE("GPL");