]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_qfq.c
cls_flower: Fix incorrect idr release when failing to modify rule
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_qfq.c
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21
22
23 /* Quick Fair Queueing Plus
24 ========================
25
26 Sources:
27
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41 /*
42
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93 /*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97 #define QFQ_MAX_SLOTS 32
98
99 /*
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
110
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
113
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
116
117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
119
120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121
122 /*
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128 struct qfq_group;
129
130 struct qfq_aggregate;
131
132 struct qfq_class {
133 struct Qdisc_class_common common;
134
135 unsigned int filter_cnt;
136
137 struct gnet_stats_basic_packed bstats;
138 struct gnet_stats_queue qstats;
139 struct net_rate_estimator __rcu *rate_est;
140 struct Qdisc *qdisc;
141 struct list_head alist; /* Link for active-classes list. */
142 struct qfq_aggregate *agg; /* Parent aggregate. */
143 int deficit; /* DRR deficit counter. */
144 };
145
146 struct qfq_aggregate {
147 struct hlist_node next; /* Link for the slot list. */
148 u64 S, F; /* flow timestamps (exact) */
149
150 /* group we belong to. In principle we would need the index,
151 * which is log_2(lmax/weight), but we never reference it
152 * directly, only the group.
153 */
154 struct qfq_group *grp;
155
156 /* these are copied from the flowset. */
157 u32 class_weight; /* Weight of each class in this aggregate. */
158 /* Max pkt size for the classes in this aggregate, DRR quantum. */
159 int lmax;
160
161 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
162 u32 budgetmax; /* Max budget for this aggregate. */
163 u32 initial_budget, budget; /* Initial and current budget. */
164
165 int num_classes; /* Number of classes in this aggr. */
166 struct list_head active; /* DRR queue of active classes. */
167
168 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
169 };
170
171 struct qfq_group {
172 u64 S, F; /* group timestamps (approx). */
173 unsigned int slot_shift; /* Slot shift. */
174 unsigned int index; /* Group index. */
175 unsigned int front; /* Index of the front slot. */
176 unsigned long full_slots; /* non-empty slots */
177
178 /* Array of RR lists of active aggregates. */
179 struct hlist_head slots[QFQ_MAX_SLOTS];
180 };
181
182 struct qfq_sched {
183 struct tcf_proto __rcu *filter_list;
184 struct tcf_block *block;
185 struct Qdisc_class_hash clhash;
186
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
189 u32 wsum; /* weight sum */
190 u32 iwsum; /* inverse weight sum */
191
192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
195
196 u32 max_agg_classes; /* Max number of classes per aggr. */
197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
198 };
199
200 /*
201 * Possible reasons why the timestamps of an aggregate are updated
202 * enqueue: the aggregate switches from idle to active and must scheduled
203 * for service
204 * requeue: the aggregate finishes its budget, so it stops being served and
205 * must be rescheduled for service
206 */
207 enum update_reason {enqueue, requeue};
208
209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
210 {
211 struct qfq_sched *q = qdisc_priv(sch);
212 struct Qdisc_class_common *clc;
213
214 clc = qdisc_class_find(&q->clhash, classid);
215 if (clc == NULL)
216 return NULL;
217 return container_of(clc, struct qfq_class, common);
218 }
219
220 static void qfq_purge_queue(struct qfq_class *cl)
221 {
222 unsigned int len = cl->qdisc->q.qlen;
223 unsigned int backlog = cl->qdisc->qstats.backlog;
224
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
227 }
228
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233
234 /*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
245 size_map = slot_size >> min_slot_shift;
246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251
252 if (index < 0)
253 index = 0;
254 out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259 }
260
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
267 {
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273 }
274
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277 {
278 struct qfq_aggregate *agg;
279
280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285 }
286
287
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291 {
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
304 */
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
308
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
313 }
314
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
317 q->iwsum = ONE_FP / q->wsum;
318
319 agg->num_classes = new_num_classes;
320 }
321
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
326 {
327 cl->agg = agg;
328
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 }
336 }
337
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 hlist_del_init(&agg->nonfull_next);
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
346
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
350 }
351
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354 {
355 struct qfq_aggregate *agg = cl->agg;
356
357
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
361 }
362
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
365 {
366 struct qfq_aggregate *agg = cl->agg;
367
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
372 }
373 qfq_update_agg(q, agg, agg->num_classes-1);
374 }
375
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378 {
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
381
382 qfq_rm_from_agg(q, cl);
383 }
384
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
388 {
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
397 }
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
400
401 return 0;
402 }
403
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 struct nlattr **tca, unsigned long *arg)
406 {
407 struct qfq_sched *q = qdisc_priv(sch);
408 struct qfq_class *cl = (struct qfq_class *)*arg;
409 bool existing = false;
410 struct nlattr *tb[TCA_QFQ_MAX + 1];
411 struct qfq_aggregate *new_agg = NULL;
412 u32 weight, lmax, inv_w;
413 int err;
414 int delta_w;
415
416 if (tca[TCA_OPTIONS] == NULL) {
417 pr_notice("qfq: no options\n");
418 return -EINVAL;
419 }
420
421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
422 NULL);
423 if (err < 0)
424 return err;
425
426 if (tb[TCA_QFQ_WEIGHT]) {
427 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
429 pr_notice("qfq: invalid weight %u\n", weight);
430 return -EINVAL;
431 }
432 } else
433 weight = 1;
434
435 if (tb[TCA_QFQ_LMAX]) {
436 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
437 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
438 pr_notice("qfq: invalid max length %u\n", lmax);
439 return -EINVAL;
440 }
441 } else
442 lmax = psched_mtu(qdisc_dev(sch));
443
444 inv_w = ONE_FP / weight;
445 weight = ONE_FP / inv_w;
446
447 if (cl != NULL &&
448 lmax == cl->agg->lmax &&
449 weight == cl->agg->class_weight)
450 return 0; /* nothing to change */
451
452 delta_w = weight - (cl ? cl->agg->class_weight : 0);
453
454 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
455 pr_notice("qfq: total weight out of range (%d + %u)\n",
456 delta_w, q->wsum);
457 return -EINVAL;
458 }
459
460 if (cl != NULL) { /* modify existing class */
461 if (tca[TCA_RATE]) {
462 err = gen_replace_estimator(&cl->bstats, NULL,
463 &cl->rate_est,
464 NULL,
465 qdisc_root_sleeping_running(sch),
466 tca[TCA_RATE]);
467 if (err)
468 return err;
469 }
470 existing = true;
471 goto set_change_agg;
472 }
473
474 /* create and init new class */
475 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
476 if (cl == NULL)
477 return -ENOBUFS;
478
479 cl->common.classid = classid;
480 cl->deficit = lmax;
481
482 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
483 &pfifo_qdisc_ops, classid);
484 if (cl->qdisc == NULL)
485 cl->qdisc = &noop_qdisc;
486
487 if (tca[TCA_RATE]) {
488 err = gen_new_estimator(&cl->bstats, NULL,
489 &cl->rate_est,
490 NULL,
491 qdisc_root_sleeping_running(sch),
492 tca[TCA_RATE]);
493 if (err)
494 goto destroy_class;
495 }
496
497 if (cl->qdisc != &noop_qdisc)
498 qdisc_hash_add(cl->qdisc, true);
499 sch_tree_lock(sch);
500 qdisc_class_hash_insert(&q->clhash, &cl->common);
501 sch_tree_unlock(sch);
502
503 qdisc_class_hash_grow(sch, &q->clhash);
504
505 set_change_agg:
506 sch_tree_lock(sch);
507 new_agg = qfq_find_agg(q, lmax, weight);
508 if (new_agg == NULL) { /* create new aggregate */
509 sch_tree_unlock(sch);
510 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
511 if (new_agg == NULL) {
512 err = -ENOBUFS;
513 gen_kill_estimator(&cl->rate_est);
514 goto destroy_class;
515 }
516 sch_tree_lock(sch);
517 qfq_init_agg(q, new_agg, lmax, weight);
518 }
519 if (existing)
520 qfq_deact_rm_from_agg(q, cl);
521 qfq_add_to_agg(q, new_agg, cl);
522 sch_tree_unlock(sch);
523
524 *arg = (unsigned long)cl;
525 return 0;
526
527 destroy_class:
528 qdisc_destroy(cl->qdisc);
529 kfree(cl);
530 return err;
531 }
532
533 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
534 {
535 struct qfq_sched *q = qdisc_priv(sch);
536
537 qfq_rm_from_agg(q, cl);
538 gen_kill_estimator(&cl->rate_est);
539 qdisc_destroy(cl->qdisc);
540 kfree(cl);
541 }
542
543 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
544 {
545 struct qfq_sched *q = qdisc_priv(sch);
546 struct qfq_class *cl = (struct qfq_class *)arg;
547
548 if (cl->filter_cnt > 0)
549 return -EBUSY;
550
551 sch_tree_lock(sch);
552
553 qfq_purge_queue(cl);
554 qdisc_class_hash_remove(&q->clhash, &cl->common);
555
556 sch_tree_unlock(sch);
557
558 qfq_destroy_class(sch, cl);
559 return 0;
560 }
561
562 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
563 {
564 return (unsigned long)qfq_find_class(sch, classid);
565 }
566
567 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl)
568 {
569 struct qfq_sched *q = qdisc_priv(sch);
570
571 if (cl)
572 return NULL;
573
574 return q->block;
575 }
576
577 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
578 u32 classid)
579 {
580 struct qfq_class *cl = qfq_find_class(sch, classid);
581
582 if (cl != NULL)
583 cl->filter_cnt++;
584
585 return (unsigned long)cl;
586 }
587
588 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
589 {
590 struct qfq_class *cl = (struct qfq_class *)arg;
591
592 cl->filter_cnt--;
593 }
594
595 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
596 struct Qdisc *new, struct Qdisc **old)
597 {
598 struct qfq_class *cl = (struct qfq_class *)arg;
599
600 if (new == NULL) {
601 new = qdisc_create_dflt(sch->dev_queue,
602 &pfifo_qdisc_ops, cl->common.classid);
603 if (new == NULL)
604 new = &noop_qdisc;
605 }
606
607 *old = qdisc_replace(sch, new, &cl->qdisc);
608 return 0;
609 }
610
611 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
612 {
613 struct qfq_class *cl = (struct qfq_class *)arg;
614
615 return cl->qdisc;
616 }
617
618 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
619 struct sk_buff *skb, struct tcmsg *tcm)
620 {
621 struct qfq_class *cl = (struct qfq_class *)arg;
622 struct nlattr *nest;
623
624 tcm->tcm_parent = TC_H_ROOT;
625 tcm->tcm_handle = cl->common.classid;
626 tcm->tcm_info = cl->qdisc->handle;
627
628 nest = nla_nest_start(skb, TCA_OPTIONS);
629 if (nest == NULL)
630 goto nla_put_failure;
631 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
632 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
633 goto nla_put_failure;
634 return nla_nest_end(skb, nest);
635
636 nla_put_failure:
637 nla_nest_cancel(skb, nest);
638 return -EMSGSIZE;
639 }
640
641 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
642 struct gnet_dump *d)
643 {
644 struct qfq_class *cl = (struct qfq_class *)arg;
645 struct tc_qfq_stats xstats;
646
647 memset(&xstats, 0, sizeof(xstats));
648
649 xstats.weight = cl->agg->class_weight;
650 xstats.lmax = cl->agg->lmax;
651
652 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
653 d, NULL, &cl->bstats) < 0 ||
654 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
655 gnet_stats_copy_queue(d, NULL,
656 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
657 return -1;
658
659 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
660 }
661
662 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
663 {
664 struct qfq_sched *q = qdisc_priv(sch);
665 struct qfq_class *cl;
666 unsigned int i;
667
668 if (arg->stop)
669 return;
670
671 for (i = 0; i < q->clhash.hashsize; i++) {
672 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
673 if (arg->count < arg->skip) {
674 arg->count++;
675 continue;
676 }
677 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
678 arg->stop = 1;
679 return;
680 }
681 arg->count++;
682 }
683 }
684 }
685
686 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
687 int *qerr)
688 {
689 struct qfq_sched *q = qdisc_priv(sch);
690 struct qfq_class *cl;
691 struct tcf_result res;
692 struct tcf_proto *fl;
693 int result;
694
695 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
696 pr_debug("qfq_classify: found %d\n", skb->priority);
697 cl = qfq_find_class(sch, skb->priority);
698 if (cl != NULL)
699 return cl;
700 }
701
702 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
703 fl = rcu_dereference_bh(q->filter_list);
704 result = tcf_classify(skb, fl, &res, false);
705 if (result >= 0) {
706 #ifdef CONFIG_NET_CLS_ACT
707 switch (result) {
708 case TC_ACT_QUEUED:
709 case TC_ACT_STOLEN:
710 case TC_ACT_TRAP:
711 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
712 /* fall through */
713 case TC_ACT_SHOT:
714 return NULL;
715 }
716 #endif
717 cl = (struct qfq_class *)res.class;
718 if (cl == NULL)
719 cl = qfq_find_class(sch, res.classid);
720 return cl;
721 }
722
723 return NULL;
724 }
725
726 /* Generic comparison function, handling wraparound. */
727 static inline int qfq_gt(u64 a, u64 b)
728 {
729 return (s64)(a - b) > 0;
730 }
731
732 /* Round a precise timestamp to its slotted value. */
733 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
734 {
735 return ts & ~((1ULL << shift) - 1);
736 }
737
738 /* return the pointer to the group with lowest index in the bitmap */
739 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
740 unsigned long bitmap)
741 {
742 int index = __ffs(bitmap);
743 return &q->groups[index];
744 }
745 /* Calculate a mask to mimic what would be ffs_from(). */
746 static inline unsigned long mask_from(unsigned long bitmap, int from)
747 {
748 return bitmap & ~((1UL << from) - 1);
749 }
750
751 /*
752 * The state computation relies on ER=0, IR=1, EB=2, IB=3
753 * First compute eligibility comparing grp->S, q->V,
754 * then check if someone is blocking us and possibly add EB
755 */
756 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
757 {
758 /* if S > V we are not eligible */
759 unsigned int state = qfq_gt(grp->S, q->V);
760 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
761 struct qfq_group *next;
762
763 if (mask) {
764 next = qfq_ffs(q, mask);
765 if (qfq_gt(grp->F, next->F))
766 state |= EB;
767 }
768
769 return state;
770 }
771
772
773 /*
774 * In principle
775 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
776 * q->bitmaps[src] &= ~mask;
777 * but we should make sure that src != dst
778 */
779 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
780 int src, int dst)
781 {
782 q->bitmaps[dst] |= q->bitmaps[src] & mask;
783 q->bitmaps[src] &= ~mask;
784 }
785
786 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
787 {
788 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
789 struct qfq_group *next;
790
791 if (mask) {
792 next = qfq_ffs(q, mask);
793 if (!qfq_gt(next->F, old_F))
794 return;
795 }
796
797 mask = (1UL << index) - 1;
798 qfq_move_groups(q, mask, EB, ER);
799 qfq_move_groups(q, mask, IB, IR);
800 }
801
802 /*
803 * perhaps
804 *
805 old_V ^= q->V;
806 old_V >>= q->min_slot_shift;
807 if (old_V) {
808 ...
809 }
810 *
811 */
812 static void qfq_make_eligible(struct qfq_sched *q)
813 {
814 unsigned long vslot = q->V >> q->min_slot_shift;
815 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
816
817 if (vslot != old_vslot) {
818 unsigned long mask;
819 int last_flip_pos = fls(vslot ^ old_vslot);
820
821 if (last_flip_pos > 31) /* higher than the number of groups */
822 mask = ~0UL; /* make all groups eligible */
823 else
824 mask = (1UL << last_flip_pos) - 1;
825
826 qfq_move_groups(q, mask, IR, ER);
827 qfq_move_groups(q, mask, IB, EB);
828 }
829 }
830
831 /*
832 * The index of the slot in which the input aggregate agg is to be
833 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
834 * and not a '-1' because the start time of the group may be moved
835 * backward by one slot after the aggregate has been inserted, and
836 * this would cause non-empty slots to be right-shifted by one
837 * position.
838 *
839 * QFQ+ fully satisfies this bound to the slot index if the parameters
840 * of the classes are not changed dynamically, and if QFQ+ never
841 * happens to postpone the service of agg unjustly, i.e., it never
842 * happens that the aggregate becomes backlogged and eligible, or just
843 * eligible, while an aggregate with a higher approximated finish time
844 * is being served. In particular, in this case QFQ+ guarantees that
845 * the timestamps of agg are low enough that the slot index is never
846 * higher than 2. Unfortunately, QFQ+ cannot provide the same
847 * guarantee if it happens to unjustly postpone the service of agg, or
848 * if the parameters of some class are changed.
849 *
850 * As for the first event, i.e., an out-of-order service, the
851 * upper bound to the slot index guaranteed by QFQ+ grows to
852 * 2 +
853 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
854 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
855 *
856 * The following function deals with this problem by backward-shifting
857 * the timestamps of agg, if needed, so as to guarantee that the slot
858 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
859 * cause the service of other aggregates to be postponed, yet the
860 * worst-case guarantees of these aggregates are not violated. In
861 * fact, in case of no out-of-order service, the timestamps of agg
862 * would have been even lower than they are after the backward shift,
863 * because QFQ+ would have guaranteed a maximum value equal to 2 for
864 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
865 * service is postponed because of the backward-shift would have
866 * however waited for the service of agg before being served.
867 *
868 * The other event that may cause the slot index to be higher than 2
869 * for agg is a recent change of the parameters of some class. If the
870 * weight of a class is increased or the lmax (max_pkt_size) of the
871 * class is decreased, then a new aggregate with smaller slot size
872 * than the original parent aggregate of the class may happen to be
873 * activated. The activation of this aggregate should be properly
874 * delayed to when the service of the class has finished in the ideal
875 * system tracked by QFQ+. If the activation of the aggregate is not
876 * delayed to this reference time instant, then this aggregate may be
877 * unjustly served before other aggregates waiting for service. This
878 * may cause the above bound to the slot index to be violated for some
879 * of these unlucky aggregates.
880 *
881 * Instead of delaying the activation of the new aggregate, which is
882 * quite complex, the above-discussed capping of the slot index is
883 * used to handle also the consequences of a change of the parameters
884 * of a class.
885 */
886 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
887 u64 roundedS)
888 {
889 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
890 unsigned int i; /* slot index in the bucket list */
891
892 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
893 u64 deltaS = roundedS - grp->S -
894 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
895 agg->S -= deltaS;
896 agg->F -= deltaS;
897 slot = QFQ_MAX_SLOTS - 2;
898 }
899
900 i = (grp->front + slot) % QFQ_MAX_SLOTS;
901
902 hlist_add_head(&agg->next, &grp->slots[i]);
903 __set_bit(slot, &grp->full_slots);
904 }
905
906 /* Maybe introduce hlist_first_entry?? */
907 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
908 {
909 return hlist_entry(grp->slots[grp->front].first,
910 struct qfq_aggregate, next);
911 }
912
913 /*
914 * remove the entry from the slot
915 */
916 static void qfq_front_slot_remove(struct qfq_group *grp)
917 {
918 struct qfq_aggregate *agg = qfq_slot_head(grp);
919
920 BUG_ON(!agg);
921 hlist_del(&agg->next);
922 if (hlist_empty(&grp->slots[grp->front]))
923 __clear_bit(0, &grp->full_slots);
924 }
925
926 /*
927 * Returns the first aggregate in the first non-empty bucket of the
928 * group. As a side effect, adjusts the bucket list so the first
929 * non-empty bucket is at position 0 in full_slots.
930 */
931 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
932 {
933 unsigned int i;
934
935 pr_debug("qfq slot_scan: grp %u full %#lx\n",
936 grp->index, grp->full_slots);
937
938 if (grp->full_slots == 0)
939 return NULL;
940
941 i = __ffs(grp->full_slots); /* zero based */
942 if (i > 0) {
943 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
944 grp->full_slots >>= i;
945 }
946
947 return qfq_slot_head(grp);
948 }
949
950 /*
951 * adjust the bucket list. When the start time of a group decreases,
952 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
953 * move the objects. The mask of occupied slots must be shifted
954 * because we use ffs() to find the first non-empty slot.
955 * This covers decreases in the group's start time, but what about
956 * increases of the start time ?
957 * Here too we should make sure that i is less than 32
958 */
959 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
960 {
961 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
962
963 grp->full_slots <<= i;
964 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
965 }
966
967 static void qfq_update_eligible(struct qfq_sched *q)
968 {
969 struct qfq_group *grp;
970 unsigned long ineligible;
971
972 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
973 if (ineligible) {
974 if (!q->bitmaps[ER]) {
975 grp = qfq_ffs(q, ineligible);
976 if (qfq_gt(grp->S, q->V))
977 q->V = grp->S;
978 }
979 qfq_make_eligible(q);
980 }
981 }
982
983 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
984 static void agg_dequeue(struct qfq_aggregate *agg,
985 struct qfq_class *cl, unsigned int len)
986 {
987 qdisc_dequeue_peeked(cl->qdisc);
988
989 cl->deficit -= (int) len;
990
991 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
992 list_del(&cl->alist);
993 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
994 cl->deficit += agg->lmax;
995 list_move_tail(&cl->alist, &agg->active);
996 }
997 }
998
999 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1000 struct qfq_class **cl,
1001 unsigned int *len)
1002 {
1003 struct sk_buff *skb;
1004
1005 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1006 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1007 if (skb == NULL)
1008 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1009 else
1010 *len = qdisc_pkt_len(skb);
1011
1012 return skb;
1013 }
1014
1015 /* Update F according to the actual service received by the aggregate. */
1016 static inline void charge_actual_service(struct qfq_aggregate *agg)
1017 {
1018 /* Compute the service received by the aggregate, taking into
1019 * account that, after decreasing the number of classes in
1020 * agg, it may happen that
1021 * agg->initial_budget - agg->budget > agg->bugdetmax
1022 */
1023 u32 service_received = min(agg->budgetmax,
1024 agg->initial_budget - agg->budget);
1025
1026 agg->F = agg->S + (u64)service_received * agg->inv_w;
1027 }
1028
1029 /* Assign a reasonable start time for a new aggregate in group i.
1030 * Admissible values for \hat(F) are multiples of \sigma_i
1031 * no greater than V+\sigma_i . Larger values mean that
1032 * we had a wraparound so we consider the timestamp to be stale.
1033 *
1034 * If F is not stale and F >= V then we set S = F.
1035 * Otherwise we should assign S = V, but this may violate
1036 * the ordering in EB (see [2]). So, if we have groups in ER,
1037 * set S to the F_j of the first group j which would be blocking us.
1038 * We are guaranteed not to move S backward because
1039 * otherwise our group i would still be blocked.
1040 */
1041 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1042 {
1043 unsigned long mask;
1044 u64 limit, roundedF;
1045 int slot_shift = agg->grp->slot_shift;
1046
1047 roundedF = qfq_round_down(agg->F, slot_shift);
1048 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1049
1050 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1051 /* timestamp was stale */
1052 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1053 if (mask) {
1054 struct qfq_group *next = qfq_ffs(q, mask);
1055 if (qfq_gt(roundedF, next->F)) {
1056 if (qfq_gt(limit, next->F))
1057 agg->S = next->F;
1058 else /* preserve timestamp correctness */
1059 agg->S = limit;
1060 return;
1061 }
1062 }
1063 agg->S = q->V;
1064 } else /* timestamp is not stale */
1065 agg->S = agg->F;
1066 }
1067
1068 /* Update the timestamps of agg before scheduling/rescheduling it for
1069 * service. In particular, assign to agg->F its maximum possible
1070 * value, i.e., the virtual finish time with which the aggregate
1071 * should be labeled if it used all its budget once in service.
1072 */
1073 static inline void
1074 qfq_update_agg_ts(struct qfq_sched *q,
1075 struct qfq_aggregate *agg, enum update_reason reason)
1076 {
1077 if (reason != requeue)
1078 qfq_update_start(q, agg);
1079 else /* just charge agg for the service received */
1080 agg->S = agg->F;
1081
1082 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1083 }
1084
1085 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1086
1087 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1088 {
1089 struct qfq_sched *q = qdisc_priv(sch);
1090 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1091 struct qfq_class *cl;
1092 struct sk_buff *skb = NULL;
1093 /* next-packet len, 0 means no more active classes in in-service agg */
1094 unsigned int len = 0;
1095
1096 if (in_serv_agg == NULL)
1097 return NULL;
1098
1099 if (!list_empty(&in_serv_agg->active))
1100 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1101
1102 /*
1103 * If there are no active classes in the in-service aggregate,
1104 * or if the aggregate has not enough budget to serve its next
1105 * class, then choose the next aggregate to serve.
1106 */
1107 if (len == 0 || in_serv_agg->budget < len) {
1108 charge_actual_service(in_serv_agg);
1109
1110 /* recharge the budget of the aggregate */
1111 in_serv_agg->initial_budget = in_serv_agg->budget =
1112 in_serv_agg->budgetmax;
1113
1114 if (!list_empty(&in_serv_agg->active)) {
1115 /*
1116 * Still active: reschedule for
1117 * service. Possible optimization: if no other
1118 * aggregate is active, then there is no point
1119 * in rescheduling this aggregate, and we can
1120 * just keep it as the in-service one. This
1121 * should be however a corner case, and to
1122 * handle it, we would need to maintain an
1123 * extra num_active_aggs field.
1124 */
1125 qfq_update_agg_ts(q, in_serv_agg, requeue);
1126 qfq_schedule_agg(q, in_serv_agg);
1127 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1128 q->in_serv_agg = NULL;
1129 return NULL;
1130 }
1131
1132 /*
1133 * If we get here, there are other aggregates queued:
1134 * choose the new aggregate to serve.
1135 */
1136 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1137 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1138 }
1139 if (!skb)
1140 return NULL;
1141
1142 qdisc_qstats_backlog_dec(sch, skb);
1143 sch->q.qlen--;
1144 qdisc_bstats_update(sch, skb);
1145
1146 agg_dequeue(in_serv_agg, cl, len);
1147 /* If lmax is lowered, through qfq_change_class, for a class
1148 * owning pending packets with larger size than the new value
1149 * of lmax, then the following condition may hold.
1150 */
1151 if (unlikely(in_serv_agg->budget < len))
1152 in_serv_agg->budget = 0;
1153 else
1154 in_serv_agg->budget -= len;
1155
1156 q->V += (u64)len * q->iwsum;
1157 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1158 len, (unsigned long long) in_serv_agg->F,
1159 (unsigned long long) q->V);
1160
1161 return skb;
1162 }
1163
1164 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1165 {
1166 struct qfq_group *grp;
1167 struct qfq_aggregate *agg, *new_front_agg;
1168 u64 old_F;
1169
1170 qfq_update_eligible(q);
1171 q->oldV = q->V;
1172
1173 if (!q->bitmaps[ER])
1174 return NULL;
1175
1176 grp = qfq_ffs(q, q->bitmaps[ER]);
1177 old_F = grp->F;
1178
1179 agg = qfq_slot_head(grp);
1180
1181 /* agg starts to be served, remove it from schedule */
1182 qfq_front_slot_remove(grp);
1183
1184 new_front_agg = qfq_slot_scan(grp);
1185
1186 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1187 __clear_bit(grp->index, &q->bitmaps[ER]);
1188 else {
1189 u64 roundedS = qfq_round_down(new_front_agg->S,
1190 grp->slot_shift);
1191 unsigned int s;
1192
1193 if (grp->S == roundedS)
1194 return agg;
1195 grp->S = roundedS;
1196 grp->F = roundedS + (2ULL << grp->slot_shift);
1197 __clear_bit(grp->index, &q->bitmaps[ER]);
1198 s = qfq_calc_state(q, grp);
1199 __set_bit(grp->index, &q->bitmaps[s]);
1200 }
1201
1202 qfq_unblock_groups(q, grp->index, old_F);
1203
1204 return agg;
1205 }
1206
1207 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1208 struct sk_buff **to_free)
1209 {
1210 struct qfq_sched *q = qdisc_priv(sch);
1211 struct qfq_class *cl;
1212 struct qfq_aggregate *agg;
1213 int err = 0;
1214
1215 cl = qfq_classify(skb, sch, &err);
1216 if (cl == NULL) {
1217 if (err & __NET_XMIT_BYPASS)
1218 qdisc_qstats_drop(sch);
1219 __qdisc_drop(skb, to_free);
1220 return err;
1221 }
1222 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1223
1224 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1225 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1226 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1227 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1228 qdisc_pkt_len(skb));
1229 if (err) {
1230 cl->qstats.drops++;
1231 return qdisc_drop(skb, sch, to_free);
1232 }
1233 }
1234
1235 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1236 if (unlikely(err != NET_XMIT_SUCCESS)) {
1237 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1238 if (net_xmit_drop_count(err)) {
1239 cl->qstats.drops++;
1240 qdisc_qstats_drop(sch);
1241 }
1242 return err;
1243 }
1244
1245 bstats_update(&cl->bstats, skb);
1246 qdisc_qstats_backlog_inc(sch, skb);
1247 ++sch->q.qlen;
1248
1249 agg = cl->agg;
1250 /* if the queue was not empty, then done here */
1251 if (cl->qdisc->q.qlen != 1) {
1252 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1253 list_first_entry(&agg->active, struct qfq_class, alist)
1254 == cl && cl->deficit < qdisc_pkt_len(skb))
1255 list_move_tail(&cl->alist, &agg->active);
1256
1257 return err;
1258 }
1259
1260 /* schedule class for service within the aggregate */
1261 cl->deficit = agg->lmax;
1262 list_add_tail(&cl->alist, &agg->active);
1263
1264 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1265 q->in_serv_agg == agg)
1266 return err; /* non-empty or in service, nothing else to do */
1267
1268 qfq_activate_agg(q, agg, enqueue);
1269
1270 return err;
1271 }
1272
1273 /*
1274 * Schedule aggregate according to its timestamps.
1275 */
1276 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1277 {
1278 struct qfq_group *grp = agg->grp;
1279 u64 roundedS;
1280 int s;
1281
1282 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1283
1284 /*
1285 * Insert agg in the correct bucket.
1286 * If agg->S >= grp->S we don't need to adjust the
1287 * bucket list and simply go to the insertion phase.
1288 * Otherwise grp->S is decreasing, we must make room
1289 * in the bucket list, and also recompute the group state.
1290 * Finally, if there were no flows in this group and nobody
1291 * was in ER make sure to adjust V.
1292 */
1293 if (grp->full_slots) {
1294 if (!qfq_gt(grp->S, agg->S))
1295 goto skip_update;
1296
1297 /* create a slot for this agg->S */
1298 qfq_slot_rotate(grp, roundedS);
1299 /* group was surely ineligible, remove */
1300 __clear_bit(grp->index, &q->bitmaps[IR]);
1301 __clear_bit(grp->index, &q->bitmaps[IB]);
1302 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1303 q->in_serv_agg == NULL)
1304 q->V = roundedS;
1305
1306 grp->S = roundedS;
1307 grp->F = roundedS + (2ULL << grp->slot_shift);
1308 s = qfq_calc_state(q, grp);
1309 __set_bit(grp->index, &q->bitmaps[s]);
1310
1311 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1312 s, q->bitmaps[s],
1313 (unsigned long long) agg->S,
1314 (unsigned long long) agg->F,
1315 (unsigned long long) q->V);
1316
1317 skip_update:
1318 qfq_slot_insert(grp, agg, roundedS);
1319 }
1320
1321
1322 /* Update agg ts and schedule agg for service */
1323 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1324 enum update_reason reason)
1325 {
1326 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1327
1328 qfq_update_agg_ts(q, agg, reason);
1329 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1330 q->in_serv_agg = agg; /* start serving this aggregate */
1331 /* update V: to be in service, agg must be eligible */
1332 q->oldV = q->V = agg->S;
1333 } else if (agg != q->in_serv_agg)
1334 qfq_schedule_agg(q, agg);
1335 }
1336
1337 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1338 struct qfq_aggregate *agg)
1339 {
1340 unsigned int i, offset;
1341 u64 roundedS;
1342
1343 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1344 offset = (roundedS - grp->S) >> grp->slot_shift;
1345
1346 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1347
1348 hlist_del(&agg->next);
1349 if (hlist_empty(&grp->slots[i]))
1350 __clear_bit(offset, &grp->full_slots);
1351 }
1352
1353 /*
1354 * Called to forcibly deschedule an aggregate. If the aggregate is
1355 * not in the front bucket, or if the latter has other aggregates in
1356 * the front bucket, we can simply remove the aggregate with no other
1357 * side effects.
1358 * Otherwise we must propagate the event up.
1359 */
1360 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1361 {
1362 struct qfq_group *grp = agg->grp;
1363 unsigned long mask;
1364 u64 roundedS;
1365 int s;
1366
1367 if (agg == q->in_serv_agg) {
1368 charge_actual_service(agg);
1369 q->in_serv_agg = qfq_choose_next_agg(q);
1370 return;
1371 }
1372
1373 agg->F = agg->S;
1374 qfq_slot_remove(q, grp, agg);
1375
1376 if (!grp->full_slots) {
1377 __clear_bit(grp->index, &q->bitmaps[IR]);
1378 __clear_bit(grp->index, &q->bitmaps[EB]);
1379 __clear_bit(grp->index, &q->bitmaps[IB]);
1380
1381 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1382 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1383 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1384 if (mask)
1385 mask = ~((1UL << __fls(mask)) - 1);
1386 else
1387 mask = ~0UL;
1388 qfq_move_groups(q, mask, EB, ER);
1389 qfq_move_groups(q, mask, IB, IR);
1390 }
1391 __clear_bit(grp->index, &q->bitmaps[ER]);
1392 } else if (hlist_empty(&grp->slots[grp->front])) {
1393 agg = qfq_slot_scan(grp);
1394 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1395 if (grp->S != roundedS) {
1396 __clear_bit(grp->index, &q->bitmaps[ER]);
1397 __clear_bit(grp->index, &q->bitmaps[IR]);
1398 __clear_bit(grp->index, &q->bitmaps[EB]);
1399 __clear_bit(grp->index, &q->bitmaps[IB]);
1400 grp->S = roundedS;
1401 grp->F = roundedS + (2ULL << grp->slot_shift);
1402 s = qfq_calc_state(q, grp);
1403 __set_bit(grp->index, &q->bitmaps[s]);
1404 }
1405 }
1406 }
1407
1408 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1409 {
1410 struct qfq_sched *q = qdisc_priv(sch);
1411 struct qfq_class *cl = (struct qfq_class *)arg;
1412
1413 qfq_deactivate_class(q, cl);
1414 }
1415
1416 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1417 {
1418 struct qfq_sched *q = qdisc_priv(sch);
1419 struct qfq_group *grp;
1420 int i, j, err;
1421 u32 max_cl_shift, maxbudg_shift, max_classes;
1422
1423 err = tcf_block_get(&q->block, &q->filter_list, sch);
1424 if (err)
1425 return err;
1426
1427 err = qdisc_class_hash_init(&q->clhash);
1428 if (err < 0)
1429 return err;
1430
1431 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1432 max_classes = QFQ_MAX_AGG_CLASSES;
1433 else
1434 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1435 /* max_cl_shift = floor(log_2(max_classes)) */
1436 max_cl_shift = __fls(max_classes);
1437 q->max_agg_classes = 1<<max_cl_shift;
1438
1439 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1440 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1441 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1442
1443 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1444 grp = &q->groups[i];
1445 grp->index = i;
1446 grp->slot_shift = q->min_slot_shift + i;
1447 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1448 INIT_HLIST_HEAD(&grp->slots[j]);
1449 }
1450
1451 INIT_HLIST_HEAD(&q->nonfull_aggs);
1452
1453 return 0;
1454 }
1455
1456 static void qfq_reset_qdisc(struct Qdisc *sch)
1457 {
1458 struct qfq_sched *q = qdisc_priv(sch);
1459 struct qfq_class *cl;
1460 unsigned int i;
1461
1462 for (i = 0; i < q->clhash.hashsize; i++) {
1463 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1464 if (cl->qdisc->q.qlen > 0)
1465 qfq_deactivate_class(q, cl);
1466
1467 qdisc_reset(cl->qdisc);
1468 }
1469 }
1470 sch->qstats.backlog = 0;
1471 sch->q.qlen = 0;
1472 }
1473
1474 static void qfq_destroy_qdisc(struct Qdisc *sch)
1475 {
1476 struct qfq_sched *q = qdisc_priv(sch);
1477 struct qfq_class *cl;
1478 struct hlist_node *next;
1479 unsigned int i;
1480
1481 tcf_block_put(q->block);
1482
1483 for (i = 0; i < q->clhash.hashsize; i++) {
1484 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1485 common.hnode) {
1486 qfq_destroy_class(sch, cl);
1487 }
1488 }
1489 qdisc_class_hash_destroy(&q->clhash);
1490 }
1491
1492 static const struct Qdisc_class_ops qfq_class_ops = {
1493 .change = qfq_change_class,
1494 .delete = qfq_delete_class,
1495 .find = qfq_search_class,
1496 .tcf_block = qfq_tcf_block,
1497 .bind_tcf = qfq_bind_tcf,
1498 .unbind_tcf = qfq_unbind_tcf,
1499 .graft = qfq_graft_class,
1500 .leaf = qfq_class_leaf,
1501 .qlen_notify = qfq_qlen_notify,
1502 .dump = qfq_dump_class,
1503 .dump_stats = qfq_dump_class_stats,
1504 .walk = qfq_walk,
1505 };
1506
1507 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1508 .cl_ops = &qfq_class_ops,
1509 .id = "qfq",
1510 .priv_size = sizeof(struct qfq_sched),
1511 .enqueue = qfq_enqueue,
1512 .dequeue = qfq_dequeue,
1513 .peek = qdisc_peek_dequeued,
1514 .init = qfq_init_qdisc,
1515 .reset = qfq_reset_qdisc,
1516 .destroy = qfq_destroy_qdisc,
1517 .owner = THIS_MODULE,
1518 };
1519
1520 static int __init qfq_init(void)
1521 {
1522 return register_qdisc(&qfq_qdisc_ops);
1523 }
1524
1525 static void __exit qfq_exit(void)
1526 {
1527 unregister_qdisc(&qfq_qdisc_ops);
1528 }
1529
1530 module_init(qfq_init);
1531 module_exit(qfq_exit);
1532 MODULE_LICENSE("GPL");