]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sched/sch_qfq.c
6c85f3e9239bbc2b127ca7b7e61826de3b57873c
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_qfq.c
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21
22
23 /* Quick Fair Queueing Plus
24 ========================
25
26 Sources:
27
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41 /*
42
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93 /*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97 #define QFQ_MAX_SLOTS 32
98
99 /*
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
110
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
113
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
116
117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
119
120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121
122 /*
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128 struct qfq_group;
129
130 struct qfq_aggregate;
131
132 struct qfq_class {
133 struct Qdisc_class_common common;
134
135 unsigned int refcnt;
136 unsigned int filter_cnt;
137
138 struct gnet_stats_basic_packed bstats;
139 struct gnet_stats_queue qstats;
140 struct net_rate_estimator __rcu *rate_est;
141 struct Qdisc *qdisc;
142 struct list_head alist; /* Link for active-classes list. */
143 struct qfq_aggregate *agg; /* Parent aggregate. */
144 int deficit; /* DRR deficit counter. */
145 };
146
147 struct qfq_aggregate {
148 struct hlist_node next; /* Link for the slot list. */
149 u64 S, F; /* flow timestamps (exact) */
150
151 /* group we belong to. In principle we would need the index,
152 * which is log_2(lmax/weight), but we never reference it
153 * directly, only the group.
154 */
155 struct qfq_group *grp;
156
157 /* these are copied from the flowset. */
158 u32 class_weight; /* Weight of each class in this aggregate. */
159 /* Max pkt size for the classes in this aggregate, DRR quantum. */
160 int lmax;
161
162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
163 u32 budgetmax; /* Max budget for this aggregate. */
164 u32 initial_budget, budget; /* Initial and current budget. */
165
166 int num_classes; /* Number of classes in this aggr. */
167 struct list_head active; /* DRR queue of active classes. */
168
169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
170 };
171
172 struct qfq_group {
173 u64 S, F; /* group timestamps (approx). */
174 unsigned int slot_shift; /* Slot shift. */
175 unsigned int index; /* Group index. */
176 unsigned int front; /* Index of the front slot. */
177 unsigned long full_slots; /* non-empty slots */
178
179 /* Array of RR lists of active aggregates. */
180 struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182
183 struct qfq_sched {
184 struct tcf_proto __rcu *filter_list;
185 struct Qdisc_class_hash clhash;
186
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
189 u32 wsum; /* weight sum */
190 u32 iwsum; /* inverse weight sum */
191
192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
195
196 u32 max_agg_classes; /* Max number of classes per aggr. */
197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
198 };
199
200 /*
201 * Possible reasons why the timestamps of an aggregate are updated
202 * enqueue: the aggregate switches from idle to active and must scheduled
203 * for service
204 * requeue: the aggregate finishes its budget, so it stops being served and
205 * must be rescheduled for service
206 */
207 enum update_reason {enqueue, requeue};
208
209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
210 {
211 struct qfq_sched *q = qdisc_priv(sch);
212 struct Qdisc_class_common *clc;
213
214 clc = qdisc_class_find(&q->clhash, classid);
215 if (clc == NULL)
216 return NULL;
217 return container_of(clc, struct qfq_class, common);
218 }
219
220 static void qfq_purge_queue(struct qfq_class *cl)
221 {
222 unsigned int len = cl->qdisc->q.qlen;
223 unsigned int backlog = cl->qdisc->qstats.backlog;
224
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
227 }
228
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233
234 /*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
245 size_map = slot_size >> min_slot_shift;
246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251
252 if (index < 0)
253 index = 0;
254 out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259 }
260
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
267 {
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273 }
274
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277 {
278 struct qfq_aggregate *agg;
279
280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285 }
286
287
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291 {
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
304 */
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
308
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
313 }
314
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
317 q->iwsum = ONE_FP / q->wsum;
318
319 agg->num_classes = new_num_classes;
320 }
321
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
326 {
327 cl->agg = agg;
328
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 }
336 }
337
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 hlist_del_init(&agg->nonfull_next);
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
346
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
350 }
351
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354 {
355 struct qfq_aggregate *agg = cl->agg;
356
357
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
361 }
362
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
365 {
366 struct qfq_aggregate *agg = cl->agg;
367
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
372 }
373 qfq_update_agg(q, agg, agg->num_classes-1);
374 }
375
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378 {
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
381
382 qfq_rm_from_agg(q, cl);
383 }
384
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
388 {
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
397 }
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
400
401 return 0;
402 }
403
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 struct nlattr **tca, unsigned long *arg)
406 {
407 struct qfq_sched *q = qdisc_priv(sch);
408 struct qfq_class *cl = (struct qfq_class *)*arg;
409 bool existing = false;
410 struct nlattr *tb[TCA_QFQ_MAX + 1];
411 struct qfq_aggregate *new_agg = NULL;
412 u32 weight, lmax, inv_w;
413 int err;
414 int delta_w;
415
416 if (tca[TCA_OPTIONS] == NULL) {
417 pr_notice("qfq: no options\n");
418 return -EINVAL;
419 }
420
421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
422 if (err < 0)
423 return err;
424
425 if (tb[TCA_QFQ_WEIGHT]) {
426 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
427 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
428 pr_notice("qfq: invalid weight %u\n", weight);
429 return -EINVAL;
430 }
431 } else
432 weight = 1;
433
434 if (tb[TCA_QFQ_LMAX]) {
435 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
436 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
437 pr_notice("qfq: invalid max length %u\n", lmax);
438 return -EINVAL;
439 }
440 } else
441 lmax = psched_mtu(qdisc_dev(sch));
442
443 inv_w = ONE_FP / weight;
444 weight = ONE_FP / inv_w;
445
446 if (cl != NULL &&
447 lmax == cl->agg->lmax &&
448 weight == cl->agg->class_weight)
449 return 0; /* nothing to change */
450
451 delta_w = weight - (cl ? cl->agg->class_weight : 0);
452
453 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454 pr_notice("qfq: total weight out of range (%d + %u)\n",
455 delta_w, q->wsum);
456 return -EINVAL;
457 }
458
459 if (cl != NULL) { /* modify existing class */
460 if (tca[TCA_RATE]) {
461 err = gen_replace_estimator(&cl->bstats, NULL,
462 &cl->rate_est,
463 NULL,
464 qdisc_root_sleeping_running(sch),
465 tca[TCA_RATE]);
466 if (err)
467 return err;
468 }
469 existing = true;
470 goto set_change_agg;
471 }
472
473 /* create and init new class */
474 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
475 if (cl == NULL)
476 return -ENOBUFS;
477
478 cl->refcnt = 1;
479 cl->common.classid = classid;
480 cl->deficit = lmax;
481
482 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
483 &pfifo_qdisc_ops, classid);
484 if (cl->qdisc == NULL)
485 cl->qdisc = &noop_qdisc;
486
487 if (tca[TCA_RATE]) {
488 err = gen_new_estimator(&cl->bstats, NULL,
489 &cl->rate_est,
490 NULL,
491 qdisc_root_sleeping_running(sch),
492 tca[TCA_RATE]);
493 if (err)
494 goto destroy_class;
495 }
496
497 if (cl->qdisc != &noop_qdisc)
498 qdisc_hash_add(cl->qdisc, true);
499 sch_tree_lock(sch);
500 qdisc_class_hash_insert(&q->clhash, &cl->common);
501 sch_tree_unlock(sch);
502
503 qdisc_class_hash_grow(sch, &q->clhash);
504
505 set_change_agg:
506 sch_tree_lock(sch);
507 new_agg = qfq_find_agg(q, lmax, weight);
508 if (new_agg == NULL) { /* create new aggregate */
509 sch_tree_unlock(sch);
510 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
511 if (new_agg == NULL) {
512 err = -ENOBUFS;
513 gen_kill_estimator(&cl->rate_est);
514 goto destroy_class;
515 }
516 sch_tree_lock(sch);
517 qfq_init_agg(q, new_agg, lmax, weight);
518 }
519 if (existing)
520 qfq_deact_rm_from_agg(q, cl);
521 qfq_add_to_agg(q, new_agg, cl);
522 sch_tree_unlock(sch);
523
524 *arg = (unsigned long)cl;
525 return 0;
526
527 destroy_class:
528 qdisc_destroy(cl->qdisc);
529 kfree(cl);
530 return err;
531 }
532
533 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
534 {
535 struct qfq_sched *q = qdisc_priv(sch);
536
537 qfq_rm_from_agg(q, cl);
538 gen_kill_estimator(&cl->rate_est);
539 qdisc_destroy(cl->qdisc);
540 kfree(cl);
541 }
542
543 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
544 {
545 struct qfq_sched *q = qdisc_priv(sch);
546 struct qfq_class *cl = (struct qfq_class *)arg;
547
548 if (cl->filter_cnt > 0)
549 return -EBUSY;
550
551 sch_tree_lock(sch);
552
553 qfq_purge_queue(cl);
554 qdisc_class_hash_remove(&q->clhash, &cl->common);
555
556 BUG_ON(--cl->refcnt == 0);
557 /*
558 * This shouldn't happen: we "hold" one cops->get() when called
559 * from tc_ctl_tclass; the destroy method is done from cops->put().
560 */
561
562 sch_tree_unlock(sch);
563 return 0;
564 }
565
566 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
567 {
568 struct qfq_class *cl = qfq_find_class(sch, classid);
569
570 if (cl != NULL)
571 cl->refcnt++;
572
573 return (unsigned long)cl;
574 }
575
576 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
577 {
578 struct qfq_class *cl = (struct qfq_class *)arg;
579
580 if (--cl->refcnt == 0)
581 qfq_destroy_class(sch, cl);
582 }
583
584 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
585 unsigned long cl)
586 {
587 struct qfq_sched *q = qdisc_priv(sch);
588
589 if (cl)
590 return NULL;
591
592 return &q->filter_list;
593 }
594
595 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
596 u32 classid)
597 {
598 struct qfq_class *cl = qfq_find_class(sch, classid);
599
600 if (cl != NULL)
601 cl->filter_cnt++;
602
603 return (unsigned long)cl;
604 }
605
606 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
607 {
608 struct qfq_class *cl = (struct qfq_class *)arg;
609
610 cl->filter_cnt--;
611 }
612
613 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
614 struct Qdisc *new, struct Qdisc **old)
615 {
616 struct qfq_class *cl = (struct qfq_class *)arg;
617
618 if (new == NULL) {
619 new = qdisc_create_dflt(sch->dev_queue,
620 &pfifo_qdisc_ops, cl->common.classid);
621 if (new == NULL)
622 new = &noop_qdisc;
623 }
624
625 *old = qdisc_replace(sch, new, &cl->qdisc);
626 return 0;
627 }
628
629 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
630 {
631 struct qfq_class *cl = (struct qfq_class *)arg;
632
633 return cl->qdisc;
634 }
635
636 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
637 struct sk_buff *skb, struct tcmsg *tcm)
638 {
639 struct qfq_class *cl = (struct qfq_class *)arg;
640 struct nlattr *nest;
641
642 tcm->tcm_parent = TC_H_ROOT;
643 tcm->tcm_handle = cl->common.classid;
644 tcm->tcm_info = cl->qdisc->handle;
645
646 nest = nla_nest_start(skb, TCA_OPTIONS);
647 if (nest == NULL)
648 goto nla_put_failure;
649 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
650 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
651 goto nla_put_failure;
652 return nla_nest_end(skb, nest);
653
654 nla_put_failure:
655 nla_nest_cancel(skb, nest);
656 return -EMSGSIZE;
657 }
658
659 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
660 struct gnet_dump *d)
661 {
662 struct qfq_class *cl = (struct qfq_class *)arg;
663 struct tc_qfq_stats xstats;
664
665 memset(&xstats, 0, sizeof(xstats));
666
667 xstats.weight = cl->agg->class_weight;
668 xstats.lmax = cl->agg->lmax;
669
670 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
671 d, NULL, &cl->bstats) < 0 ||
672 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
673 gnet_stats_copy_queue(d, NULL,
674 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
675 return -1;
676
677 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
678 }
679
680 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
681 {
682 struct qfq_sched *q = qdisc_priv(sch);
683 struct qfq_class *cl;
684 unsigned int i;
685
686 if (arg->stop)
687 return;
688
689 for (i = 0; i < q->clhash.hashsize; i++) {
690 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
691 if (arg->count < arg->skip) {
692 arg->count++;
693 continue;
694 }
695 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
696 arg->stop = 1;
697 return;
698 }
699 arg->count++;
700 }
701 }
702 }
703
704 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
705 int *qerr)
706 {
707 struct qfq_sched *q = qdisc_priv(sch);
708 struct qfq_class *cl;
709 struct tcf_result res;
710 struct tcf_proto *fl;
711 int result;
712
713 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
714 pr_debug("qfq_classify: found %d\n", skb->priority);
715 cl = qfq_find_class(sch, skb->priority);
716 if (cl != NULL)
717 return cl;
718 }
719
720 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
721 fl = rcu_dereference_bh(q->filter_list);
722 result = tc_classify(skb, fl, &res, false);
723 if (result >= 0) {
724 #ifdef CONFIG_NET_CLS_ACT
725 switch (result) {
726 case TC_ACT_QUEUED:
727 case TC_ACT_STOLEN:
728 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
729 case TC_ACT_SHOT:
730 return NULL;
731 }
732 #endif
733 cl = (struct qfq_class *)res.class;
734 if (cl == NULL)
735 cl = qfq_find_class(sch, res.classid);
736 return cl;
737 }
738
739 return NULL;
740 }
741
742 /* Generic comparison function, handling wraparound. */
743 static inline int qfq_gt(u64 a, u64 b)
744 {
745 return (s64)(a - b) > 0;
746 }
747
748 /* Round a precise timestamp to its slotted value. */
749 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
750 {
751 return ts & ~((1ULL << shift) - 1);
752 }
753
754 /* return the pointer to the group with lowest index in the bitmap */
755 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
756 unsigned long bitmap)
757 {
758 int index = __ffs(bitmap);
759 return &q->groups[index];
760 }
761 /* Calculate a mask to mimic what would be ffs_from(). */
762 static inline unsigned long mask_from(unsigned long bitmap, int from)
763 {
764 return bitmap & ~((1UL << from) - 1);
765 }
766
767 /*
768 * The state computation relies on ER=0, IR=1, EB=2, IB=3
769 * First compute eligibility comparing grp->S, q->V,
770 * then check if someone is blocking us and possibly add EB
771 */
772 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
773 {
774 /* if S > V we are not eligible */
775 unsigned int state = qfq_gt(grp->S, q->V);
776 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
777 struct qfq_group *next;
778
779 if (mask) {
780 next = qfq_ffs(q, mask);
781 if (qfq_gt(grp->F, next->F))
782 state |= EB;
783 }
784
785 return state;
786 }
787
788
789 /*
790 * In principle
791 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
792 * q->bitmaps[src] &= ~mask;
793 * but we should make sure that src != dst
794 */
795 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
796 int src, int dst)
797 {
798 q->bitmaps[dst] |= q->bitmaps[src] & mask;
799 q->bitmaps[src] &= ~mask;
800 }
801
802 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
803 {
804 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
805 struct qfq_group *next;
806
807 if (mask) {
808 next = qfq_ffs(q, mask);
809 if (!qfq_gt(next->F, old_F))
810 return;
811 }
812
813 mask = (1UL << index) - 1;
814 qfq_move_groups(q, mask, EB, ER);
815 qfq_move_groups(q, mask, IB, IR);
816 }
817
818 /*
819 * perhaps
820 *
821 old_V ^= q->V;
822 old_V >>= q->min_slot_shift;
823 if (old_V) {
824 ...
825 }
826 *
827 */
828 static void qfq_make_eligible(struct qfq_sched *q)
829 {
830 unsigned long vslot = q->V >> q->min_slot_shift;
831 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
832
833 if (vslot != old_vslot) {
834 unsigned long mask;
835 int last_flip_pos = fls(vslot ^ old_vslot);
836
837 if (last_flip_pos > 31) /* higher than the number of groups */
838 mask = ~0UL; /* make all groups eligible */
839 else
840 mask = (1UL << last_flip_pos) - 1;
841
842 qfq_move_groups(q, mask, IR, ER);
843 qfq_move_groups(q, mask, IB, EB);
844 }
845 }
846
847 /*
848 * The index of the slot in which the input aggregate agg is to be
849 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
850 * and not a '-1' because the start time of the group may be moved
851 * backward by one slot after the aggregate has been inserted, and
852 * this would cause non-empty slots to be right-shifted by one
853 * position.
854 *
855 * QFQ+ fully satisfies this bound to the slot index if the parameters
856 * of the classes are not changed dynamically, and if QFQ+ never
857 * happens to postpone the service of agg unjustly, i.e., it never
858 * happens that the aggregate becomes backlogged and eligible, or just
859 * eligible, while an aggregate with a higher approximated finish time
860 * is being served. In particular, in this case QFQ+ guarantees that
861 * the timestamps of agg are low enough that the slot index is never
862 * higher than 2. Unfortunately, QFQ+ cannot provide the same
863 * guarantee if it happens to unjustly postpone the service of agg, or
864 * if the parameters of some class are changed.
865 *
866 * As for the first event, i.e., an out-of-order service, the
867 * upper bound to the slot index guaranteed by QFQ+ grows to
868 * 2 +
869 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
870 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
871 *
872 * The following function deals with this problem by backward-shifting
873 * the timestamps of agg, if needed, so as to guarantee that the slot
874 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
875 * cause the service of other aggregates to be postponed, yet the
876 * worst-case guarantees of these aggregates are not violated. In
877 * fact, in case of no out-of-order service, the timestamps of agg
878 * would have been even lower than they are after the backward shift,
879 * because QFQ+ would have guaranteed a maximum value equal to 2 for
880 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
881 * service is postponed because of the backward-shift would have
882 * however waited for the service of agg before being served.
883 *
884 * The other event that may cause the slot index to be higher than 2
885 * for agg is a recent change of the parameters of some class. If the
886 * weight of a class is increased or the lmax (max_pkt_size) of the
887 * class is decreased, then a new aggregate with smaller slot size
888 * than the original parent aggregate of the class may happen to be
889 * activated. The activation of this aggregate should be properly
890 * delayed to when the service of the class has finished in the ideal
891 * system tracked by QFQ+. If the activation of the aggregate is not
892 * delayed to this reference time instant, then this aggregate may be
893 * unjustly served before other aggregates waiting for service. This
894 * may cause the above bound to the slot index to be violated for some
895 * of these unlucky aggregates.
896 *
897 * Instead of delaying the activation of the new aggregate, which is
898 * quite complex, the above-discussed capping of the slot index is
899 * used to handle also the consequences of a change of the parameters
900 * of a class.
901 */
902 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
903 u64 roundedS)
904 {
905 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
906 unsigned int i; /* slot index in the bucket list */
907
908 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
909 u64 deltaS = roundedS - grp->S -
910 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
911 agg->S -= deltaS;
912 agg->F -= deltaS;
913 slot = QFQ_MAX_SLOTS - 2;
914 }
915
916 i = (grp->front + slot) % QFQ_MAX_SLOTS;
917
918 hlist_add_head(&agg->next, &grp->slots[i]);
919 __set_bit(slot, &grp->full_slots);
920 }
921
922 /* Maybe introduce hlist_first_entry?? */
923 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
924 {
925 return hlist_entry(grp->slots[grp->front].first,
926 struct qfq_aggregate, next);
927 }
928
929 /*
930 * remove the entry from the slot
931 */
932 static void qfq_front_slot_remove(struct qfq_group *grp)
933 {
934 struct qfq_aggregate *agg = qfq_slot_head(grp);
935
936 BUG_ON(!agg);
937 hlist_del(&agg->next);
938 if (hlist_empty(&grp->slots[grp->front]))
939 __clear_bit(0, &grp->full_slots);
940 }
941
942 /*
943 * Returns the first aggregate in the first non-empty bucket of the
944 * group. As a side effect, adjusts the bucket list so the first
945 * non-empty bucket is at position 0 in full_slots.
946 */
947 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
948 {
949 unsigned int i;
950
951 pr_debug("qfq slot_scan: grp %u full %#lx\n",
952 grp->index, grp->full_slots);
953
954 if (grp->full_slots == 0)
955 return NULL;
956
957 i = __ffs(grp->full_slots); /* zero based */
958 if (i > 0) {
959 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
960 grp->full_slots >>= i;
961 }
962
963 return qfq_slot_head(grp);
964 }
965
966 /*
967 * adjust the bucket list. When the start time of a group decreases,
968 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
969 * move the objects. The mask of occupied slots must be shifted
970 * because we use ffs() to find the first non-empty slot.
971 * This covers decreases in the group's start time, but what about
972 * increases of the start time ?
973 * Here too we should make sure that i is less than 32
974 */
975 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
976 {
977 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
978
979 grp->full_slots <<= i;
980 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
981 }
982
983 static void qfq_update_eligible(struct qfq_sched *q)
984 {
985 struct qfq_group *grp;
986 unsigned long ineligible;
987
988 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
989 if (ineligible) {
990 if (!q->bitmaps[ER]) {
991 grp = qfq_ffs(q, ineligible);
992 if (qfq_gt(grp->S, q->V))
993 q->V = grp->S;
994 }
995 qfq_make_eligible(q);
996 }
997 }
998
999 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
1000 static void agg_dequeue(struct qfq_aggregate *agg,
1001 struct qfq_class *cl, unsigned int len)
1002 {
1003 qdisc_dequeue_peeked(cl->qdisc);
1004
1005 cl->deficit -= (int) len;
1006
1007 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1008 list_del(&cl->alist);
1009 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1010 cl->deficit += agg->lmax;
1011 list_move_tail(&cl->alist, &agg->active);
1012 }
1013 }
1014
1015 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1016 struct qfq_class **cl,
1017 unsigned int *len)
1018 {
1019 struct sk_buff *skb;
1020
1021 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1022 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1023 if (skb == NULL)
1024 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1025 else
1026 *len = qdisc_pkt_len(skb);
1027
1028 return skb;
1029 }
1030
1031 /* Update F according to the actual service received by the aggregate. */
1032 static inline void charge_actual_service(struct qfq_aggregate *agg)
1033 {
1034 /* Compute the service received by the aggregate, taking into
1035 * account that, after decreasing the number of classes in
1036 * agg, it may happen that
1037 * agg->initial_budget - agg->budget > agg->bugdetmax
1038 */
1039 u32 service_received = min(agg->budgetmax,
1040 agg->initial_budget - agg->budget);
1041
1042 agg->F = agg->S + (u64)service_received * agg->inv_w;
1043 }
1044
1045 /* Assign a reasonable start time for a new aggregate in group i.
1046 * Admissible values for \hat(F) are multiples of \sigma_i
1047 * no greater than V+\sigma_i . Larger values mean that
1048 * we had a wraparound so we consider the timestamp to be stale.
1049 *
1050 * If F is not stale and F >= V then we set S = F.
1051 * Otherwise we should assign S = V, but this may violate
1052 * the ordering in EB (see [2]). So, if we have groups in ER,
1053 * set S to the F_j of the first group j which would be blocking us.
1054 * We are guaranteed not to move S backward because
1055 * otherwise our group i would still be blocked.
1056 */
1057 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1058 {
1059 unsigned long mask;
1060 u64 limit, roundedF;
1061 int slot_shift = agg->grp->slot_shift;
1062
1063 roundedF = qfq_round_down(agg->F, slot_shift);
1064 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1065
1066 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1067 /* timestamp was stale */
1068 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1069 if (mask) {
1070 struct qfq_group *next = qfq_ffs(q, mask);
1071 if (qfq_gt(roundedF, next->F)) {
1072 if (qfq_gt(limit, next->F))
1073 agg->S = next->F;
1074 else /* preserve timestamp correctness */
1075 agg->S = limit;
1076 return;
1077 }
1078 }
1079 agg->S = q->V;
1080 } else /* timestamp is not stale */
1081 agg->S = agg->F;
1082 }
1083
1084 /* Update the timestamps of agg before scheduling/rescheduling it for
1085 * service. In particular, assign to agg->F its maximum possible
1086 * value, i.e., the virtual finish time with which the aggregate
1087 * should be labeled if it used all its budget once in service.
1088 */
1089 static inline void
1090 qfq_update_agg_ts(struct qfq_sched *q,
1091 struct qfq_aggregate *agg, enum update_reason reason)
1092 {
1093 if (reason != requeue)
1094 qfq_update_start(q, agg);
1095 else /* just charge agg for the service received */
1096 agg->S = agg->F;
1097
1098 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1099 }
1100
1101 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1102
1103 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1104 {
1105 struct qfq_sched *q = qdisc_priv(sch);
1106 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1107 struct qfq_class *cl;
1108 struct sk_buff *skb = NULL;
1109 /* next-packet len, 0 means no more active classes in in-service agg */
1110 unsigned int len = 0;
1111
1112 if (in_serv_agg == NULL)
1113 return NULL;
1114
1115 if (!list_empty(&in_serv_agg->active))
1116 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1117
1118 /*
1119 * If there are no active classes in the in-service aggregate,
1120 * or if the aggregate has not enough budget to serve its next
1121 * class, then choose the next aggregate to serve.
1122 */
1123 if (len == 0 || in_serv_agg->budget < len) {
1124 charge_actual_service(in_serv_agg);
1125
1126 /* recharge the budget of the aggregate */
1127 in_serv_agg->initial_budget = in_serv_agg->budget =
1128 in_serv_agg->budgetmax;
1129
1130 if (!list_empty(&in_serv_agg->active)) {
1131 /*
1132 * Still active: reschedule for
1133 * service. Possible optimization: if no other
1134 * aggregate is active, then there is no point
1135 * in rescheduling this aggregate, and we can
1136 * just keep it as the in-service one. This
1137 * should be however a corner case, and to
1138 * handle it, we would need to maintain an
1139 * extra num_active_aggs field.
1140 */
1141 qfq_update_agg_ts(q, in_serv_agg, requeue);
1142 qfq_schedule_agg(q, in_serv_agg);
1143 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1144 q->in_serv_agg = NULL;
1145 return NULL;
1146 }
1147
1148 /*
1149 * If we get here, there are other aggregates queued:
1150 * choose the new aggregate to serve.
1151 */
1152 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1153 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1154 }
1155 if (!skb)
1156 return NULL;
1157
1158 qdisc_qstats_backlog_dec(sch, skb);
1159 sch->q.qlen--;
1160 qdisc_bstats_update(sch, skb);
1161
1162 agg_dequeue(in_serv_agg, cl, len);
1163 /* If lmax is lowered, through qfq_change_class, for a class
1164 * owning pending packets with larger size than the new value
1165 * of lmax, then the following condition may hold.
1166 */
1167 if (unlikely(in_serv_agg->budget < len))
1168 in_serv_agg->budget = 0;
1169 else
1170 in_serv_agg->budget -= len;
1171
1172 q->V += (u64)len * q->iwsum;
1173 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1174 len, (unsigned long long) in_serv_agg->F,
1175 (unsigned long long) q->V);
1176
1177 return skb;
1178 }
1179
1180 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1181 {
1182 struct qfq_group *grp;
1183 struct qfq_aggregate *agg, *new_front_agg;
1184 u64 old_F;
1185
1186 qfq_update_eligible(q);
1187 q->oldV = q->V;
1188
1189 if (!q->bitmaps[ER])
1190 return NULL;
1191
1192 grp = qfq_ffs(q, q->bitmaps[ER]);
1193 old_F = grp->F;
1194
1195 agg = qfq_slot_head(grp);
1196
1197 /* agg starts to be served, remove it from schedule */
1198 qfq_front_slot_remove(grp);
1199
1200 new_front_agg = qfq_slot_scan(grp);
1201
1202 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1203 __clear_bit(grp->index, &q->bitmaps[ER]);
1204 else {
1205 u64 roundedS = qfq_round_down(new_front_agg->S,
1206 grp->slot_shift);
1207 unsigned int s;
1208
1209 if (grp->S == roundedS)
1210 return agg;
1211 grp->S = roundedS;
1212 grp->F = roundedS + (2ULL << grp->slot_shift);
1213 __clear_bit(grp->index, &q->bitmaps[ER]);
1214 s = qfq_calc_state(q, grp);
1215 __set_bit(grp->index, &q->bitmaps[s]);
1216 }
1217
1218 qfq_unblock_groups(q, grp->index, old_F);
1219
1220 return agg;
1221 }
1222
1223 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1224 struct sk_buff **to_free)
1225 {
1226 struct qfq_sched *q = qdisc_priv(sch);
1227 struct qfq_class *cl;
1228 struct qfq_aggregate *agg;
1229 int err = 0;
1230
1231 cl = qfq_classify(skb, sch, &err);
1232 if (cl == NULL) {
1233 if (err & __NET_XMIT_BYPASS)
1234 qdisc_qstats_drop(sch);
1235 kfree_skb(skb);
1236 return err;
1237 }
1238 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1239
1240 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1241 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1242 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1243 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1244 qdisc_pkt_len(skb));
1245 if (err) {
1246 cl->qstats.drops++;
1247 return qdisc_drop(skb, sch, to_free);
1248 }
1249 }
1250
1251 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1252 if (unlikely(err != NET_XMIT_SUCCESS)) {
1253 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1254 if (net_xmit_drop_count(err)) {
1255 cl->qstats.drops++;
1256 qdisc_qstats_drop(sch);
1257 }
1258 return err;
1259 }
1260
1261 bstats_update(&cl->bstats, skb);
1262 qdisc_qstats_backlog_inc(sch, skb);
1263 ++sch->q.qlen;
1264
1265 agg = cl->agg;
1266 /* if the queue was not empty, then done here */
1267 if (cl->qdisc->q.qlen != 1) {
1268 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1269 list_first_entry(&agg->active, struct qfq_class, alist)
1270 == cl && cl->deficit < qdisc_pkt_len(skb))
1271 list_move_tail(&cl->alist, &agg->active);
1272
1273 return err;
1274 }
1275
1276 /* schedule class for service within the aggregate */
1277 cl->deficit = agg->lmax;
1278 list_add_tail(&cl->alist, &agg->active);
1279
1280 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1281 q->in_serv_agg == agg)
1282 return err; /* non-empty or in service, nothing else to do */
1283
1284 qfq_activate_agg(q, agg, enqueue);
1285
1286 return err;
1287 }
1288
1289 /*
1290 * Schedule aggregate according to its timestamps.
1291 */
1292 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1293 {
1294 struct qfq_group *grp = agg->grp;
1295 u64 roundedS;
1296 int s;
1297
1298 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1299
1300 /*
1301 * Insert agg in the correct bucket.
1302 * If agg->S >= grp->S we don't need to adjust the
1303 * bucket list and simply go to the insertion phase.
1304 * Otherwise grp->S is decreasing, we must make room
1305 * in the bucket list, and also recompute the group state.
1306 * Finally, if there were no flows in this group and nobody
1307 * was in ER make sure to adjust V.
1308 */
1309 if (grp->full_slots) {
1310 if (!qfq_gt(grp->S, agg->S))
1311 goto skip_update;
1312
1313 /* create a slot for this agg->S */
1314 qfq_slot_rotate(grp, roundedS);
1315 /* group was surely ineligible, remove */
1316 __clear_bit(grp->index, &q->bitmaps[IR]);
1317 __clear_bit(grp->index, &q->bitmaps[IB]);
1318 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1319 q->in_serv_agg == NULL)
1320 q->V = roundedS;
1321
1322 grp->S = roundedS;
1323 grp->F = roundedS + (2ULL << grp->slot_shift);
1324 s = qfq_calc_state(q, grp);
1325 __set_bit(grp->index, &q->bitmaps[s]);
1326
1327 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1328 s, q->bitmaps[s],
1329 (unsigned long long) agg->S,
1330 (unsigned long long) agg->F,
1331 (unsigned long long) q->V);
1332
1333 skip_update:
1334 qfq_slot_insert(grp, agg, roundedS);
1335 }
1336
1337
1338 /* Update agg ts and schedule agg for service */
1339 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1340 enum update_reason reason)
1341 {
1342 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1343
1344 qfq_update_agg_ts(q, agg, reason);
1345 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1346 q->in_serv_agg = agg; /* start serving this aggregate */
1347 /* update V: to be in service, agg must be eligible */
1348 q->oldV = q->V = agg->S;
1349 } else if (agg != q->in_serv_agg)
1350 qfq_schedule_agg(q, agg);
1351 }
1352
1353 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1354 struct qfq_aggregate *agg)
1355 {
1356 unsigned int i, offset;
1357 u64 roundedS;
1358
1359 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1360 offset = (roundedS - grp->S) >> grp->slot_shift;
1361
1362 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1363
1364 hlist_del(&agg->next);
1365 if (hlist_empty(&grp->slots[i]))
1366 __clear_bit(offset, &grp->full_slots);
1367 }
1368
1369 /*
1370 * Called to forcibly deschedule an aggregate. If the aggregate is
1371 * not in the front bucket, or if the latter has other aggregates in
1372 * the front bucket, we can simply remove the aggregate with no other
1373 * side effects.
1374 * Otherwise we must propagate the event up.
1375 */
1376 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1377 {
1378 struct qfq_group *grp = agg->grp;
1379 unsigned long mask;
1380 u64 roundedS;
1381 int s;
1382
1383 if (agg == q->in_serv_agg) {
1384 charge_actual_service(agg);
1385 q->in_serv_agg = qfq_choose_next_agg(q);
1386 return;
1387 }
1388
1389 agg->F = agg->S;
1390 qfq_slot_remove(q, grp, agg);
1391
1392 if (!grp->full_slots) {
1393 __clear_bit(grp->index, &q->bitmaps[IR]);
1394 __clear_bit(grp->index, &q->bitmaps[EB]);
1395 __clear_bit(grp->index, &q->bitmaps[IB]);
1396
1397 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1398 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1399 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1400 if (mask)
1401 mask = ~((1UL << __fls(mask)) - 1);
1402 else
1403 mask = ~0UL;
1404 qfq_move_groups(q, mask, EB, ER);
1405 qfq_move_groups(q, mask, IB, IR);
1406 }
1407 __clear_bit(grp->index, &q->bitmaps[ER]);
1408 } else if (hlist_empty(&grp->slots[grp->front])) {
1409 agg = qfq_slot_scan(grp);
1410 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1411 if (grp->S != roundedS) {
1412 __clear_bit(grp->index, &q->bitmaps[ER]);
1413 __clear_bit(grp->index, &q->bitmaps[IR]);
1414 __clear_bit(grp->index, &q->bitmaps[EB]);
1415 __clear_bit(grp->index, &q->bitmaps[IB]);
1416 grp->S = roundedS;
1417 grp->F = roundedS + (2ULL << grp->slot_shift);
1418 s = qfq_calc_state(q, grp);
1419 __set_bit(grp->index, &q->bitmaps[s]);
1420 }
1421 }
1422 }
1423
1424 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1425 {
1426 struct qfq_sched *q = qdisc_priv(sch);
1427 struct qfq_class *cl = (struct qfq_class *)arg;
1428
1429 if (cl->qdisc->q.qlen == 0)
1430 qfq_deactivate_class(q, cl);
1431 }
1432
1433 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1434 {
1435 struct qfq_sched *q = qdisc_priv(sch);
1436 struct qfq_group *grp;
1437 int i, j, err;
1438 u32 max_cl_shift, maxbudg_shift, max_classes;
1439
1440 err = qdisc_class_hash_init(&q->clhash);
1441 if (err < 0)
1442 return err;
1443
1444 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1445 max_classes = QFQ_MAX_AGG_CLASSES;
1446 else
1447 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1448 /* max_cl_shift = floor(log_2(max_classes)) */
1449 max_cl_shift = __fls(max_classes);
1450 q->max_agg_classes = 1<<max_cl_shift;
1451
1452 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1453 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1454 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1455
1456 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1457 grp = &q->groups[i];
1458 grp->index = i;
1459 grp->slot_shift = q->min_slot_shift + i;
1460 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1461 INIT_HLIST_HEAD(&grp->slots[j]);
1462 }
1463
1464 INIT_HLIST_HEAD(&q->nonfull_aggs);
1465
1466 return 0;
1467 }
1468
1469 static void qfq_reset_qdisc(struct Qdisc *sch)
1470 {
1471 struct qfq_sched *q = qdisc_priv(sch);
1472 struct qfq_class *cl;
1473 unsigned int i;
1474
1475 for (i = 0; i < q->clhash.hashsize; i++) {
1476 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1477 if (cl->qdisc->q.qlen > 0)
1478 qfq_deactivate_class(q, cl);
1479
1480 qdisc_reset(cl->qdisc);
1481 }
1482 }
1483 sch->qstats.backlog = 0;
1484 sch->q.qlen = 0;
1485 }
1486
1487 static void qfq_destroy_qdisc(struct Qdisc *sch)
1488 {
1489 struct qfq_sched *q = qdisc_priv(sch);
1490 struct qfq_class *cl;
1491 struct hlist_node *next;
1492 unsigned int i;
1493
1494 tcf_destroy_chain(&q->filter_list);
1495
1496 for (i = 0; i < q->clhash.hashsize; i++) {
1497 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1498 common.hnode) {
1499 qfq_destroy_class(sch, cl);
1500 }
1501 }
1502 qdisc_class_hash_destroy(&q->clhash);
1503 }
1504
1505 static const struct Qdisc_class_ops qfq_class_ops = {
1506 .change = qfq_change_class,
1507 .delete = qfq_delete_class,
1508 .get = qfq_get_class,
1509 .put = qfq_put_class,
1510 .tcf_chain = qfq_tcf_chain,
1511 .bind_tcf = qfq_bind_tcf,
1512 .unbind_tcf = qfq_unbind_tcf,
1513 .graft = qfq_graft_class,
1514 .leaf = qfq_class_leaf,
1515 .qlen_notify = qfq_qlen_notify,
1516 .dump = qfq_dump_class,
1517 .dump_stats = qfq_dump_class_stats,
1518 .walk = qfq_walk,
1519 };
1520
1521 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1522 .cl_ops = &qfq_class_ops,
1523 .id = "qfq",
1524 .priv_size = sizeof(struct qfq_sched),
1525 .enqueue = qfq_enqueue,
1526 .dequeue = qfq_dequeue,
1527 .peek = qdisc_peek_dequeued,
1528 .init = qfq_init_qdisc,
1529 .reset = qfq_reset_qdisc,
1530 .destroy = qfq_destroy_qdisc,
1531 .owner = THIS_MODULE,
1532 };
1533
1534 static int __init qfq_init(void)
1535 {
1536 return register_qdisc(&qfq_qdisc_ops);
1537 }
1538
1539 static void __exit qfq_exit(void)
1540 {
1541 unregister_qdisc(&qfq_qdisc_ops);
1542 }
1543
1544 module_init(qfq_init);
1545 module_exit(qfq_exit);
1546 MODULE_LICENSE("GPL");