]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sched/sch_qfq.c
qfq: don't leak skb if kzalloc fails
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_qfq.c
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21
22
23 /* Quick Fair Queueing Plus
24 ========================
25
26 Sources:
27
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41 /*
42
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93 /*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97 #define QFQ_MAX_SLOTS 32
98
99 /*
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
110
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
113
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
116
117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
119
120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121
122 /*
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128 struct qfq_group;
129
130 struct qfq_aggregate;
131
132 struct qfq_class {
133 struct Qdisc_class_common common;
134
135 unsigned int refcnt;
136 unsigned int filter_cnt;
137
138 struct gnet_stats_basic_packed bstats;
139 struct gnet_stats_queue qstats;
140 struct gnet_stats_rate_est64 rate_est;
141 struct Qdisc *qdisc;
142 struct list_head alist; /* Link for active-classes list. */
143 struct qfq_aggregate *agg; /* Parent aggregate. */
144 int deficit; /* DRR deficit counter. */
145 };
146
147 struct qfq_aggregate {
148 struct hlist_node next; /* Link for the slot list. */
149 u64 S, F; /* flow timestamps (exact) */
150
151 /* group we belong to. In principle we would need the index,
152 * which is log_2(lmax/weight), but we never reference it
153 * directly, only the group.
154 */
155 struct qfq_group *grp;
156
157 /* these are copied from the flowset. */
158 u32 class_weight; /* Weight of each class in this aggregate. */
159 /* Max pkt size for the classes in this aggregate, DRR quantum. */
160 int lmax;
161
162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
163 u32 budgetmax; /* Max budget for this aggregate. */
164 u32 initial_budget, budget; /* Initial and current budget. */
165
166 int num_classes; /* Number of classes in this aggr. */
167 struct list_head active; /* DRR queue of active classes. */
168
169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
170 };
171
172 struct qfq_group {
173 u64 S, F; /* group timestamps (approx). */
174 unsigned int slot_shift; /* Slot shift. */
175 unsigned int index; /* Group index. */
176 unsigned int front; /* Index of the front slot. */
177 unsigned long full_slots; /* non-empty slots */
178
179 /* Array of RR lists of active aggregates. */
180 struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182
183 struct qfq_sched {
184 struct tcf_proto __rcu *filter_list;
185 struct Qdisc_class_hash clhash;
186
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
189 u32 wsum; /* weight sum */
190 u32 iwsum; /* inverse weight sum */
191
192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
195
196 u32 max_agg_classes; /* Max number of classes per aggr. */
197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
198 };
199
200 /*
201 * Possible reasons why the timestamps of an aggregate are updated
202 * enqueue: the aggregate switches from idle to active and must scheduled
203 * for service
204 * requeue: the aggregate finishes its budget, so it stops being served and
205 * must be rescheduled for service
206 */
207 enum update_reason {enqueue, requeue};
208
209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
210 {
211 struct qfq_sched *q = qdisc_priv(sch);
212 struct Qdisc_class_common *clc;
213
214 clc = qdisc_class_find(&q->clhash, classid);
215 if (clc == NULL)
216 return NULL;
217 return container_of(clc, struct qfq_class, common);
218 }
219
220 static void qfq_purge_queue(struct qfq_class *cl)
221 {
222 unsigned int len = cl->qdisc->q.qlen;
223 unsigned int backlog = cl->qdisc->qstats.backlog;
224
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
227 }
228
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233
234 /*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
245 size_map = slot_size >> min_slot_shift;
246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251
252 if (index < 0)
253 index = 0;
254 out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259 }
260
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
267 {
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273 }
274
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277 {
278 struct qfq_aggregate *agg;
279
280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285 }
286
287
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291 {
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
304 */
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
308
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
313 }
314
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
317 q->iwsum = ONE_FP / q->wsum;
318
319 agg->num_classes = new_num_classes;
320 }
321
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
326 {
327 cl->agg = agg;
328
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 }
336 }
337
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 hlist_del_init(&agg->nonfull_next);
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
346
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
350 }
351
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354 {
355 struct qfq_aggregate *agg = cl->agg;
356
357
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
361 }
362
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
365 {
366 struct qfq_aggregate *agg = cl->agg;
367
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
372 }
373 qfq_update_agg(q, agg, agg->num_classes-1);
374 }
375
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378 {
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
381
382 qfq_rm_from_agg(q, cl);
383 }
384
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
388 {
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
397 }
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
400
401 return 0;
402 }
403
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 struct nlattr **tca, unsigned long *arg)
406 {
407 struct qfq_sched *q = qdisc_priv(sch);
408 struct qfq_class *cl = (struct qfq_class *)*arg;
409 bool existing = false;
410 struct nlattr *tb[TCA_QFQ_MAX + 1];
411 struct qfq_aggregate *new_agg = NULL;
412 u32 weight, lmax, inv_w;
413 int err;
414 int delta_w;
415
416 if (tca[TCA_OPTIONS] == NULL) {
417 pr_notice("qfq: no options\n");
418 return -EINVAL;
419 }
420
421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
422 if (err < 0)
423 return err;
424
425 if (tb[TCA_QFQ_WEIGHT]) {
426 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
427 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
428 pr_notice("qfq: invalid weight %u\n", weight);
429 return -EINVAL;
430 }
431 } else
432 weight = 1;
433
434 if (tb[TCA_QFQ_LMAX]) {
435 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
436 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
437 pr_notice("qfq: invalid max length %u\n", lmax);
438 return -EINVAL;
439 }
440 } else
441 lmax = psched_mtu(qdisc_dev(sch));
442
443 inv_w = ONE_FP / weight;
444 weight = ONE_FP / inv_w;
445
446 if (cl != NULL &&
447 lmax == cl->agg->lmax &&
448 weight == cl->agg->class_weight)
449 return 0; /* nothing to change */
450
451 delta_w = weight - (cl ? cl->agg->class_weight : 0);
452
453 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454 pr_notice("qfq: total weight out of range (%d + %u)\n",
455 delta_w, q->wsum);
456 return -EINVAL;
457 }
458
459 if (cl != NULL) { /* modify existing class */
460 if (tca[TCA_RATE]) {
461 err = gen_replace_estimator(&cl->bstats, NULL,
462 &cl->rate_est,
463 qdisc_root_sleeping_lock(sch),
464 tca[TCA_RATE]);
465 if (err)
466 return err;
467 }
468 existing = true;
469 goto set_change_agg;
470 }
471
472 /* create and init new class */
473 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
474 if (cl == NULL)
475 return -ENOBUFS;
476
477 cl->refcnt = 1;
478 cl->common.classid = classid;
479 cl->deficit = lmax;
480
481 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
482 &pfifo_qdisc_ops, classid);
483 if (cl->qdisc == NULL)
484 cl->qdisc = &noop_qdisc;
485
486 if (tca[TCA_RATE]) {
487 err = gen_new_estimator(&cl->bstats, NULL,
488 &cl->rate_est,
489 qdisc_root_sleeping_lock(sch),
490 tca[TCA_RATE]);
491 if (err)
492 goto destroy_class;
493 }
494
495 sch_tree_lock(sch);
496 qdisc_class_hash_insert(&q->clhash, &cl->common);
497 sch_tree_unlock(sch);
498
499 qdisc_class_hash_grow(sch, &q->clhash);
500
501 set_change_agg:
502 sch_tree_lock(sch);
503 new_agg = qfq_find_agg(q, lmax, weight);
504 if (new_agg == NULL) { /* create new aggregate */
505 sch_tree_unlock(sch);
506 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
507 if (new_agg == NULL) {
508 err = -ENOBUFS;
509 gen_kill_estimator(&cl->bstats, &cl->rate_est);
510 goto destroy_class;
511 }
512 sch_tree_lock(sch);
513 qfq_init_agg(q, new_agg, lmax, weight);
514 }
515 if (existing)
516 qfq_deact_rm_from_agg(q, cl);
517 qfq_add_to_agg(q, new_agg, cl);
518 sch_tree_unlock(sch);
519
520 *arg = (unsigned long)cl;
521 return 0;
522
523 destroy_class:
524 qdisc_destroy(cl->qdisc);
525 kfree(cl);
526 return err;
527 }
528
529 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
530 {
531 struct qfq_sched *q = qdisc_priv(sch);
532
533 qfq_rm_from_agg(q, cl);
534 gen_kill_estimator(&cl->bstats, &cl->rate_est);
535 qdisc_destroy(cl->qdisc);
536 kfree(cl);
537 }
538
539 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
540 {
541 struct qfq_sched *q = qdisc_priv(sch);
542 struct qfq_class *cl = (struct qfq_class *)arg;
543
544 if (cl->filter_cnt > 0)
545 return -EBUSY;
546
547 sch_tree_lock(sch);
548
549 qfq_purge_queue(cl);
550 qdisc_class_hash_remove(&q->clhash, &cl->common);
551
552 BUG_ON(--cl->refcnt == 0);
553 /*
554 * This shouldn't happen: we "hold" one cops->get() when called
555 * from tc_ctl_tclass; the destroy method is done from cops->put().
556 */
557
558 sch_tree_unlock(sch);
559 return 0;
560 }
561
562 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
563 {
564 struct qfq_class *cl = qfq_find_class(sch, classid);
565
566 if (cl != NULL)
567 cl->refcnt++;
568
569 return (unsigned long)cl;
570 }
571
572 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
573 {
574 struct qfq_class *cl = (struct qfq_class *)arg;
575
576 if (--cl->refcnt == 0)
577 qfq_destroy_class(sch, cl);
578 }
579
580 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
581 unsigned long cl)
582 {
583 struct qfq_sched *q = qdisc_priv(sch);
584
585 if (cl)
586 return NULL;
587
588 return &q->filter_list;
589 }
590
591 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
592 u32 classid)
593 {
594 struct qfq_class *cl = qfq_find_class(sch, classid);
595
596 if (cl != NULL)
597 cl->filter_cnt++;
598
599 return (unsigned long)cl;
600 }
601
602 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
603 {
604 struct qfq_class *cl = (struct qfq_class *)arg;
605
606 cl->filter_cnt--;
607 }
608
609 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
610 struct Qdisc *new, struct Qdisc **old)
611 {
612 struct qfq_class *cl = (struct qfq_class *)arg;
613
614 if (new == NULL) {
615 new = qdisc_create_dflt(sch->dev_queue,
616 &pfifo_qdisc_ops, cl->common.classid);
617 if (new == NULL)
618 new = &noop_qdisc;
619 }
620
621 *old = qdisc_replace(sch, new, &cl->qdisc);
622 return 0;
623 }
624
625 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
626 {
627 struct qfq_class *cl = (struct qfq_class *)arg;
628
629 return cl->qdisc;
630 }
631
632 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
633 struct sk_buff *skb, struct tcmsg *tcm)
634 {
635 struct qfq_class *cl = (struct qfq_class *)arg;
636 struct nlattr *nest;
637
638 tcm->tcm_parent = TC_H_ROOT;
639 tcm->tcm_handle = cl->common.classid;
640 tcm->tcm_info = cl->qdisc->handle;
641
642 nest = nla_nest_start(skb, TCA_OPTIONS);
643 if (nest == NULL)
644 goto nla_put_failure;
645 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
646 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
647 goto nla_put_failure;
648 return nla_nest_end(skb, nest);
649
650 nla_put_failure:
651 nla_nest_cancel(skb, nest);
652 return -EMSGSIZE;
653 }
654
655 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
656 struct gnet_dump *d)
657 {
658 struct qfq_class *cl = (struct qfq_class *)arg;
659 struct tc_qfq_stats xstats;
660
661 memset(&xstats, 0, sizeof(xstats));
662
663 xstats.weight = cl->agg->class_weight;
664 xstats.lmax = cl->agg->lmax;
665
666 if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
667 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
668 gnet_stats_copy_queue(d, NULL,
669 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
670 return -1;
671
672 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
673 }
674
675 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
676 {
677 struct qfq_sched *q = qdisc_priv(sch);
678 struct qfq_class *cl;
679 unsigned int i;
680
681 if (arg->stop)
682 return;
683
684 for (i = 0; i < q->clhash.hashsize; i++) {
685 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
686 if (arg->count < arg->skip) {
687 arg->count++;
688 continue;
689 }
690 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
691 arg->stop = 1;
692 return;
693 }
694 arg->count++;
695 }
696 }
697 }
698
699 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
700 int *qerr)
701 {
702 struct qfq_sched *q = qdisc_priv(sch);
703 struct qfq_class *cl;
704 struct tcf_result res;
705 struct tcf_proto *fl;
706 int result;
707
708 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
709 pr_debug("qfq_classify: found %d\n", skb->priority);
710 cl = qfq_find_class(sch, skb->priority);
711 if (cl != NULL)
712 return cl;
713 }
714
715 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
716 fl = rcu_dereference_bh(q->filter_list);
717 result = tc_classify(skb, fl, &res, false);
718 if (result >= 0) {
719 #ifdef CONFIG_NET_CLS_ACT
720 switch (result) {
721 case TC_ACT_QUEUED:
722 case TC_ACT_STOLEN:
723 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
724 case TC_ACT_SHOT:
725 return NULL;
726 }
727 #endif
728 cl = (struct qfq_class *)res.class;
729 if (cl == NULL)
730 cl = qfq_find_class(sch, res.classid);
731 return cl;
732 }
733
734 return NULL;
735 }
736
737 /* Generic comparison function, handling wraparound. */
738 static inline int qfq_gt(u64 a, u64 b)
739 {
740 return (s64)(a - b) > 0;
741 }
742
743 /* Round a precise timestamp to its slotted value. */
744 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
745 {
746 return ts & ~((1ULL << shift) - 1);
747 }
748
749 /* return the pointer to the group with lowest index in the bitmap */
750 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
751 unsigned long bitmap)
752 {
753 int index = __ffs(bitmap);
754 return &q->groups[index];
755 }
756 /* Calculate a mask to mimic what would be ffs_from(). */
757 static inline unsigned long mask_from(unsigned long bitmap, int from)
758 {
759 return bitmap & ~((1UL << from) - 1);
760 }
761
762 /*
763 * The state computation relies on ER=0, IR=1, EB=2, IB=3
764 * First compute eligibility comparing grp->S, q->V,
765 * then check if someone is blocking us and possibly add EB
766 */
767 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
768 {
769 /* if S > V we are not eligible */
770 unsigned int state = qfq_gt(grp->S, q->V);
771 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
772 struct qfq_group *next;
773
774 if (mask) {
775 next = qfq_ffs(q, mask);
776 if (qfq_gt(grp->F, next->F))
777 state |= EB;
778 }
779
780 return state;
781 }
782
783
784 /*
785 * In principle
786 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
787 * q->bitmaps[src] &= ~mask;
788 * but we should make sure that src != dst
789 */
790 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
791 int src, int dst)
792 {
793 q->bitmaps[dst] |= q->bitmaps[src] & mask;
794 q->bitmaps[src] &= ~mask;
795 }
796
797 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
798 {
799 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
800 struct qfq_group *next;
801
802 if (mask) {
803 next = qfq_ffs(q, mask);
804 if (!qfq_gt(next->F, old_F))
805 return;
806 }
807
808 mask = (1UL << index) - 1;
809 qfq_move_groups(q, mask, EB, ER);
810 qfq_move_groups(q, mask, IB, IR);
811 }
812
813 /*
814 * perhaps
815 *
816 old_V ^= q->V;
817 old_V >>= q->min_slot_shift;
818 if (old_V) {
819 ...
820 }
821 *
822 */
823 static void qfq_make_eligible(struct qfq_sched *q)
824 {
825 unsigned long vslot = q->V >> q->min_slot_shift;
826 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
827
828 if (vslot != old_vslot) {
829 unsigned long mask;
830 int last_flip_pos = fls(vslot ^ old_vslot);
831
832 if (last_flip_pos > 31) /* higher than the number of groups */
833 mask = ~0UL; /* make all groups eligible */
834 else
835 mask = (1UL << last_flip_pos) - 1;
836
837 qfq_move_groups(q, mask, IR, ER);
838 qfq_move_groups(q, mask, IB, EB);
839 }
840 }
841
842 /*
843 * The index of the slot in which the input aggregate agg is to be
844 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
845 * and not a '-1' because the start time of the group may be moved
846 * backward by one slot after the aggregate has been inserted, and
847 * this would cause non-empty slots to be right-shifted by one
848 * position.
849 *
850 * QFQ+ fully satisfies this bound to the slot index if the parameters
851 * of the classes are not changed dynamically, and if QFQ+ never
852 * happens to postpone the service of agg unjustly, i.e., it never
853 * happens that the aggregate becomes backlogged and eligible, or just
854 * eligible, while an aggregate with a higher approximated finish time
855 * is being served. In particular, in this case QFQ+ guarantees that
856 * the timestamps of agg are low enough that the slot index is never
857 * higher than 2. Unfortunately, QFQ+ cannot provide the same
858 * guarantee if it happens to unjustly postpone the service of agg, or
859 * if the parameters of some class are changed.
860 *
861 * As for the first event, i.e., an out-of-order service, the
862 * upper bound to the slot index guaranteed by QFQ+ grows to
863 * 2 +
864 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
865 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
866 *
867 * The following function deals with this problem by backward-shifting
868 * the timestamps of agg, if needed, so as to guarantee that the slot
869 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
870 * cause the service of other aggregates to be postponed, yet the
871 * worst-case guarantees of these aggregates are not violated. In
872 * fact, in case of no out-of-order service, the timestamps of agg
873 * would have been even lower than they are after the backward shift,
874 * because QFQ+ would have guaranteed a maximum value equal to 2 for
875 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
876 * service is postponed because of the backward-shift would have
877 * however waited for the service of agg before being served.
878 *
879 * The other event that may cause the slot index to be higher than 2
880 * for agg is a recent change of the parameters of some class. If the
881 * weight of a class is increased or the lmax (max_pkt_size) of the
882 * class is decreased, then a new aggregate with smaller slot size
883 * than the original parent aggregate of the class may happen to be
884 * activated. The activation of this aggregate should be properly
885 * delayed to when the service of the class has finished in the ideal
886 * system tracked by QFQ+. If the activation of the aggregate is not
887 * delayed to this reference time instant, then this aggregate may be
888 * unjustly served before other aggregates waiting for service. This
889 * may cause the above bound to the slot index to be violated for some
890 * of these unlucky aggregates.
891 *
892 * Instead of delaying the activation of the new aggregate, which is
893 * quite complex, the above-discussed capping of the slot index is
894 * used to handle also the consequences of a change of the parameters
895 * of a class.
896 */
897 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
898 u64 roundedS)
899 {
900 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
901 unsigned int i; /* slot index in the bucket list */
902
903 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
904 u64 deltaS = roundedS - grp->S -
905 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
906 agg->S -= deltaS;
907 agg->F -= deltaS;
908 slot = QFQ_MAX_SLOTS - 2;
909 }
910
911 i = (grp->front + slot) % QFQ_MAX_SLOTS;
912
913 hlist_add_head(&agg->next, &grp->slots[i]);
914 __set_bit(slot, &grp->full_slots);
915 }
916
917 /* Maybe introduce hlist_first_entry?? */
918 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
919 {
920 return hlist_entry(grp->slots[grp->front].first,
921 struct qfq_aggregate, next);
922 }
923
924 /*
925 * remove the entry from the slot
926 */
927 static void qfq_front_slot_remove(struct qfq_group *grp)
928 {
929 struct qfq_aggregate *agg = qfq_slot_head(grp);
930
931 BUG_ON(!agg);
932 hlist_del(&agg->next);
933 if (hlist_empty(&grp->slots[grp->front]))
934 __clear_bit(0, &grp->full_slots);
935 }
936
937 /*
938 * Returns the first aggregate in the first non-empty bucket of the
939 * group. As a side effect, adjusts the bucket list so the first
940 * non-empty bucket is at position 0 in full_slots.
941 */
942 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
943 {
944 unsigned int i;
945
946 pr_debug("qfq slot_scan: grp %u full %#lx\n",
947 grp->index, grp->full_slots);
948
949 if (grp->full_slots == 0)
950 return NULL;
951
952 i = __ffs(grp->full_slots); /* zero based */
953 if (i > 0) {
954 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
955 grp->full_slots >>= i;
956 }
957
958 return qfq_slot_head(grp);
959 }
960
961 /*
962 * adjust the bucket list. When the start time of a group decreases,
963 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
964 * move the objects. The mask of occupied slots must be shifted
965 * because we use ffs() to find the first non-empty slot.
966 * This covers decreases in the group's start time, but what about
967 * increases of the start time ?
968 * Here too we should make sure that i is less than 32
969 */
970 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
971 {
972 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
973
974 grp->full_slots <<= i;
975 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
976 }
977
978 static void qfq_update_eligible(struct qfq_sched *q)
979 {
980 struct qfq_group *grp;
981 unsigned long ineligible;
982
983 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
984 if (ineligible) {
985 if (!q->bitmaps[ER]) {
986 grp = qfq_ffs(q, ineligible);
987 if (qfq_gt(grp->S, q->V))
988 q->V = grp->S;
989 }
990 qfq_make_eligible(q);
991 }
992 }
993
994 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
995 static void agg_dequeue(struct qfq_aggregate *agg,
996 struct qfq_class *cl, unsigned int len)
997 {
998 qdisc_dequeue_peeked(cl->qdisc);
999
1000 cl->deficit -= (int) len;
1001
1002 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1003 list_del(&cl->alist);
1004 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1005 cl->deficit += agg->lmax;
1006 list_move_tail(&cl->alist, &agg->active);
1007 }
1008 }
1009
1010 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1011 struct qfq_class **cl,
1012 unsigned int *len)
1013 {
1014 struct sk_buff *skb;
1015
1016 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1017 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1018 if (skb == NULL)
1019 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1020 else
1021 *len = qdisc_pkt_len(skb);
1022
1023 return skb;
1024 }
1025
1026 /* Update F according to the actual service received by the aggregate. */
1027 static inline void charge_actual_service(struct qfq_aggregate *agg)
1028 {
1029 /* Compute the service received by the aggregate, taking into
1030 * account that, after decreasing the number of classes in
1031 * agg, it may happen that
1032 * agg->initial_budget - agg->budget > agg->bugdetmax
1033 */
1034 u32 service_received = min(agg->budgetmax,
1035 agg->initial_budget - agg->budget);
1036
1037 agg->F = agg->S + (u64)service_received * agg->inv_w;
1038 }
1039
1040 /* Assign a reasonable start time for a new aggregate in group i.
1041 * Admissible values for \hat(F) are multiples of \sigma_i
1042 * no greater than V+\sigma_i . Larger values mean that
1043 * we had a wraparound so we consider the timestamp to be stale.
1044 *
1045 * If F is not stale and F >= V then we set S = F.
1046 * Otherwise we should assign S = V, but this may violate
1047 * the ordering in EB (see [2]). So, if we have groups in ER,
1048 * set S to the F_j of the first group j which would be blocking us.
1049 * We are guaranteed not to move S backward because
1050 * otherwise our group i would still be blocked.
1051 */
1052 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1053 {
1054 unsigned long mask;
1055 u64 limit, roundedF;
1056 int slot_shift = agg->grp->slot_shift;
1057
1058 roundedF = qfq_round_down(agg->F, slot_shift);
1059 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1060
1061 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1062 /* timestamp was stale */
1063 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1064 if (mask) {
1065 struct qfq_group *next = qfq_ffs(q, mask);
1066 if (qfq_gt(roundedF, next->F)) {
1067 if (qfq_gt(limit, next->F))
1068 agg->S = next->F;
1069 else /* preserve timestamp correctness */
1070 agg->S = limit;
1071 return;
1072 }
1073 }
1074 agg->S = q->V;
1075 } else /* timestamp is not stale */
1076 agg->S = agg->F;
1077 }
1078
1079 /* Update the timestamps of agg before scheduling/rescheduling it for
1080 * service. In particular, assign to agg->F its maximum possible
1081 * value, i.e., the virtual finish time with which the aggregate
1082 * should be labeled if it used all its budget once in service.
1083 */
1084 static inline void
1085 qfq_update_agg_ts(struct qfq_sched *q,
1086 struct qfq_aggregate *agg, enum update_reason reason)
1087 {
1088 if (reason != requeue)
1089 qfq_update_start(q, agg);
1090 else /* just charge agg for the service received */
1091 agg->S = agg->F;
1092
1093 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1094 }
1095
1096 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1097
1098 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1099 {
1100 struct qfq_sched *q = qdisc_priv(sch);
1101 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1102 struct qfq_class *cl;
1103 struct sk_buff *skb = NULL;
1104 /* next-packet len, 0 means no more active classes in in-service agg */
1105 unsigned int len = 0;
1106
1107 if (in_serv_agg == NULL)
1108 return NULL;
1109
1110 if (!list_empty(&in_serv_agg->active))
1111 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1112
1113 /*
1114 * If there are no active classes in the in-service aggregate,
1115 * or if the aggregate has not enough budget to serve its next
1116 * class, then choose the next aggregate to serve.
1117 */
1118 if (len == 0 || in_serv_agg->budget < len) {
1119 charge_actual_service(in_serv_agg);
1120
1121 /* recharge the budget of the aggregate */
1122 in_serv_agg->initial_budget = in_serv_agg->budget =
1123 in_serv_agg->budgetmax;
1124
1125 if (!list_empty(&in_serv_agg->active)) {
1126 /*
1127 * Still active: reschedule for
1128 * service. Possible optimization: if no other
1129 * aggregate is active, then there is no point
1130 * in rescheduling this aggregate, and we can
1131 * just keep it as the in-service one. This
1132 * should be however a corner case, and to
1133 * handle it, we would need to maintain an
1134 * extra num_active_aggs field.
1135 */
1136 qfq_update_agg_ts(q, in_serv_agg, requeue);
1137 qfq_schedule_agg(q, in_serv_agg);
1138 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1139 q->in_serv_agg = NULL;
1140 return NULL;
1141 }
1142
1143 /*
1144 * If we get here, there are other aggregates queued:
1145 * choose the new aggregate to serve.
1146 */
1147 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1148 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1149 }
1150 if (!skb)
1151 return NULL;
1152
1153 sch->q.qlen--;
1154 qdisc_bstats_update(sch, skb);
1155
1156 agg_dequeue(in_serv_agg, cl, len);
1157 /* If lmax is lowered, through qfq_change_class, for a class
1158 * owning pending packets with larger size than the new value
1159 * of lmax, then the following condition may hold.
1160 */
1161 if (unlikely(in_serv_agg->budget < len))
1162 in_serv_agg->budget = 0;
1163 else
1164 in_serv_agg->budget -= len;
1165
1166 q->V += (u64)len * q->iwsum;
1167 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1168 len, (unsigned long long) in_serv_agg->F,
1169 (unsigned long long) q->V);
1170
1171 return skb;
1172 }
1173
1174 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1175 {
1176 struct qfq_group *grp;
1177 struct qfq_aggregate *agg, *new_front_agg;
1178 u64 old_F;
1179
1180 qfq_update_eligible(q);
1181 q->oldV = q->V;
1182
1183 if (!q->bitmaps[ER])
1184 return NULL;
1185
1186 grp = qfq_ffs(q, q->bitmaps[ER]);
1187 old_F = grp->F;
1188
1189 agg = qfq_slot_head(grp);
1190
1191 /* agg starts to be served, remove it from schedule */
1192 qfq_front_slot_remove(grp);
1193
1194 new_front_agg = qfq_slot_scan(grp);
1195
1196 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1197 __clear_bit(grp->index, &q->bitmaps[ER]);
1198 else {
1199 u64 roundedS = qfq_round_down(new_front_agg->S,
1200 grp->slot_shift);
1201 unsigned int s;
1202
1203 if (grp->S == roundedS)
1204 return agg;
1205 grp->S = roundedS;
1206 grp->F = roundedS + (2ULL << grp->slot_shift);
1207 __clear_bit(grp->index, &q->bitmaps[ER]);
1208 s = qfq_calc_state(q, grp);
1209 __set_bit(grp->index, &q->bitmaps[s]);
1210 }
1211
1212 qfq_unblock_groups(q, grp->index, old_F);
1213
1214 return agg;
1215 }
1216
1217 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1218 {
1219 struct qfq_sched *q = qdisc_priv(sch);
1220 struct qfq_class *cl;
1221 struct qfq_aggregate *agg;
1222 int err = 0;
1223
1224 cl = qfq_classify(skb, sch, &err);
1225 if (cl == NULL) {
1226 if (err & __NET_XMIT_BYPASS)
1227 qdisc_qstats_drop(sch);
1228 kfree_skb(skb);
1229 return err;
1230 }
1231 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1232
1233 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1234 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1235 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1236 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1237 qdisc_pkt_len(skb));
1238 if (err) {
1239 cl->qstats.drops++;
1240 return qdisc_drop(skb, sch);
1241 }
1242 }
1243
1244 err = qdisc_enqueue(skb, cl->qdisc);
1245 if (unlikely(err != NET_XMIT_SUCCESS)) {
1246 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1247 if (net_xmit_drop_count(err)) {
1248 cl->qstats.drops++;
1249 qdisc_qstats_drop(sch);
1250 }
1251 return err;
1252 }
1253
1254 bstats_update(&cl->bstats, skb);
1255 ++sch->q.qlen;
1256
1257 agg = cl->agg;
1258 /* if the queue was not empty, then done here */
1259 if (cl->qdisc->q.qlen != 1) {
1260 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1261 list_first_entry(&agg->active, struct qfq_class, alist)
1262 == cl && cl->deficit < qdisc_pkt_len(skb))
1263 list_move_tail(&cl->alist, &agg->active);
1264
1265 return err;
1266 }
1267
1268 /* schedule class for service within the aggregate */
1269 cl->deficit = agg->lmax;
1270 list_add_tail(&cl->alist, &agg->active);
1271
1272 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1273 q->in_serv_agg == agg)
1274 return err; /* non-empty or in service, nothing else to do */
1275
1276 qfq_activate_agg(q, agg, enqueue);
1277
1278 return err;
1279 }
1280
1281 /*
1282 * Schedule aggregate according to its timestamps.
1283 */
1284 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1285 {
1286 struct qfq_group *grp = agg->grp;
1287 u64 roundedS;
1288 int s;
1289
1290 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1291
1292 /*
1293 * Insert agg in the correct bucket.
1294 * If agg->S >= grp->S we don't need to adjust the
1295 * bucket list and simply go to the insertion phase.
1296 * Otherwise grp->S is decreasing, we must make room
1297 * in the bucket list, and also recompute the group state.
1298 * Finally, if there were no flows in this group and nobody
1299 * was in ER make sure to adjust V.
1300 */
1301 if (grp->full_slots) {
1302 if (!qfq_gt(grp->S, agg->S))
1303 goto skip_update;
1304
1305 /* create a slot for this agg->S */
1306 qfq_slot_rotate(grp, roundedS);
1307 /* group was surely ineligible, remove */
1308 __clear_bit(grp->index, &q->bitmaps[IR]);
1309 __clear_bit(grp->index, &q->bitmaps[IB]);
1310 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1311 q->in_serv_agg == NULL)
1312 q->V = roundedS;
1313
1314 grp->S = roundedS;
1315 grp->F = roundedS + (2ULL << grp->slot_shift);
1316 s = qfq_calc_state(q, grp);
1317 __set_bit(grp->index, &q->bitmaps[s]);
1318
1319 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1320 s, q->bitmaps[s],
1321 (unsigned long long) agg->S,
1322 (unsigned long long) agg->F,
1323 (unsigned long long) q->V);
1324
1325 skip_update:
1326 qfq_slot_insert(grp, agg, roundedS);
1327 }
1328
1329
1330 /* Update agg ts and schedule agg for service */
1331 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1332 enum update_reason reason)
1333 {
1334 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1335
1336 qfq_update_agg_ts(q, agg, reason);
1337 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1338 q->in_serv_agg = agg; /* start serving this aggregate */
1339 /* update V: to be in service, agg must be eligible */
1340 q->oldV = q->V = agg->S;
1341 } else if (agg != q->in_serv_agg)
1342 qfq_schedule_agg(q, agg);
1343 }
1344
1345 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1346 struct qfq_aggregate *agg)
1347 {
1348 unsigned int i, offset;
1349 u64 roundedS;
1350
1351 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1352 offset = (roundedS - grp->S) >> grp->slot_shift;
1353
1354 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1355
1356 hlist_del(&agg->next);
1357 if (hlist_empty(&grp->slots[i]))
1358 __clear_bit(offset, &grp->full_slots);
1359 }
1360
1361 /*
1362 * Called to forcibly deschedule an aggregate. If the aggregate is
1363 * not in the front bucket, or if the latter has other aggregates in
1364 * the front bucket, we can simply remove the aggregate with no other
1365 * side effects.
1366 * Otherwise we must propagate the event up.
1367 */
1368 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1369 {
1370 struct qfq_group *grp = agg->grp;
1371 unsigned long mask;
1372 u64 roundedS;
1373 int s;
1374
1375 if (agg == q->in_serv_agg) {
1376 charge_actual_service(agg);
1377 q->in_serv_agg = qfq_choose_next_agg(q);
1378 return;
1379 }
1380
1381 agg->F = agg->S;
1382 qfq_slot_remove(q, grp, agg);
1383
1384 if (!grp->full_slots) {
1385 __clear_bit(grp->index, &q->bitmaps[IR]);
1386 __clear_bit(grp->index, &q->bitmaps[EB]);
1387 __clear_bit(grp->index, &q->bitmaps[IB]);
1388
1389 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1390 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1391 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1392 if (mask)
1393 mask = ~((1UL << __fls(mask)) - 1);
1394 else
1395 mask = ~0UL;
1396 qfq_move_groups(q, mask, EB, ER);
1397 qfq_move_groups(q, mask, IB, IR);
1398 }
1399 __clear_bit(grp->index, &q->bitmaps[ER]);
1400 } else if (hlist_empty(&grp->slots[grp->front])) {
1401 agg = qfq_slot_scan(grp);
1402 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1403 if (grp->S != roundedS) {
1404 __clear_bit(grp->index, &q->bitmaps[ER]);
1405 __clear_bit(grp->index, &q->bitmaps[IR]);
1406 __clear_bit(grp->index, &q->bitmaps[EB]);
1407 __clear_bit(grp->index, &q->bitmaps[IB]);
1408 grp->S = roundedS;
1409 grp->F = roundedS + (2ULL << grp->slot_shift);
1410 s = qfq_calc_state(q, grp);
1411 __set_bit(grp->index, &q->bitmaps[s]);
1412 }
1413 }
1414 }
1415
1416 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1417 {
1418 struct qfq_sched *q = qdisc_priv(sch);
1419 struct qfq_class *cl = (struct qfq_class *)arg;
1420
1421 if (cl->qdisc->q.qlen == 0)
1422 qfq_deactivate_class(q, cl);
1423 }
1424
1425 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1426 struct hlist_head *slot)
1427 {
1428 struct qfq_aggregate *agg;
1429 struct qfq_class *cl;
1430 unsigned int len;
1431
1432 hlist_for_each_entry(agg, slot, next) {
1433 list_for_each_entry(cl, &agg->active, alist) {
1434
1435 if (!cl->qdisc->ops->drop)
1436 continue;
1437
1438 len = cl->qdisc->ops->drop(cl->qdisc);
1439 if (len > 0) {
1440 if (cl->qdisc->q.qlen == 0)
1441 qfq_deactivate_class(q, cl);
1442
1443 return len;
1444 }
1445 }
1446 }
1447 return 0;
1448 }
1449
1450 static unsigned int qfq_drop(struct Qdisc *sch)
1451 {
1452 struct qfq_sched *q = qdisc_priv(sch);
1453 struct qfq_group *grp;
1454 unsigned int i, j, len;
1455
1456 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1457 grp = &q->groups[i];
1458 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1459 len = qfq_drop_from_slot(q, &grp->slots[j]);
1460 if (len > 0) {
1461 sch->q.qlen--;
1462 return len;
1463 }
1464 }
1465
1466 }
1467
1468 return 0;
1469 }
1470
1471 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1472 {
1473 struct qfq_sched *q = qdisc_priv(sch);
1474 struct qfq_group *grp;
1475 int i, j, err;
1476 u32 max_cl_shift, maxbudg_shift, max_classes;
1477
1478 err = qdisc_class_hash_init(&q->clhash);
1479 if (err < 0)
1480 return err;
1481
1482 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1483 max_classes = QFQ_MAX_AGG_CLASSES;
1484 else
1485 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1486 /* max_cl_shift = floor(log_2(max_classes)) */
1487 max_cl_shift = __fls(max_classes);
1488 q->max_agg_classes = 1<<max_cl_shift;
1489
1490 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1491 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1492 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1493
1494 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1495 grp = &q->groups[i];
1496 grp->index = i;
1497 grp->slot_shift = q->min_slot_shift + i;
1498 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1499 INIT_HLIST_HEAD(&grp->slots[j]);
1500 }
1501
1502 INIT_HLIST_HEAD(&q->nonfull_aggs);
1503
1504 return 0;
1505 }
1506
1507 static void qfq_reset_qdisc(struct Qdisc *sch)
1508 {
1509 struct qfq_sched *q = qdisc_priv(sch);
1510 struct qfq_class *cl;
1511 unsigned int i;
1512
1513 for (i = 0; i < q->clhash.hashsize; i++) {
1514 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1515 if (cl->qdisc->q.qlen > 0)
1516 qfq_deactivate_class(q, cl);
1517
1518 qdisc_reset(cl->qdisc);
1519 }
1520 }
1521 sch->q.qlen = 0;
1522 }
1523
1524 static void qfq_destroy_qdisc(struct Qdisc *sch)
1525 {
1526 struct qfq_sched *q = qdisc_priv(sch);
1527 struct qfq_class *cl;
1528 struct hlist_node *next;
1529 unsigned int i;
1530
1531 tcf_destroy_chain(&q->filter_list);
1532
1533 for (i = 0; i < q->clhash.hashsize; i++) {
1534 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1535 common.hnode) {
1536 qfq_destroy_class(sch, cl);
1537 }
1538 }
1539 qdisc_class_hash_destroy(&q->clhash);
1540 }
1541
1542 static const struct Qdisc_class_ops qfq_class_ops = {
1543 .change = qfq_change_class,
1544 .delete = qfq_delete_class,
1545 .get = qfq_get_class,
1546 .put = qfq_put_class,
1547 .tcf_chain = qfq_tcf_chain,
1548 .bind_tcf = qfq_bind_tcf,
1549 .unbind_tcf = qfq_unbind_tcf,
1550 .graft = qfq_graft_class,
1551 .leaf = qfq_class_leaf,
1552 .qlen_notify = qfq_qlen_notify,
1553 .dump = qfq_dump_class,
1554 .dump_stats = qfq_dump_class_stats,
1555 .walk = qfq_walk,
1556 };
1557
1558 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1559 .cl_ops = &qfq_class_ops,
1560 .id = "qfq",
1561 .priv_size = sizeof(struct qfq_sched),
1562 .enqueue = qfq_enqueue,
1563 .dequeue = qfq_dequeue,
1564 .peek = qdisc_peek_dequeued,
1565 .drop = qfq_drop,
1566 .init = qfq_init_qdisc,
1567 .reset = qfq_reset_qdisc,
1568 .destroy = qfq_destroy_qdisc,
1569 .owner = THIS_MODULE,
1570 };
1571
1572 static int __init qfq_init(void)
1573 {
1574 return register_qdisc(&qfq_qdisc_ops);
1575 }
1576
1577 static void __exit qfq_exit(void)
1578 {
1579 unregister_qdisc(&qfq_qdisc_ops);
1580 }
1581
1582 module_init(qfq_init);
1583 module_exit(qfq_exit);
1584 MODULE_LICENSE("GPL");