]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sched/sch_sfb.c
net: sched: implement qstat helper routines
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_sfb.c
1 /*
2 * net/sched/sch_sfb.c Stochastic Fair Blue
3 *
4 * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr>
5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 *
11 * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
12 * A New Class of Active Queue Management Algorithms.
13 * U. Michigan CSE-TR-387-99, April 1999.
14 *
15 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
16 *
17 */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/skbuff.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <net/ip.h>
27 #include <net/pkt_sched.h>
28 #include <net/inet_ecn.h>
29 #include <net/flow_keys.h>
30
31 /*
32 * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
33 * This implementation uses L = 8 and N = 16
34 * This permits us to split one 32bit hash (provided per packet by rxhash or
35 * external classifier) into 8 subhashes of 4 bits.
36 */
37 #define SFB_BUCKET_SHIFT 4
38 #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
39 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
40 #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
41
42 /* SFB algo uses a virtual queue, named "bin" */
43 struct sfb_bucket {
44 u16 qlen; /* length of virtual queue */
45 u16 p_mark; /* marking probability */
46 };
47
48 /* We use a double buffering right before hash change
49 * (Section 4.4 of SFB reference : moving hash functions)
50 */
51 struct sfb_bins {
52 u32 perturbation; /* jhash perturbation */
53 struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
54 };
55
56 struct sfb_sched_data {
57 struct Qdisc *qdisc;
58 struct tcf_proto __rcu *filter_list;
59 unsigned long rehash_interval;
60 unsigned long warmup_time; /* double buffering warmup time in jiffies */
61 u32 max;
62 u32 bin_size; /* maximum queue length per bin */
63 u32 increment; /* d1 */
64 u32 decrement; /* d2 */
65 u32 limit; /* HARD maximal queue length */
66 u32 penalty_rate;
67 u32 penalty_burst;
68 u32 tokens_avail;
69 unsigned long rehash_time;
70 unsigned long token_time;
71
72 u8 slot; /* current active bins (0 or 1) */
73 bool double_buffering;
74 struct sfb_bins bins[2];
75
76 struct {
77 u32 earlydrop;
78 u32 penaltydrop;
79 u32 bucketdrop;
80 u32 queuedrop;
81 u32 childdrop; /* drops in child qdisc */
82 u32 marked; /* ECN mark */
83 } stats;
84 };
85
86 /*
87 * Each queued skb might be hashed on one or two bins
88 * We store in skb_cb the two hash values.
89 * (A zero value means double buffering was not used)
90 */
91 struct sfb_skb_cb {
92 u32 hashes[2];
93 };
94
95 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
96 {
97 qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
98 return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
99 }
100
101 /*
102 * If using 'internal' SFB flow classifier, hash comes from skb rxhash
103 * If using external classifier, hash comes from the classid.
104 */
105 static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
106 {
107 return sfb_skb_cb(skb)->hashes[slot];
108 }
109
110 /* Probabilities are coded as Q0.16 fixed-point values,
111 * with 0xFFFF representing 65535/65536 (almost 1.0)
112 * Addition and subtraction are saturating in [0, 65535]
113 */
114 static u32 prob_plus(u32 p1, u32 p2)
115 {
116 u32 res = p1 + p2;
117
118 return min_t(u32, res, SFB_MAX_PROB);
119 }
120
121 static u32 prob_minus(u32 p1, u32 p2)
122 {
123 return p1 > p2 ? p1 - p2 : 0;
124 }
125
126 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
127 {
128 int i;
129 struct sfb_bucket *b = &q->bins[slot].bins[0][0];
130
131 for (i = 0; i < SFB_LEVELS; i++) {
132 u32 hash = sfbhash & SFB_BUCKET_MASK;
133
134 sfbhash >>= SFB_BUCKET_SHIFT;
135 if (b[hash].qlen < 0xFFFF)
136 b[hash].qlen++;
137 b += SFB_NUMBUCKETS; /* next level */
138 }
139 }
140
141 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
142 {
143 u32 sfbhash;
144
145 sfbhash = sfb_hash(skb, 0);
146 if (sfbhash)
147 increment_one_qlen(sfbhash, 0, q);
148
149 sfbhash = sfb_hash(skb, 1);
150 if (sfbhash)
151 increment_one_qlen(sfbhash, 1, q);
152 }
153
154 static void decrement_one_qlen(u32 sfbhash, u32 slot,
155 struct sfb_sched_data *q)
156 {
157 int i;
158 struct sfb_bucket *b = &q->bins[slot].bins[0][0];
159
160 for (i = 0; i < SFB_LEVELS; i++) {
161 u32 hash = sfbhash & SFB_BUCKET_MASK;
162
163 sfbhash >>= SFB_BUCKET_SHIFT;
164 if (b[hash].qlen > 0)
165 b[hash].qlen--;
166 b += SFB_NUMBUCKETS; /* next level */
167 }
168 }
169
170 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
171 {
172 u32 sfbhash;
173
174 sfbhash = sfb_hash(skb, 0);
175 if (sfbhash)
176 decrement_one_qlen(sfbhash, 0, q);
177
178 sfbhash = sfb_hash(skb, 1);
179 if (sfbhash)
180 decrement_one_qlen(sfbhash, 1, q);
181 }
182
183 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
184 {
185 b->p_mark = prob_minus(b->p_mark, q->decrement);
186 }
187
188 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
189 {
190 b->p_mark = prob_plus(b->p_mark, q->increment);
191 }
192
193 static void sfb_zero_all_buckets(struct sfb_sched_data *q)
194 {
195 memset(&q->bins, 0, sizeof(q->bins));
196 }
197
198 /*
199 * compute max qlen, max p_mark, and avg p_mark
200 */
201 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
202 {
203 int i;
204 u32 qlen = 0, prob = 0, totalpm = 0;
205 const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
206
207 for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
208 if (qlen < b->qlen)
209 qlen = b->qlen;
210 totalpm += b->p_mark;
211 if (prob < b->p_mark)
212 prob = b->p_mark;
213 b++;
214 }
215 *prob_r = prob;
216 *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
217 return qlen;
218 }
219
220
221 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
222 {
223 q->bins[slot].perturbation = prandom_u32();
224 }
225
226 static void sfb_swap_slot(struct sfb_sched_data *q)
227 {
228 sfb_init_perturbation(q->slot, q);
229 q->slot ^= 1;
230 q->double_buffering = false;
231 }
232
233 /* Non elastic flows are allowed to use part of the bandwidth, expressed
234 * in "penalty_rate" packets per second, with "penalty_burst" burst
235 */
236 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
237 {
238 if (q->penalty_rate == 0 || q->penalty_burst == 0)
239 return true;
240
241 if (q->tokens_avail < 1) {
242 unsigned long age = min(10UL * HZ, jiffies - q->token_time);
243
244 q->tokens_avail = (age * q->penalty_rate) / HZ;
245 if (q->tokens_avail > q->penalty_burst)
246 q->tokens_avail = q->penalty_burst;
247 q->token_time = jiffies;
248 if (q->tokens_avail < 1)
249 return true;
250 }
251
252 q->tokens_avail--;
253 return false;
254 }
255
256 static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl,
257 int *qerr, u32 *salt)
258 {
259 struct tcf_result res;
260 int result;
261
262 result = tc_classify(skb, fl, &res);
263 if (result >= 0) {
264 #ifdef CONFIG_NET_CLS_ACT
265 switch (result) {
266 case TC_ACT_STOLEN:
267 case TC_ACT_QUEUED:
268 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
269 case TC_ACT_SHOT:
270 return false;
271 }
272 #endif
273 *salt = TC_H_MIN(res.classid);
274 return true;
275 }
276 return false;
277 }
278
279 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch)
280 {
281
282 struct sfb_sched_data *q = qdisc_priv(sch);
283 struct Qdisc *child = q->qdisc;
284 struct tcf_proto *fl;
285 int i;
286 u32 p_min = ~0;
287 u32 minqlen = ~0;
288 u32 r, slot, salt, sfbhash;
289 int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
290 struct flow_keys keys;
291
292 if (unlikely(sch->q.qlen >= q->limit)) {
293 qdisc_qstats_overlimit(sch);
294 q->stats.queuedrop++;
295 goto drop;
296 }
297
298 if (q->rehash_interval > 0) {
299 unsigned long limit = q->rehash_time + q->rehash_interval;
300
301 if (unlikely(time_after(jiffies, limit))) {
302 sfb_swap_slot(q);
303 q->rehash_time = jiffies;
304 } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
305 time_after(jiffies, limit - q->warmup_time))) {
306 q->double_buffering = true;
307 }
308 }
309
310 fl = rcu_dereference_bh(q->filter_list);
311 if (fl) {
312 /* If using external classifiers, get result and record it. */
313 if (!sfb_classify(skb, fl, &ret, &salt))
314 goto other_drop;
315 keys.src = salt;
316 keys.dst = 0;
317 keys.ports = 0;
318 } else {
319 skb_flow_dissect(skb, &keys);
320 }
321
322 slot = q->slot;
323
324 sfbhash = jhash_3words((__force u32)keys.dst,
325 (__force u32)keys.src,
326 (__force u32)keys.ports,
327 q->bins[slot].perturbation);
328 if (!sfbhash)
329 sfbhash = 1;
330 sfb_skb_cb(skb)->hashes[slot] = sfbhash;
331
332 for (i = 0; i < SFB_LEVELS; i++) {
333 u32 hash = sfbhash & SFB_BUCKET_MASK;
334 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
335
336 sfbhash >>= SFB_BUCKET_SHIFT;
337 if (b->qlen == 0)
338 decrement_prob(b, q);
339 else if (b->qlen >= q->bin_size)
340 increment_prob(b, q);
341 if (minqlen > b->qlen)
342 minqlen = b->qlen;
343 if (p_min > b->p_mark)
344 p_min = b->p_mark;
345 }
346
347 slot ^= 1;
348 sfb_skb_cb(skb)->hashes[slot] = 0;
349
350 if (unlikely(minqlen >= q->max)) {
351 qdisc_qstats_overlimit(sch);
352 q->stats.bucketdrop++;
353 goto drop;
354 }
355
356 if (unlikely(p_min >= SFB_MAX_PROB)) {
357 /* Inelastic flow */
358 if (q->double_buffering) {
359 sfbhash = jhash_3words((__force u32)keys.dst,
360 (__force u32)keys.src,
361 (__force u32)keys.ports,
362 q->bins[slot].perturbation);
363 if (!sfbhash)
364 sfbhash = 1;
365 sfb_skb_cb(skb)->hashes[slot] = sfbhash;
366
367 for (i = 0; i < SFB_LEVELS; i++) {
368 u32 hash = sfbhash & SFB_BUCKET_MASK;
369 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
370
371 sfbhash >>= SFB_BUCKET_SHIFT;
372 if (b->qlen == 0)
373 decrement_prob(b, q);
374 else if (b->qlen >= q->bin_size)
375 increment_prob(b, q);
376 }
377 }
378 if (sfb_rate_limit(skb, q)) {
379 qdisc_qstats_overlimit(sch);
380 q->stats.penaltydrop++;
381 goto drop;
382 }
383 goto enqueue;
384 }
385
386 r = prandom_u32() & SFB_MAX_PROB;
387
388 if (unlikely(r < p_min)) {
389 if (unlikely(p_min > SFB_MAX_PROB / 2)) {
390 /* If we're marking that many packets, then either
391 * this flow is unresponsive, or we're badly congested.
392 * In either case, we want to start dropping packets.
393 */
394 if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
395 q->stats.earlydrop++;
396 goto drop;
397 }
398 }
399 if (INET_ECN_set_ce(skb)) {
400 q->stats.marked++;
401 } else {
402 q->stats.earlydrop++;
403 goto drop;
404 }
405 }
406
407 enqueue:
408 ret = qdisc_enqueue(skb, child);
409 if (likely(ret == NET_XMIT_SUCCESS)) {
410 sch->q.qlen++;
411 increment_qlen(skb, q);
412 } else if (net_xmit_drop_count(ret)) {
413 q->stats.childdrop++;
414 qdisc_qstats_drop(sch);
415 }
416 return ret;
417
418 drop:
419 qdisc_drop(skb, sch);
420 return NET_XMIT_CN;
421 other_drop:
422 if (ret & __NET_XMIT_BYPASS)
423 qdisc_qstats_drop(sch);
424 kfree_skb(skb);
425 return ret;
426 }
427
428 static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
429 {
430 struct sfb_sched_data *q = qdisc_priv(sch);
431 struct Qdisc *child = q->qdisc;
432 struct sk_buff *skb;
433
434 skb = child->dequeue(q->qdisc);
435
436 if (skb) {
437 qdisc_bstats_update(sch, skb);
438 sch->q.qlen--;
439 decrement_qlen(skb, q);
440 }
441
442 return skb;
443 }
444
445 static struct sk_buff *sfb_peek(struct Qdisc *sch)
446 {
447 struct sfb_sched_data *q = qdisc_priv(sch);
448 struct Qdisc *child = q->qdisc;
449
450 return child->ops->peek(child);
451 }
452
453 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
454
455 static void sfb_reset(struct Qdisc *sch)
456 {
457 struct sfb_sched_data *q = qdisc_priv(sch);
458
459 qdisc_reset(q->qdisc);
460 sch->q.qlen = 0;
461 q->slot = 0;
462 q->double_buffering = false;
463 sfb_zero_all_buckets(q);
464 sfb_init_perturbation(0, q);
465 }
466
467 static void sfb_destroy(struct Qdisc *sch)
468 {
469 struct sfb_sched_data *q = qdisc_priv(sch);
470
471 tcf_destroy_chain(&q->filter_list);
472 qdisc_destroy(q->qdisc);
473 }
474
475 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
476 [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
477 };
478
479 static const struct tc_sfb_qopt sfb_default_ops = {
480 .rehash_interval = 600 * MSEC_PER_SEC,
481 .warmup_time = 60 * MSEC_PER_SEC,
482 .limit = 0,
483 .max = 25,
484 .bin_size = 20,
485 .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
486 .decrement = (SFB_MAX_PROB + 3000) / 6000,
487 .penalty_rate = 10,
488 .penalty_burst = 20,
489 };
490
491 static int sfb_change(struct Qdisc *sch, struct nlattr *opt)
492 {
493 struct sfb_sched_data *q = qdisc_priv(sch);
494 struct Qdisc *child;
495 struct nlattr *tb[TCA_SFB_MAX + 1];
496 const struct tc_sfb_qopt *ctl = &sfb_default_ops;
497 u32 limit;
498 int err;
499
500 if (opt) {
501 err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy);
502 if (err < 0)
503 return -EINVAL;
504
505 if (tb[TCA_SFB_PARMS] == NULL)
506 return -EINVAL;
507
508 ctl = nla_data(tb[TCA_SFB_PARMS]);
509 }
510
511 limit = ctl->limit;
512 if (limit == 0)
513 limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
514
515 child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit);
516 if (IS_ERR(child))
517 return PTR_ERR(child);
518
519 sch_tree_lock(sch);
520
521 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
522 qdisc_destroy(q->qdisc);
523 q->qdisc = child;
524
525 q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
526 q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
527 q->rehash_time = jiffies;
528 q->limit = limit;
529 q->increment = ctl->increment;
530 q->decrement = ctl->decrement;
531 q->max = ctl->max;
532 q->bin_size = ctl->bin_size;
533 q->penalty_rate = ctl->penalty_rate;
534 q->penalty_burst = ctl->penalty_burst;
535 q->tokens_avail = ctl->penalty_burst;
536 q->token_time = jiffies;
537
538 q->slot = 0;
539 q->double_buffering = false;
540 sfb_zero_all_buckets(q);
541 sfb_init_perturbation(0, q);
542 sfb_init_perturbation(1, q);
543
544 sch_tree_unlock(sch);
545
546 return 0;
547 }
548
549 static int sfb_init(struct Qdisc *sch, struct nlattr *opt)
550 {
551 struct sfb_sched_data *q = qdisc_priv(sch);
552
553 q->qdisc = &noop_qdisc;
554 return sfb_change(sch, opt);
555 }
556
557 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
558 {
559 struct sfb_sched_data *q = qdisc_priv(sch);
560 struct nlattr *opts;
561 struct tc_sfb_qopt opt = {
562 .rehash_interval = jiffies_to_msecs(q->rehash_interval),
563 .warmup_time = jiffies_to_msecs(q->warmup_time),
564 .limit = q->limit,
565 .max = q->max,
566 .bin_size = q->bin_size,
567 .increment = q->increment,
568 .decrement = q->decrement,
569 .penalty_rate = q->penalty_rate,
570 .penalty_burst = q->penalty_burst,
571 };
572
573 sch->qstats.backlog = q->qdisc->qstats.backlog;
574 opts = nla_nest_start(skb, TCA_OPTIONS);
575 if (opts == NULL)
576 goto nla_put_failure;
577 if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
578 goto nla_put_failure;
579 return nla_nest_end(skb, opts);
580
581 nla_put_failure:
582 nla_nest_cancel(skb, opts);
583 return -EMSGSIZE;
584 }
585
586 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
587 {
588 struct sfb_sched_data *q = qdisc_priv(sch);
589 struct tc_sfb_xstats st = {
590 .earlydrop = q->stats.earlydrop,
591 .penaltydrop = q->stats.penaltydrop,
592 .bucketdrop = q->stats.bucketdrop,
593 .queuedrop = q->stats.queuedrop,
594 .childdrop = q->stats.childdrop,
595 .marked = q->stats.marked,
596 };
597
598 st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
599
600 return gnet_stats_copy_app(d, &st, sizeof(st));
601 }
602
603 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
604 struct sk_buff *skb, struct tcmsg *tcm)
605 {
606 return -ENOSYS;
607 }
608
609 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
610 struct Qdisc **old)
611 {
612 struct sfb_sched_data *q = qdisc_priv(sch);
613
614 if (new == NULL)
615 new = &noop_qdisc;
616
617 sch_tree_lock(sch);
618 *old = q->qdisc;
619 q->qdisc = new;
620 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
621 qdisc_reset(*old);
622 sch_tree_unlock(sch);
623 return 0;
624 }
625
626 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
627 {
628 struct sfb_sched_data *q = qdisc_priv(sch);
629
630 return q->qdisc;
631 }
632
633 static unsigned long sfb_get(struct Qdisc *sch, u32 classid)
634 {
635 return 1;
636 }
637
638 static void sfb_put(struct Qdisc *sch, unsigned long arg)
639 {
640 }
641
642 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
643 struct nlattr **tca, unsigned long *arg)
644 {
645 return -ENOSYS;
646 }
647
648 static int sfb_delete(struct Qdisc *sch, unsigned long cl)
649 {
650 return -ENOSYS;
651 }
652
653 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
654 {
655 if (!walker->stop) {
656 if (walker->count >= walker->skip)
657 if (walker->fn(sch, 1, walker) < 0) {
658 walker->stop = 1;
659 return;
660 }
661 walker->count++;
662 }
663 }
664
665 static struct tcf_proto __rcu **sfb_find_tcf(struct Qdisc *sch,
666 unsigned long cl)
667 {
668 struct sfb_sched_data *q = qdisc_priv(sch);
669
670 if (cl)
671 return NULL;
672 return &q->filter_list;
673 }
674
675 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
676 u32 classid)
677 {
678 return 0;
679 }
680
681
682 static const struct Qdisc_class_ops sfb_class_ops = {
683 .graft = sfb_graft,
684 .leaf = sfb_leaf,
685 .get = sfb_get,
686 .put = sfb_put,
687 .change = sfb_change_class,
688 .delete = sfb_delete,
689 .walk = sfb_walk,
690 .tcf_chain = sfb_find_tcf,
691 .bind_tcf = sfb_bind,
692 .unbind_tcf = sfb_put,
693 .dump = sfb_dump_class,
694 };
695
696 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
697 .id = "sfb",
698 .priv_size = sizeof(struct sfb_sched_data),
699 .cl_ops = &sfb_class_ops,
700 .enqueue = sfb_enqueue,
701 .dequeue = sfb_dequeue,
702 .peek = sfb_peek,
703 .init = sfb_init,
704 .reset = sfb_reset,
705 .destroy = sfb_destroy,
706 .change = sfb_change,
707 .dump = sfb_dump,
708 .dump_stats = sfb_dump_stats,
709 .owner = THIS_MODULE,
710 };
711
712 static int __init sfb_module_init(void)
713 {
714 return register_qdisc(&sfb_qdisc_ops);
715 }
716
717 static void __exit sfb_module_exit(void)
718 {
719 unregister_qdisc(&sfb_qdisc_ops);
720 }
721
722 module_init(sfb_module_init)
723 module_exit(sfb_module_exit)
724
725 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
726 MODULE_AUTHOR("Juliusz Chroboczek");
727 MODULE_AUTHOR("Eric Dumazet");
728 MODULE_LICENSE("GPL");