]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_sfq.c
net_sched: cleanups
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <linux/slab.h>
24 #include <net/ip.h>
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
27
28
29 /* Stochastic Fairness Queuing algorithm.
30 =======================================
31
32 Source:
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
35
36 Paul E. McKenney "Stochastic Fairness Queuing",
37 "Interworking: Research and Experience", v.2, 1991, p.113-131.
38
39
40 See also:
41 M. Shreedhar and George Varghese "Efficient Fair
42 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
43
44
45 This is not the thing that is usually called (W)FQ nowadays.
46 It does not use any timestamp mechanism, but instead
47 processes queues in round-robin order.
48
49 ADVANTAGE:
50
51 - It is very cheap. Both CPU and memory requirements are minimal.
52
53 DRAWBACKS:
54
55 - "Stochastic" -> It is not 100% fair.
56 When hash collisions occur, several flows are considered as one.
57
58 - "Round-robin" -> It introduces larger delays than virtual clock
59 based schemes, and should not be used for isolating interactive
60 traffic from non-interactive. It means, that this scheduler
61 should be used as leaf of CBQ or P3, which put interactive traffic
62 to higher priority band.
63
64 We still need true WFQ for top level CSZ, but using WFQ
65 for the best effort traffic is absolutely pointless:
66 SFQ is superior for this purpose.
67
68 IMPLEMENTATION:
69 This implementation limits maximal queue length to 128;
70 max mtu to 2^18-1; max 128 flows, number of hash buckets to 1024.
71 The only goal of this restrictions was that all data
72 fit into one 4K page on 32bit arches.
73
74 It is easy to increase these values, but not in flight. */
75
76 #define SFQ_DEPTH 128 /* max number of packets per flow */
77 #define SFQ_SLOTS 128 /* max number of flows */
78 #define SFQ_EMPTY_SLOT 255
79 #define SFQ_HASH_DIVISOR 1024
80 /* We use 16 bits to store allot, and want to handle packets up to 64K
81 * Scale allot by 8 (1<<3) so that no overflow occurs.
82 */
83 #define SFQ_ALLOT_SHIFT 3
84 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
85
86 /* This type should contain at least SFQ_DEPTH + SFQ_SLOTS values */
87 typedef unsigned char sfq_index;
88
89 /*
90 * We dont use pointers to save space.
91 * Small indexes [0 ... SFQ_SLOTS - 1] are 'pointers' to slots[] array
92 * while following values [SFQ_SLOTS ... SFQ_SLOTS + SFQ_DEPTH - 1]
93 * are 'pointers' to dep[] array
94 */
95 struct sfq_head {
96 sfq_index next;
97 sfq_index prev;
98 };
99
100 struct sfq_slot {
101 struct sk_buff *skblist_next;
102 struct sk_buff *skblist_prev;
103 sfq_index qlen; /* number of skbs in skblist */
104 sfq_index next; /* next slot in sfq chain */
105 struct sfq_head dep; /* anchor in dep[] chains */
106 unsigned short hash; /* hash value (index in ht[]) */
107 short allot; /* credit for this slot */
108 };
109
110 struct sfq_sched_data {
111 /* Parameters */
112 int perturb_period;
113 unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
114 int limit;
115
116 /* Variables */
117 struct tcf_proto *filter_list;
118 struct timer_list perturb_timer;
119 u32 perturbation;
120 sfq_index cur_depth; /* depth of longest slot */
121 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
122 struct sfq_slot *tail; /* current slot in round */
123 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
124 struct sfq_slot slots[SFQ_SLOTS];
125 struct sfq_head dep[SFQ_DEPTH]; /* Linked list of slots, indexed by depth */
126 };
127
128 /*
129 * sfq_head are either in a sfq_slot or in dep[] array
130 */
131 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
132 {
133 if (val < SFQ_SLOTS)
134 return &q->slots[val].dep;
135 return &q->dep[val - SFQ_SLOTS];
136 }
137
138 static unsigned int sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
139 {
140 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
141 }
142
143 static unsigned int sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
144 {
145 u32 h, h2;
146
147 switch (skb->protocol) {
148 case htons(ETH_P_IP):
149 {
150 const struct iphdr *iph;
151 int poff;
152
153 if (!pskb_network_may_pull(skb, sizeof(*iph)))
154 goto err;
155 iph = ip_hdr(skb);
156 h = (__force u32)iph->daddr;
157 h2 = (__force u32)iph->saddr ^ iph->protocol;
158 if (iph->frag_off & htons(IP_MF | IP_OFFSET))
159 break;
160 poff = proto_ports_offset(iph->protocol);
161 if (poff >= 0 &&
162 pskb_network_may_pull(skb, iph->ihl * 4 + 4 + poff)) {
163 iph = ip_hdr(skb);
164 h2 ^= *(u32 *)((void *)iph + iph->ihl * 4 + poff);
165 }
166 break;
167 }
168 case htons(ETH_P_IPV6):
169 {
170 struct ipv6hdr *iph;
171 int poff;
172
173 if (!pskb_network_may_pull(skb, sizeof(*iph)))
174 goto err;
175 iph = ipv6_hdr(skb);
176 h = (__force u32)iph->daddr.s6_addr32[3];
177 h2 = (__force u32)iph->saddr.s6_addr32[3] ^ iph->nexthdr;
178 poff = proto_ports_offset(iph->nexthdr);
179 if (poff >= 0 &&
180 pskb_network_may_pull(skb, sizeof(*iph) + 4 + poff)) {
181 iph = ipv6_hdr(skb);
182 h2 ^= *(u32 *)((void *)iph + sizeof(*iph) + poff);
183 }
184 break;
185 }
186 default:
187 err:
188 h = (unsigned long)skb_dst(skb) ^ (__force u32)skb->protocol;
189 h2 = (unsigned long)skb->sk;
190 }
191
192 return sfq_fold_hash(q, h, h2);
193 }
194
195 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
196 int *qerr)
197 {
198 struct sfq_sched_data *q = qdisc_priv(sch);
199 struct tcf_result res;
200 int result;
201
202 if (TC_H_MAJ(skb->priority) == sch->handle &&
203 TC_H_MIN(skb->priority) > 0 &&
204 TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
205 return TC_H_MIN(skb->priority);
206
207 if (!q->filter_list)
208 return sfq_hash(q, skb) + 1;
209
210 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
211 result = tc_classify(skb, q->filter_list, &res);
212 if (result >= 0) {
213 #ifdef CONFIG_NET_CLS_ACT
214 switch (result) {
215 case TC_ACT_STOLEN:
216 case TC_ACT_QUEUED:
217 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
218 case TC_ACT_SHOT:
219 return 0;
220 }
221 #endif
222 if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
223 return TC_H_MIN(res.classid);
224 }
225 return 0;
226 }
227
228 /*
229 * x : slot number [0 .. SFQ_SLOTS - 1]
230 */
231 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
232 {
233 sfq_index p, n;
234 int qlen = q->slots[x].qlen;
235
236 p = qlen + SFQ_SLOTS;
237 n = q->dep[qlen].next;
238
239 q->slots[x].dep.next = n;
240 q->slots[x].dep.prev = p;
241
242 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
243 sfq_dep_head(q, n)->prev = x;
244 }
245
246 #define sfq_unlink(q, x, n, p) \
247 n = q->slots[x].dep.next; \
248 p = q->slots[x].dep.prev; \
249 sfq_dep_head(q, p)->next = n; \
250 sfq_dep_head(q, n)->prev = p
251
252
253 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
254 {
255 sfq_index p, n;
256 int d;
257
258 sfq_unlink(q, x, n, p);
259
260 d = q->slots[x].qlen--;
261 if (n == p && q->cur_depth == d)
262 q->cur_depth--;
263 sfq_link(q, x);
264 }
265
266 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
267 {
268 sfq_index p, n;
269 int d;
270
271 sfq_unlink(q, x, n, p);
272
273 d = ++q->slots[x].qlen;
274 if (q->cur_depth < d)
275 q->cur_depth = d;
276 sfq_link(q, x);
277 }
278
279 /* helper functions : might be changed when/if skb use a standard list_head */
280
281 /* remove one skb from tail of slot queue */
282 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
283 {
284 struct sk_buff *skb = slot->skblist_prev;
285
286 slot->skblist_prev = skb->prev;
287 skb->prev->next = (struct sk_buff *)slot;
288 skb->next = skb->prev = NULL;
289 return skb;
290 }
291
292 /* remove one skb from head of slot queue */
293 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
294 {
295 struct sk_buff *skb = slot->skblist_next;
296
297 slot->skblist_next = skb->next;
298 skb->next->prev = (struct sk_buff *)slot;
299 skb->next = skb->prev = NULL;
300 return skb;
301 }
302
303 static inline void slot_queue_init(struct sfq_slot *slot)
304 {
305 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
306 }
307
308 /* add skb to slot queue (tail add) */
309 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
310 {
311 skb->prev = slot->skblist_prev;
312 skb->next = (struct sk_buff *)slot;
313 slot->skblist_prev->next = skb;
314 slot->skblist_prev = skb;
315 }
316
317 #define slot_queue_walk(slot, skb) \
318 for (skb = slot->skblist_next; \
319 skb != (struct sk_buff *)slot; \
320 skb = skb->next)
321
322 static unsigned int sfq_drop(struct Qdisc *sch)
323 {
324 struct sfq_sched_data *q = qdisc_priv(sch);
325 sfq_index x, d = q->cur_depth;
326 struct sk_buff *skb;
327 unsigned int len;
328 struct sfq_slot *slot;
329
330 /* Queue is full! Find the longest slot and drop tail packet from it */
331 if (d > 1) {
332 x = q->dep[d].next;
333 slot = &q->slots[x];
334 drop:
335 skb = slot_dequeue_tail(slot);
336 len = qdisc_pkt_len(skb);
337 sfq_dec(q, x);
338 kfree_skb(skb);
339 sch->q.qlen--;
340 sch->qstats.drops++;
341 sch->qstats.backlog -= len;
342 return len;
343 }
344
345 if (d == 1) {
346 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
347 x = q->tail->next;
348 slot = &q->slots[x];
349 q->tail->next = slot->next;
350 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
351 goto drop;
352 }
353
354 return 0;
355 }
356
357 static int
358 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
359 {
360 struct sfq_sched_data *q = qdisc_priv(sch);
361 unsigned int hash;
362 sfq_index x;
363 struct sfq_slot *slot;
364 int uninitialized_var(ret);
365
366 hash = sfq_classify(skb, sch, &ret);
367 if (hash == 0) {
368 if (ret & __NET_XMIT_BYPASS)
369 sch->qstats.drops++;
370 kfree_skb(skb);
371 return ret;
372 }
373 hash--;
374
375 x = q->ht[hash];
376 slot = &q->slots[x];
377 if (x == SFQ_EMPTY_SLOT) {
378 x = q->dep[0].next; /* get a free slot */
379 q->ht[hash] = x;
380 slot = &q->slots[x];
381 slot->hash = hash;
382 }
383
384 /* If selected queue has length q->limit, do simple tail drop,
385 * i.e. drop _this_ packet.
386 */
387 if (slot->qlen >= q->limit)
388 return qdisc_drop(skb, sch);
389
390 sch->qstats.backlog += qdisc_pkt_len(skb);
391 slot_queue_add(slot, skb);
392 sfq_inc(q, x);
393 if (slot->qlen == 1) { /* The flow is new */
394 if (q->tail == NULL) { /* It is the first flow */
395 slot->next = x;
396 } else {
397 slot->next = q->tail->next;
398 q->tail->next = x;
399 }
400 q->tail = slot;
401 slot->allot = q->scaled_quantum;
402 }
403 if (++sch->q.qlen <= q->limit) {
404 qdisc_bstats_update(sch, skb);
405 return NET_XMIT_SUCCESS;
406 }
407
408 sfq_drop(sch);
409 return NET_XMIT_CN;
410 }
411
412 static struct sk_buff *
413 sfq_peek(struct Qdisc *sch)
414 {
415 struct sfq_sched_data *q = qdisc_priv(sch);
416
417 /* No active slots */
418 if (q->tail == NULL)
419 return NULL;
420
421 return q->slots[q->tail->next].skblist_next;
422 }
423
424 static struct sk_buff *
425 sfq_dequeue(struct Qdisc *sch)
426 {
427 struct sfq_sched_data *q = qdisc_priv(sch);
428 struct sk_buff *skb;
429 sfq_index a, next_a;
430 struct sfq_slot *slot;
431
432 /* No active slots */
433 if (q->tail == NULL)
434 return NULL;
435
436 next_slot:
437 a = q->tail->next;
438 slot = &q->slots[a];
439 if (slot->allot <= 0) {
440 q->tail = slot;
441 slot->allot += q->scaled_quantum;
442 goto next_slot;
443 }
444 skb = slot_dequeue_head(slot);
445 sfq_dec(q, a);
446 sch->q.qlen--;
447 sch->qstats.backlog -= qdisc_pkt_len(skb);
448
449 /* Is the slot empty? */
450 if (slot->qlen == 0) {
451 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
452 next_a = slot->next;
453 if (a == next_a) {
454 q->tail = NULL; /* no more active slots */
455 return skb;
456 }
457 q->tail->next = next_a;
458 } else {
459 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
460 }
461 return skb;
462 }
463
464 static void
465 sfq_reset(struct Qdisc *sch)
466 {
467 struct sk_buff *skb;
468
469 while ((skb = sfq_dequeue(sch)) != NULL)
470 kfree_skb(skb);
471 }
472
473 static void sfq_perturbation(unsigned long arg)
474 {
475 struct Qdisc *sch = (struct Qdisc *)arg;
476 struct sfq_sched_data *q = qdisc_priv(sch);
477
478 q->perturbation = net_random();
479
480 if (q->perturb_period)
481 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
482 }
483
484 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
485 {
486 struct sfq_sched_data *q = qdisc_priv(sch);
487 struct tc_sfq_qopt *ctl = nla_data(opt);
488 unsigned int qlen;
489
490 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
491 return -EINVAL;
492
493 sch_tree_lock(sch);
494 q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
495 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
496 q->perturb_period = ctl->perturb_period * HZ;
497 if (ctl->limit)
498 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
499
500 qlen = sch->q.qlen;
501 while (sch->q.qlen > q->limit)
502 sfq_drop(sch);
503 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
504
505 del_timer(&q->perturb_timer);
506 if (q->perturb_period) {
507 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
508 q->perturbation = net_random();
509 }
510 sch_tree_unlock(sch);
511 return 0;
512 }
513
514 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
515 {
516 struct sfq_sched_data *q = qdisc_priv(sch);
517 int i;
518
519 q->perturb_timer.function = sfq_perturbation;
520 q->perturb_timer.data = (unsigned long)sch;
521 init_timer_deferrable(&q->perturb_timer);
522
523 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
524 q->ht[i] = SFQ_EMPTY_SLOT;
525
526 for (i = 0; i < SFQ_DEPTH; i++) {
527 q->dep[i].next = i + SFQ_SLOTS;
528 q->dep[i].prev = i + SFQ_SLOTS;
529 }
530
531 q->limit = SFQ_DEPTH - 1;
532 q->cur_depth = 0;
533 q->tail = NULL;
534 if (opt == NULL) {
535 q->quantum = psched_mtu(qdisc_dev(sch));
536 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
537 q->perturb_period = 0;
538 q->perturbation = net_random();
539 } else {
540 int err = sfq_change(sch, opt);
541 if (err)
542 return err;
543 }
544
545 for (i = 0; i < SFQ_SLOTS; i++) {
546 slot_queue_init(&q->slots[i]);
547 sfq_link(q, i);
548 }
549 return 0;
550 }
551
552 static void sfq_destroy(struct Qdisc *sch)
553 {
554 struct sfq_sched_data *q = qdisc_priv(sch);
555
556 tcf_destroy_chain(&q->filter_list);
557 q->perturb_period = 0;
558 del_timer_sync(&q->perturb_timer);
559 }
560
561 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
562 {
563 struct sfq_sched_data *q = qdisc_priv(sch);
564 unsigned char *b = skb_tail_pointer(skb);
565 struct tc_sfq_qopt opt;
566
567 opt.quantum = q->quantum;
568 opt.perturb_period = q->perturb_period / HZ;
569
570 opt.limit = q->limit;
571 opt.divisor = SFQ_HASH_DIVISOR;
572 opt.flows = q->limit;
573
574 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
575
576 return skb->len;
577
578 nla_put_failure:
579 nlmsg_trim(skb, b);
580 return -1;
581 }
582
583 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
584 {
585 return NULL;
586 }
587
588 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
589 {
590 return 0;
591 }
592
593 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
594 u32 classid)
595 {
596 return 0;
597 }
598
599 static void sfq_put(struct Qdisc *q, unsigned long cl)
600 {
601 }
602
603 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
604 {
605 struct sfq_sched_data *q = qdisc_priv(sch);
606
607 if (cl)
608 return NULL;
609 return &q->filter_list;
610 }
611
612 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
613 struct sk_buff *skb, struct tcmsg *tcm)
614 {
615 tcm->tcm_handle |= TC_H_MIN(cl);
616 return 0;
617 }
618
619 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
620 struct gnet_dump *d)
621 {
622 struct sfq_sched_data *q = qdisc_priv(sch);
623 sfq_index idx = q->ht[cl - 1];
624 struct gnet_stats_queue qs = { 0 };
625 struct tc_sfq_xstats xstats = { 0 };
626 struct sk_buff *skb;
627
628 if (idx != SFQ_EMPTY_SLOT) {
629 const struct sfq_slot *slot = &q->slots[idx];
630
631 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
632 qs.qlen = slot->qlen;
633 slot_queue_walk(slot, skb)
634 qs.backlog += qdisc_pkt_len(skb);
635 }
636 if (gnet_stats_copy_queue(d, &qs) < 0)
637 return -1;
638 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
639 }
640
641 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
642 {
643 struct sfq_sched_data *q = qdisc_priv(sch);
644 unsigned int i;
645
646 if (arg->stop)
647 return;
648
649 for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
650 if (q->ht[i] == SFQ_EMPTY_SLOT ||
651 arg->count < arg->skip) {
652 arg->count++;
653 continue;
654 }
655 if (arg->fn(sch, i + 1, arg) < 0) {
656 arg->stop = 1;
657 break;
658 }
659 arg->count++;
660 }
661 }
662
663 static const struct Qdisc_class_ops sfq_class_ops = {
664 .leaf = sfq_leaf,
665 .get = sfq_get,
666 .put = sfq_put,
667 .tcf_chain = sfq_find_tcf,
668 .bind_tcf = sfq_bind,
669 .unbind_tcf = sfq_put,
670 .dump = sfq_dump_class,
671 .dump_stats = sfq_dump_class_stats,
672 .walk = sfq_walk,
673 };
674
675 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
676 .cl_ops = &sfq_class_ops,
677 .id = "sfq",
678 .priv_size = sizeof(struct sfq_sched_data),
679 .enqueue = sfq_enqueue,
680 .dequeue = sfq_dequeue,
681 .peek = sfq_peek,
682 .drop = sfq_drop,
683 .init = sfq_init,
684 .reset = sfq_reset,
685 .destroy = sfq_destroy,
686 .change = NULL,
687 .dump = sfq_dump,
688 .owner = THIS_MODULE,
689 };
690
691 static int __init sfq_module_init(void)
692 {
693 return register_qdisc(&sfq_qdisc_ops);
694 }
695 static void __exit sfq_module_exit(void)
696 {
697 unregister_qdisc(&sfq_qdisc_ops);
698 }
699 module_init(sfq_module_init)
700 module_exit(sfq_module_exit)
701 MODULE_LICENSE("GPL");