]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_sfq.c
net_sched: fix ops->bind_class() implementations
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/siphash.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/pkt_cls.h>
27 #include <net/red.h>
28
29
30 /* Stochastic Fairness Queuing algorithm.
31 =======================================
32
33 Source:
34 Paul E. McKenney "Stochastic Fairness Queuing",
35 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
36
37 Paul E. McKenney "Stochastic Fairness Queuing",
38 "Interworking: Research and Experience", v.2, 1991, p.113-131.
39
40
41 See also:
42 M. Shreedhar and George Varghese "Efficient Fair
43 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
44
45
46 This is not the thing that is usually called (W)FQ nowadays.
47 It does not use any timestamp mechanism, but instead
48 processes queues in round-robin order.
49
50 ADVANTAGE:
51
52 - It is very cheap. Both CPU and memory requirements are minimal.
53
54 DRAWBACKS:
55
56 - "Stochastic" -> It is not 100% fair.
57 When hash collisions occur, several flows are considered as one.
58
59 - "Round-robin" -> It introduces larger delays than virtual clock
60 based schemes, and should not be used for isolating interactive
61 traffic from non-interactive. It means, that this scheduler
62 should be used as leaf of CBQ or P3, which put interactive traffic
63 to higher priority band.
64
65 We still need true WFQ for top level CSZ, but using WFQ
66 for the best effort traffic is absolutely pointless:
67 SFQ is superior for this purpose.
68
69 IMPLEMENTATION:
70 This implementation limits :
71 - maximal queue length per flow to 127 packets.
72 - max mtu to 2^18-1;
73 - max 65408 flows,
74 - number of hash buckets to 65536.
75
76 It is easy to increase these values, but not in flight. */
77
78 #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
79 #define SFQ_DEFAULT_FLOWS 128
80 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
81 #define SFQ_EMPTY_SLOT 0xffff
82 #define SFQ_DEFAULT_HASH_DIVISOR 1024
83
84 /* We use 16 bits to store allot, and want to handle packets up to 64K
85 * Scale allot by 8 (1<<3) so that no overflow occurs.
86 */
87 #define SFQ_ALLOT_SHIFT 3
88 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
89
90 /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
91 typedef u16 sfq_index;
92
93 /*
94 * We dont use pointers to save space.
95 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
96 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
97 * are 'pointers' to dep[] array
98 */
99 struct sfq_head {
100 sfq_index next;
101 sfq_index prev;
102 };
103
104 struct sfq_slot {
105 struct sk_buff *skblist_next;
106 struct sk_buff *skblist_prev;
107 sfq_index qlen; /* number of skbs in skblist */
108 sfq_index next; /* next slot in sfq RR chain */
109 struct sfq_head dep; /* anchor in dep[] chains */
110 unsigned short hash; /* hash value (index in ht[]) */
111 short allot; /* credit for this slot */
112
113 unsigned int backlog;
114 struct red_vars vars;
115 };
116
117 struct sfq_sched_data {
118 /* frequently used fields */
119 int limit; /* limit of total number of packets in this qdisc */
120 unsigned int divisor; /* number of slots in hash table */
121 u8 headdrop;
122 u8 maxdepth; /* limit of packets per flow */
123
124 siphash_key_t perturbation;
125 u8 cur_depth; /* depth of longest slot */
126 u8 flags;
127 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
128 struct tcf_proto __rcu *filter_list;
129 struct tcf_block *block;
130 sfq_index *ht; /* Hash table ('divisor' slots) */
131 struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
132
133 struct red_parms *red_parms;
134 struct tc_sfqred_stats stats;
135 struct sfq_slot *tail; /* current slot in round */
136
137 struct sfq_head dep[SFQ_MAX_DEPTH + 1];
138 /* Linked lists of slots, indexed by depth
139 * dep[0] : list of unused flows
140 * dep[1] : list of flows with 1 packet
141 * dep[X] : list of flows with X packets
142 */
143
144 unsigned int maxflows; /* number of flows in flows array */
145 int perturb_period;
146 unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
147 struct timer_list perturb_timer;
148 struct Qdisc *sch;
149 };
150
151 /*
152 * sfq_head are either in a sfq_slot or in dep[] array
153 */
154 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
155 {
156 if (val < SFQ_MAX_FLOWS)
157 return &q->slots[val].dep;
158 return &q->dep[val - SFQ_MAX_FLOWS];
159 }
160
161 static unsigned int sfq_hash(const struct sfq_sched_data *q,
162 const struct sk_buff *skb)
163 {
164 return skb_get_hash_perturb(skb, &q->perturbation) & (q->divisor - 1);
165 }
166
167 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
168 int *qerr)
169 {
170 struct sfq_sched_data *q = qdisc_priv(sch);
171 struct tcf_result res;
172 struct tcf_proto *fl;
173 int result;
174
175 if (TC_H_MAJ(skb->priority) == sch->handle &&
176 TC_H_MIN(skb->priority) > 0 &&
177 TC_H_MIN(skb->priority) <= q->divisor)
178 return TC_H_MIN(skb->priority);
179
180 fl = rcu_dereference_bh(q->filter_list);
181 if (!fl)
182 return sfq_hash(q, skb) + 1;
183
184 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
185 result = tcf_classify(skb, fl, &res, false);
186 if (result >= 0) {
187 #ifdef CONFIG_NET_CLS_ACT
188 switch (result) {
189 case TC_ACT_STOLEN:
190 case TC_ACT_QUEUED:
191 case TC_ACT_TRAP:
192 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
193 /* fall through */
194 case TC_ACT_SHOT:
195 return 0;
196 }
197 #endif
198 if (TC_H_MIN(res.classid) <= q->divisor)
199 return TC_H_MIN(res.classid);
200 }
201 return 0;
202 }
203
204 /*
205 * x : slot number [0 .. SFQ_MAX_FLOWS - 1]
206 */
207 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
208 {
209 sfq_index p, n;
210 struct sfq_slot *slot = &q->slots[x];
211 int qlen = slot->qlen;
212
213 p = qlen + SFQ_MAX_FLOWS;
214 n = q->dep[qlen].next;
215
216 slot->dep.next = n;
217 slot->dep.prev = p;
218
219 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
220 sfq_dep_head(q, n)->prev = x;
221 }
222
223 #define sfq_unlink(q, x, n, p) \
224 do { \
225 n = q->slots[x].dep.next; \
226 p = q->slots[x].dep.prev; \
227 sfq_dep_head(q, p)->next = n; \
228 sfq_dep_head(q, n)->prev = p; \
229 } while (0)
230
231
232 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
233 {
234 sfq_index p, n;
235 int d;
236
237 sfq_unlink(q, x, n, p);
238
239 d = q->slots[x].qlen--;
240 if (n == p && q->cur_depth == d)
241 q->cur_depth--;
242 sfq_link(q, x);
243 }
244
245 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
246 {
247 sfq_index p, n;
248 int d;
249
250 sfq_unlink(q, x, n, p);
251
252 d = ++q->slots[x].qlen;
253 if (q->cur_depth < d)
254 q->cur_depth = d;
255 sfq_link(q, x);
256 }
257
258 /* helper functions : might be changed when/if skb use a standard list_head */
259
260 /* remove one skb from tail of slot queue */
261 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
262 {
263 struct sk_buff *skb = slot->skblist_prev;
264
265 slot->skblist_prev = skb->prev;
266 skb->prev->next = (struct sk_buff *)slot;
267 skb->next = skb->prev = NULL;
268 return skb;
269 }
270
271 /* remove one skb from head of slot queue */
272 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
273 {
274 struct sk_buff *skb = slot->skblist_next;
275
276 slot->skblist_next = skb->next;
277 skb->next->prev = (struct sk_buff *)slot;
278 skb->next = skb->prev = NULL;
279 return skb;
280 }
281
282 static inline void slot_queue_init(struct sfq_slot *slot)
283 {
284 memset(slot, 0, sizeof(*slot));
285 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
286 }
287
288 /* add skb to slot queue (tail add) */
289 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
290 {
291 skb->prev = slot->skblist_prev;
292 skb->next = (struct sk_buff *)slot;
293 slot->skblist_prev->next = skb;
294 slot->skblist_prev = skb;
295 }
296
297 static unsigned int sfq_drop(struct Qdisc *sch, struct sk_buff **to_free)
298 {
299 struct sfq_sched_data *q = qdisc_priv(sch);
300 sfq_index x, d = q->cur_depth;
301 struct sk_buff *skb;
302 unsigned int len;
303 struct sfq_slot *slot;
304
305 /* Queue is full! Find the longest slot and drop tail packet from it */
306 if (d > 1) {
307 x = q->dep[d].next;
308 slot = &q->slots[x];
309 drop:
310 skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
311 len = qdisc_pkt_len(skb);
312 slot->backlog -= len;
313 sfq_dec(q, x);
314 sch->q.qlen--;
315 qdisc_qstats_backlog_dec(sch, skb);
316 qdisc_drop(skb, sch, to_free);
317 return len;
318 }
319
320 if (d == 1) {
321 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
322 x = q->tail->next;
323 slot = &q->slots[x];
324 q->tail->next = slot->next;
325 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
326 goto drop;
327 }
328
329 return 0;
330 }
331
332 /* Is ECN parameter configured */
333 static int sfq_prob_mark(const struct sfq_sched_data *q)
334 {
335 return q->flags & TC_RED_ECN;
336 }
337
338 /* Should packets over max threshold just be marked */
339 static int sfq_hard_mark(const struct sfq_sched_data *q)
340 {
341 return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
342 }
343
344 static int sfq_headdrop(const struct sfq_sched_data *q)
345 {
346 return q->headdrop;
347 }
348
349 static int
350 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
351 {
352 struct sfq_sched_data *q = qdisc_priv(sch);
353 unsigned int hash, dropped;
354 sfq_index x, qlen;
355 struct sfq_slot *slot;
356 int uninitialized_var(ret);
357 struct sk_buff *head;
358 int delta;
359
360 hash = sfq_classify(skb, sch, &ret);
361 if (hash == 0) {
362 if (ret & __NET_XMIT_BYPASS)
363 qdisc_qstats_drop(sch);
364 __qdisc_drop(skb, to_free);
365 return ret;
366 }
367 hash--;
368
369 x = q->ht[hash];
370 slot = &q->slots[x];
371 if (x == SFQ_EMPTY_SLOT) {
372 x = q->dep[0].next; /* get a free slot */
373 if (x >= SFQ_MAX_FLOWS)
374 return qdisc_drop(skb, sch, to_free);
375 q->ht[hash] = x;
376 slot = &q->slots[x];
377 slot->hash = hash;
378 slot->backlog = 0; /* should already be 0 anyway... */
379 red_set_vars(&slot->vars);
380 goto enqueue;
381 }
382 if (q->red_parms) {
383 slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
384 &slot->vars,
385 slot->backlog);
386 switch (red_action(q->red_parms,
387 &slot->vars,
388 slot->vars.qavg)) {
389 case RED_DONT_MARK:
390 break;
391
392 case RED_PROB_MARK:
393 qdisc_qstats_overlimit(sch);
394 if (sfq_prob_mark(q)) {
395 /* We know we have at least one packet in queue */
396 if (sfq_headdrop(q) &&
397 INET_ECN_set_ce(slot->skblist_next)) {
398 q->stats.prob_mark_head++;
399 break;
400 }
401 if (INET_ECN_set_ce(skb)) {
402 q->stats.prob_mark++;
403 break;
404 }
405 }
406 q->stats.prob_drop++;
407 goto congestion_drop;
408
409 case RED_HARD_MARK:
410 qdisc_qstats_overlimit(sch);
411 if (sfq_hard_mark(q)) {
412 /* We know we have at least one packet in queue */
413 if (sfq_headdrop(q) &&
414 INET_ECN_set_ce(slot->skblist_next)) {
415 q->stats.forced_mark_head++;
416 break;
417 }
418 if (INET_ECN_set_ce(skb)) {
419 q->stats.forced_mark++;
420 break;
421 }
422 }
423 q->stats.forced_drop++;
424 goto congestion_drop;
425 }
426 }
427
428 if (slot->qlen >= q->maxdepth) {
429 congestion_drop:
430 if (!sfq_headdrop(q))
431 return qdisc_drop(skb, sch, to_free);
432
433 /* We know we have at least one packet in queue */
434 head = slot_dequeue_head(slot);
435 delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
436 sch->qstats.backlog -= delta;
437 slot->backlog -= delta;
438 qdisc_drop(head, sch, to_free);
439
440 slot_queue_add(slot, skb);
441 qdisc_tree_reduce_backlog(sch, 0, delta);
442 return NET_XMIT_CN;
443 }
444
445 enqueue:
446 qdisc_qstats_backlog_inc(sch, skb);
447 slot->backlog += qdisc_pkt_len(skb);
448 slot_queue_add(slot, skb);
449 sfq_inc(q, x);
450 if (slot->qlen == 1) { /* The flow is new */
451 if (q->tail == NULL) { /* It is the first flow */
452 slot->next = x;
453 } else {
454 slot->next = q->tail->next;
455 q->tail->next = x;
456 }
457 /* We put this flow at the end of our flow list.
458 * This might sound unfair for a new flow to wait after old ones,
459 * but we could endup servicing new flows only, and freeze old ones.
460 */
461 q->tail = slot;
462 /* We could use a bigger initial quantum for new flows */
463 slot->allot = q->scaled_quantum;
464 }
465 if (++sch->q.qlen <= q->limit)
466 return NET_XMIT_SUCCESS;
467
468 qlen = slot->qlen;
469 dropped = sfq_drop(sch, to_free);
470 /* Return Congestion Notification only if we dropped a packet
471 * from this flow.
472 */
473 if (qlen != slot->qlen) {
474 qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb));
475 return NET_XMIT_CN;
476 }
477
478 /* As we dropped a packet, better let upper stack know this */
479 qdisc_tree_reduce_backlog(sch, 1, dropped);
480 return NET_XMIT_SUCCESS;
481 }
482
483 static struct sk_buff *
484 sfq_dequeue(struct Qdisc *sch)
485 {
486 struct sfq_sched_data *q = qdisc_priv(sch);
487 struct sk_buff *skb;
488 sfq_index a, next_a;
489 struct sfq_slot *slot;
490
491 /* No active slots */
492 if (q->tail == NULL)
493 return NULL;
494
495 next_slot:
496 a = q->tail->next;
497 slot = &q->slots[a];
498 if (slot->allot <= 0) {
499 q->tail = slot;
500 slot->allot += q->scaled_quantum;
501 goto next_slot;
502 }
503 skb = slot_dequeue_head(slot);
504 sfq_dec(q, a);
505 qdisc_bstats_update(sch, skb);
506 sch->q.qlen--;
507 qdisc_qstats_backlog_dec(sch, skb);
508 slot->backlog -= qdisc_pkt_len(skb);
509 /* Is the slot empty? */
510 if (slot->qlen == 0) {
511 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
512 next_a = slot->next;
513 if (a == next_a) {
514 q->tail = NULL; /* no more active slots */
515 return skb;
516 }
517 q->tail->next = next_a;
518 } else {
519 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
520 }
521 return skb;
522 }
523
524 static void
525 sfq_reset(struct Qdisc *sch)
526 {
527 struct sk_buff *skb;
528
529 while ((skb = sfq_dequeue(sch)) != NULL)
530 rtnl_kfree_skbs(skb, skb);
531 }
532
533 /*
534 * When q->perturbation is changed, we rehash all queued skbs
535 * to avoid OOO (Out Of Order) effects.
536 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
537 * counters.
538 */
539 static void sfq_rehash(struct Qdisc *sch)
540 {
541 struct sfq_sched_data *q = qdisc_priv(sch);
542 struct sk_buff *skb;
543 int i;
544 struct sfq_slot *slot;
545 struct sk_buff_head list;
546 int dropped = 0;
547 unsigned int drop_len = 0;
548
549 __skb_queue_head_init(&list);
550
551 for (i = 0; i < q->maxflows; i++) {
552 slot = &q->slots[i];
553 if (!slot->qlen)
554 continue;
555 while (slot->qlen) {
556 skb = slot_dequeue_head(slot);
557 sfq_dec(q, i);
558 __skb_queue_tail(&list, skb);
559 }
560 slot->backlog = 0;
561 red_set_vars(&slot->vars);
562 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
563 }
564 q->tail = NULL;
565
566 while ((skb = __skb_dequeue(&list)) != NULL) {
567 unsigned int hash = sfq_hash(q, skb);
568 sfq_index x = q->ht[hash];
569
570 slot = &q->slots[x];
571 if (x == SFQ_EMPTY_SLOT) {
572 x = q->dep[0].next; /* get a free slot */
573 if (x >= SFQ_MAX_FLOWS) {
574 drop:
575 qdisc_qstats_backlog_dec(sch, skb);
576 drop_len += qdisc_pkt_len(skb);
577 kfree_skb(skb);
578 dropped++;
579 continue;
580 }
581 q->ht[hash] = x;
582 slot = &q->slots[x];
583 slot->hash = hash;
584 }
585 if (slot->qlen >= q->maxdepth)
586 goto drop;
587 slot_queue_add(slot, skb);
588 if (q->red_parms)
589 slot->vars.qavg = red_calc_qavg(q->red_parms,
590 &slot->vars,
591 slot->backlog);
592 slot->backlog += qdisc_pkt_len(skb);
593 sfq_inc(q, x);
594 if (slot->qlen == 1) { /* The flow is new */
595 if (q->tail == NULL) { /* It is the first flow */
596 slot->next = x;
597 } else {
598 slot->next = q->tail->next;
599 q->tail->next = x;
600 }
601 q->tail = slot;
602 slot->allot = q->scaled_quantum;
603 }
604 }
605 sch->q.qlen -= dropped;
606 qdisc_tree_reduce_backlog(sch, dropped, drop_len);
607 }
608
609 static void sfq_perturbation(struct timer_list *t)
610 {
611 struct sfq_sched_data *q = from_timer(q, t, perturb_timer);
612 struct Qdisc *sch = q->sch;
613 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
614 siphash_key_t nkey;
615
616 get_random_bytes(&nkey, sizeof(nkey));
617 spin_lock(root_lock);
618 q->perturbation = nkey;
619 if (!q->filter_list && q->tail)
620 sfq_rehash(sch);
621 spin_unlock(root_lock);
622
623 if (q->perturb_period)
624 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
625 }
626
627 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
628 {
629 struct sfq_sched_data *q = qdisc_priv(sch);
630 struct tc_sfq_qopt *ctl = nla_data(opt);
631 struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
632 unsigned int qlen, dropped = 0;
633 struct red_parms *p = NULL;
634 struct sk_buff *to_free = NULL;
635 struct sk_buff *tail = NULL;
636
637 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
638 return -EINVAL;
639 if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
640 ctl_v1 = nla_data(opt);
641 if (ctl->divisor &&
642 (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
643 return -EINVAL;
644 if (ctl_v1 && !red_check_params(ctl_v1->qth_min, ctl_v1->qth_max,
645 ctl_v1->Wlog))
646 return -EINVAL;
647 if (ctl_v1 && ctl_v1->qth_min) {
648 p = kmalloc(sizeof(*p), GFP_KERNEL);
649 if (!p)
650 return -ENOMEM;
651 }
652 sch_tree_lock(sch);
653 if (ctl->quantum) {
654 q->quantum = ctl->quantum;
655 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
656 }
657 q->perturb_period = ctl->perturb_period * HZ;
658 if (ctl->flows)
659 q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
660 if (ctl->divisor) {
661 q->divisor = ctl->divisor;
662 q->maxflows = min_t(u32, q->maxflows, q->divisor);
663 }
664 if (ctl_v1) {
665 if (ctl_v1->depth)
666 q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
667 if (p) {
668 swap(q->red_parms, p);
669 red_set_parms(q->red_parms,
670 ctl_v1->qth_min, ctl_v1->qth_max,
671 ctl_v1->Wlog,
672 ctl_v1->Plog, ctl_v1->Scell_log,
673 NULL,
674 ctl_v1->max_P);
675 }
676 q->flags = ctl_v1->flags;
677 q->headdrop = ctl_v1->headdrop;
678 }
679 if (ctl->limit) {
680 q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
681 q->maxflows = min_t(u32, q->maxflows, q->limit);
682 }
683
684 qlen = sch->q.qlen;
685 while (sch->q.qlen > q->limit) {
686 dropped += sfq_drop(sch, &to_free);
687 if (!tail)
688 tail = to_free;
689 }
690
691 rtnl_kfree_skbs(to_free, tail);
692 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
693
694 del_timer(&q->perturb_timer);
695 if (q->perturb_period) {
696 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
697 get_random_bytes(&q->perturbation, sizeof(q->perturbation));
698 }
699 sch_tree_unlock(sch);
700 kfree(p);
701 return 0;
702 }
703
704 static void *sfq_alloc(size_t sz)
705 {
706 return kvmalloc(sz, GFP_KERNEL);
707 }
708
709 static void sfq_free(void *addr)
710 {
711 kvfree(addr);
712 }
713
714 static void sfq_destroy(struct Qdisc *sch)
715 {
716 struct sfq_sched_data *q = qdisc_priv(sch);
717
718 tcf_block_put(q->block);
719 q->perturb_period = 0;
720 del_timer_sync(&q->perturb_timer);
721 sfq_free(q->ht);
722 sfq_free(q->slots);
723 kfree(q->red_parms);
724 }
725
726 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
727 {
728 struct sfq_sched_data *q = qdisc_priv(sch);
729 int i;
730 int err;
731
732 q->sch = sch;
733 timer_setup(&q->perturb_timer, sfq_perturbation, TIMER_DEFERRABLE);
734
735 err = tcf_block_get(&q->block, &q->filter_list, sch);
736 if (err)
737 return err;
738
739 for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
740 q->dep[i].next = i + SFQ_MAX_FLOWS;
741 q->dep[i].prev = i + SFQ_MAX_FLOWS;
742 }
743
744 q->limit = SFQ_MAX_DEPTH;
745 q->maxdepth = SFQ_MAX_DEPTH;
746 q->cur_depth = 0;
747 q->tail = NULL;
748 q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
749 q->maxflows = SFQ_DEFAULT_FLOWS;
750 q->quantum = psched_mtu(qdisc_dev(sch));
751 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
752 q->perturb_period = 0;
753 get_random_bytes(&q->perturbation, sizeof(q->perturbation));
754
755 if (opt) {
756 int err = sfq_change(sch, opt);
757 if (err)
758 return err;
759 }
760
761 q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
762 q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
763 if (!q->ht || !q->slots) {
764 /* Note: sfq_destroy() will be called by our caller */
765 return -ENOMEM;
766 }
767
768 for (i = 0; i < q->divisor; i++)
769 q->ht[i] = SFQ_EMPTY_SLOT;
770
771 for (i = 0; i < q->maxflows; i++) {
772 slot_queue_init(&q->slots[i]);
773 sfq_link(q, i);
774 }
775 if (q->limit >= 1)
776 sch->flags |= TCQ_F_CAN_BYPASS;
777 else
778 sch->flags &= ~TCQ_F_CAN_BYPASS;
779 return 0;
780 }
781
782 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
783 {
784 struct sfq_sched_data *q = qdisc_priv(sch);
785 unsigned char *b = skb_tail_pointer(skb);
786 struct tc_sfq_qopt_v1 opt;
787 struct red_parms *p = q->red_parms;
788
789 memset(&opt, 0, sizeof(opt));
790 opt.v0.quantum = q->quantum;
791 opt.v0.perturb_period = q->perturb_period / HZ;
792 opt.v0.limit = q->limit;
793 opt.v0.divisor = q->divisor;
794 opt.v0.flows = q->maxflows;
795 opt.depth = q->maxdepth;
796 opt.headdrop = q->headdrop;
797
798 if (p) {
799 opt.qth_min = p->qth_min >> p->Wlog;
800 opt.qth_max = p->qth_max >> p->Wlog;
801 opt.Wlog = p->Wlog;
802 opt.Plog = p->Plog;
803 opt.Scell_log = p->Scell_log;
804 opt.max_P = p->max_P;
805 }
806 memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
807 opt.flags = q->flags;
808
809 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
810 goto nla_put_failure;
811
812 return skb->len;
813
814 nla_put_failure:
815 nlmsg_trim(skb, b);
816 return -1;
817 }
818
819 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
820 {
821 return NULL;
822 }
823
824 static unsigned long sfq_find(struct Qdisc *sch, u32 classid)
825 {
826 return 0;
827 }
828
829 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
830 u32 classid)
831 {
832 return 0;
833 }
834
835 static void sfq_unbind(struct Qdisc *q, unsigned long cl)
836 {
837 }
838
839 static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl)
840 {
841 struct sfq_sched_data *q = qdisc_priv(sch);
842
843 if (cl)
844 return NULL;
845 return q->block;
846 }
847
848 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
849 struct sk_buff *skb, struct tcmsg *tcm)
850 {
851 tcm->tcm_handle |= TC_H_MIN(cl);
852 return 0;
853 }
854
855 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
856 struct gnet_dump *d)
857 {
858 struct sfq_sched_data *q = qdisc_priv(sch);
859 sfq_index idx = q->ht[cl - 1];
860 struct gnet_stats_queue qs = { 0 };
861 struct tc_sfq_xstats xstats = { 0 };
862
863 if (idx != SFQ_EMPTY_SLOT) {
864 const struct sfq_slot *slot = &q->slots[idx];
865
866 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
867 qs.qlen = slot->qlen;
868 qs.backlog = slot->backlog;
869 }
870 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
871 return -1;
872 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
873 }
874
875 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
876 {
877 struct sfq_sched_data *q = qdisc_priv(sch);
878 unsigned int i;
879
880 if (arg->stop)
881 return;
882
883 for (i = 0; i < q->divisor; i++) {
884 if (q->ht[i] == SFQ_EMPTY_SLOT ||
885 arg->count < arg->skip) {
886 arg->count++;
887 continue;
888 }
889 if (arg->fn(sch, i + 1, arg) < 0) {
890 arg->stop = 1;
891 break;
892 }
893 arg->count++;
894 }
895 }
896
897 static const struct Qdisc_class_ops sfq_class_ops = {
898 .leaf = sfq_leaf,
899 .find = sfq_find,
900 .tcf_block = sfq_tcf_block,
901 .bind_tcf = sfq_bind,
902 .unbind_tcf = sfq_unbind,
903 .dump = sfq_dump_class,
904 .dump_stats = sfq_dump_class_stats,
905 .walk = sfq_walk,
906 };
907
908 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
909 .cl_ops = &sfq_class_ops,
910 .id = "sfq",
911 .priv_size = sizeof(struct sfq_sched_data),
912 .enqueue = sfq_enqueue,
913 .dequeue = sfq_dequeue,
914 .peek = qdisc_peek_dequeued,
915 .init = sfq_init,
916 .reset = sfq_reset,
917 .destroy = sfq_destroy,
918 .change = NULL,
919 .dump = sfq_dump,
920 .owner = THIS_MODULE,
921 };
922
923 static int __init sfq_module_init(void)
924 {
925 return register_qdisc(&sfq_qdisc_ops);
926 }
927 static void __exit sfq_module_exit(void)
928 {
929 unregister_qdisc(&sfq_qdisc_ops);
930 }
931 module_init(sfq_module_init)
932 module_exit(sfq_module_exit)
933 MODULE_LICENSE("GPL");