]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_sfq.c
HID: split picolcd's operation_mode sysfs attribute
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <net/ip.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26
27
28 /* Stochastic Fairness Queuing algorithm.
29 =======================================
30
31 Source:
32 Paul E. McKenney "Stochastic Fairness Queuing",
33 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
34
35 Paul E. McKenney "Stochastic Fairness Queuing",
36 "Interworking: Research and Experience", v.2, 1991, p.113-131.
37
38
39 See also:
40 M. Shreedhar and George Varghese "Efficient Fair
41 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
42
43
44 This is not the thing that is usually called (W)FQ nowadays.
45 It does not use any timestamp mechanism, but instead
46 processes queues in round-robin order.
47
48 ADVANTAGE:
49
50 - It is very cheap. Both CPU and memory requirements are minimal.
51
52 DRAWBACKS:
53
54 - "Stochastic" -> It is not 100% fair.
55 When hash collisions occur, several flows are considered as one.
56
57 - "Round-robin" -> It introduces larger delays than virtual clock
58 based schemes, and should not be used for isolating interactive
59 traffic from non-interactive. It means, that this scheduler
60 should be used as leaf of CBQ or P3, which put interactive traffic
61 to higher priority band.
62
63 We still need true WFQ for top level CSZ, but using WFQ
64 for the best effort traffic is absolutely pointless:
65 SFQ is superior for this purpose.
66
67 IMPLEMENTATION:
68 This implementation limits maximal queue length to 128;
69 maximal mtu to 2^15-1; number of hash buckets to 1024.
70 The only goal of this restrictions was that all data
71 fit into one 4K page :-). Struct sfq_sched_data is
72 organized in anti-cache manner: all the data for a bucket
73 are scattered over different locations. This is not good,
74 but it allowed me to put it into 4K.
75
76 It is easy to increase these values, but not in flight. */
77
78 #define SFQ_DEPTH 128
79 #define SFQ_HASH_DIVISOR 1024
80
81 /* This type should contain at least SFQ_DEPTH*2 values */
82 typedef unsigned char sfq_index;
83
84 struct sfq_head
85 {
86 sfq_index next;
87 sfq_index prev;
88 };
89
90 struct sfq_sched_data
91 {
92 /* Parameters */
93 int perturb_period;
94 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
95 int limit;
96
97 /* Variables */
98 struct tcf_proto *filter_list;
99 struct timer_list perturb_timer;
100 u32 perturbation;
101 sfq_index tail; /* Index of current slot in round */
102 sfq_index max_depth; /* Maximal depth */
103
104 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
105 sfq_index next[SFQ_DEPTH]; /* Active slots link */
106 short allot[SFQ_DEPTH]; /* Current allotment per slot */
107 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
108 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
109 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
110 };
111
112 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
113 {
114 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
115 }
116
117 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
118 {
119 u32 h, h2;
120
121 switch (skb->protocol) {
122 case htons(ETH_P_IP):
123 {
124 const struct iphdr *iph = ip_hdr(skb);
125 h = iph->daddr;
126 h2 = iph->saddr ^ iph->protocol;
127 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
128 (iph->protocol == IPPROTO_TCP ||
129 iph->protocol == IPPROTO_UDP ||
130 iph->protocol == IPPROTO_UDPLITE ||
131 iph->protocol == IPPROTO_SCTP ||
132 iph->protocol == IPPROTO_DCCP ||
133 iph->protocol == IPPROTO_ESP))
134 h2 ^= *(((u32*)iph) + iph->ihl);
135 break;
136 }
137 case htons(ETH_P_IPV6):
138 {
139 struct ipv6hdr *iph = ipv6_hdr(skb);
140 h = iph->daddr.s6_addr32[3];
141 h2 = iph->saddr.s6_addr32[3] ^ iph->nexthdr;
142 if (iph->nexthdr == IPPROTO_TCP ||
143 iph->nexthdr == IPPROTO_UDP ||
144 iph->nexthdr == IPPROTO_UDPLITE ||
145 iph->nexthdr == IPPROTO_SCTP ||
146 iph->nexthdr == IPPROTO_DCCP ||
147 iph->nexthdr == IPPROTO_ESP)
148 h2 ^= *(u32*)&iph[1];
149 break;
150 }
151 default:
152 h = (unsigned long)skb_dst(skb) ^ skb->protocol;
153 h2 = (unsigned long)skb->sk;
154 }
155
156 return sfq_fold_hash(q, h, h2);
157 }
158
159 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
160 int *qerr)
161 {
162 struct sfq_sched_data *q = qdisc_priv(sch);
163 struct tcf_result res;
164 int result;
165
166 if (TC_H_MAJ(skb->priority) == sch->handle &&
167 TC_H_MIN(skb->priority) > 0 &&
168 TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
169 return TC_H_MIN(skb->priority);
170
171 if (!q->filter_list)
172 return sfq_hash(q, skb) + 1;
173
174 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
175 result = tc_classify(skb, q->filter_list, &res);
176 if (result >= 0) {
177 #ifdef CONFIG_NET_CLS_ACT
178 switch (result) {
179 case TC_ACT_STOLEN:
180 case TC_ACT_QUEUED:
181 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
182 case TC_ACT_SHOT:
183 return 0;
184 }
185 #endif
186 if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
187 return TC_H_MIN(res.classid);
188 }
189 return 0;
190 }
191
192 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
193 {
194 sfq_index p, n;
195 int d = q->qs[x].qlen + SFQ_DEPTH;
196
197 p = d;
198 n = q->dep[d].next;
199 q->dep[x].next = n;
200 q->dep[x].prev = p;
201 q->dep[p].next = q->dep[n].prev = x;
202 }
203
204 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
205 {
206 sfq_index p, n;
207
208 n = q->dep[x].next;
209 p = q->dep[x].prev;
210 q->dep[p].next = n;
211 q->dep[n].prev = p;
212
213 if (n == p && q->max_depth == q->qs[x].qlen + 1)
214 q->max_depth--;
215
216 sfq_link(q, x);
217 }
218
219 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
220 {
221 sfq_index p, n;
222 int d;
223
224 n = q->dep[x].next;
225 p = q->dep[x].prev;
226 q->dep[p].next = n;
227 q->dep[n].prev = p;
228 d = q->qs[x].qlen;
229 if (q->max_depth < d)
230 q->max_depth = d;
231
232 sfq_link(q, x);
233 }
234
235 static unsigned int sfq_drop(struct Qdisc *sch)
236 {
237 struct sfq_sched_data *q = qdisc_priv(sch);
238 sfq_index d = q->max_depth;
239 struct sk_buff *skb;
240 unsigned int len;
241
242 /* Queue is full! Find the longest slot and
243 drop a packet from it */
244
245 if (d > 1) {
246 sfq_index x = q->dep[d + SFQ_DEPTH].next;
247 skb = q->qs[x].prev;
248 len = qdisc_pkt_len(skb);
249 __skb_unlink(skb, &q->qs[x]);
250 kfree_skb(skb);
251 sfq_dec(q, x);
252 sch->q.qlen--;
253 sch->qstats.drops++;
254 sch->qstats.backlog -= len;
255 return len;
256 }
257
258 if (d == 1) {
259 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
260 d = q->next[q->tail];
261 q->next[q->tail] = q->next[d];
262 q->allot[q->next[d]] += q->quantum;
263 skb = q->qs[d].prev;
264 len = qdisc_pkt_len(skb);
265 __skb_unlink(skb, &q->qs[d]);
266 kfree_skb(skb);
267 sfq_dec(q, d);
268 sch->q.qlen--;
269 q->ht[q->hash[d]] = SFQ_DEPTH;
270 sch->qstats.drops++;
271 sch->qstats.backlog -= len;
272 return len;
273 }
274
275 return 0;
276 }
277
278 static int
279 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
280 {
281 struct sfq_sched_data *q = qdisc_priv(sch);
282 unsigned int hash;
283 sfq_index x;
284 int uninitialized_var(ret);
285
286 hash = sfq_classify(skb, sch, &ret);
287 if (hash == 0) {
288 if (ret & __NET_XMIT_BYPASS)
289 sch->qstats.drops++;
290 kfree_skb(skb);
291 return ret;
292 }
293 hash--;
294
295 x = q->ht[hash];
296 if (x == SFQ_DEPTH) {
297 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
298 q->hash[x] = hash;
299 }
300
301 /* If selected queue has length q->limit, this means that
302 * all another queues are empty and that we do simple tail drop,
303 * i.e. drop _this_ packet.
304 */
305 if (q->qs[x].qlen >= q->limit)
306 return qdisc_drop(skb, sch);
307
308 sch->qstats.backlog += qdisc_pkt_len(skb);
309 __skb_queue_tail(&q->qs[x], skb);
310 sfq_inc(q, x);
311 if (q->qs[x].qlen == 1) { /* The flow is new */
312 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
313 q->tail = x;
314 q->next[x] = x;
315 q->allot[x] = q->quantum;
316 } else {
317 q->next[x] = q->next[q->tail];
318 q->next[q->tail] = x;
319 q->tail = x;
320 }
321 }
322 if (++sch->q.qlen <= q->limit) {
323 sch->bstats.bytes += qdisc_pkt_len(skb);
324 sch->bstats.packets++;
325 return 0;
326 }
327
328 sfq_drop(sch);
329 return NET_XMIT_CN;
330 }
331
332 static struct sk_buff *
333 sfq_peek(struct Qdisc *sch)
334 {
335 struct sfq_sched_data *q = qdisc_priv(sch);
336 sfq_index a;
337
338 /* No active slots */
339 if (q->tail == SFQ_DEPTH)
340 return NULL;
341
342 a = q->next[q->tail];
343 return skb_peek(&q->qs[a]);
344 }
345
346 static struct sk_buff *
347 sfq_dequeue(struct Qdisc *sch)
348 {
349 struct sfq_sched_data *q = qdisc_priv(sch);
350 struct sk_buff *skb;
351 sfq_index a, old_a;
352
353 /* No active slots */
354 if (q->tail == SFQ_DEPTH)
355 return NULL;
356
357 a = old_a = q->next[q->tail];
358
359 /* Grab packet */
360 skb = __skb_dequeue(&q->qs[a]);
361 sfq_dec(q, a);
362 sch->q.qlen--;
363 sch->qstats.backlog -= qdisc_pkt_len(skb);
364
365 /* Is the slot empty? */
366 if (q->qs[a].qlen == 0) {
367 q->ht[q->hash[a]] = SFQ_DEPTH;
368 a = q->next[a];
369 if (a == old_a) {
370 q->tail = SFQ_DEPTH;
371 return skb;
372 }
373 q->next[q->tail] = a;
374 q->allot[a] += q->quantum;
375 } else if ((q->allot[a] -= qdisc_pkt_len(skb)) <= 0) {
376 q->tail = a;
377 a = q->next[a];
378 q->allot[a] += q->quantum;
379 }
380 return skb;
381 }
382
383 static void
384 sfq_reset(struct Qdisc *sch)
385 {
386 struct sk_buff *skb;
387
388 while ((skb = sfq_dequeue(sch)) != NULL)
389 kfree_skb(skb);
390 }
391
392 static void sfq_perturbation(unsigned long arg)
393 {
394 struct Qdisc *sch = (struct Qdisc *)arg;
395 struct sfq_sched_data *q = qdisc_priv(sch);
396
397 q->perturbation = net_random();
398
399 if (q->perturb_period)
400 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
401 }
402
403 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
404 {
405 struct sfq_sched_data *q = qdisc_priv(sch);
406 struct tc_sfq_qopt *ctl = nla_data(opt);
407 unsigned int qlen;
408
409 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
410 return -EINVAL;
411
412 sch_tree_lock(sch);
413 q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
414 q->perturb_period = ctl->perturb_period * HZ;
415 if (ctl->limit)
416 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
417
418 qlen = sch->q.qlen;
419 while (sch->q.qlen > q->limit)
420 sfq_drop(sch);
421 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
422
423 del_timer(&q->perturb_timer);
424 if (q->perturb_period) {
425 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
426 q->perturbation = net_random();
427 }
428 sch_tree_unlock(sch);
429 return 0;
430 }
431
432 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
433 {
434 struct sfq_sched_data *q = qdisc_priv(sch);
435 int i;
436
437 q->perturb_timer.function = sfq_perturbation;
438 q->perturb_timer.data = (unsigned long)sch;
439 init_timer_deferrable(&q->perturb_timer);
440
441 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
442 q->ht[i] = SFQ_DEPTH;
443
444 for (i = 0; i < SFQ_DEPTH; i++) {
445 skb_queue_head_init(&q->qs[i]);
446 q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH;
447 q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH;
448 }
449
450 q->limit = SFQ_DEPTH - 1;
451 q->max_depth = 0;
452 q->tail = SFQ_DEPTH;
453 if (opt == NULL) {
454 q->quantum = psched_mtu(qdisc_dev(sch));
455 q->perturb_period = 0;
456 q->perturbation = net_random();
457 } else {
458 int err = sfq_change(sch, opt);
459 if (err)
460 return err;
461 }
462
463 for (i = 0; i < SFQ_DEPTH; i++)
464 sfq_link(q, i);
465 return 0;
466 }
467
468 static void sfq_destroy(struct Qdisc *sch)
469 {
470 struct sfq_sched_data *q = qdisc_priv(sch);
471
472 tcf_destroy_chain(&q->filter_list);
473 q->perturb_period = 0;
474 del_timer_sync(&q->perturb_timer);
475 }
476
477 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
478 {
479 struct sfq_sched_data *q = qdisc_priv(sch);
480 unsigned char *b = skb_tail_pointer(skb);
481 struct tc_sfq_qopt opt;
482
483 opt.quantum = q->quantum;
484 opt.perturb_period = q->perturb_period / HZ;
485
486 opt.limit = q->limit;
487 opt.divisor = SFQ_HASH_DIVISOR;
488 opt.flows = q->limit;
489
490 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
491
492 return skb->len;
493
494 nla_put_failure:
495 nlmsg_trim(skb, b);
496 return -1;
497 }
498
499 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
500 {
501 return 0;
502 }
503
504 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
505 {
506 struct sfq_sched_data *q = qdisc_priv(sch);
507
508 if (cl)
509 return NULL;
510 return &q->filter_list;
511 }
512
513 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
514 struct sk_buff *skb, struct tcmsg *tcm)
515 {
516 tcm->tcm_handle |= TC_H_MIN(cl);
517 return 0;
518 }
519
520 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
521 struct gnet_dump *d)
522 {
523 struct sfq_sched_data *q = qdisc_priv(sch);
524 sfq_index idx = q->ht[cl-1];
525 struct gnet_stats_queue qs = { .qlen = q->qs[idx].qlen };
526 struct tc_sfq_xstats xstats = { .allot = q->allot[idx] };
527
528 if (gnet_stats_copy_queue(d, &qs) < 0)
529 return -1;
530 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
531 }
532
533 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
534 {
535 struct sfq_sched_data *q = qdisc_priv(sch);
536 unsigned int i;
537
538 if (arg->stop)
539 return;
540
541 for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
542 if (q->ht[i] == SFQ_DEPTH ||
543 arg->count < arg->skip) {
544 arg->count++;
545 continue;
546 }
547 if (arg->fn(sch, i + 1, arg) < 0) {
548 arg->stop = 1;
549 break;
550 }
551 arg->count++;
552 }
553 }
554
555 static const struct Qdisc_class_ops sfq_class_ops = {
556 .get = sfq_get,
557 .tcf_chain = sfq_find_tcf,
558 .dump = sfq_dump_class,
559 .dump_stats = sfq_dump_class_stats,
560 .walk = sfq_walk,
561 };
562
563 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
564 .cl_ops = &sfq_class_ops,
565 .id = "sfq",
566 .priv_size = sizeof(struct sfq_sched_data),
567 .enqueue = sfq_enqueue,
568 .dequeue = sfq_dequeue,
569 .peek = sfq_peek,
570 .drop = sfq_drop,
571 .init = sfq_init,
572 .reset = sfq_reset,
573 .destroy = sfq_destroy,
574 .change = NULL,
575 .dump = sfq_dump,
576 .owner = THIS_MODULE,
577 };
578
579 static int __init sfq_module_init(void)
580 {
581 return register_qdisc(&sfq_qdisc_ops);
582 }
583 static void __exit sfq_module_exit(void)
584 {
585 unregister_qdisc(&sfq_qdisc_ops);
586 }
587 module_init(sfq_module_init)
588 module_exit(sfq_module_exit)
589 MODULE_LICENSE("GPL");