]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sched/sch_sfq.c
Merge tag 'renesas-fixes3-for-v4.13' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/jhash.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/pkt_cls.h>
27 #include <net/red.h>
28
29
30 /* Stochastic Fairness Queuing algorithm.
31 =======================================
32
33 Source:
34 Paul E. McKenney "Stochastic Fairness Queuing",
35 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
36
37 Paul E. McKenney "Stochastic Fairness Queuing",
38 "Interworking: Research and Experience", v.2, 1991, p.113-131.
39
40
41 See also:
42 M. Shreedhar and George Varghese "Efficient Fair
43 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
44
45
46 This is not the thing that is usually called (W)FQ nowadays.
47 It does not use any timestamp mechanism, but instead
48 processes queues in round-robin order.
49
50 ADVANTAGE:
51
52 - It is very cheap. Both CPU and memory requirements are minimal.
53
54 DRAWBACKS:
55
56 - "Stochastic" -> It is not 100% fair.
57 When hash collisions occur, several flows are considered as one.
58
59 - "Round-robin" -> It introduces larger delays than virtual clock
60 based schemes, and should not be used for isolating interactive
61 traffic from non-interactive. It means, that this scheduler
62 should be used as leaf of CBQ or P3, which put interactive traffic
63 to higher priority band.
64
65 We still need true WFQ for top level CSZ, but using WFQ
66 for the best effort traffic is absolutely pointless:
67 SFQ is superior for this purpose.
68
69 IMPLEMENTATION:
70 This implementation limits :
71 - maximal queue length per flow to 127 packets.
72 - max mtu to 2^18-1;
73 - max 65408 flows,
74 - number of hash buckets to 65536.
75
76 It is easy to increase these values, but not in flight. */
77
78 #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
79 #define SFQ_DEFAULT_FLOWS 128
80 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
81 #define SFQ_EMPTY_SLOT 0xffff
82 #define SFQ_DEFAULT_HASH_DIVISOR 1024
83
84 /* We use 16 bits to store allot, and want to handle packets up to 64K
85 * Scale allot by 8 (1<<3) so that no overflow occurs.
86 */
87 #define SFQ_ALLOT_SHIFT 3
88 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
89
90 /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
91 typedef u16 sfq_index;
92
93 /*
94 * We dont use pointers to save space.
95 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
96 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
97 * are 'pointers' to dep[] array
98 */
99 struct sfq_head {
100 sfq_index next;
101 sfq_index prev;
102 };
103
104 struct sfq_slot {
105 struct sk_buff *skblist_next;
106 struct sk_buff *skblist_prev;
107 sfq_index qlen; /* number of skbs in skblist */
108 sfq_index next; /* next slot in sfq RR chain */
109 struct sfq_head dep; /* anchor in dep[] chains */
110 unsigned short hash; /* hash value (index in ht[]) */
111 short allot; /* credit for this slot */
112
113 unsigned int backlog;
114 struct red_vars vars;
115 };
116
117 struct sfq_sched_data {
118 /* frequently used fields */
119 int limit; /* limit of total number of packets in this qdisc */
120 unsigned int divisor; /* number of slots in hash table */
121 u8 headdrop;
122 u8 maxdepth; /* limit of packets per flow */
123
124 u32 perturbation;
125 u8 cur_depth; /* depth of longest slot */
126 u8 flags;
127 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
128 struct tcf_proto __rcu *filter_list;
129 struct tcf_block *block;
130 sfq_index *ht; /* Hash table ('divisor' slots) */
131 struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
132
133 struct red_parms *red_parms;
134 struct tc_sfqred_stats stats;
135 struct sfq_slot *tail; /* current slot in round */
136
137 struct sfq_head dep[SFQ_MAX_DEPTH + 1];
138 /* Linked lists of slots, indexed by depth
139 * dep[0] : list of unused flows
140 * dep[1] : list of flows with 1 packet
141 * dep[X] : list of flows with X packets
142 */
143
144 unsigned int maxflows; /* number of flows in flows array */
145 int perturb_period;
146 unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
147 struct timer_list perturb_timer;
148 };
149
150 /*
151 * sfq_head are either in a sfq_slot or in dep[] array
152 */
153 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
154 {
155 if (val < SFQ_MAX_FLOWS)
156 return &q->slots[val].dep;
157 return &q->dep[val - SFQ_MAX_FLOWS];
158 }
159
160 static unsigned int sfq_hash(const struct sfq_sched_data *q,
161 const struct sk_buff *skb)
162 {
163 return skb_get_hash_perturb(skb, q->perturbation) & (q->divisor - 1);
164 }
165
166 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
167 int *qerr)
168 {
169 struct sfq_sched_data *q = qdisc_priv(sch);
170 struct tcf_result res;
171 struct tcf_proto *fl;
172 int result;
173
174 if (TC_H_MAJ(skb->priority) == sch->handle &&
175 TC_H_MIN(skb->priority) > 0 &&
176 TC_H_MIN(skb->priority) <= q->divisor)
177 return TC_H_MIN(skb->priority);
178
179 fl = rcu_dereference_bh(q->filter_list);
180 if (!fl)
181 return sfq_hash(q, skb) + 1;
182
183 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
184 result = tcf_classify(skb, fl, &res, false);
185 if (result >= 0) {
186 #ifdef CONFIG_NET_CLS_ACT
187 switch (result) {
188 case TC_ACT_STOLEN:
189 case TC_ACT_QUEUED:
190 case TC_ACT_TRAP:
191 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
192 case TC_ACT_SHOT:
193 return 0;
194 }
195 #endif
196 if (TC_H_MIN(res.classid) <= q->divisor)
197 return TC_H_MIN(res.classid);
198 }
199 return 0;
200 }
201
202 /*
203 * x : slot number [0 .. SFQ_MAX_FLOWS - 1]
204 */
205 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
206 {
207 sfq_index p, n;
208 struct sfq_slot *slot = &q->slots[x];
209 int qlen = slot->qlen;
210
211 p = qlen + SFQ_MAX_FLOWS;
212 n = q->dep[qlen].next;
213
214 slot->dep.next = n;
215 slot->dep.prev = p;
216
217 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
218 sfq_dep_head(q, n)->prev = x;
219 }
220
221 #define sfq_unlink(q, x, n, p) \
222 do { \
223 n = q->slots[x].dep.next; \
224 p = q->slots[x].dep.prev; \
225 sfq_dep_head(q, p)->next = n; \
226 sfq_dep_head(q, n)->prev = p; \
227 } while (0)
228
229
230 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
231 {
232 sfq_index p, n;
233 int d;
234
235 sfq_unlink(q, x, n, p);
236
237 d = q->slots[x].qlen--;
238 if (n == p && q->cur_depth == d)
239 q->cur_depth--;
240 sfq_link(q, x);
241 }
242
243 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
244 {
245 sfq_index p, n;
246 int d;
247
248 sfq_unlink(q, x, n, p);
249
250 d = ++q->slots[x].qlen;
251 if (q->cur_depth < d)
252 q->cur_depth = d;
253 sfq_link(q, x);
254 }
255
256 /* helper functions : might be changed when/if skb use a standard list_head */
257
258 /* remove one skb from tail of slot queue */
259 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
260 {
261 struct sk_buff *skb = slot->skblist_prev;
262
263 slot->skblist_prev = skb->prev;
264 skb->prev->next = (struct sk_buff *)slot;
265 skb->next = skb->prev = NULL;
266 return skb;
267 }
268
269 /* remove one skb from head of slot queue */
270 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
271 {
272 struct sk_buff *skb = slot->skblist_next;
273
274 slot->skblist_next = skb->next;
275 skb->next->prev = (struct sk_buff *)slot;
276 skb->next = skb->prev = NULL;
277 return skb;
278 }
279
280 static inline void slot_queue_init(struct sfq_slot *slot)
281 {
282 memset(slot, 0, sizeof(*slot));
283 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
284 }
285
286 /* add skb to slot queue (tail add) */
287 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
288 {
289 skb->prev = slot->skblist_prev;
290 skb->next = (struct sk_buff *)slot;
291 slot->skblist_prev->next = skb;
292 slot->skblist_prev = skb;
293 }
294
295 static unsigned int sfq_drop(struct Qdisc *sch)
296 {
297 struct sfq_sched_data *q = qdisc_priv(sch);
298 sfq_index x, d = q->cur_depth;
299 struct sk_buff *skb;
300 unsigned int len;
301 struct sfq_slot *slot;
302
303 /* Queue is full! Find the longest slot and drop tail packet from it */
304 if (d > 1) {
305 x = q->dep[d].next;
306 slot = &q->slots[x];
307 drop:
308 skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
309 len = qdisc_pkt_len(skb);
310 slot->backlog -= len;
311 sfq_dec(q, x);
312 sch->q.qlen--;
313 qdisc_qstats_drop(sch);
314 qdisc_qstats_backlog_dec(sch, skb);
315 kfree_skb(skb);
316 return len;
317 }
318
319 if (d == 1) {
320 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
321 x = q->tail->next;
322 slot = &q->slots[x];
323 q->tail->next = slot->next;
324 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
325 goto drop;
326 }
327
328 return 0;
329 }
330
331 /* Is ECN parameter configured */
332 static int sfq_prob_mark(const struct sfq_sched_data *q)
333 {
334 return q->flags & TC_RED_ECN;
335 }
336
337 /* Should packets over max threshold just be marked */
338 static int sfq_hard_mark(const struct sfq_sched_data *q)
339 {
340 return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
341 }
342
343 static int sfq_headdrop(const struct sfq_sched_data *q)
344 {
345 return q->headdrop;
346 }
347
348 static int
349 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
350 {
351 struct sfq_sched_data *q = qdisc_priv(sch);
352 unsigned int hash, dropped;
353 sfq_index x, qlen;
354 struct sfq_slot *slot;
355 int uninitialized_var(ret);
356 struct sk_buff *head;
357 int delta;
358
359 hash = sfq_classify(skb, sch, &ret);
360 if (hash == 0) {
361 if (ret & __NET_XMIT_BYPASS)
362 qdisc_qstats_drop(sch);
363 kfree_skb(skb);
364 return ret;
365 }
366 hash--;
367
368 x = q->ht[hash];
369 slot = &q->slots[x];
370 if (x == SFQ_EMPTY_SLOT) {
371 x = q->dep[0].next; /* get a free slot */
372 if (x >= SFQ_MAX_FLOWS)
373 return qdisc_drop(skb, sch, to_free);
374 q->ht[hash] = x;
375 slot = &q->slots[x];
376 slot->hash = hash;
377 slot->backlog = 0; /* should already be 0 anyway... */
378 red_set_vars(&slot->vars);
379 goto enqueue;
380 }
381 if (q->red_parms) {
382 slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
383 &slot->vars,
384 slot->backlog);
385 switch (red_action(q->red_parms,
386 &slot->vars,
387 slot->vars.qavg)) {
388 case RED_DONT_MARK:
389 break;
390
391 case RED_PROB_MARK:
392 qdisc_qstats_overlimit(sch);
393 if (sfq_prob_mark(q)) {
394 /* We know we have at least one packet in queue */
395 if (sfq_headdrop(q) &&
396 INET_ECN_set_ce(slot->skblist_next)) {
397 q->stats.prob_mark_head++;
398 break;
399 }
400 if (INET_ECN_set_ce(skb)) {
401 q->stats.prob_mark++;
402 break;
403 }
404 }
405 q->stats.prob_drop++;
406 goto congestion_drop;
407
408 case RED_HARD_MARK:
409 qdisc_qstats_overlimit(sch);
410 if (sfq_hard_mark(q)) {
411 /* We know we have at least one packet in queue */
412 if (sfq_headdrop(q) &&
413 INET_ECN_set_ce(slot->skblist_next)) {
414 q->stats.forced_mark_head++;
415 break;
416 }
417 if (INET_ECN_set_ce(skb)) {
418 q->stats.forced_mark++;
419 break;
420 }
421 }
422 q->stats.forced_drop++;
423 goto congestion_drop;
424 }
425 }
426
427 if (slot->qlen >= q->maxdepth) {
428 congestion_drop:
429 if (!sfq_headdrop(q))
430 return qdisc_drop(skb, sch, to_free);
431
432 /* We know we have at least one packet in queue */
433 head = slot_dequeue_head(slot);
434 delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
435 sch->qstats.backlog -= delta;
436 slot->backlog -= delta;
437 qdisc_drop(head, sch, to_free);
438
439 slot_queue_add(slot, skb);
440 return NET_XMIT_CN;
441 }
442
443 enqueue:
444 qdisc_qstats_backlog_inc(sch, skb);
445 slot->backlog += qdisc_pkt_len(skb);
446 slot_queue_add(slot, skb);
447 sfq_inc(q, x);
448 if (slot->qlen == 1) { /* The flow is new */
449 if (q->tail == NULL) { /* It is the first flow */
450 slot->next = x;
451 } else {
452 slot->next = q->tail->next;
453 q->tail->next = x;
454 }
455 /* We put this flow at the end of our flow list.
456 * This might sound unfair for a new flow to wait after old ones,
457 * but we could endup servicing new flows only, and freeze old ones.
458 */
459 q->tail = slot;
460 /* We could use a bigger initial quantum for new flows */
461 slot->allot = q->scaled_quantum;
462 }
463 if (++sch->q.qlen <= q->limit)
464 return NET_XMIT_SUCCESS;
465
466 qlen = slot->qlen;
467 dropped = sfq_drop(sch);
468 /* Return Congestion Notification only if we dropped a packet
469 * from this flow.
470 */
471 if (qlen != slot->qlen)
472 return NET_XMIT_CN;
473
474 /* As we dropped a packet, better let upper stack know this */
475 qdisc_tree_reduce_backlog(sch, 1, dropped);
476 return NET_XMIT_SUCCESS;
477 }
478
479 static struct sk_buff *
480 sfq_dequeue(struct Qdisc *sch)
481 {
482 struct sfq_sched_data *q = qdisc_priv(sch);
483 struct sk_buff *skb;
484 sfq_index a, next_a;
485 struct sfq_slot *slot;
486
487 /* No active slots */
488 if (q->tail == NULL)
489 return NULL;
490
491 next_slot:
492 a = q->tail->next;
493 slot = &q->slots[a];
494 if (slot->allot <= 0) {
495 q->tail = slot;
496 slot->allot += q->scaled_quantum;
497 goto next_slot;
498 }
499 skb = slot_dequeue_head(slot);
500 sfq_dec(q, a);
501 qdisc_bstats_update(sch, skb);
502 sch->q.qlen--;
503 qdisc_qstats_backlog_dec(sch, skb);
504 slot->backlog -= qdisc_pkt_len(skb);
505 /* Is the slot empty? */
506 if (slot->qlen == 0) {
507 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
508 next_a = slot->next;
509 if (a == next_a) {
510 q->tail = NULL; /* no more active slots */
511 return skb;
512 }
513 q->tail->next = next_a;
514 } else {
515 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
516 }
517 return skb;
518 }
519
520 static void
521 sfq_reset(struct Qdisc *sch)
522 {
523 struct sk_buff *skb;
524
525 while ((skb = sfq_dequeue(sch)) != NULL)
526 rtnl_kfree_skbs(skb, skb);
527 }
528
529 /*
530 * When q->perturbation is changed, we rehash all queued skbs
531 * to avoid OOO (Out Of Order) effects.
532 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
533 * counters.
534 */
535 static void sfq_rehash(struct Qdisc *sch)
536 {
537 struct sfq_sched_data *q = qdisc_priv(sch);
538 struct sk_buff *skb;
539 int i;
540 struct sfq_slot *slot;
541 struct sk_buff_head list;
542 int dropped = 0;
543 unsigned int drop_len = 0;
544
545 __skb_queue_head_init(&list);
546
547 for (i = 0; i < q->maxflows; i++) {
548 slot = &q->slots[i];
549 if (!slot->qlen)
550 continue;
551 while (slot->qlen) {
552 skb = slot_dequeue_head(slot);
553 sfq_dec(q, i);
554 __skb_queue_tail(&list, skb);
555 }
556 slot->backlog = 0;
557 red_set_vars(&slot->vars);
558 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
559 }
560 q->tail = NULL;
561
562 while ((skb = __skb_dequeue(&list)) != NULL) {
563 unsigned int hash = sfq_hash(q, skb);
564 sfq_index x = q->ht[hash];
565
566 slot = &q->slots[x];
567 if (x == SFQ_EMPTY_SLOT) {
568 x = q->dep[0].next; /* get a free slot */
569 if (x >= SFQ_MAX_FLOWS) {
570 drop:
571 qdisc_qstats_backlog_dec(sch, skb);
572 drop_len += qdisc_pkt_len(skb);
573 kfree_skb(skb);
574 dropped++;
575 continue;
576 }
577 q->ht[hash] = x;
578 slot = &q->slots[x];
579 slot->hash = hash;
580 }
581 if (slot->qlen >= q->maxdepth)
582 goto drop;
583 slot_queue_add(slot, skb);
584 if (q->red_parms)
585 slot->vars.qavg = red_calc_qavg(q->red_parms,
586 &slot->vars,
587 slot->backlog);
588 slot->backlog += qdisc_pkt_len(skb);
589 sfq_inc(q, x);
590 if (slot->qlen == 1) { /* The flow is new */
591 if (q->tail == NULL) { /* It is the first flow */
592 slot->next = x;
593 } else {
594 slot->next = q->tail->next;
595 q->tail->next = x;
596 }
597 q->tail = slot;
598 slot->allot = q->scaled_quantum;
599 }
600 }
601 sch->q.qlen -= dropped;
602 qdisc_tree_reduce_backlog(sch, dropped, drop_len);
603 }
604
605 static void sfq_perturbation(unsigned long arg)
606 {
607 struct Qdisc *sch = (struct Qdisc *)arg;
608 struct sfq_sched_data *q = qdisc_priv(sch);
609 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
610
611 spin_lock(root_lock);
612 q->perturbation = prandom_u32();
613 if (!q->filter_list && q->tail)
614 sfq_rehash(sch);
615 spin_unlock(root_lock);
616
617 if (q->perturb_period)
618 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
619 }
620
621 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
622 {
623 struct sfq_sched_data *q = qdisc_priv(sch);
624 struct tc_sfq_qopt *ctl = nla_data(opt);
625 struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
626 unsigned int qlen, dropped = 0;
627 struct red_parms *p = NULL;
628
629 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
630 return -EINVAL;
631 if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
632 ctl_v1 = nla_data(opt);
633 if (ctl->divisor &&
634 (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
635 return -EINVAL;
636 if (ctl_v1 && ctl_v1->qth_min) {
637 p = kmalloc(sizeof(*p), GFP_KERNEL);
638 if (!p)
639 return -ENOMEM;
640 }
641 sch_tree_lock(sch);
642 if (ctl->quantum) {
643 q->quantum = ctl->quantum;
644 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
645 }
646 q->perturb_period = ctl->perturb_period * HZ;
647 if (ctl->flows)
648 q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
649 if (ctl->divisor) {
650 q->divisor = ctl->divisor;
651 q->maxflows = min_t(u32, q->maxflows, q->divisor);
652 }
653 if (ctl_v1) {
654 if (ctl_v1->depth)
655 q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
656 if (p) {
657 swap(q->red_parms, p);
658 red_set_parms(q->red_parms,
659 ctl_v1->qth_min, ctl_v1->qth_max,
660 ctl_v1->Wlog,
661 ctl_v1->Plog, ctl_v1->Scell_log,
662 NULL,
663 ctl_v1->max_P);
664 }
665 q->flags = ctl_v1->flags;
666 q->headdrop = ctl_v1->headdrop;
667 }
668 if (ctl->limit) {
669 q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
670 q->maxflows = min_t(u32, q->maxflows, q->limit);
671 }
672
673 qlen = sch->q.qlen;
674 while (sch->q.qlen > q->limit)
675 dropped += sfq_drop(sch);
676 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
677
678 del_timer(&q->perturb_timer);
679 if (q->perturb_period) {
680 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
681 q->perturbation = prandom_u32();
682 }
683 sch_tree_unlock(sch);
684 kfree(p);
685 return 0;
686 }
687
688 static void *sfq_alloc(size_t sz)
689 {
690 return kvmalloc(sz, GFP_KERNEL);
691 }
692
693 static void sfq_free(void *addr)
694 {
695 kvfree(addr);
696 }
697
698 static void sfq_destroy(struct Qdisc *sch)
699 {
700 struct sfq_sched_data *q = qdisc_priv(sch);
701
702 tcf_block_put(q->block);
703 q->perturb_period = 0;
704 del_timer_sync(&q->perturb_timer);
705 sfq_free(q->ht);
706 sfq_free(q->slots);
707 kfree(q->red_parms);
708 }
709
710 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
711 {
712 struct sfq_sched_data *q = qdisc_priv(sch);
713 int i;
714 int err;
715
716 err = tcf_block_get(&q->block, &q->filter_list);
717 if (err)
718 return err;
719
720 setup_deferrable_timer(&q->perturb_timer, sfq_perturbation,
721 (unsigned long)sch);
722
723 for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
724 q->dep[i].next = i + SFQ_MAX_FLOWS;
725 q->dep[i].prev = i + SFQ_MAX_FLOWS;
726 }
727
728 q->limit = SFQ_MAX_DEPTH;
729 q->maxdepth = SFQ_MAX_DEPTH;
730 q->cur_depth = 0;
731 q->tail = NULL;
732 q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
733 q->maxflows = SFQ_DEFAULT_FLOWS;
734 q->quantum = psched_mtu(qdisc_dev(sch));
735 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
736 q->perturb_period = 0;
737 q->perturbation = prandom_u32();
738
739 if (opt) {
740 int err = sfq_change(sch, opt);
741 if (err)
742 return err;
743 }
744
745 q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
746 q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
747 if (!q->ht || !q->slots) {
748 /* Note: sfq_destroy() will be called by our caller */
749 return -ENOMEM;
750 }
751
752 for (i = 0; i < q->divisor; i++)
753 q->ht[i] = SFQ_EMPTY_SLOT;
754
755 for (i = 0; i < q->maxflows; i++) {
756 slot_queue_init(&q->slots[i]);
757 sfq_link(q, i);
758 }
759 if (q->limit >= 1)
760 sch->flags |= TCQ_F_CAN_BYPASS;
761 else
762 sch->flags &= ~TCQ_F_CAN_BYPASS;
763 return 0;
764 }
765
766 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
767 {
768 struct sfq_sched_data *q = qdisc_priv(sch);
769 unsigned char *b = skb_tail_pointer(skb);
770 struct tc_sfq_qopt_v1 opt;
771 struct red_parms *p = q->red_parms;
772
773 memset(&opt, 0, sizeof(opt));
774 opt.v0.quantum = q->quantum;
775 opt.v0.perturb_period = q->perturb_period / HZ;
776 opt.v0.limit = q->limit;
777 opt.v0.divisor = q->divisor;
778 opt.v0.flows = q->maxflows;
779 opt.depth = q->maxdepth;
780 opt.headdrop = q->headdrop;
781
782 if (p) {
783 opt.qth_min = p->qth_min >> p->Wlog;
784 opt.qth_max = p->qth_max >> p->Wlog;
785 opt.Wlog = p->Wlog;
786 opt.Plog = p->Plog;
787 opt.Scell_log = p->Scell_log;
788 opt.max_P = p->max_P;
789 }
790 memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
791 opt.flags = q->flags;
792
793 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
794 goto nla_put_failure;
795
796 return skb->len;
797
798 nla_put_failure:
799 nlmsg_trim(skb, b);
800 return -1;
801 }
802
803 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
804 {
805 return NULL;
806 }
807
808 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
809 {
810 return 0;
811 }
812
813 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
814 u32 classid)
815 {
816 /* we cannot bypass queue discipline anymore */
817 sch->flags &= ~TCQ_F_CAN_BYPASS;
818 return 0;
819 }
820
821 static void sfq_put(struct Qdisc *q, unsigned long cl)
822 {
823 }
824
825 static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl)
826 {
827 struct sfq_sched_data *q = qdisc_priv(sch);
828
829 if (cl)
830 return NULL;
831 return q->block;
832 }
833
834 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
835 struct sk_buff *skb, struct tcmsg *tcm)
836 {
837 tcm->tcm_handle |= TC_H_MIN(cl);
838 return 0;
839 }
840
841 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
842 struct gnet_dump *d)
843 {
844 struct sfq_sched_data *q = qdisc_priv(sch);
845 sfq_index idx = q->ht[cl - 1];
846 struct gnet_stats_queue qs = { 0 };
847 struct tc_sfq_xstats xstats = { 0 };
848
849 if (idx != SFQ_EMPTY_SLOT) {
850 const struct sfq_slot *slot = &q->slots[idx];
851
852 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
853 qs.qlen = slot->qlen;
854 qs.backlog = slot->backlog;
855 }
856 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
857 return -1;
858 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
859 }
860
861 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
862 {
863 struct sfq_sched_data *q = qdisc_priv(sch);
864 unsigned int i;
865
866 if (arg->stop)
867 return;
868
869 for (i = 0; i < q->divisor; i++) {
870 if (q->ht[i] == SFQ_EMPTY_SLOT ||
871 arg->count < arg->skip) {
872 arg->count++;
873 continue;
874 }
875 if (arg->fn(sch, i + 1, arg) < 0) {
876 arg->stop = 1;
877 break;
878 }
879 arg->count++;
880 }
881 }
882
883 static const struct Qdisc_class_ops sfq_class_ops = {
884 .leaf = sfq_leaf,
885 .get = sfq_get,
886 .put = sfq_put,
887 .tcf_block = sfq_tcf_block,
888 .bind_tcf = sfq_bind,
889 .unbind_tcf = sfq_put,
890 .dump = sfq_dump_class,
891 .dump_stats = sfq_dump_class_stats,
892 .walk = sfq_walk,
893 };
894
895 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
896 .cl_ops = &sfq_class_ops,
897 .id = "sfq",
898 .priv_size = sizeof(struct sfq_sched_data),
899 .enqueue = sfq_enqueue,
900 .dequeue = sfq_dequeue,
901 .peek = qdisc_peek_dequeued,
902 .init = sfq_init,
903 .reset = sfq_reset,
904 .destroy = sfq_destroy,
905 .change = NULL,
906 .dump = sfq_dump,
907 .owner = THIS_MODULE,
908 };
909
910 static int __init sfq_module_init(void)
911 {
912 return register_qdisc(&sfq_qdisc_ops);
913 }
914 static void __exit sfq_module_exit(void)
915 {
916 unregister_qdisc(&sfq_qdisc_ops);
917 }
918 module_init(sfq_module_init)
919 module_exit(sfq_module_exit)
920 MODULE_LICENSE("GPL");