]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sched/sch_sfq.c
Merge tag 'master-2014-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[mirror_ubuntu-artful-kernel.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/jhash.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/flow_keys.h>
27 #include <net/red.h>
28
29
30 /* Stochastic Fairness Queuing algorithm.
31 =======================================
32
33 Source:
34 Paul E. McKenney "Stochastic Fairness Queuing",
35 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
36
37 Paul E. McKenney "Stochastic Fairness Queuing",
38 "Interworking: Research and Experience", v.2, 1991, p.113-131.
39
40
41 See also:
42 M. Shreedhar and George Varghese "Efficient Fair
43 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
44
45
46 This is not the thing that is usually called (W)FQ nowadays.
47 It does not use any timestamp mechanism, but instead
48 processes queues in round-robin order.
49
50 ADVANTAGE:
51
52 - It is very cheap. Both CPU and memory requirements are minimal.
53
54 DRAWBACKS:
55
56 - "Stochastic" -> It is not 100% fair.
57 When hash collisions occur, several flows are considered as one.
58
59 - "Round-robin" -> It introduces larger delays than virtual clock
60 based schemes, and should not be used for isolating interactive
61 traffic from non-interactive. It means, that this scheduler
62 should be used as leaf of CBQ or P3, which put interactive traffic
63 to higher priority band.
64
65 We still need true WFQ for top level CSZ, but using WFQ
66 for the best effort traffic is absolutely pointless:
67 SFQ is superior for this purpose.
68
69 IMPLEMENTATION:
70 This implementation limits :
71 - maximal queue length per flow to 127 packets.
72 - max mtu to 2^18-1;
73 - max 65408 flows,
74 - number of hash buckets to 65536.
75
76 It is easy to increase these values, but not in flight. */
77
78 #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
79 #define SFQ_DEFAULT_FLOWS 128
80 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
81 #define SFQ_EMPTY_SLOT 0xffff
82 #define SFQ_DEFAULT_HASH_DIVISOR 1024
83
84 /* We use 16 bits to store allot, and want to handle packets up to 64K
85 * Scale allot by 8 (1<<3) so that no overflow occurs.
86 */
87 #define SFQ_ALLOT_SHIFT 3
88 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
89
90 /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
91 typedef u16 sfq_index;
92
93 /*
94 * We dont use pointers to save space.
95 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
96 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
97 * are 'pointers' to dep[] array
98 */
99 struct sfq_head {
100 sfq_index next;
101 sfq_index prev;
102 };
103
104 struct sfq_slot {
105 struct sk_buff *skblist_next;
106 struct sk_buff *skblist_prev;
107 sfq_index qlen; /* number of skbs in skblist */
108 sfq_index next; /* next slot in sfq RR chain */
109 struct sfq_head dep; /* anchor in dep[] chains */
110 unsigned short hash; /* hash value (index in ht[]) */
111 short allot; /* credit for this slot */
112
113 unsigned int backlog;
114 struct red_vars vars;
115 };
116
117 struct sfq_sched_data {
118 /* frequently used fields */
119 int limit; /* limit of total number of packets in this qdisc */
120 unsigned int divisor; /* number of slots in hash table */
121 u8 headdrop;
122 u8 maxdepth; /* limit of packets per flow */
123
124 u32 perturbation;
125 u8 cur_depth; /* depth of longest slot */
126 u8 flags;
127 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
128 struct tcf_proto __rcu *filter_list;
129 sfq_index *ht; /* Hash table ('divisor' slots) */
130 struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
131
132 struct red_parms *red_parms;
133 struct tc_sfqred_stats stats;
134 struct sfq_slot *tail; /* current slot in round */
135
136 struct sfq_head dep[SFQ_MAX_DEPTH + 1];
137 /* Linked lists of slots, indexed by depth
138 * dep[0] : list of unused flows
139 * dep[1] : list of flows with 1 packet
140 * dep[X] : list of flows with X packets
141 */
142
143 unsigned int maxflows; /* number of flows in flows array */
144 int perturb_period;
145 unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
146 struct timer_list perturb_timer;
147 };
148
149 /*
150 * sfq_head are either in a sfq_slot or in dep[] array
151 */
152 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
153 {
154 if (val < SFQ_MAX_FLOWS)
155 return &q->slots[val].dep;
156 return &q->dep[val - SFQ_MAX_FLOWS];
157 }
158
159 /*
160 * In order to be able to quickly rehash our queue when timer changes
161 * q->perturbation, we store flow_keys in skb->cb[]
162 */
163 struct sfq_skb_cb {
164 struct flow_keys keys;
165 };
166
167 static inline struct sfq_skb_cb *sfq_skb_cb(const struct sk_buff *skb)
168 {
169 qdisc_cb_private_validate(skb, sizeof(struct sfq_skb_cb));
170 return (struct sfq_skb_cb *)qdisc_skb_cb(skb)->data;
171 }
172
173 static unsigned int sfq_hash(const struct sfq_sched_data *q,
174 const struct sk_buff *skb)
175 {
176 const struct flow_keys *keys = &sfq_skb_cb(skb)->keys;
177 unsigned int hash;
178
179 hash = jhash_3words((__force u32)keys->dst,
180 (__force u32)keys->src ^ keys->ip_proto,
181 (__force u32)keys->ports, q->perturbation);
182 return hash & (q->divisor - 1);
183 }
184
185 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
186 int *qerr)
187 {
188 struct sfq_sched_data *q = qdisc_priv(sch);
189 struct tcf_result res;
190 struct tcf_proto *fl;
191 int result;
192
193 if (TC_H_MAJ(skb->priority) == sch->handle &&
194 TC_H_MIN(skb->priority) > 0 &&
195 TC_H_MIN(skb->priority) <= q->divisor)
196 return TC_H_MIN(skb->priority);
197
198 fl = rcu_dereference_bh(q->filter_list);
199 if (!fl) {
200 skb_flow_dissect(skb, &sfq_skb_cb(skb)->keys);
201 return sfq_hash(q, skb) + 1;
202 }
203
204 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
205 result = tc_classify(skb, fl, &res);
206 if (result >= 0) {
207 #ifdef CONFIG_NET_CLS_ACT
208 switch (result) {
209 case TC_ACT_STOLEN:
210 case TC_ACT_QUEUED:
211 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
212 case TC_ACT_SHOT:
213 return 0;
214 }
215 #endif
216 if (TC_H_MIN(res.classid) <= q->divisor)
217 return TC_H_MIN(res.classid);
218 }
219 return 0;
220 }
221
222 /*
223 * x : slot number [0 .. SFQ_MAX_FLOWS - 1]
224 */
225 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
226 {
227 sfq_index p, n;
228 struct sfq_slot *slot = &q->slots[x];
229 int qlen = slot->qlen;
230
231 p = qlen + SFQ_MAX_FLOWS;
232 n = q->dep[qlen].next;
233
234 slot->dep.next = n;
235 slot->dep.prev = p;
236
237 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
238 sfq_dep_head(q, n)->prev = x;
239 }
240
241 #define sfq_unlink(q, x, n, p) \
242 do { \
243 n = q->slots[x].dep.next; \
244 p = q->slots[x].dep.prev; \
245 sfq_dep_head(q, p)->next = n; \
246 sfq_dep_head(q, n)->prev = p; \
247 } while (0)
248
249
250 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
251 {
252 sfq_index p, n;
253 int d;
254
255 sfq_unlink(q, x, n, p);
256
257 d = q->slots[x].qlen--;
258 if (n == p && q->cur_depth == d)
259 q->cur_depth--;
260 sfq_link(q, x);
261 }
262
263 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
264 {
265 sfq_index p, n;
266 int d;
267
268 sfq_unlink(q, x, n, p);
269
270 d = ++q->slots[x].qlen;
271 if (q->cur_depth < d)
272 q->cur_depth = d;
273 sfq_link(q, x);
274 }
275
276 /* helper functions : might be changed when/if skb use a standard list_head */
277
278 /* remove one skb from tail of slot queue */
279 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
280 {
281 struct sk_buff *skb = slot->skblist_prev;
282
283 slot->skblist_prev = skb->prev;
284 skb->prev->next = (struct sk_buff *)slot;
285 skb->next = skb->prev = NULL;
286 return skb;
287 }
288
289 /* remove one skb from head of slot queue */
290 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
291 {
292 struct sk_buff *skb = slot->skblist_next;
293
294 slot->skblist_next = skb->next;
295 skb->next->prev = (struct sk_buff *)slot;
296 skb->next = skb->prev = NULL;
297 return skb;
298 }
299
300 static inline void slot_queue_init(struct sfq_slot *slot)
301 {
302 memset(slot, 0, sizeof(*slot));
303 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
304 }
305
306 /* add skb to slot queue (tail add) */
307 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
308 {
309 skb->prev = slot->skblist_prev;
310 skb->next = (struct sk_buff *)slot;
311 slot->skblist_prev->next = skb;
312 slot->skblist_prev = skb;
313 }
314
315 static unsigned int sfq_drop(struct Qdisc *sch)
316 {
317 struct sfq_sched_data *q = qdisc_priv(sch);
318 sfq_index x, d = q->cur_depth;
319 struct sk_buff *skb;
320 unsigned int len;
321 struct sfq_slot *slot;
322
323 /* Queue is full! Find the longest slot and drop tail packet from it */
324 if (d > 1) {
325 x = q->dep[d].next;
326 slot = &q->slots[x];
327 drop:
328 skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
329 len = qdisc_pkt_len(skb);
330 slot->backlog -= len;
331 sfq_dec(q, x);
332 kfree_skb(skb);
333 sch->q.qlen--;
334 sch->qstats.drops++;
335 sch->qstats.backlog -= len;
336 return len;
337 }
338
339 if (d == 1) {
340 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
341 x = q->tail->next;
342 slot = &q->slots[x];
343 q->tail->next = slot->next;
344 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
345 goto drop;
346 }
347
348 return 0;
349 }
350
351 /* Is ECN parameter configured */
352 static int sfq_prob_mark(const struct sfq_sched_data *q)
353 {
354 return q->flags & TC_RED_ECN;
355 }
356
357 /* Should packets over max threshold just be marked */
358 static int sfq_hard_mark(const struct sfq_sched_data *q)
359 {
360 return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
361 }
362
363 static int sfq_headdrop(const struct sfq_sched_data *q)
364 {
365 return q->headdrop;
366 }
367
368 static int
369 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
370 {
371 struct sfq_sched_data *q = qdisc_priv(sch);
372 unsigned int hash;
373 sfq_index x, qlen;
374 struct sfq_slot *slot;
375 int uninitialized_var(ret);
376 struct sk_buff *head;
377 int delta;
378
379 hash = sfq_classify(skb, sch, &ret);
380 if (hash == 0) {
381 if (ret & __NET_XMIT_BYPASS)
382 sch->qstats.drops++;
383 kfree_skb(skb);
384 return ret;
385 }
386 hash--;
387
388 x = q->ht[hash];
389 slot = &q->slots[x];
390 if (x == SFQ_EMPTY_SLOT) {
391 x = q->dep[0].next; /* get a free slot */
392 if (x >= SFQ_MAX_FLOWS)
393 return qdisc_drop(skb, sch);
394 q->ht[hash] = x;
395 slot = &q->slots[x];
396 slot->hash = hash;
397 slot->backlog = 0; /* should already be 0 anyway... */
398 red_set_vars(&slot->vars);
399 goto enqueue;
400 }
401 if (q->red_parms) {
402 slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
403 &slot->vars,
404 slot->backlog);
405 switch (red_action(q->red_parms,
406 &slot->vars,
407 slot->vars.qavg)) {
408 case RED_DONT_MARK:
409 break;
410
411 case RED_PROB_MARK:
412 sch->qstats.overlimits++;
413 if (sfq_prob_mark(q)) {
414 /* We know we have at least one packet in queue */
415 if (sfq_headdrop(q) &&
416 INET_ECN_set_ce(slot->skblist_next)) {
417 q->stats.prob_mark_head++;
418 break;
419 }
420 if (INET_ECN_set_ce(skb)) {
421 q->stats.prob_mark++;
422 break;
423 }
424 }
425 q->stats.prob_drop++;
426 goto congestion_drop;
427
428 case RED_HARD_MARK:
429 sch->qstats.overlimits++;
430 if (sfq_hard_mark(q)) {
431 /* We know we have at least one packet in queue */
432 if (sfq_headdrop(q) &&
433 INET_ECN_set_ce(slot->skblist_next)) {
434 q->stats.forced_mark_head++;
435 break;
436 }
437 if (INET_ECN_set_ce(skb)) {
438 q->stats.forced_mark++;
439 break;
440 }
441 }
442 q->stats.forced_drop++;
443 goto congestion_drop;
444 }
445 }
446
447 if (slot->qlen >= q->maxdepth) {
448 congestion_drop:
449 if (!sfq_headdrop(q))
450 return qdisc_drop(skb, sch);
451
452 /* We know we have at least one packet in queue */
453 head = slot_dequeue_head(slot);
454 delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
455 sch->qstats.backlog -= delta;
456 slot->backlog -= delta;
457 qdisc_drop(head, sch);
458
459 slot_queue_add(slot, skb);
460 return NET_XMIT_CN;
461 }
462
463 enqueue:
464 sch->qstats.backlog += qdisc_pkt_len(skb);
465 slot->backlog += qdisc_pkt_len(skb);
466 slot_queue_add(slot, skb);
467 sfq_inc(q, x);
468 if (slot->qlen == 1) { /* The flow is new */
469 if (q->tail == NULL) { /* It is the first flow */
470 slot->next = x;
471 } else {
472 slot->next = q->tail->next;
473 q->tail->next = x;
474 }
475 /* We put this flow at the end of our flow list.
476 * This might sound unfair for a new flow to wait after old ones,
477 * but we could endup servicing new flows only, and freeze old ones.
478 */
479 q->tail = slot;
480 /* We could use a bigger initial quantum for new flows */
481 slot->allot = q->scaled_quantum;
482 }
483 if (++sch->q.qlen <= q->limit)
484 return NET_XMIT_SUCCESS;
485
486 qlen = slot->qlen;
487 sfq_drop(sch);
488 /* Return Congestion Notification only if we dropped a packet
489 * from this flow.
490 */
491 if (qlen != slot->qlen)
492 return NET_XMIT_CN;
493
494 /* As we dropped a packet, better let upper stack know this */
495 qdisc_tree_decrease_qlen(sch, 1);
496 return NET_XMIT_SUCCESS;
497 }
498
499 static struct sk_buff *
500 sfq_dequeue(struct Qdisc *sch)
501 {
502 struct sfq_sched_data *q = qdisc_priv(sch);
503 struct sk_buff *skb;
504 sfq_index a, next_a;
505 struct sfq_slot *slot;
506
507 /* No active slots */
508 if (q->tail == NULL)
509 return NULL;
510
511 next_slot:
512 a = q->tail->next;
513 slot = &q->slots[a];
514 if (slot->allot <= 0) {
515 q->tail = slot;
516 slot->allot += q->scaled_quantum;
517 goto next_slot;
518 }
519 skb = slot_dequeue_head(slot);
520 sfq_dec(q, a);
521 qdisc_bstats_update(sch, skb);
522 sch->q.qlen--;
523 sch->qstats.backlog -= qdisc_pkt_len(skb);
524 slot->backlog -= qdisc_pkt_len(skb);
525 /* Is the slot empty? */
526 if (slot->qlen == 0) {
527 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
528 next_a = slot->next;
529 if (a == next_a) {
530 q->tail = NULL; /* no more active slots */
531 return skb;
532 }
533 q->tail->next = next_a;
534 } else {
535 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
536 }
537 return skb;
538 }
539
540 static void
541 sfq_reset(struct Qdisc *sch)
542 {
543 struct sk_buff *skb;
544
545 while ((skb = sfq_dequeue(sch)) != NULL)
546 kfree_skb(skb);
547 }
548
549 /*
550 * When q->perturbation is changed, we rehash all queued skbs
551 * to avoid OOO (Out Of Order) effects.
552 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
553 * counters.
554 */
555 static void sfq_rehash(struct Qdisc *sch)
556 {
557 struct sfq_sched_data *q = qdisc_priv(sch);
558 struct sk_buff *skb;
559 int i;
560 struct sfq_slot *slot;
561 struct sk_buff_head list;
562 int dropped = 0;
563
564 __skb_queue_head_init(&list);
565
566 for (i = 0; i < q->maxflows; i++) {
567 slot = &q->slots[i];
568 if (!slot->qlen)
569 continue;
570 while (slot->qlen) {
571 skb = slot_dequeue_head(slot);
572 sfq_dec(q, i);
573 __skb_queue_tail(&list, skb);
574 }
575 slot->backlog = 0;
576 red_set_vars(&slot->vars);
577 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
578 }
579 q->tail = NULL;
580
581 while ((skb = __skb_dequeue(&list)) != NULL) {
582 unsigned int hash = sfq_hash(q, skb);
583 sfq_index x = q->ht[hash];
584
585 slot = &q->slots[x];
586 if (x == SFQ_EMPTY_SLOT) {
587 x = q->dep[0].next; /* get a free slot */
588 if (x >= SFQ_MAX_FLOWS) {
589 drop: sch->qstats.backlog -= qdisc_pkt_len(skb);
590 kfree_skb(skb);
591 dropped++;
592 continue;
593 }
594 q->ht[hash] = x;
595 slot = &q->slots[x];
596 slot->hash = hash;
597 }
598 if (slot->qlen >= q->maxdepth)
599 goto drop;
600 slot_queue_add(slot, skb);
601 if (q->red_parms)
602 slot->vars.qavg = red_calc_qavg(q->red_parms,
603 &slot->vars,
604 slot->backlog);
605 slot->backlog += qdisc_pkt_len(skb);
606 sfq_inc(q, x);
607 if (slot->qlen == 1) { /* The flow is new */
608 if (q->tail == NULL) { /* It is the first flow */
609 slot->next = x;
610 } else {
611 slot->next = q->tail->next;
612 q->tail->next = x;
613 }
614 q->tail = slot;
615 slot->allot = q->scaled_quantum;
616 }
617 }
618 sch->q.qlen -= dropped;
619 qdisc_tree_decrease_qlen(sch, dropped);
620 }
621
622 static void sfq_perturbation(unsigned long arg)
623 {
624 struct Qdisc *sch = (struct Qdisc *)arg;
625 struct sfq_sched_data *q = qdisc_priv(sch);
626 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
627
628 spin_lock(root_lock);
629 q->perturbation = prandom_u32();
630 if (!q->filter_list && q->tail)
631 sfq_rehash(sch);
632 spin_unlock(root_lock);
633
634 if (q->perturb_period)
635 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
636 }
637
638 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
639 {
640 struct sfq_sched_data *q = qdisc_priv(sch);
641 struct tc_sfq_qopt *ctl = nla_data(opt);
642 struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
643 unsigned int qlen;
644 struct red_parms *p = NULL;
645
646 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
647 return -EINVAL;
648 if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
649 ctl_v1 = nla_data(opt);
650 if (ctl->divisor &&
651 (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
652 return -EINVAL;
653 if (ctl_v1 && ctl_v1->qth_min) {
654 p = kmalloc(sizeof(*p), GFP_KERNEL);
655 if (!p)
656 return -ENOMEM;
657 }
658 sch_tree_lock(sch);
659 if (ctl->quantum) {
660 q->quantum = ctl->quantum;
661 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
662 }
663 q->perturb_period = ctl->perturb_period * HZ;
664 if (ctl->flows)
665 q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
666 if (ctl->divisor) {
667 q->divisor = ctl->divisor;
668 q->maxflows = min_t(u32, q->maxflows, q->divisor);
669 }
670 if (ctl_v1) {
671 if (ctl_v1->depth)
672 q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
673 if (p) {
674 swap(q->red_parms, p);
675 red_set_parms(q->red_parms,
676 ctl_v1->qth_min, ctl_v1->qth_max,
677 ctl_v1->Wlog,
678 ctl_v1->Plog, ctl_v1->Scell_log,
679 NULL,
680 ctl_v1->max_P);
681 }
682 q->flags = ctl_v1->flags;
683 q->headdrop = ctl_v1->headdrop;
684 }
685 if (ctl->limit) {
686 q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
687 q->maxflows = min_t(u32, q->maxflows, q->limit);
688 }
689
690 qlen = sch->q.qlen;
691 while (sch->q.qlen > q->limit)
692 sfq_drop(sch);
693 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
694
695 del_timer(&q->perturb_timer);
696 if (q->perturb_period) {
697 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
698 q->perturbation = prandom_u32();
699 }
700 sch_tree_unlock(sch);
701 kfree(p);
702 return 0;
703 }
704
705 static void *sfq_alloc(size_t sz)
706 {
707 void *ptr = kmalloc(sz, GFP_KERNEL | __GFP_NOWARN);
708
709 if (!ptr)
710 ptr = vmalloc(sz);
711 return ptr;
712 }
713
714 static void sfq_free(void *addr)
715 {
716 kvfree(addr);
717 }
718
719 static void sfq_destroy(struct Qdisc *sch)
720 {
721 struct sfq_sched_data *q = qdisc_priv(sch);
722
723 tcf_destroy_chain(&q->filter_list);
724 q->perturb_period = 0;
725 del_timer_sync(&q->perturb_timer);
726 sfq_free(q->ht);
727 sfq_free(q->slots);
728 kfree(q->red_parms);
729 }
730
731 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
732 {
733 struct sfq_sched_data *q = qdisc_priv(sch);
734 int i;
735
736 q->perturb_timer.function = sfq_perturbation;
737 q->perturb_timer.data = (unsigned long)sch;
738 init_timer_deferrable(&q->perturb_timer);
739
740 for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
741 q->dep[i].next = i + SFQ_MAX_FLOWS;
742 q->dep[i].prev = i + SFQ_MAX_FLOWS;
743 }
744
745 q->limit = SFQ_MAX_DEPTH;
746 q->maxdepth = SFQ_MAX_DEPTH;
747 q->cur_depth = 0;
748 q->tail = NULL;
749 q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
750 q->maxflows = SFQ_DEFAULT_FLOWS;
751 q->quantum = psched_mtu(qdisc_dev(sch));
752 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
753 q->perturb_period = 0;
754 q->perturbation = prandom_u32();
755
756 if (opt) {
757 int err = sfq_change(sch, opt);
758 if (err)
759 return err;
760 }
761
762 q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
763 q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
764 if (!q->ht || !q->slots) {
765 sfq_destroy(sch);
766 return -ENOMEM;
767 }
768 for (i = 0; i < q->divisor; i++)
769 q->ht[i] = SFQ_EMPTY_SLOT;
770
771 for (i = 0; i < q->maxflows; i++) {
772 slot_queue_init(&q->slots[i]);
773 sfq_link(q, i);
774 }
775 if (q->limit >= 1)
776 sch->flags |= TCQ_F_CAN_BYPASS;
777 else
778 sch->flags &= ~TCQ_F_CAN_BYPASS;
779 return 0;
780 }
781
782 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
783 {
784 struct sfq_sched_data *q = qdisc_priv(sch);
785 unsigned char *b = skb_tail_pointer(skb);
786 struct tc_sfq_qopt_v1 opt;
787 struct red_parms *p = q->red_parms;
788
789 memset(&opt, 0, sizeof(opt));
790 opt.v0.quantum = q->quantum;
791 opt.v0.perturb_period = q->perturb_period / HZ;
792 opt.v0.limit = q->limit;
793 opt.v0.divisor = q->divisor;
794 opt.v0.flows = q->maxflows;
795 opt.depth = q->maxdepth;
796 opt.headdrop = q->headdrop;
797
798 if (p) {
799 opt.qth_min = p->qth_min >> p->Wlog;
800 opt.qth_max = p->qth_max >> p->Wlog;
801 opt.Wlog = p->Wlog;
802 opt.Plog = p->Plog;
803 opt.Scell_log = p->Scell_log;
804 opt.max_P = p->max_P;
805 }
806 memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
807 opt.flags = q->flags;
808
809 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
810 goto nla_put_failure;
811
812 return skb->len;
813
814 nla_put_failure:
815 nlmsg_trim(skb, b);
816 return -1;
817 }
818
819 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
820 {
821 return NULL;
822 }
823
824 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
825 {
826 return 0;
827 }
828
829 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
830 u32 classid)
831 {
832 /* we cannot bypass queue discipline anymore */
833 sch->flags &= ~TCQ_F_CAN_BYPASS;
834 return 0;
835 }
836
837 static void sfq_put(struct Qdisc *q, unsigned long cl)
838 {
839 }
840
841 static struct tcf_proto __rcu **sfq_find_tcf(struct Qdisc *sch,
842 unsigned long cl)
843 {
844 struct sfq_sched_data *q = qdisc_priv(sch);
845
846 if (cl)
847 return NULL;
848 return &q->filter_list;
849 }
850
851 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
852 struct sk_buff *skb, struct tcmsg *tcm)
853 {
854 tcm->tcm_handle |= TC_H_MIN(cl);
855 return 0;
856 }
857
858 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
859 struct gnet_dump *d)
860 {
861 struct sfq_sched_data *q = qdisc_priv(sch);
862 sfq_index idx = q->ht[cl - 1];
863 struct gnet_stats_queue qs = { 0 };
864 struct tc_sfq_xstats xstats = { 0 };
865
866 if (idx != SFQ_EMPTY_SLOT) {
867 const struct sfq_slot *slot = &q->slots[idx];
868
869 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
870 qs.qlen = slot->qlen;
871 qs.backlog = slot->backlog;
872 }
873 if (gnet_stats_copy_queue(d, &qs) < 0)
874 return -1;
875 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
876 }
877
878 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
879 {
880 struct sfq_sched_data *q = qdisc_priv(sch);
881 unsigned int i;
882
883 if (arg->stop)
884 return;
885
886 for (i = 0; i < q->divisor; i++) {
887 if (q->ht[i] == SFQ_EMPTY_SLOT ||
888 arg->count < arg->skip) {
889 arg->count++;
890 continue;
891 }
892 if (arg->fn(sch, i + 1, arg) < 0) {
893 arg->stop = 1;
894 break;
895 }
896 arg->count++;
897 }
898 }
899
900 static const struct Qdisc_class_ops sfq_class_ops = {
901 .leaf = sfq_leaf,
902 .get = sfq_get,
903 .put = sfq_put,
904 .tcf_chain = sfq_find_tcf,
905 .bind_tcf = sfq_bind,
906 .unbind_tcf = sfq_put,
907 .dump = sfq_dump_class,
908 .dump_stats = sfq_dump_class_stats,
909 .walk = sfq_walk,
910 };
911
912 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
913 .cl_ops = &sfq_class_ops,
914 .id = "sfq",
915 .priv_size = sizeof(struct sfq_sched_data),
916 .enqueue = sfq_enqueue,
917 .dequeue = sfq_dequeue,
918 .peek = qdisc_peek_dequeued,
919 .drop = sfq_drop,
920 .init = sfq_init,
921 .reset = sfq_reset,
922 .destroy = sfq_destroy,
923 .change = NULL,
924 .dump = sfq_dump,
925 .owner = THIS_MODULE,
926 };
927
928 static int __init sfq_module_init(void)
929 {
930 return register_qdisc(&sfq_qdisc_ops);
931 }
932 static void __exit sfq_module_exit(void)
933 {
934 unregister_qdisc(&sfq_qdisc_ops);
935 }
936 module_init(sfq_module_init)
937 module_exit(sfq_module_exit)
938 MODULE_LICENSE("GPL");