]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/sch_tbf.c
net: sched: ife: signal not finding metaid
[mirror_ubuntu-bionic-kernel.git] / net / sched / sch_tbf.c
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
24
25
26 /* Simple Token Bucket Filter.
27 =======================================
28
29 SOURCE.
30 -------
31
32 None.
33
34 Description.
35 ------------
36
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
40
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
44
45 s_i+....+s_k <= B + R*(t_k - t_i)
46
47 Algorithm.
48 ----------
49
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51
52 N(t+delta) = min{B/R, N(t) + delta}
53
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
57
58 N(t_* + 0) = N(t_* - 0) - S/R.
59
60
61
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
66
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
69
70 When TBF works in reshaping mode, latency is estimated as:
71
72 lat = max ((L-B)/R, (L-M)/P)
73
74
75 NOTES.
76 ------
77
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
84
85
86 This means, that with depth B, the maximal rate is
87
88 R_crit = B*HZ
89
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
95
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
99 */
100
101 struct tbf_sched_data {
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 u32 max_size;
105 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
106 s64 mtu;
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
109
110 /* Variables */
111 s64 tokens; /* Current number of B tokens */
112 s64 ptokens; /* Current number of P tokens */
113 s64 t_c; /* Time check-point */
114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog; /* Watchdog timer */
116 };
117
118
119 /* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
121 */
122 static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123 u64 time_in_ns)
124 {
125 /* The formula is :
126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127 */
128 u64 len = time_in_ns * r->rate_bytes_ps;
129
130 do_div(len, NSEC_PER_SEC);
131
132 if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133 do_div(len, 53);
134 len = len * 48;
135 }
136
137 if (len > r->overhead)
138 len -= r->overhead;
139 else
140 len = 0;
141
142 return len;
143 }
144
145 /* GSO packet is too big, segment it so that tbf can transmit
146 * each segment in time
147 */
148 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
149 struct sk_buff **to_free)
150 {
151 struct tbf_sched_data *q = qdisc_priv(sch);
152 struct sk_buff *segs, *nskb;
153 netdev_features_t features = netif_skb_features(skb);
154 unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
155 int ret, nb;
156
157 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
158
159 if (IS_ERR_OR_NULL(segs))
160 return qdisc_drop(skb, sch, to_free);
161
162 nb = 0;
163 while (segs) {
164 nskb = segs->next;
165 segs->next = NULL;
166 qdisc_skb_cb(segs)->pkt_len = segs->len;
167 len += segs->len;
168 ret = qdisc_enqueue(segs, q->qdisc, to_free);
169 if (ret != NET_XMIT_SUCCESS) {
170 if (net_xmit_drop_count(ret))
171 qdisc_qstats_drop(sch);
172 } else {
173 nb++;
174 }
175 segs = nskb;
176 }
177 sch->q.qlen += nb;
178 if (nb > 1)
179 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
180 consume_skb(skb);
181 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
182 }
183
184 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
185 struct sk_buff **to_free)
186 {
187 struct tbf_sched_data *q = qdisc_priv(sch);
188 int ret;
189
190 if (qdisc_pkt_len(skb) > q->max_size) {
191 if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
192 return tbf_segment(skb, sch, to_free);
193 return qdisc_drop(skb, sch, to_free);
194 }
195 ret = qdisc_enqueue(skb, q->qdisc, to_free);
196 if (ret != NET_XMIT_SUCCESS) {
197 if (net_xmit_drop_count(ret))
198 qdisc_qstats_drop(sch);
199 return ret;
200 }
201
202 qdisc_qstats_backlog_inc(sch, skb);
203 sch->q.qlen++;
204 return NET_XMIT_SUCCESS;
205 }
206
207 static bool tbf_peak_present(const struct tbf_sched_data *q)
208 {
209 return q->peak.rate_bytes_ps;
210 }
211
212 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
213 {
214 struct tbf_sched_data *q = qdisc_priv(sch);
215 struct sk_buff *skb;
216
217 skb = q->qdisc->ops->peek(q->qdisc);
218
219 if (skb) {
220 s64 now;
221 s64 toks;
222 s64 ptoks = 0;
223 unsigned int len = qdisc_pkt_len(skb);
224
225 now = ktime_get_ns();
226 toks = min_t(s64, now - q->t_c, q->buffer);
227
228 if (tbf_peak_present(q)) {
229 ptoks = toks + q->ptokens;
230 if (ptoks > q->mtu)
231 ptoks = q->mtu;
232 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
233 }
234 toks += q->tokens;
235 if (toks > q->buffer)
236 toks = q->buffer;
237 toks -= (s64) psched_l2t_ns(&q->rate, len);
238
239 if ((toks|ptoks) >= 0) {
240 skb = qdisc_dequeue_peeked(q->qdisc);
241 if (unlikely(!skb))
242 return NULL;
243
244 q->t_c = now;
245 q->tokens = toks;
246 q->ptokens = ptoks;
247 qdisc_qstats_backlog_dec(sch, skb);
248 sch->q.qlen--;
249 qdisc_bstats_update(sch, skb);
250 return skb;
251 }
252
253 qdisc_watchdog_schedule_ns(&q->watchdog,
254 now + max_t(long, -toks, -ptoks));
255
256 /* Maybe we have a shorter packet in the queue,
257 which can be sent now. It sounds cool,
258 but, however, this is wrong in principle.
259 We MUST NOT reorder packets under these circumstances.
260
261 Really, if we split the flow into independent
262 subflows, it would be a very good solution.
263 This is the main idea of all FQ algorithms
264 (cf. CSZ, HPFQ, HFSC)
265 */
266
267 qdisc_qstats_overlimit(sch);
268 }
269 return NULL;
270 }
271
272 static void tbf_reset(struct Qdisc *sch)
273 {
274 struct tbf_sched_data *q = qdisc_priv(sch);
275
276 qdisc_reset(q->qdisc);
277 sch->qstats.backlog = 0;
278 sch->q.qlen = 0;
279 q->t_c = ktime_get_ns();
280 q->tokens = q->buffer;
281 q->ptokens = q->mtu;
282 qdisc_watchdog_cancel(&q->watchdog);
283 }
284
285 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
286 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
287 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
288 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
289 [TCA_TBF_RATE64] = { .type = NLA_U64 },
290 [TCA_TBF_PRATE64] = { .type = NLA_U64 },
291 [TCA_TBF_BURST] = { .type = NLA_U32 },
292 [TCA_TBF_PBURST] = { .type = NLA_U32 },
293 };
294
295 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
296 {
297 int err;
298 struct tbf_sched_data *q = qdisc_priv(sch);
299 struct nlattr *tb[TCA_TBF_MAX + 1];
300 struct tc_tbf_qopt *qopt;
301 struct Qdisc *child = NULL;
302 struct psched_ratecfg rate;
303 struct psched_ratecfg peak;
304 u64 max_size;
305 s64 buffer, mtu;
306 u64 rate64 = 0, prate64 = 0;
307
308 err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy, NULL);
309 if (err < 0)
310 return err;
311
312 err = -EINVAL;
313 if (tb[TCA_TBF_PARMS] == NULL)
314 goto done;
315
316 qopt = nla_data(tb[TCA_TBF_PARMS]);
317 if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
318 qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
319 tb[TCA_TBF_RTAB]));
320
321 if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
322 qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
323 tb[TCA_TBF_PTAB]));
324
325 buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
326 mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
327
328 if (tb[TCA_TBF_RATE64])
329 rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
330 psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
331
332 if (tb[TCA_TBF_BURST]) {
333 max_size = nla_get_u32(tb[TCA_TBF_BURST]);
334 buffer = psched_l2t_ns(&rate, max_size);
335 } else {
336 max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
337 }
338
339 if (qopt->peakrate.rate) {
340 if (tb[TCA_TBF_PRATE64])
341 prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
342 psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
343 if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
344 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
345 peak.rate_bytes_ps, rate.rate_bytes_ps);
346 err = -EINVAL;
347 goto done;
348 }
349
350 if (tb[TCA_TBF_PBURST]) {
351 u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
352 max_size = min_t(u32, max_size, pburst);
353 mtu = psched_l2t_ns(&peak, pburst);
354 } else {
355 max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
356 }
357 } else {
358 memset(&peak, 0, sizeof(peak));
359 }
360
361 if (max_size < psched_mtu(qdisc_dev(sch)))
362 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
363 max_size, qdisc_dev(sch)->name,
364 psched_mtu(qdisc_dev(sch)));
365
366 if (!max_size) {
367 err = -EINVAL;
368 goto done;
369 }
370
371 if (q->qdisc != &noop_qdisc) {
372 err = fifo_set_limit(q->qdisc, qopt->limit);
373 if (err)
374 goto done;
375 } else if (qopt->limit > 0) {
376 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
377 if (IS_ERR(child)) {
378 err = PTR_ERR(child);
379 goto done;
380 }
381 }
382
383 sch_tree_lock(sch);
384 if (child) {
385 qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
386 q->qdisc->qstats.backlog);
387 qdisc_destroy(q->qdisc);
388 q->qdisc = child;
389 if (child != &noop_qdisc)
390 qdisc_hash_add(child, true);
391 }
392 q->limit = qopt->limit;
393 if (tb[TCA_TBF_PBURST])
394 q->mtu = mtu;
395 else
396 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
397 q->max_size = max_size;
398 if (tb[TCA_TBF_BURST])
399 q->buffer = buffer;
400 else
401 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
402 q->tokens = q->buffer;
403 q->ptokens = q->mtu;
404
405 memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
406 memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
407
408 sch_tree_unlock(sch);
409 err = 0;
410 done:
411 return err;
412 }
413
414 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
415 {
416 struct tbf_sched_data *q = qdisc_priv(sch);
417
418 qdisc_watchdog_init(&q->watchdog, sch);
419 q->qdisc = &noop_qdisc;
420
421 if (opt == NULL)
422 return -EINVAL;
423
424 q->t_c = ktime_get_ns();
425
426 return tbf_change(sch, opt);
427 }
428
429 static void tbf_destroy(struct Qdisc *sch)
430 {
431 struct tbf_sched_data *q = qdisc_priv(sch);
432
433 qdisc_watchdog_cancel(&q->watchdog);
434 qdisc_destroy(q->qdisc);
435 }
436
437 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
438 {
439 struct tbf_sched_data *q = qdisc_priv(sch);
440 struct nlattr *nest;
441 struct tc_tbf_qopt opt;
442
443 sch->qstats.backlog = q->qdisc->qstats.backlog;
444 nest = nla_nest_start(skb, TCA_OPTIONS);
445 if (nest == NULL)
446 goto nla_put_failure;
447
448 opt.limit = q->limit;
449 psched_ratecfg_getrate(&opt.rate, &q->rate);
450 if (tbf_peak_present(q))
451 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
452 else
453 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
454 opt.mtu = PSCHED_NS2TICKS(q->mtu);
455 opt.buffer = PSCHED_NS2TICKS(q->buffer);
456 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
457 goto nla_put_failure;
458 if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
459 nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
460 TCA_TBF_PAD))
461 goto nla_put_failure;
462 if (tbf_peak_present(q) &&
463 q->peak.rate_bytes_ps >= (1ULL << 32) &&
464 nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
465 TCA_TBF_PAD))
466 goto nla_put_failure;
467
468 return nla_nest_end(skb, nest);
469
470 nla_put_failure:
471 nla_nest_cancel(skb, nest);
472 return -1;
473 }
474
475 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
476 struct sk_buff *skb, struct tcmsg *tcm)
477 {
478 struct tbf_sched_data *q = qdisc_priv(sch);
479
480 tcm->tcm_handle |= TC_H_MIN(1);
481 tcm->tcm_info = q->qdisc->handle;
482
483 return 0;
484 }
485
486 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
487 struct Qdisc **old)
488 {
489 struct tbf_sched_data *q = qdisc_priv(sch);
490
491 if (new == NULL)
492 new = &noop_qdisc;
493
494 *old = qdisc_replace(sch, new, &q->qdisc);
495 return 0;
496 }
497
498 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
499 {
500 struct tbf_sched_data *q = qdisc_priv(sch);
501 return q->qdisc;
502 }
503
504 static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
505 {
506 return 1;
507 }
508
509 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
510 {
511 if (!walker->stop) {
512 if (walker->count >= walker->skip)
513 if (walker->fn(sch, 1, walker) < 0) {
514 walker->stop = 1;
515 return;
516 }
517 walker->count++;
518 }
519 }
520
521 static const struct Qdisc_class_ops tbf_class_ops = {
522 .graft = tbf_graft,
523 .leaf = tbf_leaf,
524 .find = tbf_find,
525 .walk = tbf_walk,
526 .dump = tbf_dump_class,
527 };
528
529 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
530 .next = NULL,
531 .cl_ops = &tbf_class_ops,
532 .id = "tbf",
533 .priv_size = sizeof(struct tbf_sched_data),
534 .enqueue = tbf_enqueue,
535 .dequeue = tbf_dequeue,
536 .peek = qdisc_peek_dequeued,
537 .init = tbf_init,
538 .reset = tbf_reset,
539 .destroy = tbf_destroy,
540 .change = tbf_change,
541 .dump = tbf_dump,
542 .owner = THIS_MODULE,
543 };
544
545 static int __init tbf_module_init(void)
546 {
547 return register_qdisc(&tbf_qdisc_ops);
548 }
549
550 static void __exit tbf_module_exit(void)
551 {
552 unregister_qdisc(&tbf_qdisc_ops);
553 }
554 module_init(tbf_module_init)
555 module_exit(tbf_module_exit)
556 MODULE_LICENSE("GPL");