]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sched/sch_tbf.c
NVMe: Only release requested regions
[mirror_ubuntu-zesty-kernel.git] / net / sched / sch_tbf.c
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
24
25
26 /* Simple Token Bucket Filter.
27 =======================================
28
29 SOURCE.
30 -------
31
32 None.
33
34 Description.
35 ------------
36
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
40
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
44
45 s_i+....+s_k <= B + R*(t_k - t_i)
46
47 Algorithm.
48 ----------
49
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51
52 N(t+delta) = min{B/R, N(t) + delta}
53
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
57
58 N(t_* + 0) = N(t_* - 0) - S/R.
59
60
61
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
66
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
69
70 When TBF works in reshaping mode, latency is estimated as:
71
72 lat = max ((L-B)/R, (L-M)/P)
73
74
75 NOTES.
76 ------
77
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
84
85
86 This means, that with depth B, the maximal rate is
87
88 R_crit = B*HZ
89
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
95
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
99 */
100
101 struct tbf_sched_data {
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 u32 max_size;
105 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
106 s64 mtu;
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
109
110 /* Variables */
111 s64 tokens; /* Current number of B tokens */
112 s64 ptokens; /* Current number of P tokens */
113 s64 t_c; /* Time check-point */
114 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog; /* Watchdog timer */
116 };
117
118
119 /* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
121 */
122 static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123 u64 time_in_ns)
124 {
125 /* The formula is :
126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127 */
128 u64 len = time_in_ns * r->rate_bytes_ps;
129
130 do_div(len, NSEC_PER_SEC);
131
132 if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133 do_div(len, 53);
134 len = len * 48;
135 }
136
137 if (len > r->overhead)
138 len -= r->overhead;
139 else
140 len = 0;
141
142 return len;
143 }
144
145 /*
146 * Return length of individual segments of a gso packet,
147 * including all headers (MAC, IP, TCP/UDP)
148 */
149 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
150 {
151 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
152 return hdr_len + skb_gso_transport_seglen(skb);
153 }
154
155 /* GSO packet is too big, segment it so that tbf can transmit
156 * each segment in time
157 */
158 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
159 {
160 struct tbf_sched_data *q = qdisc_priv(sch);
161 struct sk_buff *segs, *nskb;
162 netdev_features_t features = netif_skb_features(skb);
163 unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
164 int ret, nb;
165
166 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
167
168 if (IS_ERR_OR_NULL(segs))
169 return qdisc_reshape_fail(skb, sch);
170
171 nb = 0;
172 while (segs) {
173 nskb = segs->next;
174 segs->next = NULL;
175 qdisc_skb_cb(segs)->pkt_len = segs->len;
176 len += segs->len;
177 ret = qdisc_enqueue(segs, q->qdisc);
178 if (ret != NET_XMIT_SUCCESS) {
179 if (net_xmit_drop_count(ret))
180 qdisc_qstats_drop(sch);
181 } else {
182 nb++;
183 }
184 segs = nskb;
185 }
186 sch->q.qlen += nb;
187 if (nb > 1)
188 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
189 consume_skb(skb);
190 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
191 }
192
193 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
194 {
195 struct tbf_sched_data *q = qdisc_priv(sch);
196 int ret;
197
198 if (qdisc_pkt_len(skb) > q->max_size) {
199 if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
200 return tbf_segment(skb, sch);
201 return qdisc_reshape_fail(skb, sch);
202 }
203 ret = qdisc_enqueue(skb, q->qdisc);
204 if (ret != NET_XMIT_SUCCESS) {
205 if (net_xmit_drop_count(ret))
206 qdisc_qstats_drop(sch);
207 return ret;
208 }
209
210 sch->q.qlen++;
211 return NET_XMIT_SUCCESS;
212 }
213
214 static unsigned int tbf_drop(struct Qdisc *sch)
215 {
216 struct tbf_sched_data *q = qdisc_priv(sch);
217 unsigned int len = 0;
218
219 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
220 sch->q.qlen--;
221 qdisc_qstats_drop(sch);
222 }
223 return len;
224 }
225
226 static bool tbf_peak_present(const struct tbf_sched_data *q)
227 {
228 return q->peak.rate_bytes_ps;
229 }
230
231 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
232 {
233 struct tbf_sched_data *q = qdisc_priv(sch);
234 struct sk_buff *skb;
235
236 skb = q->qdisc->ops->peek(q->qdisc);
237
238 if (skb) {
239 s64 now;
240 s64 toks;
241 s64 ptoks = 0;
242 unsigned int len = qdisc_pkt_len(skb);
243
244 now = ktime_get_ns();
245 toks = min_t(s64, now - q->t_c, q->buffer);
246
247 if (tbf_peak_present(q)) {
248 ptoks = toks + q->ptokens;
249 if (ptoks > q->mtu)
250 ptoks = q->mtu;
251 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
252 }
253 toks += q->tokens;
254 if (toks > q->buffer)
255 toks = q->buffer;
256 toks -= (s64) psched_l2t_ns(&q->rate, len);
257
258 if ((toks|ptoks) >= 0) {
259 skb = qdisc_dequeue_peeked(q->qdisc);
260 if (unlikely(!skb))
261 return NULL;
262
263 q->t_c = now;
264 q->tokens = toks;
265 q->ptokens = ptoks;
266 sch->q.qlen--;
267 qdisc_unthrottled(sch);
268 qdisc_bstats_update(sch, skb);
269 return skb;
270 }
271
272 qdisc_watchdog_schedule_ns(&q->watchdog,
273 now + max_t(long, -toks, -ptoks),
274 true);
275
276 /* Maybe we have a shorter packet in the queue,
277 which can be sent now. It sounds cool,
278 but, however, this is wrong in principle.
279 We MUST NOT reorder packets under these circumstances.
280
281 Really, if we split the flow into independent
282 subflows, it would be a very good solution.
283 This is the main idea of all FQ algorithms
284 (cf. CSZ, HPFQ, HFSC)
285 */
286
287 qdisc_qstats_overlimit(sch);
288 }
289 return NULL;
290 }
291
292 static void tbf_reset(struct Qdisc *sch)
293 {
294 struct tbf_sched_data *q = qdisc_priv(sch);
295
296 qdisc_reset(q->qdisc);
297 sch->q.qlen = 0;
298 q->t_c = ktime_get_ns();
299 q->tokens = q->buffer;
300 q->ptokens = q->mtu;
301 qdisc_watchdog_cancel(&q->watchdog);
302 }
303
304 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
305 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
306 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
307 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
308 [TCA_TBF_RATE64] = { .type = NLA_U64 },
309 [TCA_TBF_PRATE64] = { .type = NLA_U64 },
310 [TCA_TBF_BURST] = { .type = NLA_U32 },
311 [TCA_TBF_PBURST] = { .type = NLA_U32 },
312 };
313
314 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
315 {
316 int err;
317 struct tbf_sched_data *q = qdisc_priv(sch);
318 struct nlattr *tb[TCA_TBF_MAX + 1];
319 struct tc_tbf_qopt *qopt;
320 struct Qdisc *child = NULL;
321 struct psched_ratecfg rate;
322 struct psched_ratecfg peak;
323 u64 max_size;
324 s64 buffer, mtu;
325 u64 rate64 = 0, prate64 = 0;
326
327 err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
328 if (err < 0)
329 return err;
330
331 err = -EINVAL;
332 if (tb[TCA_TBF_PARMS] == NULL)
333 goto done;
334
335 qopt = nla_data(tb[TCA_TBF_PARMS]);
336 if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
337 qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
338 tb[TCA_TBF_RTAB]));
339
340 if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
341 qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
342 tb[TCA_TBF_PTAB]));
343
344 buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
345 mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
346
347 if (tb[TCA_TBF_RATE64])
348 rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
349 psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
350
351 if (tb[TCA_TBF_BURST]) {
352 max_size = nla_get_u32(tb[TCA_TBF_BURST]);
353 buffer = psched_l2t_ns(&rate, max_size);
354 } else {
355 max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
356 }
357
358 if (qopt->peakrate.rate) {
359 if (tb[TCA_TBF_PRATE64])
360 prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
361 psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
362 if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
363 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
364 peak.rate_bytes_ps, rate.rate_bytes_ps);
365 err = -EINVAL;
366 goto done;
367 }
368
369 if (tb[TCA_TBF_PBURST]) {
370 u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
371 max_size = min_t(u32, max_size, pburst);
372 mtu = psched_l2t_ns(&peak, pburst);
373 } else {
374 max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
375 }
376 } else {
377 memset(&peak, 0, sizeof(peak));
378 }
379
380 if (max_size < psched_mtu(qdisc_dev(sch)))
381 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
382 max_size, qdisc_dev(sch)->name,
383 psched_mtu(qdisc_dev(sch)));
384
385 if (!max_size) {
386 err = -EINVAL;
387 goto done;
388 }
389
390 if (q->qdisc != &noop_qdisc) {
391 err = fifo_set_limit(q->qdisc, qopt->limit);
392 if (err)
393 goto done;
394 } else if (qopt->limit > 0) {
395 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
396 if (IS_ERR(child)) {
397 err = PTR_ERR(child);
398 goto done;
399 }
400 }
401
402 sch_tree_lock(sch);
403 if (child) {
404 qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
405 q->qdisc->qstats.backlog);
406 qdisc_destroy(q->qdisc);
407 q->qdisc = child;
408 }
409 q->limit = qopt->limit;
410 if (tb[TCA_TBF_PBURST])
411 q->mtu = mtu;
412 else
413 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
414 q->max_size = max_size;
415 if (tb[TCA_TBF_BURST])
416 q->buffer = buffer;
417 else
418 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
419 q->tokens = q->buffer;
420 q->ptokens = q->mtu;
421
422 memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
423 memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
424
425 sch_tree_unlock(sch);
426 err = 0;
427 done:
428 return err;
429 }
430
431 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
432 {
433 struct tbf_sched_data *q = qdisc_priv(sch);
434
435 if (opt == NULL)
436 return -EINVAL;
437
438 q->t_c = ktime_get_ns();
439 qdisc_watchdog_init(&q->watchdog, sch);
440 q->qdisc = &noop_qdisc;
441
442 return tbf_change(sch, opt);
443 }
444
445 static void tbf_destroy(struct Qdisc *sch)
446 {
447 struct tbf_sched_data *q = qdisc_priv(sch);
448
449 qdisc_watchdog_cancel(&q->watchdog);
450 qdisc_destroy(q->qdisc);
451 }
452
453 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
454 {
455 struct tbf_sched_data *q = qdisc_priv(sch);
456 struct nlattr *nest;
457 struct tc_tbf_qopt opt;
458
459 sch->qstats.backlog = q->qdisc->qstats.backlog;
460 nest = nla_nest_start(skb, TCA_OPTIONS);
461 if (nest == NULL)
462 goto nla_put_failure;
463
464 opt.limit = q->limit;
465 psched_ratecfg_getrate(&opt.rate, &q->rate);
466 if (tbf_peak_present(q))
467 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
468 else
469 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
470 opt.mtu = PSCHED_NS2TICKS(q->mtu);
471 opt.buffer = PSCHED_NS2TICKS(q->buffer);
472 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
473 goto nla_put_failure;
474 if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
475 nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
476 TCA_TBF_PAD))
477 goto nla_put_failure;
478 if (tbf_peak_present(q) &&
479 q->peak.rate_bytes_ps >= (1ULL << 32) &&
480 nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
481 TCA_TBF_PAD))
482 goto nla_put_failure;
483
484 return nla_nest_end(skb, nest);
485
486 nla_put_failure:
487 nla_nest_cancel(skb, nest);
488 return -1;
489 }
490
491 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
492 struct sk_buff *skb, struct tcmsg *tcm)
493 {
494 struct tbf_sched_data *q = qdisc_priv(sch);
495
496 tcm->tcm_handle |= TC_H_MIN(1);
497 tcm->tcm_info = q->qdisc->handle;
498
499 return 0;
500 }
501
502 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
503 struct Qdisc **old)
504 {
505 struct tbf_sched_data *q = qdisc_priv(sch);
506
507 if (new == NULL)
508 new = &noop_qdisc;
509
510 *old = qdisc_replace(sch, new, &q->qdisc);
511 return 0;
512 }
513
514 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
515 {
516 struct tbf_sched_data *q = qdisc_priv(sch);
517 return q->qdisc;
518 }
519
520 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
521 {
522 return 1;
523 }
524
525 static void tbf_put(struct Qdisc *sch, unsigned long arg)
526 {
527 }
528
529 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
530 {
531 if (!walker->stop) {
532 if (walker->count >= walker->skip)
533 if (walker->fn(sch, 1, walker) < 0) {
534 walker->stop = 1;
535 return;
536 }
537 walker->count++;
538 }
539 }
540
541 static const struct Qdisc_class_ops tbf_class_ops = {
542 .graft = tbf_graft,
543 .leaf = tbf_leaf,
544 .get = tbf_get,
545 .put = tbf_put,
546 .walk = tbf_walk,
547 .dump = tbf_dump_class,
548 };
549
550 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
551 .next = NULL,
552 .cl_ops = &tbf_class_ops,
553 .id = "tbf",
554 .priv_size = sizeof(struct tbf_sched_data),
555 .enqueue = tbf_enqueue,
556 .dequeue = tbf_dequeue,
557 .peek = qdisc_peek_dequeued,
558 .drop = tbf_drop,
559 .init = tbf_init,
560 .reset = tbf_reset,
561 .destroy = tbf_destroy,
562 .change = tbf_change,
563 .dump = tbf_dump,
564 .owner = THIS_MODULE,
565 };
566
567 static int __init tbf_module_init(void)
568 {
569 return register_qdisc(&tbf_qdisc_ops);
570 }
571
572 static void __exit tbf_module_exit(void)
573 {
574 unregister_qdisc(&tbf_qdisc_ops);
575 }
576 module_init(tbf_module_init)
577 module_exit(tbf_module_exit)
578 MODULE_LICENSE("GPL");