]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sctp/associola.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67
68 /* Keep track of the new idr low so that we don't re-use association id
69 * numbers too fast. It is protected by they idr spin lock is in the
70 * range of 1 - INT_MAX.
71 */
72 static u32 idr_low = 1;
73
74
75 /* 1st Level Abstractions. */
76
77 /* Initialize a new association from provided memory. */
78 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
79 const struct sctp_endpoint *ep,
80 const struct sock *sk,
81 sctp_scope_t scope,
82 gfp_t gfp)
83 {
84 struct sctp_sock *sp;
85 int i;
86 sctp_paramhdr_t *p;
87 int err;
88
89 /* Retrieve the SCTP per socket area. */
90 sp = sctp_sk((struct sock *)sk);
91
92 /* Discarding const is appropriate here. */
93 asoc->ep = (struct sctp_endpoint *)ep;
94 sctp_endpoint_hold(asoc->ep);
95
96 /* Hold the sock. */
97 asoc->base.sk = (struct sock *)sk;
98 sock_hold(asoc->base.sk);
99
100 /* Initialize the common base substructure. */
101 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
102
103 /* Initialize the object handling fields. */
104 atomic_set(&asoc->base.refcnt, 1);
105 asoc->base.dead = 0;
106 asoc->base.malloced = 0;
107
108 /* Initialize the bind addr area. */
109 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
110
111 asoc->state = SCTP_STATE_CLOSED;
112
113 /* Set these values from the socket values, a conversion between
114 * millsecons to seconds/microseconds must also be done.
115 */
116 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
117 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
118 * 1000;
119 asoc->frag_point = 0;
120 asoc->user_frag = sp->user_frag;
121
122 /* Set the association max_retrans and RTO values from the
123 * socket values.
124 */
125 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
126 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
127 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
128 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
129
130 asoc->overall_error_count = 0;
131
132 /* Initialize the association's heartbeat interval based on the
133 * sock configured value.
134 */
135 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
136
137 /* Initialize path max retrans value. */
138 asoc->pathmaxrxt = sp->pathmaxrxt;
139
140 /* Initialize default path MTU. */
141 asoc->pathmtu = sp->pathmtu;
142
143 /* Set association default SACK delay */
144 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
145 asoc->sackfreq = sp->sackfreq;
146
147 /* Set the association default flags controlling
148 * Heartbeat, SACK delay, and Path MTU Discovery.
149 */
150 asoc->param_flags = sp->param_flags;
151
152 /* Initialize the maximum mumber of new data packets that can be sent
153 * in a burst.
154 */
155 asoc->max_burst = sp->max_burst;
156
157 /* initialize association timers */
158 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
159 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
164
165 /* sctpimpguide Section 2.12.2
166 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
167 * recommended value of 5 times 'RTO.Max'.
168 */
169 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
170 = 5 * asoc->rto_max;
171
172 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
173 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
174 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
175 (unsigned long)sp->autoclose * HZ;
176
177 /* Initializes the timers */
178 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
179 setup_timer(&asoc->timers[i], sctp_timer_events[i],
180 (unsigned long)asoc);
181
182 /* Pull default initialization values from the sock options.
183 * Note: This assumes that the values have already been
184 * validated in the sock.
185 */
186 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
187 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
188 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
189
190 asoc->max_init_timeo =
191 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
192
193 /* Allocate storage for the ssnmap after the inbound and outbound
194 * streams have been negotiated during Init.
195 */
196 asoc->ssnmap = NULL;
197
198 /* Set the local window size for receive.
199 * This is also the rcvbuf space per association.
200 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
201 * 1500 bytes in one SCTP packet.
202 */
203 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
204 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
205 else
206 asoc->rwnd = sk->sk_rcvbuf/2;
207
208 asoc->a_rwnd = asoc->rwnd;
209
210 asoc->rwnd_over = 0;
211 asoc->rwnd_press = 0;
212
213 /* Use my own max window until I learn something better. */
214 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
215
216 /* Set the sndbuf size for transmit. */
217 asoc->sndbuf_used = 0;
218
219 /* Initialize the receive memory counter */
220 atomic_set(&asoc->rmem_alloc, 0);
221
222 init_waitqueue_head(&asoc->wait);
223
224 asoc->c.my_vtag = sctp_generate_tag(ep);
225 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
226 asoc->c.peer_vtag = 0;
227 asoc->c.my_ttag = 0;
228 asoc->c.peer_ttag = 0;
229 asoc->c.my_port = ep->base.bind_addr.port;
230
231 asoc->c.initial_tsn = sctp_generate_tsn(ep);
232
233 asoc->next_tsn = asoc->c.initial_tsn;
234
235 asoc->ctsn_ack_point = asoc->next_tsn - 1;
236 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
237 asoc->highest_sacked = asoc->ctsn_ack_point;
238 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
239 asoc->unack_data = 0;
240
241 /* ADDIP Section 4.1 Asconf Chunk Procedures
242 *
243 * When an endpoint has an ASCONF signaled change to be sent to the
244 * remote endpoint it should do the following:
245 * ...
246 * A2) a serial number should be assigned to the chunk. The serial
247 * number SHOULD be a monotonically increasing number. The serial
248 * numbers SHOULD be initialized at the start of the
249 * association to the same value as the initial TSN.
250 */
251 asoc->addip_serial = asoc->c.initial_tsn;
252
253 INIT_LIST_HEAD(&asoc->addip_chunk_list);
254 INIT_LIST_HEAD(&asoc->asconf_ack_list);
255
256 /* Make an empty list of remote transport addresses. */
257 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
258 asoc->peer.transport_count = 0;
259
260 /* RFC 2960 5.1 Normal Establishment of an Association
261 *
262 * After the reception of the first data chunk in an
263 * association the endpoint must immediately respond with a
264 * sack to acknowledge the data chunk. Subsequent
265 * acknowledgements should be done as described in Section
266 * 6.2.
267 *
268 * [We implement this by telling a new association that it
269 * already received one packet.]
270 */
271 asoc->peer.sack_needed = 1;
272 asoc->peer.sack_cnt = 0;
273
274 /* Assume that the peer will tell us if he recognizes ASCONF
275 * as part of INIT exchange.
276 * The sctp_addip_noauth option is there for backward compatibilty
277 * and will revert old behavior.
278 */
279 asoc->peer.asconf_capable = 0;
280 if (sctp_addip_noauth)
281 asoc->peer.asconf_capable = 1;
282
283 /* Create an input queue. */
284 sctp_inq_init(&asoc->base.inqueue);
285 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
286
287 /* Create an output queue. */
288 sctp_outq_init(asoc, &asoc->outqueue);
289
290 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
291 goto fail_init;
292
293 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
294
295 asoc->need_ecne = 0;
296
297 asoc->assoc_id = 0;
298
299 /* Assume that peer would support both address types unless we are
300 * told otherwise.
301 */
302 asoc->peer.ipv4_address = 1;
303 if (asoc->base.sk->sk_family == PF_INET6)
304 asoc->peer.ipv6_address = 1;
305 INIT_LIST_HEAD(&asoc->asocs);
306
307 asoc->autoclose = sp->autoclose;
308
309 asoc->default_stream = sp->default_stream;
310 asoc->default_ppid = sp->default_ppid;
311 asoc->default_flags = sp->default_flags;
312 asoc->default_context = sp->default_context;
313 asoc->default_timetolive = sp->default_timetolive;
314 asoc->default_rcv_context = sp->default_rcv_context;
315
316 /* AUTH related initializations */
317 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
318 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
319 if (err)
320 goto fail_init;
321
322 asoc->active_key_id = ep->active_key_id;
323 asoc->asoc_shared_key = NULL;
324
325 asoc->default_hmac_id = 0;
326 /* Save the hmacs and chunks list into this association */
327 if (ep->auth_hmacs_list)
328 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
329 ntohs(ep->auth_hmacs_list->param_hdr.length));
330 if (ep->auth_chunk_list)
331 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
332 ntohs(ep->auth_chunk_list->param_hdr.length));
333
334 /* Get the AUTH random number for this association */
335 p = (sctp_paramhdr_t *)asoc->c.auth_random;
336 p->type = SCTP_PARAM_RANDOM;
337 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
338 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
339
340 return asoc;
341
342 fail_init:
343 sctp_endpoint_put(asoc->ep);
344 sock_put(asoc->base.sk);
345 return NULL;
346 }
347
348 /* Allocate and initialize a new association */
349 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
350 const struct sock *sk,
351 sctp_scope_t scope,
352 gfp_t gfp)
353 {
354 struct sctp_association *asoc;
355
356 asoc = t_new(struct sctp_association, gfp);
357 if (!asoc)
358 goto fail;
359
360 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
361 goto fail_init;
362
363 asoc->base.malloced = 1;
364 SCTP_DBG_OBJCNT_INC(assoc);
365 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
366
367 return asoc;
368
369 fail_init:
370 kfree(asoc);
371 fail:
372 return NULL;
373 }
374
375 /* Free this association if possible. There may still be users, so
376 * the actual deallocation may be delayed.
377 */
378 void sctp_association_free(struct sctp_association *asoc)
379 {
380 struct sock *sk = asoc->base.sk;
381 struct sctp_transport *transport;
382 struct list_head *pos, *temp;
383 int i;
384
385 /* Only real associations count against the endpoint, so
386 * don't bother for if this is a temporary association.
387 */
388 if (!asoc->temp) {
389 list_del(&asoc->asocs);
390
391 /* Decrement the backlog value for a TCP-style listening
392 * socket.
393 */
394 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
395 sk->sk_ack_backlog--;
396 }
397
398 /* Mark as dead, so other users can know this structure is
399 * going away.
400 */
401 asoc->base.dead = 1;
402
403 /* Dispose of any data lying around in the outqueue. */
404 sctp_outq_free(&asoc->outqueue);
405
406 /* Dispose of any pending messages for the upper layer. */
407 sctp_ulpq_free(&asoc->ulpq);
408
409 /* Dispose of any pending chunks on the inqueue. */
410 sctp_inq_free(&asoc->base.inqueue);
411
412 sctp_tsnmap_free(&asoc->peer.tsn_map);
413
414 /* Free ssnmap storage. */
415 sctp_ssnmap_free(asoc->ssnmap);
416
417 /* Clean up the bound address list. */
418 sctp_bind_addr_free(&asoc->base.bind_addr);
419
420 /* Do we need to go through all of our timers and
421 * delete them? To be safe we will try to delete all, but we
422 * should be able to go through and make a guess based
423 * on our state.
424 */
425 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
426 if (timer_pending(&asoc->timers[i]) &&
427 del_timer(&asoc->timers[i]))
428 sctp_association_put(asoc);
429 }
430
431 /* Free peer's cached cookie. */
432 kfree(asoc->peer.cookie);
433 kfree(asoc->peer.peer_random);
434 kfree(asoc->peer.peer_chunks);
435 kfree(asoc->peer.peer_hmacs);
436
437 /* Release the transport structures. */
438 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
439 transport = list_entry(pos, struct sctp_transport, transports);
440 list_del(pos);
441 sctp_transport_free(transport);
442 }
443
444 asoc->peer.transport_count = 0;
445
446 /* Free any cached ASCONF_ACK chunk. */
447 sctp_assoc_free_asconf_acks(asoc);
448
449 /* Free any cached ASCONF chunk. */
450 if (asoc->addip_last_asconf)
451 sctp_chunk_free(asoc->addip_last_asconf);
452
453 /* AUTH - Free the endpoint shared keys */
454 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
455
456 /* AUTH - Free the association shared key */
457 sctp_auth_key_put(asoc->asoc_shared_key);
458
459 sctp_association_put(asoc);
460 }
461
462 /* Cleanup and free up an association. */
463 static void sctp_association_destroy(struct sctp_association *asoc)
464 {
465 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
466
467 sctp_endpoint_put(asoc->ep);
468 sock_put(asoc->base.sk);
469
470 if (asoc->assoc_id != 0) {
471 spin_lock_bh(&sctp_assocs_id_lock);
472 idr_remove(&sctp_assocs_id, asoc->assoc_id);
473 spin_unlock_bh(&sctp_assocs_id_lock);
474 }
475
476 WARN_ON(atomic_read(&asoc->rmem_alloc));
477
478 if (asoc->base.malloced) {
479 kfree(asoc);
480 SCTP_DBG_OBJCNT_DEC(assoc);
481 }
482 }
483
484 /* Change the primary destination address for the peer. */
485 void sctp_assoc_set_primary(struct sctp_association *asoc,
486 struct sctp_transport *transport)
487 {
488 int changeover = 0;
489
490 /* it's a changeover only if we already have a primary path
491 * that we are changing
492 */
493 if (asoc->peer.primary_path != NULL &&
494 asoc->peer.primary_path != transport)
495 changeover = 1 ;
496
497 asoc->peer.primary_path = transport;
498
499 /* Set a default msg_name for events. */
500 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
501 sizeof(union sctp_addr));
502
503 /* If the primary path is changing, assume that the
504 * user wants to use this new path.
505 */
506 if ((transport->state == SCTP_ACTIVE) ||
507 (transport->state == SCTP_UNKNOWN))
508 asoc->peer.active_path = transport;
509
510 /*
511 * SFR-CACC algorithm:
512 * Upon the receipt of a request to change the primary
513 * destination address, on the data structure for the new
514 * primary destination, the sender MUST do the following:
515 *
516 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
517 * to this destination address earlier. The sender MUST set
518 * CYCLING_CHANGEOVER to indicate that this switch is a
519 * double switch to the same destination address.
520 *
521 * Really, only bother is we have data queued or outstanding on
522 * the association.
523 */
524 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
525 return;
526
527 if (transport->cacc.changeover_active)
528 transport->cacc.cycling_changeover = changeover;
529
530 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
531 * a changeover has occurred.
532 */
533 transport->cacc.changeover_active = changeover;
534
535 /* 3) The sender MUST store the next TSN to be sent in
536 * next_tsn_at_change.
537 */
538 transport->cacc.next_tsn_at_change = asoc->next_tsn;
539 }
540
541 /* Remove a transport from an association. */
542 void sctp_assoc_rm_peer(struct sctp_association *asoc,
543 struct sctp_transport *peer)
544 {
545 struct list_head *pos;
546 struct sctp_transport *transport;
547
548 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
549 " port: %d\n",
550 asoc,
551 (&peer->ipaddr),
552 ntohs(peer->ipaddr.v4.sin_port));
553
554 /* If we are to remove the current retran_path, update it
555 * to the next peer before removing this peer from the list.
556 */
557 if (asoc->peer.retran_path == peer)
558 sctp_assoc_update_retran_path(asoc);
559
560 /* Remove this peer from the list. */
561 list_del(&peer->transports);
562
563 /* Get the first transport of asoc. */
564 pos = asoc->peer.transport_addr_list.next;
565 transport = list_entry(pos, struct sctp_transport, transports);
566
567 /* Update any entries that match the peer to be deleted. */
568 if (asoc->peer.primary_path == peer)
569 sctp_assoc_set_primary(asoc, transport);
570 if (asoc->peer.active_path == peer)
571 asoc->peer.active_path = transport;
572 if (asoc->peer.last_data_from == peer)
573 asoc->peer.last_data_from = transport;
574
575 /* If we remove the transport an INIT was last sent to, set it to
576 * NULL. Combined with the update of the retran path above, this
577 * will cause the next INIT to be sent to the next available
578 * transport, maintaining the cycle.
579 */
580 if (asoc->init_last_sent_to == peer)
581 asoc->init_last_sent_to = NULL;
582
583 /* If we remove the transport an SHUTDOWN was last sent to, set it
584 * to NULL. Combined with the update of the retran path above, this
585 * will cause the next SHUTDOWN to be sent to the next available
586 * transport, maintaining the cycle.
587 */
588 if (asoc->shutdown_last_sent_to == peer)
589 asoc->shutdown_last_sent_to = NULL;
590
591 /* If we remove the transport an ASCONF was last sent to, set it to
592 * NULL.
593 */
594 if (asoc->addip_last_asconf &&
595 asoc->addip_last_asconf->transport == peer)
596 asoc->addip_last_asconf->transport = NULL;
597
598 /* If we have something on the transmitted list, we have to
599 * save it off. The best place is the active path.
600 */
601 if (!list_empty(&peer->transmitted)) {
602 struct sctp_transport *active = asoc->peer.active_path;
603 struct sctp_chunk *ch;
604
605 /* Reset the transport of each chunk on this list */
606 list_for_each_entry(ch, &peer->transmitted,
607 transmitted_list) {
608 ch->transport = NULL;
609 ch->rtt_in_progress = 0;
610 }
611
612 list_splice_tail_init(&peer->transmitted,
613 &active->transmitted);
614
615 /* Start a T3 timer here in case it wasn't running so
616 * that these migrated packets have a chance to get
617 * retrnasmitted.
618 */
619 if (!timer_pending(&active->T3_rtx_timer))
620 if (!mod_timer(&active->T3_rtx_timer,
621 jiffies + active->rto))
622 sctp_transport_hold(active);
623 }
624
625 asoc->peer.transport_count--;
626
627 sctp_transport_free(peer);
628 }
629
630 /* Add a transport address to an association. */
631 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
632 const union sctp_addr *addr,
633 const gfp_t gfp,
634 const int peer_state)
635 {
636 struct sctp_transport *peer;
637 struct sctp_sock *sp;
638 unsigned short port;
639
640 sp = sctp_sk(asoc->base.sk);
641
642 /* AF_INET and AF_INET6 share common port field. */
643 port = ntohs(addr->v4.sin_port);
644
645 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
646 " port: %d state:%d\n",
647 asoc,
648 addr,
649 port,
650 peer_state);
651
652 /* Set the port if it has not been set yet. */
653 if (0 == asoc->peer.port)
654 asoc->peer.port = port;
655
656 /* Check to see if this is a duplicate. */
657 peer = sctp_assoc_lookup_paddr(asoc, addr);
658 if (peer) {
659 /* An UNKNOWN state is only set on transports added by
660 * user in sctp_connectx() call. Such transports should be
661 * considered CONFIRMED per RFC 4960, Section 5.4.
662 */
663 if (peer->state == SCTP_UNKNOWN) {
664 peer->state = SCTP_ACTIVE;
665 }
666 return peer;
667 }
668
669 peer = sctp_transport_new(addr, gfp);
670 if (!peer)
671 return NULL;
672
673 sctp_transport_set_owner(peer, asoc);
674
675 /* Initialize the peer's heartbeat interval based on the
676 * association configured value.
677 */
678 peer->hbinterval = asoc->hbinterval;
679
680 /* Set the path max_retrans. */
681 peer->pathmaxrxt = asoc->pathmaxrxt;
682
683 /* Initialize the peer's SACK delay timeout based on the
684 * association configured value.
685 */
686 peer->sackdelay = asoc->sackdelay;
687 peer->sackfreq = asoc->sackfreq;
688
689 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
690 * based on association setting.
691 */
692 peer->param_flags = asoc->param_flags;
693
694 sctp_transport_route(peer, NULL, sp);
695
696 /* Initialize the pmtu of the transport. */
697 if (peer->param_flags & SPP_PMTUD_DISABLE) {
698 if (asoc->pathmtu)
699 peer->pathmtu = asoc->pathmtu;
700 else
701 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
702 }
703
704 /* If this is the first transport addr on this association,
705 * initialize the association PMTU to the peer's PMTU.
706 * If not and the current association PMTU is higher than the new
707 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
708 */
709 if (asoc->pathmtu)
710 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
711 else
712 asoc->pathmtu = peer->pathmtu;
713
714 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
715 "%d\n", asoc, asoc->pathmtu);
716 peer->pmtu_pending = 0;
717
718 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
719
720 /* The asoc->peer.port might not be meaningful yet, but
721 * initialize the packet structure anyway.
722 */
723 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
724 asoc->peer.port);
725
726 /* 7.2.1 Slow-Start
727 *
728 * o The initial cwnd before DATA transmission or after a sufficiently
729 * long idle period MUST be set to
730 * min(4*MTU, max(2*MTU, 4380 bytes))
731 *
732 * o The initial value of ssthresh MAY be arbitrarily high
733 * (for example, implementations MAY use the size of the
734 * receiver advertised window).
735 */
736 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
737
738 /* At this point, we may not have the receiver's advertised window,
739 * so initialize ssthresh to the default value and it will be set
740 * later when we process the INIT.
741 */
742 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
743
744 peer->partial_bytes_acked = 0;
745 peer->flight_size = 0;
746 peer->burst_limited = 0;
747
748 /* Set the transport's RTO.initial value */
749 peer->rto = asoc->rto_initial;
750
751 /* Set the peer's active state. */
752 peer->state = peer_state;
753
754 /* Attach the remote transport to our asoc. */
755 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
756 asoc->peer.transport_count++;
757
758 /* If we do not yet have a primary path, set one. */
759 if (!asoc->peer.primary_path) {
760 sctp_assoc_set_primary(asoc, peer);
761 asoc->peer.retran_path = peer;
762 }
763
764 if (asoc->peer.active_path == asoc->peer.retran_path &&
765 peer->state != SCTP_UNCONFIRMED) {
766 asoc->peer.retran_path = peer;
767 }
768
769 return peer;
770 }
771
772 /* Delete a transport address from an association. */
773 void sctp_assoc_del_peer(struct sctp_association *asoc,
774 const union sctp_addr *addr)
775 {
776 struct list_head *pos;
777 struct list_head *temp;
778 struct sctp_transport *transport;
779
780 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
781 transport = list_entry(pos, struct sctp_transport, transports);
782 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
783 /* Do book keeping for removing the peer and free it. */
784 sctp_assoc_rm_peer(asoc, transport);
785 break;
786 }
787 }
788 }
789
790 /* Lookup a transport by address. */
791 struct sctp_transport *sctp_assoc_lookup_paddr(
792 const struct sctp_association *asoc,
793 const union sctp_addr *address)
794 {
795 struct sctp_transport *t;
796
797 /* Cycle through all transports searching for a peer address. */
798
799 list_for_each_entry(t, &asoc->peer.transport_addr_list,
800 transports) {
801 if (sctp_cmp_addr_exact(address, &t->ipaddr))
802 return t;
803 }
804
805 return NULL;
806 }
807
808 /* Remove all transports except a give one */
809 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
810 struct sctp_transport *primary)
811 {
812 struct sctp_transport *temp;
813 struct sctp_transport *t;
814
815 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
816 transports) {
817 /* if the current transport is not the primary one, delete it */
818 if (t != primary)
819 sctp_assoc_rm_peer(asoc, t);
820 }
821 }
822
823 /* Engage in transport control operations.
824 * Mark the transport up or down and send a notification to the user.
825 * Select and update the new active and retran paths.
826 */
827 void sctp_assoc_control_transport(struct sctp_association *asoc,
828 struct sctp_transport *transport,
829 sctp_transport_cmd_t command,
830 sctp_sn_error_t error)
831 {
832 struct sctp_transport *t = NULL;
833 struct sctp_transport *first;
834 struct sctp_transport *second;
835 struct sctp_ulpevent *event;
836 struct sockaddr_storage addr;
837 int spc_state = 0;
838
839 /* Record the transition on the transport. */
840 switch (command) {
841 case SCTP_TRANSPORT_UP:
842 /* If we are moving from UNCONFIRMED state due
843 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
844 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
845 */
846 if (SCTP_UNCONFIRMED == transport->state &&
847 SCTP_HEARTBEAT_SUCCESS == error)
848 spc_state = SCTP_ADDR_CONFIRMED;
849 else
850 spc_state = SCTP_ADDR_AVAILABLE;
851 transport->state = SCTP_ACTIVE;
852 break;
853
854 case SCTP_TRANSPORT_DOWN:
855 /* If the transport was never confirmed, do not transition it
856 * to inactive state. Also, release the cached route since
857 * there may be a better route next time.
858 */
859 if (transport->state != SCTP_UNCONFIRMED)
860 transport->state = SCTP_INACTIVE;
861 else {
862 dst_release(transport->dst);
863 transport->dst = NULL;
864 }
865
866 spc_state = SCTP_ADDR_UNREACHABLE;
867 break;
868
869 default:
870 return;
871 }
872
873 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
874 * user.
875 */
876 memset(&addr, 0, sizeof(struct sockaddr_storage));
877 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
878 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
879 0, spc_state, error, GFP_ATOMIC);
880 if (event)
881 sctp_ulpq_tail_event(&asoc->ulpq, event);
882
883 /* Select new active and retran paths. */
884
885 /* Look for the two most recently used active transports.
886 *
887 * This code produces the wrong ordering whenever jiffies
888 * rolls over, but we still get usable transports, so we don't
889 * worry about it.
890 */
891 first = NULL; second = NULL;
892
893 list_for_each_entry(t, &asoc->peer.transport_addr_list,
894 transports) {
895
896 if ((t->state == SCTP_INACTIVE) ||
897 (t->state == SCTP_UNCONFIRMED))
898 continue;
899 if (!first || t->last_time_heard > first->last_time_heard) {
900 second = first;
901 first = t;
902 }
903 if (!second || t->last_time_heard > second->last_time_heard)
904 second = t;
905 }
906
907 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
908 *
909 * By default, an endpoint should always transmit to the
910 * primary path, unless the SCTP user explicitly specifies the
911 * destination transport address (and possibly source
912 * transport address) to use.
913 *
914 * [If the primary is active but not most recent, bump the most
915 * recently used transport.]
916 */
917 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
918 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
919 first != asoc->peer.primary_path) {
920 second = first;
921 first = asoc->peer.primary_path;
922 }
923
924 /* If we failed to find a usable transport, just camp on the
925 * primary, even if it is inactive.
926 */
927 if (!first) {
928 first = asoc->peer.primary_path;
929 second = asoc->peer.primary_path;
930 }
931
932 /* Set the active and retran transports. */
933 asoc->peer.active_path = first;
934 asoc->peer.retran_path = second;
935 }
936
937 /* Hold a reference to an association. */
938 void sctp_association_hold(struct sctp_association *asoc)
939 {
940 atomic_inc(&asoc->base.refcnt);
941 }
942
943 /* Release a reference to an association and cleanup
944 * if there are no more references.
945 */
946 void sctp_association_put(struct sctp_association *asoc)
947 {
948 if (atomic_dec_and_test(&asoc->base.refcnt))
949 sctp_association_destroy(asoc);
950 }
951
952 /* Allocate the next TSN, Transmission Sequence Number, for the given
953 * association.
954 */
955 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
956 {
957 /* From Section 1.6 Serial Number Arithmetic:
958 * Transmission Sequence Numbers wrap around when they reach
959 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
960 * after transmitting TSN = 2*32 - 1 is TSN = 0.
961 */
962 __u32 retval = asoc->next_tsn;
963 asoc->next_tsn++;
964 asoc->unack_data++;
965
966 return retval;
967 }
968
969 /* Compare two addresses to see if they match. Wildcard addresses
970 * only match themselves.
971 */
972 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
973 const union sctp_addr *ss2)
974 {
975 struct sctp_af *af;
976
977 af = sctp_get_af_specific(ss1->sa.sa_family);
978 if (unlikely(!af))
979 return 0;
980
981 return af->cmp_addr(ss1, ss2);
982 }
983
984 /* Return an ecne chunk to get prepended to a packet.
985 * Note: We are sly and return a shared, prealloced chunk. FIXME:
986 * No we don't, but we could/should.
987 */
988 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
989 {
990 struct sctp_chunk *chunk;
991
992 /* Send ECNE if needed.
993 * Not being able to allocate a chunk here is not deadly.
994 */
995 if (asoc->need_ecne)
996 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
997 else
998 chunk = NULL;
999
1000 return chunk;
1001 }
1002
1003 /*
1004 * Find which transport this TSN was sent on.
1005 */
1006 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1007 __u32 tsn)
1008 {
1009 struct sctp_transport *active;
1010 struct sctp_transport *match;
1011 struct sctp_transport *transport;
1012 struct sctp_chunk *chunk;
1013 __be32 key = htonl(tsn);
1014
1015 match = NULL;
1016
1017 /*
1018 * FIXME: In general, find a more efficient data structure for
1019 * searching.
1020 */
1021
1022 /*
1023 * The general strategy is to search each transport's transmitted
1024 * list. Return which transport this TSN lives on.
1025 *
1026 * Let's be hopeful and check the active_path first.
1027 * Another optimization would be to know if there is only one
1028 * outbound path and not have to look for the TSN at all.
1029 *
1030 */
1031
1032 active = asoc->peer.active_path;
1033
1034 list_for_each_entry(chunk, &active->transmitted,
1035 transmitted_list) {
1036
1037 if (key == chunk->subh.data_hdr->tsn) {
1038 match = active;
1039 goto out;
1040 }
1041 }
1042
1043 /* If not found, go search all the other transports. */
1044 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1045 transports) {
1046
1047 if (transport == active)
1048 break;
1049 list_for_each_entry(chunk, &transport->transmitted,
1050 transmitted_list) {
1051 if (key == chunk->subh.data_hdr->tsn) {
1052 match = transport;
1053 goto out;
1054 }
1055 }
1056 }
1057 out:
1058 return match;
1059 }
1060
1061 /* Is this the association we are looking for? */
1062 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1063 const union sctp_addr *laddr,
1064 const union sctp_addr *paddr)
1065 {
1066 struct sctp_transport *transport;
1067
1068 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1069 (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1070 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1071 if (!transport)
1072 goto out;
1073
1074 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1075 sctp_sk(asoc->base.sk)))
1076 goto out;
1077 }
1078 transport = NULL;
1079
1080 out:
1081 return transport;
1082 }
1083
1084 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1085 static void sctp_assoc_bh_rcv(struct work_struct *work)
1086 {
1087 struct sctp_association *asoc =
1088 container_of(work, struct sctp_association,
1089 base.inqueue.immediate);
1090 struct sctp_endpoint *ep;
1091 struct sctp_chunk *chunk;
1092 struct sctp_inq *inqueue;
1093 int state;
1094 sctp_subtype_t subtype;
1095 int error = 0;
1096
1097 /* The association should be held so we should be safe. */
1098 ep = asoc->ep;
1099
1100 inqueue = &asoc->base.inqueue;
1101 sctp_association_hold(asoc);
1102 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1103 state = asoc->state;
1104 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1105
1106 /* SCTP-AUTH, Section 6.3:
1107 * The receiver has a list of chunk types which it expects
1108 * to be received only after an AUTH-chunk. This list has
1109 * been sent to the peer during the association setup. It
1110 * MUST silently discard these chunks if they are not placed
1111 * after an AUTH chunk in the packet.
1112 */
1113 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1114 continue;
1115
1116 /* Remember where the last DATA chunk came from so we
1117 * know where to send the SACK.
1118 */
1119 if (sctp_chunk_is_data(chunk))
1120 asoc->peer.last_data_from = chunk->transport;
1121 else
1122 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1123
1124 if (chunk->transport)
1125 chunk->transport->last_time_heard = jiffies;
1126
1127 /* Run through the state machine. */
1128 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1129 state, ep, asoc, chunk, GFP_ATOMIC);
1130
1131 /* Check to see if the association is freed in response to
1132 * the incoming chunk. If so, get out of the while loop.
1133 */
1134 if (asoc->base.dead)
1135 break;
1136
1137 /* If there is an error on chunk, discard this packet. */
1138 if (error && chunk)
1139 chunk->pdiscard = 1;
1140 }
1141 sctp_association_put(asoc);
1142 }
1143
1144 /* This routine moves an association from its old sk to a new sk. */
1145 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1146 {
1147 struct sctp_sock *newsp = sctp_sk(newsk);
1148 struct sock *oldsk = assoc->base.sk;
1149
1150 /* Delete the association from the old endpoint's list of
1151 * associations.
1152 */
1153 list_del_init(&assoc->asocs);
1154
1155 /* Decrement the backlog value for a TCP-style socket. */
1156 if (sctp_style(oldsk, TCP))
1157 oldsk->sk_ack_backlog--;
1158
1159 /* Release references to the old endpoint and the sock. */
1160 sctp_endpoint_put(assoc->ep);
1161 sock_put(assoc->base.sk);
1162
1163 /* Get a reference to the new endpoint. */
1164 assoc->ep = newsp->ep;
1165 sctp_endpoint_hold(assoc->ep);
1166
1167 /* Get a reference to the new sock. */
1168 assoc->base.sk = newsk;
1169 sock_hold(assoc->base.sk);
1170
1171 /* Add the association to the new endpoint's list of associations. */
1172 sctp_endpoint_add_asoc(newsp->ep, assoc);
1173 }
1174
1175 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1176 void sctp_assoc_update(struct sctp_association *asoc,
1177 struct sctp_association *new)
1178 {
1179 struct sctp_transport *trans;
1180 struct list_head *pos, *temp;
1181
1182 /* Copy in new parameters of peer. */
1183 asoc->c = new->c;
1184 asoc->peer.rwnd = new->peer.rwnd;
1185 asoc->peer.sack_needed = new->peer.sack_needed;
1186 asoc->peer.i = new->peer.i;
1187 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1188 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1189
1190 /* Remove any peer addresses not present in the new association. */
1191 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1192 trans = list_entry(pos, struct sctp_transport, transports);
1193 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1194 sctp_assoc_rm_peer(asoc, trans);
1195 continue;
1196 }
1197
1198 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1199 sctp_transport_reset(trans);
1200 }
1201
1202 /* If the case is A (association restart), use
1203 * initial_tsn as next_tsn. If the case is B, use
1204 * current next_tsn in case data sent to peer
1205 * has been discarded and needs retransmission.
1206 */
1207 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1208 asoc->next_tsn = new->next_tsn;
1209 asoc->ctsn_ack_point = new->ctsn_ack_point;
1210 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1211
1212 /* Reinitialize SSN for both local streams
1213 * and peer's streams.
1214 */
1215 sctp_ssnmap_clear(asoc->ssnmap);
1216
1217 /* Flush the ULP reassembly and ordered queue.
1218 * Any data there will now be stale and will
1219 * cause problems.
1220 */
1221 sctp_ulpq_flush(&asoc->ulpq);
1222
1223 /* reset the overall association error count so
1224 * that the restarted association doesn't get torn
1225 * down on the next retransmission timer.
1226 */
1227 asoc->overall_error_count = 0;
1228
1229 } else {
1230 /* Add any peer addresses from the new association. */
1231 list_for_each_entry(trans, &new->peer.transport_addr_list,
1232 transports) {
1233 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1234 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1235 GFP_ATOMIC, trans->state);
1236 }
1237
1238 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1239 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1240 if (!asoc->ssnmap) {
1241 /* Move the ssnmap. */
1242 asoc->ssnmap = new->ssnmap;
1243 new->ssnmap = NULL;
1244 }
1245
1246 if (!asoc->assoc_id) {
1247 /* get a new association id since we don't have one
1248 * yet.
1249 */
1250 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1251 }
1252 }
1253
1254 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1255 * and also move the association shared keys over
1256 */
1257 kfree(asoc->peer.peer_random);
1258 asoc->peer.peer_random = new->peer.peer_random;
1259 new->peer.peer_random = NULL;
1260
1261 kfree(asoc->peer.peer_chunks);
1262 asoc->peer.peer_chunks = new->peer.peer_chunks;
1263 new->peer.peer_chunks = NULL;
1264
1265 kfree(asoc->peer.peer_hmacs);
1266 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1267 new->peer.peer_hmacs = NULL;
1268
1269 sctp_auth_key_put(asoc->asoc_shared_key);
1270 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1271 }
1272
1273 /* Update the retran path for sending a retransmitted packet.
1274 * Round-robin through the active transports, else round-robin
1275 * through the inactive transports as this is the next best thing
1276 * we can try.
1277 */
1278 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1279 {
1280 struct sctp_transport *t, *next;
1281 struct list_head *head = &asoc->peer.transport_addr_list;
1282 struct list_head *pos;
1283
1284 if (asoc->peer.transport_count == 1)
1285 return;
1286
1287 /* Find the next transport in a round-robin fashion. */
1288 t = asoc->peer.retran_path;
1289 pos = &t->transports;
1290 next = NULL;
1291
1292 while (1) {
1293 /* Skip the head. */
1294 if (pos->next == head)
1295 pos = head->next;
1296 else
1297 pos = pos->next;
1298
1299 t = list_entry(pos, struct sctp_transport, transports);
1300
1301 /* We have exhausted the list, but didn't find any
1302 * other active transports. If so, use the next
1303 * transport.
1304 */
1305 if (t == asoc->peer.retran_path) {
1306 t = next;
1307 break;
1308 }
1309
1310 /* Try to find an active transport. */
1311
1312 if ((t->state == SCTP_ACTIVE) ||
1313 (t->state == SCTP_UNKNOWN)) {
1314 break;
1315 } else {
1316 /* Keep track of the next transport in case
1317 * we don't find any active transport.
1318 */
1319 if (t->state != SCTP_UNCONFIRMED && !next)
1320 next = t;
1321 }
1322 }
1323
1324 if (t)
1325 asoc->peer.retran_path = t;
1326
1327 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1328 " %p addr: ",
1329 " port: %d\n",
1330 asoc,
1331 (&t->ipaddr),
1332 ntohs(t->ipaddr.v4.sin_port));
1333 }
1334
1335 /* Choose the transport for sending retransmit packet. */
1336 struct sctp_transport *sctp_assoc_choose_alter_transport(
1337 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1338 {
1339 /* If this is the first time packet is sent, use the active path,
1340 * else use the retran path. If the last packet was sent over the
1341 * retran path, update the retran path and use it.
1342 */
1343 if (!last_sent_to)
1344 return asoc->peer.active_path;
1345 else {
1346 if (last_sent_to == asoc->peer.retran_path)
1347 sctp_assoc_update_retran_path(asoc);
1348 return asoc->peer.retran_path;
1349 }
1350 }
1351
1352 /* Update the association's pmtu and frag_point by going through all the
1353 * transports. This routine is called when a transport's PMTU has changed.
1354 */
1355 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1356 {
1357 struct sctp_transport *t;
1358 __u32 pmtu = 0;
1359
1360 if (!asoc)
1361 return;
1362
1363 /* Get the lowest pmtu of all the transports. */
1364 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1365 transports) {
1366 if (t->pmtu_pending && t->dst) {
1367 sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1368 t->pmtu_pending = 0;
1369 }
1370 if (!pmtu || (t->pathmtu < pmtu))
1371 pmtu = t->pathmtu;
1372 }
1373
1374 if (pmtu) {
1375 asoc->pathmtu = pmtu;
1376 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1377 }
1378
1379 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1380 __func__, asoc, asoc->pathmtu, asoc->frag_point);
1381 }
1382
1383 /* Should we send a SACK to update our peer? */
1384 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1385 {
1386 switch (asoc->state) {
1387 case SCTP_STATE_ESTABLISHED:
1388 case SCTP_STATE_SHUTDOWN_PENDING:
1389 case SCTP_STATE_SHUTDOWN_RECEIVED:
1390 case SCTP_STATE_SHUTDOWN_SENT:
1391 if ((asoc->rwnd > asoc->a_rwnd) &&
1392 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1393 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1394 asoc->pathmtu)))
1395 return 1;
1396 break;
1397 default:
1398 break;
1399 }
1400 return 0;
1401 }
1402
1403 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1404 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1405 {
1406 struct sctp_chunk *sack;
1407 struct timer_list *timer;
1408
1409 if (asoc->rwnd_over) {
1410 if (asoc->rwnd_over >= len) {
1411 asoc->rwnd_over -= len;
1412 } else {
1413 asoc->rwnd += (len - asoc->rwnd_over);
1414 asoc->rwnd_over = 0;
1415 }
1416 } else {
1417 asoc->rwnd += len;
1418 }
1419
1420 /* If we had window pressure, start recovering it
1421 * once our rwnd had reached the accumulated pressure
1422 * threshold. The idea is to recover slowly, but up
1423 * to the initial advertised window.
1424 */
1425 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1426 int change = min(asoc->pathmtu, asoc->rwnd_press);
1427 asoc->rwnd += change;
1428 asoc->rwnd_press -= change;
1429 }
1430
1431 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1432 "- %u\n", __func__, asoc, len, asoc->rwnd,
1433 asoc->rwnd_over, asoc->a_rwnd);
1434
1435 /* Send a window update SACK if the rwnd has increased by at least the
1436 * minimum of the association's PMTU and half of the receive buffer.
1437 * The algorithm used is similar to the one described in
1438 * Section 4.2.3.3 of RFC 1122.
1439 */
1440 if (sctp_peer_needs_update(asoc)) {
1441 asoc->a_rwnd = asoc->rwnd;
1442 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1443 "rwnd: %u a_rwnd: %u\n", __func__,
1444 asoc, asoc->rwnd, asoc->a_rwnd);
1445 sack = sctp_make_sack(asoc);
1446 if (!sack)
1447 return;
1448
1449 asoc->peer.sack_needed = 0;
1450
1451 sctp_outq_tail(&asoc->outqueue, sack);
1452
1453 /* Stop the SACK timer. */
1454 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1455 if (timer_pending(timer) && del_timer(timer))
1456 sctp_association_put(asoc);
1457 }
1458 }
1459
1460 /* Decrease asoc's rwnd by len. */
1461 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1462 {
1463 int rx_count;
1464 int over = 0;
1465
1466 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1467 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1468
1469 if (asoc->ep->rcvbuf_policy)
1470 rx_count = atomic_read(&asoc->rmem_alloc);
1471 else
1472 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1473
1474 /* If we've reached or overflowed our receive buffer, announce
1475 * a 0 rwnd if rwnd would still be positive. Store the
1476 * the pottential pressure overflow so that the window can be restored
1477 * back to original value.
1478 */
1479 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1480 over = 1;
1481
1482 if (asoc->rwnd >= len) {
1483 asoc->rwnd -= len;
1484 if (over) {
1485 asoc->rwnd_press += asoc->rwnd;
1486 asoc->rwnd = 0;
1487 }
1488 } else {
1489 asoc->rwnd_over = len - asoc->rwnd;
1490 asoc->rwnd = 0;
1491 }
1492 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1493 __func__, asoc, len, asoc->rwnd,
1494 asoc->rwnd_over, asoc->rwnd_press);
1495 }
1496
1497 /* Build the bind address list for the association based on info from the
1498 * local endpoint and the remote peer.
1499 */
1500 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1501 sctp_scope_t scope, gfp_t gfp)
1502 {
1503 int flags;
1504
1505 /* Use scoping rules to determine the subset of addresses from
1506 * the endpoint.
1507 */
1508 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1509 if (asoc->peer.ipv4_address)
1510 flags |= SCTP_ADDR4_PEERSUPP;
1511 if (asoc->peer.ipv6_address)
1512 flags |= SCTP_ADDR6_PEERSUPP;
1513
1514 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1515 &asoc->ep->base.bind_addr,
1516 scope, gfp, flags);
1517 }
1518
1519 /* Build the association's bind address list from the cookie. */
1520 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1521 struct sctp_cookie *cookie,
1522 gfp_t gfp)
1523 {
1524 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1525 int var_size3 = cookie->raw_addr_list_len;
1526 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1527
1528 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1529 asoc->ep->base.bind_addr.port, gfp);
1530 }
1531
1532 /* Lookup laddr in the bind address list of an association. */
1533 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1534 const union sctp_addr *laddr)
1535 {
1536 int found = 0;
1537
1538 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1539 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1540 sctp_sk(asoc->base.sk)))
1541 found = 1;
1542
1543 return found;
1544 }
1545
1546 /* Set an association id for a given association */
1547 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1548 {
1549 int assoc_id;
1550 int error = 0;
1551
1552 /* If the id is already assigned, keep it. */
1553 if (asoc->assoc_id)
1554 return error;
1555 retry:
1556 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1557 return -ENOMEM;
1558
1559 spin_lock_bh(&sctp_assocs_id_lock);
1560 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1561 idr_low, &assoc_id);
1562 if (!error) {
1563 idr_low = assoc_id + 1;
1564 if (idr_low == INT_MAX)
1565 idr_low = 1;
1566 }
1567 spin_unlock_bh(&sctp_assocs_id_lock);
1568 if (error == -EAGAIN)
1569 goto retry;
1570 else if (error)
1571 return error;
1572
1573 asoc->assoc_id = (sctp_assoc_t) assoc_id;
1574 return error;
1575 }
1576
1577 /* Free asconf_ack cache */
1578 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1579 {
1580 struct sctp_chunk *ack;
1581 struct sctp_chunk *tmp;
1582
1583 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1584 transmitted_list) {
1585 list_del_init(&ack->transmitted_list);
1586 sctp_chunk_free(ack);
1587 }
1588 }
1589
1590 /* Clean up the ASCONF_ACK queue */
1591 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1592 {
1593 struct sctp_chunk *ack;
1594 struct sctp_chunk *tmp;
1595
1596 /* We can remove all the entries from the queue up to
1597 * the "Peer-Sequence-Number".
1598 */
1599 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1600 transmitted_list) {
1601 if (ack->subh.addip_hdr->serial ==
1602 htonl(asoc->peer.addip_serial))
1603 break;
1604
1605 list_del_init(&ack->transmitted_list);
1606 sctp_chunk_free(ack);
1607 }
1608 }
1609
1610 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1611 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1612 const struct sctp_association *asoc,
1613 __be32 serial)
1614 {
1615 struct sctp_chunk *ack;
1616
1617 /* Walk through the list of cached ASCONF-ACKs and find the
1618 * ack chunk whose serial number matches that of the request.
1619 */
1620 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1621 if (ack->subh.addip_hdr->serial == serial) {
1622 sctp_chunk_hold(ack);
1623 return ack;
1624 }
1625 }
1626
1627 return NULL;
1628 }