]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/associola.c
Merge branch 'for-4.3/upstream' into for-4.3/wacom
[mirror_ubuntu-artful-kernel.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
100
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
118
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
121
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
125
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */
129 asoc->param_flags = sp->param_flags;
130
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
133 */
134 asoc->max_burst = sp->max_burst;
135
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
155
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
176
177 asoc->a_rwnd = asoc->rwnd;
178
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
184
185 init_waitqueue_head(&asoc->wait);
186
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192 asoc->next_tsn = asoc->c.initial_tsn;
193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
208 */
209 asoc->addip_serial = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
256
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
263
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
269
270 asoc->active_key_id = ep->active_key_id;
271
272 /* Save the hmacs and chunks list into this association */
273 if (ep->auth_hmacs_list)
274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275 ntohs(ep->auth_hmacs_list->param_hdr.length));
276 if (ep->auth_chunk_list)
277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278 ntohs(ep->auth_chunk_list->param_hdr.length));
279
280 /* Get the AUTH random number for this association */
281 p = (sctp_paramhdr_t *)asoc->c.auth_random;
282 p->type = SCTP_PARAM_RANDOM;
283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285
286 return asoc;
287
288 fail_init:
289 sock_put(asoc->base.sk);
290 sctp_endpoint_put(asoc->ep);
291 return NULL;
292 }
293
294 /* Allocate and initialize a new association */
295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296 const struct sock *sk,
297 sctp_scope_t scope,
298 gfp_t gfp)
299 {
300 struct sctp_association *asoc;
301
302 asoc = kzalloc(sizeof(*asoc), gfp);
303 if (!asoc)
304 goto fail;
305
306 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307 goto fail_init;
308
309 SCTP_DBG_OBJCNT_INC(assoc);
310
311 pr_debug("Created asoc %p\n", asoc);
312
313 return asoc;
314
315 fail_init:
316 kfree(asoc);
317 fail:
318 return NULL;
319 }
320
321 /* Free this association if possible. There may still be users, so
322 * the actual deallocation may be delayed.
323 */
324 void sctp_association_free(struct sctp_association *asoc)
325 {
326 struct sock *sk = asoc->base.sk;
327 struct sctp_transport *transport;
328 struct list_head *pos, *temp;
329 int i;
330
331 /* Only real associations count against the endpoint, so
332 * don't bother for if this is a temporary association.
333 */
334 if (!list_empty(&asoc->asocs)) {
335 list_del(&asoc->asocs);
336
337 /* Decrement the backlog value for a TCP-style listening
338 * socket.
339 */
340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341 sk->sk_ack_backlog--;
342 }
343
344 /* Mark as dead, so other users can know this structure is
345 * going away.
346 */
347 asoc->base.dead = true;
348
349 /* Dispose of any data lying around in the outqueue. */
350 sctp_outq_free(&asoc->outqueue);
351
352 /* Dispose of any pending messages for the upper layer. */
353 sctp_ulpq_free(&asoc->ulpq);
354
355 /* Dispose of any pending chunks on the inqueue. */
356 sctp_inq_free(&asoc->base.inqueue);
357
358 sctp_tsnmap_free(&asoc->peer.tsn_map);
359
360 /* Free ssnmap storage. */
361 sctp_ssnmap_free(asoc->ssnmap);
362
363 /* Clean up the bound address list. */
364 sctp_bind_addr_free(&asoc->base.bind_addr);
365
366 /* Do we need to go through all of our timers and
367 * delete them? To be safe we will try to delete all, but we
368 * should be able to go through and make a guess based
369 * on our state.
370 */
371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 if (del_timer(&asoc->timers[i]))
373 sctp_association_put(asoc);
374 }
375
376 /* Free peer's cached cookie. */
377 kfree(asoc->peer.cookie);
378 kfree(asoc->peer.peer_random);
379 kfree(asoc->peer.peer_chunks);
380 kfree(asoc->peer.peer_hmacs);
381
382 /* Release the transport structures. */
383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 transport = list_entry(pos, struct sctp_transport, transports);
385 list_del_rcu(pos);
386 sctp_transport_free(transport);
387 }
388
389 asoc->peer.transport_count = 0;
390
391 sctp_asconf_queue_teardown(asoc);
392
393 /* Free pending address space being deleted */
394 kfree(asoc->asconf_addr_del_pending);
395
396 /* AUTH - Free the endpoint shared keys */
397 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
398
399 /* AUTH - Free the association shared key */
400 sctp_auth_key_put(asoc->asoc_shared_key);
401
402 sctp_association_put(asoc);
403 }
404
405 /* Cleanup and free up an association. */
406 static void sctp_association_destroy(struct sctp_association *asoc)
407 {
408 if (unlikely(!asoc->base.dead)) {
409 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
410 return;
411 }
412
413 sctp_endpoint_put(asoc->ep);
414 sock_put(asoc->base.sk);
415
416 if (asoc->assoc_id != 0) {
417 spin_lock_bh(&sctp_assocs_id_lock);
418 idr_remove(&sctp_assocs_id, asoc->assoc_id);
419 spin_unlock_bh(&sctp_assocs_id_lock);
420 }
421
422 WARN_ON(atomic_read(&asoc->rmem_alloc));
423
424 kfree(asoc);
425 SCTP_DBG_OBJCNT_DEC(assoc);
426 }
427
428 /* Change the primary destination address for the peer. */
429 void sctp_assoc_set_primary(struct sctp_association *asoc,
430 struct sctp_transport *transport)
431 {
432 int changeover = 0;
433
434 /* it's a changeover only if we already have a primary path
435 * that we are changing
436 */
437 if (asoc->peer.primary_path != NULL &&
438 asoc->peer.primary_path != transport)
439 changeover = 1 ;
440
441 asoc->peer.primary_path = transport;
442
443 /* Set a default msg_name for events. */
444 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
445 sizeof(union sctp_addr));
446
447 /* If the primary path is changing, assume that the
448 * user wants to use this new path.
449 */
450 if ((transport->state == SCTP_ACTIVE) ||
451 (transport->state == SCTP_UNKNOWN))
452 asoc->peer.active_path = transport;
453
454 /*
455 * SFR-CACC algorithm:
456 * Upon the receipt of a request to change the primary
457 * destination address, on the data structure for the new
458 * primary destination, the sender MUST do the following:
459 *
460 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
461 * to this destination address earlier. The sender MUST set
462 * CYCLING_CHANGEOVER to indicate that this switch is a
463 * double switch to the same destination address.
464 *
465 * Really, only bother is we have data queued or outstanding on
466 * the association.
467 */
468 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
469 return;
470
471 if (transport->cacc.changeover_active)
472 transport->cacc.cycling_changeover = changeover;
473
474 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
475 * a changeover has occurred.
476 */
477 transport->cacc.changeover_active = changeover;
478
479 /* 3) The sender MUST store the next TSN to be sent in
480 * next_tsn_at_change.
481 */
482 transport->cacc.next_tsn_at_change = asoc->next_tsn;
483 }
484
485 /* Remove a transport from an association. */
486 void sctp_assoc_rm_peer(struct sctp_association *asoc,
487 struct sctp_transport *peer)
488 {
489 struct list_head *pos;
490 struct sctp_transport *transport;
491
492 pr_debug("%s: association:%p addr:%pISpc\n",
493 __func__, asoc, &peer->ipaddr.sa);
494
495 /* If we are to remove the current retran_path, update it
496 * to the next peer before removing this peer from the list.
497 */
498 if (asoc->peer.retran_path == peer)
499 sctp_assoc_update_retran_path(asoc);
500
501 /* Remove this peer from the list. */
502 list_del_rcu(&peer->transports);
503
504 /* Get the first transport of asoc. */
505 pos = asoc->peer.transport_addr_list.next;
506 transport = list_entry(pos, struct sctp_transport, transports);
507
508 /* Update any entries that match the peer to be deleted. */
509 if (asoc->peer.primary_path == peer)
510 sctp_assoc_set_primary(asoc, transport);
511 if (asoc->peer.active_path == peer)
512 asoc->peer.active_path = transport;
513 if (asoc->peer.retran_path == peer)
514 asoc->peer.retran_path = transport;
515 if (asoc->peer.last_data_from == peer)
516 asoc->peer.last_data_from = transport;
517
518 /* If we remove the transport an INIT was last sent to, set it to
519 * NULL. Combined with the update of the retran path above, this
520 * will cause the next INIT to be sent to the next available
521 * transport, maintaining the cycle.
522 */
523 if (asoc->init_last_sent_to == peer)
524 asoc->init_last_sent_to = NULL;
525
526 /* If we remove the transport an SHUTDOWN was last sent to, set it
527 * to NULL. Combined with the update of the retran path above, this
528 * will cause the next SHUTDOWN to be sent to the next available
529 * transport, maintaining the cycle.
530 */
531 if (asoc->shutdown_last_sent_to == peer)
532 asoc->shutdown_last_sent_to = NULL;
533
534 /* If we remove the transport an ASCONF was last sent to, set it to
535 * NULL.
536 */
537 if (asoc->addip_last_asconf &&
538 asoc->addip_last_asconf->transport == peer)
539 asoc->addip_last_asconf->transport = NULL;
540
541 /* If we have something on the transmitted list, we have to
542 * save it off. The best place is the active path.
543 */
544 if (!list_empty(&peer->transmitted)) {
545 struct sctp_transport *active = asoc->peer.active_path;
546 struct sctp_chunk *ch;
547
548 /* Reset the transport of each chunk on this list */
549 list_for_each_entry(ch, &peer->transmitted,
550 transmitted_list) {
551 ch->transport = NULL;
552 ch->rtt_in_progress = 0;
553 }
554
555 list_splice_tail_init(&peer->transmitted,
556 &active->transmitted);
557
558 /* Start a T3 timer here in case it wasn't running so
559 * that these migrated packets have a chance to get
560 * retransmitted.
561 */
562 if (!timer_pending(&active->T3_rtx_timer))
563 if (!mod_timer(&active->T3_rtx_timer,
564 jiffies + active->rto))
565 sctp_transport_hold(active);
566 }
567
568 asoc->peer.transport_count--;
569
570 sctp_transport_free(peer);
571 }
572
573 /* Add a transport address to an association. */
574 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
575 const union sctp_addr *addr,
576 const gfp_t gfp,
577 const int peer_state)
578 {
579 struct net *net = sock_net(asoc->base.sk);
580 struct sctp_transport *peer;
581 struct sctp_sock *sp;
582 unsigned short port;
583
584 sp = sctp_sk(asoc->base.sk);
585
586 /* AF_INET and AF_INET6 share common port field. */
587 port = ntohs(addr->v4.sin_port);
588
589 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
590 asoc, &addr->sa, peer_state);
591
592 /* Set the port if it has not been set yet. */
593 if (0 == asoc->peer.port)
594 asoc->peer.port = port;
595
596 /* Check to see if this is a duplicate. */
597 peer = sctp_assoc_lookup_paddr(asoc, addr);
598 if (peer) {
599 /* An UNKNOWN state is only set on transports added by
600 * user in sctp_connectx() call. Such transports should be
601 * considered CONFIRMED per RFC 4960, Section 5.4.
602 */
603 if (peer->state == SCTP_UNKNOWN) {
604 peer->state = SCTP_ACTIVE;
605 }
606 return peer;
607 }
608
609 peer = sctp_transport_new(net, addr, gfp);
610 if (!peer)
611 return NULL;
612
613 sctp_transport_set_owner(peer, asoc);
614
615 /* Initialize the peer's heartbeat interval based on the
616 * association configured value.
617 */
618 peer->hbinterval = asoc->hbinterval;
619
620 /* Set the path max_retrans. */
621 peer->pathmaxrxt = asoc->pathmaxrxt;
622
623 /* And the partial failure retrans threshold */
624 peer->pf_retrans = asoc->pf_retrans;
625
626 /* Initialize the peer's SACK delay timeout based on the
627 * association configured value.
628 */
629 peer->sackdelay = asoc->sackdelay;
630 peer->sackfreq = asoc->sackfreq;
631
632 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
633 * based on association setting.
634 */
635 peer->param_flags = asoc->param_flags;
636
637 sctp_transport_route(peer, NULL, sp);
638
639 /* Initialize the pmtu of the transport. */
640 if (peer->param_flags & SPP_PMTUD_DISABLE) {
641 if (asoc->pathmtu)
642 peer->pathmtu = asoc->pathmtu;
643 else
644 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
645 }
646
647 /* If this is the first transport addr on this association,
648 * initialize the association PMTU to the peer's PMTU.
649 * If not and the current association PMTU is higher than the new
650 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
651 */
652 if (asoc->pathmtu)
653 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
654 else
655 asoc->pathmtu = peer->pathmtu;
656
657 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
658 asoc->pathmtu);
659
660 peer->pmtu_pending = 0;
661
662 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
663
664 /* The asoc->peer.port might not be meaningful yet, but
665 * initialize the packet structure anyway.
666 */
667 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
668 asoc->peer.port);
669
670 /* 7.2.1 Slow-Start
671 *
672 * o The initial cwnd before DATA transmission or after a sufficiently
673 * long idle period MUST be set to
674 * min(4*MTU, max(2*MTU, 4380 bytes))
675 *
676 * o The initial value of ssthresh MAY be arbitrarily high
677 * (for example, implementations MAY use the size of the
678 * receiver advertised window).
679 */
680 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
681
682 /* At this point, we may not have the receiver's advertised window,
683 * so initialize ssthresh to the default value and it will be set
684 * later when we process the INIT.
685 */
686 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
687
688 peer->partial_bytes_acked = 0;
689 peer->flight_size = 0;
690 peer->burst_limited = 0;
691
692 /* Set the transport's RTO.initial value */
693 peer->rto = asoc->rto_initial;
694 sctp_max_rto(asoc, peer);
695
696 /* Set the peer's active state. */
697 peer->state = peer_state;
698
699 /* Attach the remote transport to our asoc. */
700 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
701 asoc->peer.transport_count++;
702
703 /* If we do not yet have a primary path, set one. */
704 if (!asoc->peer.primary_path) {
705 sctp_assoc_set_primary(asoc, peer);
706 asoc->peer.retran_path = peer;
707 }
708
709 if (asoc->peer.active_path == asoc->peer.retran_path &&
710 peer->state != SCTP_UNCONFIRMED) {
711 asoc->peer.retran_path = peer;
712 }
713
714 return peer;
715 }
716
717 /* Delete a transport address from an association. */
718 void sctp_assoc_del_peer(struct sctp_association *asoc,
719 const union sctp_addr *addr)
720 {
721 struct list_head *pos;
722 struct list_head *temp;
723 struct sctp_transport *transport;
724
725 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
726 transport = list_entry(pos, struct sctp_transport, transports);
727 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
728 /* Do book keeping for removing the peer and free it. */
729 sctp_assoc_rm_peer(asoc, transport);
730 break;
731 }
732 }
733 }
734
735 /* Lookup a transport by address. */
736 struct sctp_transport *sctp_assoc_lookup_paddr(
737 const struct sctp_association *asoc,
738 const union sctp_addr *address)
739 {
740 struct sctp_transport *t;
741
742 /* Cycle through all transports searching for a peer address. */
743
744 list_for_each_entry(t, &asoc->peer.transport_addr_list,
745 transports) {
746 if (sctp_cmp_addr_exact(address, &t->ipaddr))
747 return t;
748 }
749
750 return NULL;
751 }
752
753 /* Remove all transports except a give one */
754 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
755 struct sctp_transport *primary)
756 {
757 struct sctp_transport *temp;
758 struct sctp_transport *t;
759
760 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
761 transports) {
762 /* if the current transport is not the primary one, delete it */
763 if (t != primary)
764 sctp_assoc_rm_peer(asoc, t);
765 }
766 }
767
768 /* Engage in transport control operations.
769 * Mark the transport up or down and send a notification to the user.
770 * Select and update the new active and retran paths.
771 */
772 void sctp_assoc_control_transport(struct sctp_association *asoc,
773 struct sctp_transport *transport,
774 sctp_transport_cmd_t command,
775 sctp_sn_error_t error)
776 {
777 struct sctp_ulpevent *event;
778 struct sockaddr_storage addr;
779 int spc_state = 0;
780 bool ulp_notify = true;
781
782 /* Record the transition on the transport. */
783 switch (command) {
784 case SCTP_TRANSPORT_UP:
785 /* If we are moving from UNCONFIRMED state due
786 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
787 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
788 */
789 if (SCTP_UNCONFIRMED == transport->state &&
790 SCTP_HEARTBEAT_SUCCESS == error)
791 spc_state = SCTP_ADDR_CONFIRMED;
792 else
793 spc_state = SCTP_ADDR_AVAILABLE;
794 /* Don't inform ULP about transition from PF to
795 * active state and set cwnd to 1 MTU, see SCTP
796 * Quick failover draft section 5.1, point 5
797 */
798 if (transport->state == SCTP_PF) {
799 ulp_notify = false;
800 transport->cwnd = asoc->pathmtu;
801 }
802 transport->state = SCTP_ACTIVE;
803 break;
804
805 case SCTP_TRANSPORT_DOWN:
806 /* If the transport was never confirmed, do not transition it
807 * to inactive state. Also, release the cached route since
808 * there may be a better route next time.
809 */
810 if (transport->state != SCTP_UNCONFIRMED)
811 transport->state = SCTP_INACTIVE;
812 else {
813 dst_release(transport->dst);
814 transport->dst = NULL;
815 ulp_notify = false;
816 }
817
818 spc_state = SCTP_ADDR_UNREACHABLE;
819 break;
820
821 case SCTP_TRANSPORT_PF:
822 transport->state = SCTP_PF;
823 ulp_notify = false;
824 break;
825
826 default:
827 return;
828 }
829
830 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
831 * to the user.
832 */
833 if (ulp_notify) {
834 memset(&addr, 0, sizeof(struct sockaddr_storage));
835 memcpy(&addr, &transport->ipaddr,
836 transport->af_specific->sockaddr_len);
837
838 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
839 0, spc_state, error, GFP_ATOMIC);
840 if (event)
841 sctp_ulpq_tail_event(&asoc->ulpq, event);
842 }
843
844 /* Select new active and retran paths. */
845 sctp_select_active_and_retran_path(asoc);
846 }
847
848 /* Hold a reference to an association. */
849 void sctp_association_hold(struct sctp_association *asoc)
850 {
851 atomic_inc(&asoc->base.refcnt);
852 }
853
854 /* Release a reference to an association and cleanup
855 * if there are no more references.
856 */
857 void sctp_association_put(struct sctp_association *asoc)
858 {
859 if (atomic_dec_and_test(&asoc->base.refcnt))
860 sctp_association_destroy(asoc);
861 }
862
863 /* Allocate the next TSN, Transmission Sequence Number, for the given
864 * association.
865 */
866 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
867 {
868 /* From Section 1.6 Serial Number Arithmetic:
869 * Transmission Sequence Numbers wrap around when they reach
870 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
871 * after transmitting TSN = 2*32 - 1 is TSN = 0.
872 */
873 __u32 retval = asoc->next_tsn;
874 asoc->next_tsn++;
875 asoc->unack_data++;
876
877 return retval;
878 }
879
880 /* Compare two addresses to see if they match. Wildcard addresses
881 * only match themselves.
882 */
883 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
884 const union sctp_addr *ss2)
885 {
886 struct sctp_af *af;
887
888 af = sctp_get_af_specific(ss1->sa.sa_family);
889 if (unlikely(!af))
890 return 0;
891
892 return af->cmp_addr(ss1, ss2);
893 }
894
895 /* Return an ecne chunk to get prepended to a packet.
896 * Note: We are sly and return a shared, prealloced chunk. FIXME:
897 * No we don't, but we could/should.
898 */
899 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
900 {
901 if (!asoc->need_ecne)
902 return NULL;
903
904 /* Send ECNE if needed.
905 * Not being able to allocate a chunk here is not deadly.
906 */
907 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
908 }
909
910 /*
911 * Find which transport this TSN was sent on.
912 */
913 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
914 __u32 tsn)
915 {
916 struct sctp_transport *active;
917 struct sctp_transport *match;
918 struct sctp_transport *transport;
919 struct sctp_chunk *chunk;
920 __be32 key = htonl(tsn);
921
922 match = NULL;
923
924 /*
925 * FIXME: In general, find a more efficient data structure for
926 * searching.
927 */
928
929 /*
930 * The general strategy is to search each transport's transmitted
931 * list. Return which transport this TSN lives on.
932 *
933 * Let's be hopeful and check the active_path first.
934 * Another optimization would be to know if there is only one
935 * outbound path and not have to look for the TSN at all.
936 *
937 */
938
939 active = asoc->peer.active_path;
940
941 list_for_each_entry(chunk, &active->transmitted,
942 transmitted_list) {
943
944 if (key == chunk->subh.data_hdr->tsn) {
945 match = active;
946 goto out;
947 }
948 }
949
950 /* If not found, go search all the other transports. */
951 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
952 transports) {
953
954 if (transport == active)
955 continue;
956 list_for_each_entry(chunk, &transport->transmitted,
957 transmitted_list) {
958 if (key == chunk->subh.data_hdr->tsn) {
959 match = transport;
960 goto out;
961 }
962 }
963 }
964 out:
965 return match;
966 }
967
968 /* Is this the association we are looking for? */
969 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
970 struct net *net,
971 const union sctp_addr *laddr,
972 const union sctp_addr *paddr)
973 {
974 struct sctp_transport *transport;
975
976 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
977 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
978 net_eq(sock_net(asoc->base.sk), net)) {
979 transport = sctp_assoc_lookup_paddr(asoc, paddr);
980 if (!transport)
981 goto out;
982
983 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
984 sctp_sk(asoc->base.sk)))
985 goto out;
986 }
987 transport = NULL;
988
989 out:
990 return transport;
991 }
992
993 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
994 static void sctp_assoc_bh_rcv(struct work_struct *work)
995 {
996 struct sctp_association *asoc =
997 container_of(work, struct sctp_association,
998 base.inqueue.immediate);
999 struct net *net = sock_net(asoc->base.sk);
1000 struct sctp_endpoint *ep;
1001 struct sctp_chunk *chunk;
1002 struct sctp_inq *inqueue;
1003 int state;
1004 sctp_subtype_t subtype;
1005 int error = 0;
1006
1007 /* The association should be held so we should be safe. */
1008 ep = asoc->ep;
1009
1010 inqueue = &asoc->base.inqueue;
1011 sctp_association_hold(asoc);
1012 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1013 state = asoc->state;
1014 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1015
1016 /* SCTP-AUTH, Section 6.3:
1017 * The receiver has a list of chunk types which it expects
1018 * to be received only after an AUTH-chunk. This list has
1019 * been sent to the peer during the association setup. It
1020 * MUST silently discard these chunks if they are not placed
1021 * after an AUTH chunk in the packet.
1022 */
1023 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1024 continue;
1025
1026 /* Remember where the last DATA chunk came from so we
1027 * know where to send the SACK.
1028 */
1029 if (sctp_chunk_is_data(chunk))
1030 asoc->peer.last_data_from = chunk->transport;
1031 else {
1032 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1033 asoc->stats.ictrlchunks++;
1034 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1035 asoc->stats.isacks++;
1036 }
1037
1038 if (chunk->transport)
1039 chunk->transport->last_time_heard = ktime_get();
1040
1041 /* Run through the state machine. */
1042 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1043 state, ep, asoc, chunk, GFP_ATOMIC);
1044
1045 /* Check to see if the association is freed in response to
1046 * the incoming chunk. If so, get out of the while loop.
1047 */
1048 if (asoc->base.dead)
1049 break;
1050
1051 /* If there is an error on chunk, discard this packet. */
1052 if (error && chunk)
1053 chunk->pdiscard = 1;
1054 }
1055 sctp_association_put(asoc);
1056 }
1057
1058 /* This routine moves an association from its old sk to a new sk. */
1059 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1060 {
1061 struct sctp_sock *newsp = sctp_sk(newsk);
1062 struct sock *oldsk = assoc->base.sk;
1063
1064 /* Delete the association from the old endpoint's list of
1065 * associations.
1066 */
1067 list_del_init(&assoc->asocs);
1068
1069 /* Decrement the backlog value for a TCP-style socket. */
1070 if (sctp_style(oldsk, TCP))
1071 oldsk->sk_ack_backlog--;
1072
1073 /* Release references to the old endpoint and the sock. */
1074 sctp_endpoint_put(assoc->ep);
1075 sock_put(assoc->base.sk);
1076
1077 /* Get a reference to the new endpoint. */
1078 assoc->ep = newsp->ep;
1079 sctp_endpoint_hold(assoc->ep);
1080
1081 /* Get a reference to the new sock. */
1082 assoc->base.sk = newsk;
1083 sock_hold(assoc->base.sk);
1084
1085 /* Add the association to the new endpoint's list of associations. */
1086 sctp_endpoint_add_asoc(newsp->ep, assoc);
1087 }
1088
1089 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1090 void sctp_assoc_update(struct sctp_association *asoc,
1091 struct sctp_association *new)
1092 {
1093 struct sctp_transport *trans;
1094 struct list_head *pos, *temp;
1095
1096 /* Copy in new parameters of peer. */
1097 asoc->c = new->c;
1098 asoc->peer.rwnd = new->peer.rwnd;
1099 asoc->peer.sack_needed = new->peer.sack_needed;
1100 asoc->peer.auth_capable = new->peer.auth_capable;
1101 asoc->peer.i = new->peer.i;
1102 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1103 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1104
1105 /* Remove any peer addresses not present in the new association. */
1106 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1107 trans = list_entry(pos, struct sctp_transport, transports);
1108 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1109 sctp_assoc_rm_peer(asoc, trans);
1110 continue;
1111 }
1112
1113 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1114 sctp_transport_reset(trans);
1115 }
1116
1117 /* If the case is A (association restart), use
1118 * initial_tsn as next_tsn. If the case is B, use
1119 * current next_tsn in case data sent to peer
1120 * has been discarded and needs retransmission.
1121 */
1122 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1123 asoc->next_tsn = new->next_tsn;
1124 asoc->ctsn_ack_point = new->ctsn_ack_point;
1125 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1126
1127 /* Reinitialize SSN for both local streams
1128 * and peer's streams.
1129 */
1130 sctp_ssnmap_clear(asoc->ssnmap);
1131
1132 /* Flush the ULP reassembly and ordered queue.
1133 * Any data there will now be stale and will
1134 * cause problems.
1135 */
1136 sctp_ulpq_flush(&asoc->ulpq);
1137
1138 /* reset the overall association error count so
1139 * that the restarted association doesn't get torn
1140 * down on the next retransmission timer.
1141 */
1142 asoc->overall_error_count = 0;
1143
1144 } else {
1145 /* Add any peer addresses from the new association. */
1146 list_for_each_entry(trans, &new->peer.transport_addr_list,
1147 transports) {
1148 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1149 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1150 GFP_ATOMIC, trans->state);
1151 }
1152
1153 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1154 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1155 if (!asoc->ssnmap) {
1156 /* Move the ssnmap. */
1157 asoc->ssnmap = new->ssnmap;
1158 new->ssnmap = NULL;
1159 }
1160
1161 if (!asoc->assoc_id) {
1162 /* get a new association id since we don't have one
1163 * yet.
1164 */
1165 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1166 }
1167 }
1168
1169 /* SCTP-AUTH: Save the peer parameters from the new associations
1170 * and also move the association shared keys over
1171 */
1172 kfree(asoc->peer.peer_random);
1173 asoc->peer.peer_random = new->peer.peer_random;
1174 new->peer.peer_random = NULL;
1175
1176 kfree(asoc->peer.peer_chunks);
1177 asoc->peer.peer_chunks = new->peer.peer_chunks;
1178 new->peer.peer_chunks = NULL;
1179
1180 kfree(asoc->peer.peer_hmacs);
1181 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1182 new->peer.peer_hmacs = NULL;
1183
1184 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1185 }
1186
1187 /* Update the retran path for sending a retransmitted packet.
1188 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1189 *
1190 * When there is outbound data to send and the primary path
1191 * becomes inactive (e.g., due to failures), or where the
1192 * SCTP user explicitly requests to send data to an
1193 * inactive destination transport address, before reporting
1194 * an error to its ULP, the SCTP endpoint should try to send
1195 * the data to an alternate active destination transport
1196 * address if one exists.
1197 *
1198 * When retransmitting data that timed out, if the endpoint
1199 * is multihomed, it should consider each source-destination
1200 * address pair in its retransmission selection policy.
1201 * When retransmitting timed-out data, the endpoint should
1202 * attempt to pick the most divergent source-destination
1203 * pair from the original source-destination pair to which
1204 * the packet was transmitted.
1205 *
1206 * Note: Rules for picking the most divergent source-destination
1207 * pair are an implementation decision and are not specified
1208 * within this document.
1209 *
1210 * Our basic strategy is to round-robin transports in priorities
1211 * according to sctp_state_prio_map[] e.g., if no such
1212 * transport with state SCTP_ACTIVE exists, round-robin through
1213 * SCTP_UNKNOWN, etc. You get the picture.
1214 */
1215 static const u8 sctp_trans_state_to_prio_map[] = {
1216 [SCTP_ACTIVE] = 3, /* best case */
1217 [SCTP_UNKNOWN] = 2,
1218 [SCTP_PF] = 1,
1219 [SCTP_INACTIVE] = 0, /* worst case */
1220 };
1221
1222 static u8 sctp_trans_score(const struct sctp_transport *trans)
1223 {
1224 return sctp_trans_state_to_prio_map[trans->state];
1225 }
1226
1227 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1228 struct sctp_transport *trans2)
1229 {
1230 if (trans1->error_count > trans2->error_count) {
1231 return trans2;
1232 } else if (trans1->error_count == trans2->error_count &&
1233 ktime_after(trans2->last_time_heard,
1234 trans1->last_time_heard)) {
1235 return trans2;
1236 } else {
1237 return trans1;
1238 }
1239 }
1240
1241 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1242 struct sctp_transport *best)
1243 {
1244 u8 score_curr, score_best;
1245
1246 if (best == NULL || curr == best)
1247 return curr;
1248
1249 score_curr = sctp_trans_score(curr);
1250 score_best = sctp_trans_score(best);
1251
1252 /* First, try a score-based selection if both transport states
1253 * differ. If we're in a tie, lets try to make a more clever
1254 * decision here based on error counts and last time heard.
1255 */
1256 if (score_curr > score_best)
1257 return curr;
1258 else if (score_curr == score_best)
1259 return sctp_trans_elect_tie(curr, best);
1260 else
1261 return best;
1262 }
1263
1264 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1265 {
1266 struct sctp_transport *trans = asoc->peer.retran_path;
1267 struct sctp_transport *trans_next = NULL;
1268
1269 /* We're done as we only have the one and only path. */
1270 if (asoc->peer.transport_count == 1)
1271 return;
1272 /* If active_path and retran_path are the same and active,
1273 * then this is the only active path. Use it.
1274 */
1275 if (asoc->peer.active_path == asoc->peer.retran_path &&
1276 asoc->peer.active_path->state == SCTP_ACTIVE)
1277 return;
1278
1279 /* Iterate from retran_path's successor back to retran_path. */
1280 for (trans = list_next_entry(trans, transports); 1;
1281 trans = list_next_entry(trans, transports)) {
1282 /* Manually skip the head element. */
1283 if (&trans->transports == &asoc->peer.transport_addr_list)
1284 continue;
1285 if (trans->state == SCTP_UNCONFIRMED)
1286 continue;
1287 trans_next = sctp_trans_elect_best(trans, trans_next);
1288 /* Active is good enough for immediate return. */
1289 if (trans_next->state == SCTP_ACTIVE)
1290 break;
1291 /* We've reached the end, time to update path. */
1292 if (trans == asoc->peer.retran_path)
1293 break;
1294 }
1295
1296 asoc->peer.retran_path = trans_next;
1297
1298 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1299 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1300 }
1301
1302 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1303 {
1304 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1305 struct sctp_transport *trans_pf = NULL;
1306
1307 /* Look for the two most recently used active transports. */
1308 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1309 transports) {
1310 /* Skip uninteresting transports. */
1311 if (trans->state == SCTP_INACTIVE ||
1312 trans->state == SCTP_UNCONFIRMED)
1313 continue;
1314 /* Keep track of the best PF transport from our
1315 * list in case we don't find an active one.
1316 */
1317 if (trans->state == SCTP_PF) {
1318 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1319 continue;
1320 }
1321 /* For active transports, pick the most recent ones. */
1322 if (trans_pri == NULL ||
1323 ktime_after(trans->last_time_heard,
1324 trans_pri->last_time_heard)) {
1325 trans_sec = trans_pri;
1326 trans_pri = trans;
1327 } else if (trans_sec == NULL ||
1328 ktime_after(trans->last_time_heard,
1329 trans_sec->last_time_heard)) {
1330 trans_sec = trans;
1331 }
1332 }
1333
1334 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1335 *
1336 * By default, an endpoint should always transmit to the primary
1337 * path, unless the SCTP user explicitly specifies the
1338 * destination transport address (and possibly source transport
1339 * address) to use. [If the primary is active but not most recent,
1340 * bump the most recently used transport.]
1341 */
1342 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1343 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1344 asoc->peer.primary_path != trans_pri) {
1345 trans_sec = trans_pri;
1346 trans_pri = asoc->peer.primary_path;
1347 }
1348
1349 /* We did not find anything useful for a possible retransmission
1350 * path; either primary path that we found is the the same as
1351 * the current one, or we didn't generally find an active one.
1352 */
1353 if (trans_sec == NULL)
1354 trans_sec = trans_pri;
1355
1356 /* If we failed to find a usable transport, just camp on the
1357 * active or pick a PF iff it's the better choice.
1358 */
1359 if (trans_pri == NULL) {
1360 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1361 trans_sec = trans_pri;
1362 }
1363
1364 /* Set the active and retran transports. */
1365 asoc->peer.active_path = trans_pri;
1366 asoc->peer.retran_path = trans_sec;
1367 }
1368
1369 struct sctp_transport *
1370 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1371 struct sctp_transport *last_sent_to)
1372 {
1373 /* If this is the first time packet is sent, use the active path,
1374 * else use the retran path. If the last packet was sent over the
1375 * retran path, update the retran path and use it.
1376 */
1377 if (last_sent_to == NULL) {
1378 return asoc->peer.active_path;
1379 } else {
1380 if (last_sent_to == asoc->peer.retran_path)
1381 sctp_assoc_update_retran_path(asoc);
1382
1383 return asoc->peer.retran_path;
1384 }
1385 }
1386
1387 /* Update the association's pmtu and frag_point by going through all the
1388 * transports. This routine is called when a transport's PMTU has changed.
1389 */
1390 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1391 {
1392 struct sctp_transport *t;
1393 __u32 pmtu = 0;
1394
1395 if (!asoc)
1396 return;
1397
1398 /* Get the lowest pmtu of all the transports. */
1399 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1400 transports) {
1401 if (t->pmtu_pending && t->dst) {
1402 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1403 t->pmtu_pending = 0;
1404 }
1405 if (!pmtu || (t->pathmtu < pmtu))
1406 pmtu = t->pathmtu;
1407 }
1408
1409 if (pmtu) {
1410 asoc->pathmtu = pmtu;
1411 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1412 }
1413
1414 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1415 asoc->pathmtu, asoc->frag_point);
1416 }
1417
1418 /* Should we send a SACK to update our peer? */
1419 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1420 {
1421 struct net *net = sock_net(asoc->base.sk);
1422 switch (asoc->state) {
1423 case SCTP_STATE_ESTABLISHED:
1424 case SCTP_STATE_SHUTDOWN_PENDING:
1425 case SCTP_STATE_SHUTDOWN_RECEIVED:
1426 case SCTP_STATE_SHUTDOWN_SENT:
1427 if ((asoc->rwnd > asoc->a_rwnd) &&
1428 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1429 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1430 asoc->pathmtu)))
1431 return true;
1432 break;
1433 default:
1434 break;
1435 }
1436 return false;
1437 }
1438
1439 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1440 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1441 {
1442 struct sctp_chunk *sack;
1443 struct timer_list *timer;
1444
1445 if (asoc->rwnd_over) {
1446 if (asoc->rwnd_over >= len) {
1447 asoc->rwnd_over -= len;
1448 } else {
1449 asoc->rwnd += (len - asoc->rwnd_over);
1450 asoc->rwnd_over = 0;
1451 }
1452 } else {
1453 asoc->rwnd += len;
1454 }
1455
1456 /* If we had window pressure, start recovering it
1457 * once our rwnd had reached the accumulated pressure
1458 * threshold. The idea is to recover slowly, but up
1459 * to the initial advertised window.
1460 */
1461 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1462 int change = min(asoc->pathmtu, asoc->rwnd_press);
1463 asoc->rwnd += change;
1464 asoc->rwnd_press -= change;
1465 }
1466
1467 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1468 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1469 asoc->a_rwnd);
1470
1471 /* Send a window update SACK if the rwnd has increased by at least the
1472 * minimum of the association's PMTU and half of the receive buffer.
1473 * The algorithm used is similar to the one described in
1474 * Section 4.2.3.3 of RFC 1122.
1475 */
1476 if (sctp_peer_needs_update(asoc)) {
1477 asoc->a_rwnd = asoc->rwnd;
1478
1479 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1480 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1481 asoc->a_rwnd);
1482
1483 sack = sctp_make_sack(asoc);
1484 if (!sack)
1485 return;
1486
1487 asoc->peer.sack_needed = 0;
1488
1489 sctp_outq_tail(&asoc->outqueue, sack);
1490
1491 /* Stop the SACK timer. */
1492 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1493 if (del_timer(timer))
1494 sctp_association_put(asoc);
1495 }
1496 }
1497
1498 /* Decrease asoc's rwnd by len. */
1499 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1500 {
1501 int rx_count;
1502 int over = 0;
1503
1504 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1505 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1506 "asoc->rwnd_over:%u!\n", __func__, asoc,
1507 asoc->rwnd, asoc->rwnd_over);
1508
1509 if (asoc->ep->rcvbuf_policy)
1510 rx_count = atomic_read(&asoc->rmem_alloc);
1511 else
1512 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1513
1514 /* If we've reached or overflowed our receive buffer, announce
1515 * a 0 rwnd if rwnd would still be positive. Store the
1516 * the potential pressure overflow so that the window can be restored
1517 * back to original value.
1518 */
1519 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1520 over = 1;
1521
1522 if (asoc->rwnd >= len) {
1523 asoc->rwnd -= len;
1524 if (over) {
1525 asoc->rwnd_press += asoc->rwnd;
1526 asoc->rwnd = 0;
1527 }
1528 } else {
1529 asoc->rwnd_over = len - asoc->rwnd;
1530 asoc->rwnd = 0;
1531 }
1532
1533 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1534 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1535 asoc->rwnd_press);
1536 }
1537
1538 /* Build the bind address list for the association based on info from the
1539 * local endpoint and the remote peer.
1540 */
1541 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1542 sctp_scope_t scope, gfp_t gfp)
1543 {
1544 int flags;
1545
1546 /* Use scoping rules to determine the subset of addresses from
1547 * the endpoint.
1548 */
1549 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1550 if (asoc->peer.ipv4_address)
1551 flags |= SCTP_ADDR4_PEERSUPP;
1552 if (asoc->peer.ipv6_address)
1553 flags |= SCTP_ADDR6_PEERSUPP;
1554
1555 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1556 &asoc->base.bind_addr,
1557 &asoc->ep->base.bind_addr,
1558 scope, gfp, flags);
1559 }
1560
1561 /* Build the association's bind address list from the cookie. */
1562 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1563 struct sctp_cookie *cookie,
1564 gfp_t gfp)
1565 {
1566 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1567 int var_size3 = cookie->raw_addr_list_len;
1568 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1569
1570 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1571 asoc->ep->base.bind_addr.port, gfp);
1572 }
1573
1574 /* Lookup laddr in the bind address list of an association. */
1575 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1576 const union sctp_addr *laddr)
1577 {
1578 int found = 0;
1579
1580 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1581 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1582 sctp_sk(asoc->base.sk)))
1583 found = 1;
1584
1585 return found;
1586 }
1587
1588 /* Set an association id for a given association */
1589 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1590 {
1591 bool preload = !!(gfp & __GFP_WAIT);
1592 int ret;
1593
1594 /* If the id is already assigned, keep it. */
1595 if (asoc->assoc_id)
1596 return 0;
1597
1598 if (preload)
1599 idr_preload(gfp);
1600 spin_lock_bh(&sctp_assocs_id_lock);
1601 /* 0 is not a valid assoc_id, must be >= 1 */
1602 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1603 spin_unlock_bh(&sctp_assocs_id_lock);
1604 if (preload)
1605 idr_preload_end();
1606 if (ret < 0)
1607 return ret;
1608
1609 asoc->assoc_id = (sctp_assoc_t)ret;
1610 return 0;
1611 }
1612
1613 /* Free the ASCONF queue */
1614 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1615 {
1616 struct sctp_chunk *asconf;
1617 struct sctp_chunk *tmp;
1618
1619 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1620 list_del_init(&asconf->list);
1621 sctp_chunk_free(asconf);
1622 }
1623 }
1624
1625 /* Free asconf_ack cache */
1626 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1627 {
1628 struct sctp_chunk *ack;
1629 struct sctp_chunk *tmp;
1630
1631 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1632 transmitted_list) {
1633 list_del_init(&ack->transmitted_list);
1634 sctp_chunk_free(ack);
1635 }
1636 }
1637
1638 /* Clean up the ASCONF_ACK queue */
1639 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1640 {
1641 struct sctp_chunk *ack;
1642 struct sctp_chunk *tmp;
1643
1644 /* We can remove all the entries from the queue up to
1645 * the "Peer-Sequence-Number".
1646 */
1647 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1648 transmitted_list) {
1649 if (ack->subh.addip_hdr->serial ==
1650 htonl(asoc->peer.addip_serial))
1651 break;
1652
1653 list_del_init(&ack->transmitted_list);
1654 sctp_chunk_free(ack);
1655 }
1656 }
1657
1658 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1659 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1660 const struct sctp_association *asoc,
1661 __be32 serial)
1662 {
1663 struct sctp_chunk *ack;
1664
1665 /* Walk through the list of cached ASCONF-ACKs and find the
1666 * ack chunk whose serial number matches that of the request.
1667 */
1668 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1669 if (sctp_chunk_pending(ack))
1670 continue;
1671 if (ack->subh.addip_hdr->serial == serial) {
1672 sctp_chunk_hold(ack);
1673 return ack;
1674 }
1675 }
1676
1677 return NULL;
1678 }
1679
1680 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1681 {
1682 /* Free any cached ASCONF_ACK chunk. */
1683 sctp_assoc_free_asconf_acks(asoc);
1684
1685 /* Free the ASCONF queue. */
1686 sctp_assoc_free_asconf_queue(asoc);
1687
1688 /* Free any cached ASCONF chunk. */
1689 if (asoc->addip_last_asconf)
1690 sctp_chunk_free(asoc->addip_last_asconf);
1691 }