]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/associola.c
sctp: use new rhlist interface on sctp transport rhashtable
[mirror_ubuntu-artful-kernel.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
100
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
118
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
121
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
125
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */
129 asoc->param_flags = sp->param_flags;
130
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
133 */
134 asoc->max_burst = sp->max_burst;
135
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
155
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
176
177 asoc->a_rwnd = asoc->rwnd;
178
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
184
185 init_waitqueue_head(&asoc->wait);
186
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192 asoc->next_tsn = asoc->c.initial_tsn;
193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
208 */
209 asoc->addip_serial = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
256
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
263
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
269
270 asoc->active_key_id = ep->active_key_id;
271 asoc->prsctp_enable = ep->prsctp_enable;
272
273 /* Save the hmacs and chunks list into this association */
274 if (ep->auth_hmacs_list)
275 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
276 ntohs(ep->auth_hmacs_list->param_hdr.length));
277 if (ep->auth_chunk_list)
278 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
279 ntohs(ep->auth_chunk_list->param_hdr.length));
280
281 /* Get the AUTH random number for this association */
282 p = (sctp_paramhdr_t *)asoc->c.auth_random;
283 p->type = SCTP_PARAM_RANDOM;
284 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
285 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
286
287 return asoc;
288
289 fail_init:
290 sock_put(asoc->base.sk);
291 sctp_endpoint_put(asoc->ep);
292 return NULL;
293 }
294
295 /* Allocate and initialize a new association */
296 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
297 const struct sock *sk,
298 sctp_scope_t scope,
299 gfp_t gfp)
300 {
301 struct sctp_association *asoc;
302
303 asoc = kzalloc(sizeof(*asoc), gfp);
304 if (!asoc)
305 goto fail;
306
307 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
308 goto fail_init;
309
310 SCTP_DBG_OBJCNT_INC(assoc);
311
312 pr_debug("Created asoc %p\n", asoc);
313
314 return asoc;
315
316 fail_init:
317 kfree(asoc);
318 fail:
319 return NULL;
320 }
321
322 /* Free this association if possible. There may still be users, so
323 * the actual deallocation may be delayed.
324 */
325 void sctp_association_free(struct sctp_association *asoc)
326 {
327 struct sock *sk = asoc->base.sk;
328 struct sctp_transport *transport;
329 struct list_head *pos, *temp;
330 int i;
331
332 /* Only real associations count against the endpoint, so
333 * don't bother for if this is a temporary association.
334 */
335 if (!list_empty(&asoc->asocs)) {
336 list_del(&asoc->asocs);
337
338 /* Decrement the backlog value for a TCP-style listening
339 * socket.
340 */
341 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
342 sk->sk_ack_backlog--;
343 }
344
345 /* Mark as dead, so other users can know this structure is
346 * going away.
347 */
348 asoc->base.dead = true;
349
350 /* Dispose of any data lying around in the outqueue. */
351 sctp_outq_free(&asoc->outqueue);
352
353 /* Dispose of any pending messages for the upper layer. */
354 sctp_ulpq_free(&asoc->ulpq);
355
356 /* Dispose of any pending chunks on the inqueue. */
357 sctp_inq_free(&asoc->base.inqueue);
358
359 sctp_tsnmap_free(&asoc->peer.tsn_map);
360
361 /* Free ssnmap storage. */
362 sctp_ssnmap_free(asoc->ssnmap);
363
364 /* Clean up the bound address list. */
365 sctp_bind_addr_free(&asoc->base.bind_addr);
366
367 /* Do we need to go through all of our timers and
368 * delete them? To be safe we will try to delete all, but we
369 * should be able to go through and make a guess based
370 * on our state.
371 */
372 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
373 if (del_timer(&asoc->timers[i]))
374 sctp_association_put(asoc);
375 }
376
377 /* Free peer's cached cookie. */
378 kfree(asoc->peer.cookie);
379 kfree(asoc->peer.peer_random);
380 kfree(asoc->peer.peer_chunks);
381 kfree(asoc->peer.peer_hmacs);
382
383 /* Release the transport structures. */
384 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
385 transport = list_entry(pos, struct sctp_transport, transports);
386 list_del_rcu(pos);
387 sctp_unhash_transport(transport);
388 sctp_transport_free(transport);
389 }
390
391 asoc->peer.transport_count = 0;
392
393 sctp_asconf_queue_teardown(asoc);
394
395 /* Free pending address space being deleted */
396 kfree(asoc->asconf_addr_del_pending);
397
398 /* AUTH - Free the endpoint shared keys */
399 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
400
401 /* AUTH - Free the association shared key */
402 sctp_auth_key_put(asoc->asoc_shared_key);
403
404 sctp_association_put(asoc);
405 }
406
407 /* Cleanup and free up an association. */
408 static void sctp_association_destroy(struct sctp_association *asoc)
409 {
410 if (unlikely(!asoc->base.dead)) {
411 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
412 return;
413 }
414
415 sctp_endpoint_put(asoc->ep);
416 sock_put(asoc->base.sk);
417
418 if (asoc->assoc_id != 0) {
419 spin_lock_bh(&sctp_assocs_id_lock);
420 idr_remove(&sctp_assocs_id, asoc->assoc_id);
421 spin_unlock_bh(&sctp_assocs_id_lock);
422 }
423
424 WARN_ON(atomic_read(&asoc->rmem_alloc));
425
426 kfree(asoc);
427 SCTP_DBG_OBJCNT_DEC(assoc);
428 }
429
430 /* Change the primary destination address for the peer. */
431 void sctp_assoc_set_primary(struct sctp_association *asoc,
432 struct sctp_transport *transport)
433 {
434 int changeover = 0;
435
436 /* it's a changeover only if we already have a primary path
437 * that we are changing
438 */
439 if (asoc->peer.primary_path != NULL &&
440 asoc->peer.primary_path != transport)
441 changeover = 1 ;
442
443 asoc->peer.primary_path = transport;
444
445 /* Set a default msg_name for events. */
446 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
447 sizeof(union sctp_addr));
448
449 /* If the primary path is changing, assume that the
450 * user wants to use this new path.
451 */
452 if ((transport->state == SCTP_ACTIVE) ||
453 (transport->state == SCTP_UNKNOWN))
454 asoc->peer.active_path = transport;
455
456 /*
457 * SFR-CACC algorithm:
458 * Upon the receipt of a request to change the primary
459 * destination address, on the data structure for the new
460 * primary destination, the sender MUST do the following:
461 *
462 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
463 * to this destination address earlier. The sender MUST set
464 * CYCLING_CHANGEOVER to indicate that this switch is a
465 * double switch to the same destination address.
466 *
467 * Really, only bother is we have data queued or outstanding on
468 * the association.
469 */
470 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
471 return;
472
473 if (transport->cacc.changeover_active)
474 transport->cacc.cycling_changeover = changeover;
475
476 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
477 * a changeover has occurred.
478 */
479 transport->cacc.changeover_active = changeover;
480
481 /* 3) The sender MUST store the next TSN to be sent in
482 * next_tsn_at_change.
483 */
484 transport->cacc.next_tsn_at_change = asoc->next_tsn;
485 }
486
487 /* Remove a transport from an association. */
488 void sctp_assoc_rm_peer(struct sctp_association *asoc,
489 struct sctp_transport *peer)
490 {
491 struct list_head *pos;
492 struct sctp_transport *transport;
493
494 pr_debug("%s: association:%p addr:%pISpc\n",
495 __func__, asoc, &peer->ipaddr.sa);
496
497 /* If we are to remove the current retran_path, update it
498 * to the next peer before removing this peer from the list.
499 */
500 if (asoc->peer.retran_path == peer)
501 sctp_assoc_update_retran_path(asoc);
502
503 /* Remove this peer from the list. */
504 list_del_rcu(&peer->transports);
505 /* Remove this peer from the transport hashtable */
506 sctp_unhash_transport(peer);
507
508 /* Get the first transport of asoc. */
509 pos = asoc->peer.transport_addr_list.next;
510 transport = list_entry(pos, struct sctp_transport, transports);
511
512 /* Update any entries that match the peer to be deleted. */
513 if (asoc->peer.primary_path == peer)
514 sctp_assoc_set_primary(asoc, transport);
515 if (asoc->peer.active_path == peer)
516 asoc->peer.active_path = transport;
517 if (asoc->peer.retran_path == peer)
518 asoc->peer.retran_path = transport;
519 if (asoc->peer.last_data_from == peer)
520 asoc->peer.last_data_from = transport;
521
522 /* If we remove the transport an INIT was last sent to, set it to
523 * NULL. Combined with the update of the retran path above, this
524 * will cause the next INIT to be sent to the next available
525 * transport, maintaining the cycle.
526 */
527 if (asoc->init_last_sent_to == peer)
528 asoc->init_last_sent_to = NULL;
529
530 /* If we remove the transport an SHUTDOWN was last sent to, set it
531 * to NULL. Combined with the update of the retran path above, this
532 * will cause the next SHUTDOWN to be sent to the next available
533 * transport, maintaining the cycle.
534 */
535 if (asoc->shutdown_last_sent_to == peer)
536 asoc->shutdown_last_sent_to = NULL;
537
538 /* If we remove the transport an ASCONF was last sent to, set it to
539 * NULL.
540 */
541 if (asoc->addip_last_asconf &&
542 asoc->addip_last_asconf->transport == peer)
543 asoc->addip_last_asconf->transport = NULL;
544
545 /* If we have something on the transmitted list, we have to
546 * save it off. The best place is the active path.
547 */
548 if (!list_empty(&peer->transmitted)) {
549 struct sctp_transport *active = asoc->peer.active_path;
550 struct sctp_chunk *ch;
551
552 /* Reset the transport of each chunk on this list */
553 list_for_each_entry(ch, &peer->transmitted,
554 transmitted_list) {
555 ch->transport = NULL;
556 ch->rtt_in_progress = 0;
557 }
558
559 list_splice_tail_init(&peer->transmitted,
560 &active->transmitted);
561
562 /* Start a T3 timer here in case it wasn't running so
563 * that these migrated packets have a chance to get
564 * retransmitted.
565 */
566 if (!timer_pending(&active->T3_rtx_timer))
567 if (!mod_timer(&active->T3_rtx_timer,
568 jiffies + active->rto))
569 sctp_transport_hold(active);
570 }
571
572 asoc->peer.transport_count--;
573
574 sctp_transport_free(peer);
575 }
576
577 /* Add a transport address to an association. */
578 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
579 const union sctp_addr *addr,
580 const gfp_t gfp,
581 const int peer_state)
582 {
583 struct net *net = sock_net(asoc->base.sk);
584 struct sctp_transport *peer;
585 struct sctp_sock *sp;
586 unsigned short port;
587
588 sp = sctp_sk(asoc->base.sk);
589
590 /* AF_INET and AF_INET6 share common port field. */
591 port = ntohs(addr->v4.sin_port);
592
593 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
594 asoc, &addr->sa, peer_state);
595
596 /* Set the port if it has not been set yet. */
597 if (0 == asoc->peer.port)
598 asoc->peer.port = port;
599
600 /* Check to see if this is a duplicate. */
601 peer = sctp_assoc_lookup_paddr(asoc, addr);
602 if (peer) {
603 /* An UNKNOWN state is only set on transports added by
604 * user in sctp_connectx() call. Such transports should be
605 * considered CONFIRMED per RFC 4960, Section 5.4.
606 */
607 if (peer->state == SCTP_UNKNOWN) {
608 peer->state = SCTP_ACTIVE;
609 }
610 return peer;
611 }
612
613 peer = sctp_transport_new(net, addr, gfp);
614 if (!peer)
615 return NULL;
616
617 sctp_transport_set_owner(peer, asoc);
618
619 /* Initialize the peer's heartbeat interval based on the
620 * association configured value.
621 */
622 peer->hbinterval = asoc->hbinterval;
623
624 /* Set the path max_retrans. */
625 peer->pathmaxrxt = asoc->pathmaxrxt;
626
627 /* And the partial failure retrans threshold */
628 peer->pf_retrans = asoc->pf_retrans;
629
630 /* Initialize the peer's SACK delay timeout based on the
631 * association configured value.
632 */
633 peer->sackdelay = asoc->sackdelay;
634 peer->sackfreq = asoc->sackfreq;
635
636 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
637 * based on association setting.
638 */
639 peer->param_flags = asoc->param_flags;
640
641 sctp_transport_route(peer, NULL, sp);
642
643 /* Initialize the pmtu of the transport. */
644 if (peer->param_flags & SPP_PMTUD_DISABLE) {
645 if (asoc->pathmtu)
646 peer->pathmtu = asoc->pathmtu;
647 else
648 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
649 }
650
651 /* If this is the first transport addr on this association,
652 * initialize the association PMTU to the peer's PMTU.
653 * If not and the current association PMTU is higher than the new
654 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
655 */
656 if (asoc->pathmtu)
657 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
658 else
659 asoc->pathmtu = peer->pathmtu;
660
661 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
662 asoc->pathmtu);
663
664 peer->pmtu_pending = 0;
665
666 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
667
668 /* The asoc->peer.port might not be meaningful yet, but
669 * initialize the packet structure anyway.
670 */
671 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
672 asoc->peer.port);
673
674 /* 7.2.1 Slow-Start
675 *
676 * o The initial cwnd before DATA transmission or after a sufficiently
677 * long idle period MUST be set to
678 * min(4*MTU, max(2*MTU, 4380 bytes))
679 *
680 * o The initial value of ssthresh MAY be arbitrarily high
681 * (for example, implementations MAY use the size of the
682 * receiver advertised window).
683 */
684 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
685
686 /* At this point, we may not have the receiver's advertised window,
687 * so initialize ssthresh to the default value and it will be set
688 * later when we process the INIT.
689 */
690 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
691
692 peer->partial_bytes_acked = 0;
693 peer->flight_size = 0;
694 peer->burst_limited = 0;
695
696 /* Set the transport's RTO.initial value */
697 peer->rto = asoc->rto_initial;
698 sctp_max_rto(asoc, peer);
699
700 /* Set the peer's active state. */
701 peer->state = peer_state;
702
703 /* Add this peer into the transport hashtable */
704 if (sctp_hash_transport(peer)) {
705 sctp_transport_free(peer);
706 return NULL;
707 }
708
709 /* Attach the remote transport to our asoc. */
710 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
711 asoc->peer.transport_count++;
712
713 /* If we do not yet have a primary path, set one. */
714 if (!asoc->peer.primary_path) {
715 sctp_assoc_set_primary(asoc, peer);
716 asoc->peer.retran_path = peer;
717 }
718
719 if (asoc->peer.active_path == asoc->peer.retran_path &&
720 peer->state != SCTP_UNCONFIRMED) {
721 asoc->peer.retran_path = peer;
722 }
723
724 return peer;
725 }
726
727 /* Delete a transport address from an association. */
728 void sctp_assoc_del_peer(struct sctp_association *asoc,
729 const union sctp_addr *addr)
730 {
731 struct list_head *pos;
732 struct list_head *temp;
733 struct sctp_transport *transport;
734
735 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
736 transport = list_entry(pos, struct sctp_transport, transports);
737 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
738 /* Do book keeping for removing the peer and free it. */
739 sctp_assoc_rm_peer(asoc, transport);
740 break;
741 }
742 }
743 }
744
745 /* Lookup a transport by address. */
746 struct sctp_transport *sctp_assoc_lookup_paddr(
747 const struct sctp_association *asoc,
748 const union sctp_addr *address)
749 {
750 struct sctp_transport *t;
751
752 /* Cycle through all transports searching for a peer address. */
753
754 list_for_each_entry(t, &asoc->peer.transport_addr_list,
755 transports) {
756 if (sctp_cmp_addr_exact(address, &t->ipaddr))
757 return t;
758 }
759
760 return NULL;
761 }
762
763 /* Remove all transports except a give one */
764 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
765 struct sctp_transport *primary)
766 {
767 struct sctp_transport *temp;
768 struct sctp_transport *t;
769
770 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
771 transports) {
772 /* if the current transport is not the primary one, delete it */
773 if (t != primary)
774 sctp_assoc_rm_peer(asoc, t);
775 }
776 }
777
778 /* Engage in transport control operations.
779 * Mark the transport up or down and send a notification to the user.
780 * Select and update the new active and retran paths.
781 */
782 void sctp_assoc_control_transport(struct sctp_association *asoc,
783 struct sctp_transport *transport,
784 sctp_transport_cmd_t command,
785 sctp_sn_error_t error)
786 {
787 struct sctp_ulpevent *event;
788 struct sockaddr_storage addr;
789 int spc_state = 0;
790 bool ulp_notify = true;
791
792 /* Record the transition on the transport. */
793 switch (command) {
794 case SCTP_TRANSPORT_UP:
795 /* If we are moving from UNCONFIRMED state due
796 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
797 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
798 */
799 if (SCTP_UNCONFIRMED == transport->state &&
800 SCTP_HEARTBEAT_SUCCESS == error)
801 spc_state = SCTP_ADDR_CONFIRMED;
802 else
803 spc_state = SCTP_ADDR_AVAILABLE;
804 /* Don't inform ULP about transition from PF to
805 * active state and set cwnd to 1 MTU, see SCTP
806 * Quick failover draft section 5.1, point 5
807 */
808 if (transport->state == SCTP_PF) {
809 ulp_notify = false;
810 transport->cwnd = asoc->pathmtu;
811 }
812 transport->state = SCTP_ACTIVE;
813 break;
814
815 case SCTP_TRANSPORT_DOWN:
816 /* If the transport was never confirmed, do not transition it
817 * to inactive state. Also, release the cached route since
818 * there may be a better route next time.
819 */
820 if (transport->state != SCTP_UNCONFIRMED)
821 transport->state = SCTP_INACTIVE;
822 else {
823 dst_release(transport->dst);
824 transport->dst = NULL;
825 ulp_notify = false;
826 }
827
828 spc_state = SCTP_ADDR_UNREACHABLE;
829 break;
830
831 case SCTP_TRANSPORT_PF:
832 transport->state = SCTP_PF;
833 ulp_notify = false;
834 break;
835
836 default:
837 return;
838 }
839
840 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
841 * to the user.
842 */
843 if (ulp_notify) {
844 memset(&addr, 0, sizeof(struct sockaddr_storage));
845 memcpy(&addr, &transport->ipaddr,
846 transport->af_specific->sockaddr_len);
847
848 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
849 0, spc_state, error, GFP_ATOMIC);
850 if (event)
851 sctp_ulpq_tail_event(&asoc->ulpq, event);
852 }
853
854 /* Select new active and retran paths. */
855 sctp_select_active_and_retran_path(asoc);
856 }
857
858 /* Hold a reference to an association. */
859 void sctp_association_hold(struct sctp_association *asoc)
860 {
861 atomic_inc(&asoc->base.refcnt);
862 }
863
864 /* Release a reference to an association and cleanup
865 * if there are no more references.
866 */
867 void sctp_association_put(struct sctp_association *asoc)
868 {
869 if (atomic_dec_and_test(&asoc->base.refcnt))
870 sctp_association_destroy(asoc);
871 }
872
873 /* Allocate the next TSN, Transmission Sequence Number, for the given
874 * association.
875 */
876 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
877 {
878 /* From Section 1.6 Serial Number Arithmetic:
879 * Transmission Sequence Numbers wrap around when they reach
880 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
881 * after transmitting TSN = 2*32 - 1 is TSN = 0.
882 */
883 __u32 retval = asoc->next_tsn;
884 asoc->next_tsn++;
885 asoc->unack_data++;
886
887 return retval;
888 }
889
890 /* Compare two addresses to see if they match. Wildcard addresses
891 * only match themselves.
892 */
893 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
894 const union sctp_addr *ss2)
895 {
896 struct sctp_af *af;
897
898 af = sctp_get_af_specific(ss1->sa.sa_family);
899 if (unlikely(!af))
900 return 0;
901
902 return af->cmp_addr(ss1, ss2);
903 }
904
905 /* Return an ecne chunk to get prepended to a packet.
906 * Note: We are sly and return a shared, prealloced chunk. FIXME:
907 * No we don't, but we could/should.
908 */
909 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
910 {
911 if (!asoc->need_ecne)
912 return NULL;
913
914 /* Send ECNE if needed.
915 * Not being able to allocate a chunk here is not deadly.
916 */
917 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
918 }
919
920 /*
921 * Find which transport this TSN was sent on.
922 */
923 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
924 __u32 tsn)
925 {
926 struct sctp_transport *active;
927 struct sctp_transport *match;
928 struct sctp_transport *transport;
929 struct sctp_chunk *chunk;
930 __be32 key = htonl(tsn);
931
932 match = NULL;
933
934 /*
935 * FIXME: In general, find a more efficient data structure for
936 * searching.
937 */
938
939 /*
940 * The general strategy is to search each transport's transmitted
941 * list. Return which transport this TSN lives on.
942 *
943 * Let's be hopeful and check the active_path first.
944 * Another optimization would be to know if there is only one
945 * outbound path and not have to look for the TSN at all.
946 *
947 */
948
949 active = asoc->peer.active_path;
950
951 list_for_each_entry(chunk, &active->transmitted,
952 transmitted_list) {
953
954 if (key == chunk->subh.data_hdr->tsn) {
955 match = active;
956 goto out;
957 }
958 }
959
960 /* If not found, go search all the other transports. */
961 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
962 transports) {
963
964 if (transport == active)
965 continue;
966 list_for_each_entry(chunk, &transport->transmitted,
967 transmitted_list) {
968 if (key == chunk->subh.data_hdr->tsn) {
969 match = transport;
970 goto out;
971 }
972 }
973 }
974 out:
975 return match;
976 }
977
978 /* Is this the association we are looking for? */
979 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
980 struct net *net,
981 const union sctp_addr *laddr,
982 const union sctp_addr *paddr)
983 {
984 struct sctp_transport *transport;
985
986 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
987 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
988 net_eq(sock_net(asoc->base.sk), net)) {
989 transport = sctp_assoc_lookup_paddr(asoc, paddr);
990 if (!transport)
991 goto out;
992
993 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
994 sctp_sk(asoc->base.sk)))
995 goto out;
996 }
997 transport = NULL;
998
999 out:
1000 return transport;
1001 }
1002
1003 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1004 static void sctp_assoc_bh_rcv(struct work_struct *work)
1005 {
1006 struct sctp_association *asoc =
1007 container_of(work, struct sctp_association,
1008 base.inqueue.immediate);
1009 struct net *net = sock_net(asoc->base.sk);
1010 struct sctp_endpoint *ep;
1011 struct sctp_chunk *chunk;
1012 struct sctp_inq *inqueue;
1013 int state;
1014 sctp_subtype_t subtype;
1015 int error = 0;
1016
1017 /* The association should be held so we should be safe. */
1018 ep = asoc->ep;
1019
1020 inqueue = &asoc->base.inqueue;
1021 sctp_association_hold(asoc);
1022 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1023 state = asoc->state;
1024 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1025
1026 /* SCTP-AUTH, Section 6.3:
1027 * The receiver has a list of chunk types which it expects
1028 * to be received only after an AUTH-chunk. This list has
1029 * been sent to the peer during the association setup. It
1030 * MUST silently discard these chunks if they are not placed
1031 * after an AUTH chunk in the packet.
1032 */
1033 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1034 continue;
1035
1036 /* Remember where the last DATA chunk came from so we
1037 * know where to send the SACK.
1038 */
1039 if (sctp_chunk_is_data(chunk))
1040 asoc->peer.last_data_from = chunk->transport;
1041 else {
1042 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1043 asoc->stats.ictrlchunks++;
1044 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1045 asoc->stats.isacks++;
1046 }
1047
1048 if (chunk->transport)
1049 chunk->transport->last_time_heard = ktime_get();
1050
1051 /* Run through the state machine. */
1052 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1053 state, ep, asoc, chunk, GFP_ATOMIC);
1054
1055 /* Check to see if the association is freed in response to
1056 * the incoming chunk. If so, get out of the while loop.
1057 */
1058 if (asoc->base.dead)
1059 break;
1060
1061 /* If there is an error on chunk, discard this packet. */
1062 if (error && chunk)
1063 chunk->pdiscard = 1;
1064 }
1065 sctp_association_put(asoc);
1066 }
1067
1068 /* This routine moves an association from its old sk to a new sk. */
1069 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1070 {
1071 struct sctp_sock *newsp = sctp_sk(newsk);
1072 struct sock *oldsk = assoc->base.sk;
1073
1074 /* Delete the association from the old endpoint's list of
1075 * associations.
1076 */
1077 list_del_init(&assoc->asocs);
1078
1079 /* Decrement the backlog value for a TCP-style socket. */
1080 if (sctp_style(oldsk, TCP))
1081 oldsk->sk_ack_backlog--;
1082
1083 /* Release references to the old endpoint and the sock. */
1084 sctp_endpoint_put(assoc->ep);
1085 sock_put(assoc->base.sk);
1086
1087 /* Get a reference to the new endpoint. */
1088 assoc->ep = newsp->ep;
1089 sctp_endpoint_hold(assoc->ep);
1090
1091 /* Get a reference to the new sock. */
1092 assoc->base.sk = newsk;
1093 sock_hold(assoc->base.sk);
1094
1095 /* Add the association to the new endpoint's list of associations. */
1096 sctp_endpoint_add_asoc(newsp->ep, assoc);
1097 }
1098
1099 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1100 void sctp_assoc_update(struct sctp_association *asoc,
1101 struct sctp_association *new)
1102 {
1103 struct sctp_transport *trans;
1104 struct list_head *pos, *temp;
1105
1106 /* Copy in new parameters of peer. */
1107 asoc->c = new->c;
1108 asoc->peer.rwnd = new->peer.rwnd;
1109 asoc->peer.sack_needed = new->peer.sack_needed;
1110 asoc->peer.auth_capable = new->peer.auth_capable;
1111 asoc->peer.i = new->peer.i;
1112 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1113 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1114
1115 /* Remove any peer addresses not present in the new association. */
1116 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1117 trans = list_entry(pos, struct sctp_transport, transports);
1118 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1119 sctp_assoc_rm_peer(asoc, trans);
1120 continue;
1121 }
1122
1123 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1124 sctp_transport_reset(trans);
1125 }
1126
1127 /* If the case is A (association restart), use
1128 * initial_tsn as next_tsn. If the case is B, use
1129 * current next_tsn in case data sent to peer
1130 * has been discarded and needs retransmission.
1131 */
1132 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1133 asoc->next_tsn = new->next_tsn;
1134 asoc->ctsn_ack_point = new->ctsn_ack_point;
1135 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1136
1137 /* Reinitialize SSN for both local streams
1138 * and peer's streams.
1139 */
1140 sctp_ssnmap_clear(asoc->ssnmap);
1141
1142 /* Flush the ULP reassembly and ordered queue.
1143 * Any data there will now be stale and will
1144 * cause problems.
1145 */
1146 sctp_ulpq_flush(&asoc->ulpq);
1147
1148 /* reset the overall association error count so
1149 * that the restarted association doesn't get torn
1150 * down on the next retransmission timer.
1151 */
1152 asoc->overall_error_count = 0;
1153
1154 } else {
1155 /* Add any peer addresses from the new association. */
1156 list_for_each_entry(trans, &new->peer.transport_addr_list,
1157 transports) {
1158 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1159 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1160 GFP_ATOMIC, trans->state);
1161 }
1162
1163 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1164 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1165 if (!asoc->ssnmap) {
1166 /* Move the ssnmap. */
1167 asoc->ssnmap = new->ssnmap;
1168 new->ssnmap = NULL;
1169 }
1170
1171 if (!asoc->assoc_id) {
1172 /* get a new association id since we don't have one
1173 * yet.
1174 */
1175 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1176 }
1177 }
1178
1179 /* SCTP-AUTH: Save the peer parameters from the new associations
1180 * and also move the association shared keys over
1181 */
1182 kfree(asoc->peer.peer_random);
1183 asoc->peer.peer_random = new->peer.peer_random;
1184 new->peer.peer_random = NULL;
1185
1186 kfree(asoc->peer.peer_chunks);
1187 asoc->peer.peer_chunks = new->peer.peer_chunks;
1188 new->peer.peer_chunks = NULL;
1189
1190 kfree(asoc->peer.peer_hmacs);
1191 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1192 new->peer.peer_hmacs = NULL;
1193
1194 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1195 }
1196
1197 /* Update the retran path for sending a retransmitted packet.
1198 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1199 *
1200 * When there is outbound data to send and the primary path
1201 * becomes inactive (e.g., due to failures), or where the
1202 * SCTP user explicitly requests to send data to an
1203 * inactive destination transport address, before reporting
1204 * an error to its ULP, the SCTP endpoint should try to send
1205 * the data to an alternate active destination transport
1206 * address if one exists.
1207 *
1208 * When retransmitting data that timed out, if the endpoint
1209 * is multihomed, it should consider each source-destination
1210 * address pair in its retransmission selection policy.
1211 * When retransmitting timed-out data, the endpoint should
1212 * attempt to pick the most divergent source-destination
1213 * pair from the original source-destination pair to which
1214 * the packet was transmitted.
1215 *
1216 * Note: Rules for picking the most divergent source-destination
1217 * pair are an implementation decision and are not specified
1218 * within this document.
1219 *
1220 * Our basic strategy is to round-robin transports in priorities
1221 * according to sctp_trans_score() e.g., if no such
1222 * transport with state SCTP_ACTIVE exists, round-robin through
1223 * SCTP_UNKNOWN, etc. You get the picture.
1224 */
1225 static u8 sctp_trans_score(const struct sctp_transport *trans)
1226 {
1227 switch (trans->state) {
1228 case SCTP_ACTIVE:
1229 return 3; /* best case */
1230 case SCTP_UNKNOWN:
1231 return 2;
1232 case SCTP_PF:
1233 return 1;
1234 default: /* case SCTP_INACTIVE */
1235 return 0; /* worst case */
1236 }
1237 }
1238
1239 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1240 struct sctp_transport *trans2)
1241 {
1242 if (trans1->error_count > trans2->error_count) {
1243 return trans2;
1244 } else if (trans1->error_count == trans2->error_count &&
1245 ktime_after(trans2->last_time_heard,
1246 trans1->last_time_heard)) {
1247 return trans2;
1248 } else {
1249 return trans1;
1250 }
1251 }
1252
1253 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1254 struct sctp_transport *best)
1255 {
1256 u8 score_curr, score_best;
1257
1258 if (best == NULL || curr == best)
1259 return curr;
1260
1261 score_curr = sctp_trans_score(curr);
1262 score_best = sctp_trans_score(best);
1263
1264 /* First, try a score-based selection if both transport states
1265 * differ. If we're in a tie, lets try to make a more clever
1266 * decision here based on error counts and last time heard.
1267 */
1268 if (score_curr > score_best)
1269 return curr;
1270 else if (score_curr == score_best)
1271 return sctp_trans_elect_tie(best, curr);
1272 else
1273 return best;
1274 }
1275
1276 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1277 {
1278 struct sctp_transport *trans = asoc->peer.retran_path;
1279 struct sctp_transport *trans_next = NULL;
1280
1281 /* We're done as we only have the one and only path. */
1282 if (asoc->peer.transport_count == 1)
1283 return;
1284 /* If active_path and retran_path are the same and active,
1285 * then this is the only active path. Use it.
1286 */
1287 if (asoc->peer.active_path == asoc->peer.retran_path &&
1288 asoc->peer.active_path->state == SCTP_ACTIVE)
1289 return;
1290
1291 /* Iterate from retran_path's successor back to retran_path. */
1292 for (trans = list_next_entry(trans, transports); 1;
1293 trans = list_next_entry(trans, transports)) {
1294 /* Manually skip the head element. */
1295 if (&trans->transports == &asoc->peer.transport_addr_list)
1296 continue;
1297 if (trans->state == SCTP_UNCONFIRMED)
1298 continue;
1299 trans_next = sctp_trans_elect_best(trans, trans_next);
1300 /* Active is good enough for immediate return. */
1301 if (trans_next->state == SCTP_ACTIVE)
1302 break;
1303 /* We've reached the end, time to update path. */
1304 if (trans == asoc->peer.retran_path)
1305 break;
1306 }
1307
1308 asoc->peer.retran_path = trans_next;
1309
1310 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1311 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1312 }
1313
1314 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1315 {
1316 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1317 struct sctp_transport *trans_pf = NULL;
1318
1319 /* Look for the two most recently used active transports. */
1320 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1321 transports) {
1322 /* Skip uninteresting transports. */
1323 if (trans->state == SCTP_INACTIVE ||
1324 trans->state == SCTP_UNCONFIRMED)
1325 continue;
1326 /* Keep track of the best PF transport from our
1327 * list in case we don't find an active one.
1328 */
1329 if (trans->state == SCTP_PF) {
1330 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1331 continue;
1332 }
1333 /* For active transports, pick the most recent ones. */
1334 if (trans_pri == NULL ||
1335 ktime_after(trans->last_time_heard,
1336 trans_pri->last_time_heard)) {
1337 trans_sec = trans_pri;
1338 trans_pri = trans;
1339 } else if (trans_sec == NULL ||
1340 ktime_after(trans->last_time_heard,
1341 trans_sec->last_time_heard)) {
1342 trans_sec = trans;
1343 }
1344 }
1345
1346 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1347 *
1348 * By default, an endpoint should always transmit to the primary
1349 * path, unless the SCTP user explicitly specifies the
1350 * destination transport address (and possibly source transport
1351 * address) to use. [If the primary is active but not most recent,
1352 * bump the most recently used transport.]
1353 */
1354 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1355 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1356 asoc->peer.primary_path != trans_pri) {
1357 trans_sec = trans_pri;
1358 trans_pri = asoc->peer.primary_path;
1359 }
1360
1361 /* We did not find anything useful for a possible retransmission
1362 * path; either primary path that we found is the the same as
1363 * the current one, or we didn't generally find an active one.
1364 */
1365 if (trans_sec == NULL)
1366 trans_sec = trans_pri;
1367
1368 /* If we failed to find a usable transport, just camp on the
1369 * active or pick a PF iff it's the better choice.
1370 */
1371 if (trans_pri == NULL) {
1372 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1373 trans_sec = trans_pri;
1374 }
1375
1376 /* Set the active and retran transports. */
1377 asoc->peer.active_path = trans_pri;
1378 asoc->peer.retran_path = trans_sec;
1379 }
1380
1381 struct sctp_transport *
1382 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1383 struct sctp_transport *last_sent_to)
1384 {
1385 /* If this is the first time packet is sent, use the active path,
1386 * else use the retran path. If the last packet was sent over the
1387 * retran path, update the retran path and use it.
1388 */
1389 if (last_sent_to == NULL) {
1390 return asoc->peer.active_path;
1391 } else {
1392 if (last_sent_to == asoc->peer.retran_path)
1393 sctp_assoc_update_retran_path(asoc);
1394
1395 return asoc->peer.retran_path;
1396 }
1397 }
1398
1399 /* Update the association's pmtu and frag_point by going through all the
1400 * transports. This routine is called when a transport's PMTU has changed.
1401 */
1402 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1403 {
1404 struct sctp_transport *t;
1405 __u32 pmtu = 0;
1406
1407 if (!asoc)
1408 return;
1409
1410 /* Get the lowest pmtu of all the transports. */
1411 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1412 transports) {
1413 if (t->pmtu_pending && t->dst) {
1414 sctp_transport_update_pmtu(sk, t,
1415 SCTP_TRUNC4(dst_mtu(t->dst)));
1416 t->pmtu_pending = 0;
1417 }
1418 if (!pmtu || (t->pathmtu < pmtu))
1419 pmtu = t->pathmtu;
1420 }
1421
1422 if (pmtu) {
1423 asoc->pathmtu = pmtu;
1424 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1425 }
1426
1427 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1428 asoc->pathmtu, asoc->frag_point);
1429 }
1430
1431 /* Should we send a SACK to update our peer? */
1432 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1433 {
1434 struct net *net = sock_net(asoc->base.sk);
1435 switch (asoc->state) {
1436 case SCTP_STATE_ESTABLISHED:
1437 case SCTP_STATE_SHUTDOWN_PENDING:
1438 case SCTP_STATE_SHUTDOWN_RECEIVED:
1439 case SCTP_STATE_SHUTDOWN_SENT:
1440 if ((asoc->rwnd > asoc->a_rwnd) &&
1441 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1442 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1443 asoc->pathmtu)))
1444 return true;
1445 break;
1446 default:
1447 break;
1448 }
1449 return false;
1450 }
1451
1452 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1453 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1454 {
1455 struct sctp_chunk *sack;
1456 struct timer_list *timer;
1457
1458 if (asoc->rwnd_over) {
1459 if (asoc->rwnd_over >= len) {
1460 asoc->rwnd_over -= len;
1461 } else {
1462 asoc->rwnd += (len - asoc->rwnd_over);
1463 asoc->rwnd_over = 0;
1464 }
1465 } else {
1466 asoc->rwnd += len;
1467 }
1468
1469 /* If we had window pressure, start recovering it
1470 * once our rwnd had reached the accumulated pressure
1471 * threshold. The idea is to recover slowly, but up
1472 * to the initial advertised window.
1473 */
1474 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1475 int change = min(asoc->pathmtu, asoc->rwnd_press);
1476 asoc->rwnd += change;
1477 asoc->rwnd_press -= change;
1478 }
1479
1480 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1481 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1482 asoc->a_rwnd);
1483
1484 /* Send a window update SACK if the rwnd has increased by at least the
1485 * minimum of the association's PMTU and half of the receive buffer.
1486 * The algorithm used is similar to the one described in
1487 * Section 4.2.3.3 of RFC 1122.
1488 */
1489 if (sctp_peer_needs_update(asoc)) {
1490 asoc->a_rwnd = asoc->rwnd;
1491
1492 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1493 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1494 asoc->a_rwnd);
1495
1496 sack = sctp_make_sack(asoc);
1497 if (!sack)
1498 return;
1499
1500 asoc->peer.sack_needed = 0;
1501
1502 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1503
1504 /* Stop the SACK timer. */
1505 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1506 if (del_timer(timer))
1507 sctp_association_put(asoc);
1508 }
1509 }
1510
1511 /* Decrease asoc's rwnd by len. */
1512 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1513 {
1514 int rx_count;
1515 int over = 0;
1516
1517 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1518 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1519 "asoc->rwnd_over:%u!\n", __func__, asoc,
1520 asoc->rwnd, asoc->rwnd_over);
1521
1522 if (asoc->ep->rcvbuf_policy)
1523 rx_count = atomic_read(&asoc->rmem_alloc);
1524 else
1525 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1526
1527 /* If we've reached or overflowed our receive buffer, announce
1528 * a 0 rwnd if rwnd would still be positive. Store the
1529 * the potential pressure overflow so that the window can be restored
1530 * back to original value.
1531 */
1532 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1533 over = 1;
1534
1535 if (asoc->rwnd >= len) {
1536 asoc->rwnd -= len;
1537 if (over) {
1538 asoc->rwnd_press += asoc->rwnd;
1539 asoc->rwnd = 0;
1540 }
1541 } else {
1542 asoc->rwnd_over = len - asoc->rwnd;
1543 asoc->rwnd = 0;
1544 }
1545
1546 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1547 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1548 asoc->rwnd_press);
1549 }
1550
1551 /* Build the bind address list for the association based on info from the
1552 * local endpoint and the remote peer.
1553 */
1554 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1555 sctp_scope_t scope, gfp_t gfp)
1556 {
1557 int flags;
1558
1559 /* Use scoping rules to determine the subset of addresses from
1560 * the endpoint.
1561 */
1562 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1563 if (asoc->peer.ipv4_address)
1564 flags |= SCTP_ADDR4_PEERSUPP;
1565 if (asoc->peer.ipv6_address)
1566 flags |= SCTP_ADDR6_PEERSUPP;
1567
1568 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1569 &asoc->base.bind_addr,
1570 &asoc->ep->base.bind_addr,
1571 scope, gfp, flags);
1572 }
1573
1574 /* Build the association's bind address list from the cookie. */
1575 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1576 struct sctp_cookie *cookie,
1577 gfp_t gfp)
1578 {
1579 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1580 int var_size3 = cookie->raw_addr_list_len;
1581 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1582
1583 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1584 asoc->ep->base.bind_addr.port, gfp);
1585 }
1586
1587 /* Lookup laddr in the bind address list of an association. */
1588 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1589 const union sctp_addr *laddr)
1590 {
1591 int found = 0;
1592
1593 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1594 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1595 sctp_sk(asoc->base.sk)))
1596 found = 1;
1597
1598 return found;
1599 }
1600
1601 /* Set an association id for a given association */
1602 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1603 {
1604 bool preload = gfpflags_allow_blocking(gfp);
1605 int ret;
1606
1607 /* If the id is already assigned, keep it. */
1608 if (asoc->assoc_id)
1609 return 0;
1610
1611 if (preload)
1612 idr_preload(gfp);
1613 spin_lock_bh(&sctp_assocs_id_lock);
1614 /* 0 is not a valid assoc_id, must be >= 1 */
1615 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1616 spin_unlock_bh(&sctp_assocs_id_lock);
1617 if (preload)
1618 idr_preload_end();
1619 if (ret < 0)
1620 return ret;
1621
1622 asoc->assoc_id = (sctp_assoc_t)ret;
1623 return 0;
1624 }
1625
1626 /* Free the ASCONF queue */
1627 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1628 {
1629 struct sctp_chunk *asconf;
1630 struct sctp_chunk *tmp;
1631
1632 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1633 list_del_init(&asconf->list);
1634 sctp_chunk_free(asconf);
1635 }
1636 }
1637
1638 /* Free asconf_ack cache */
1639 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1640 {
1641 struct sctp_chunk *ack;
1642 struct sctp_chunk *tmp;
1643
1644 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1645 transmitted_list) {
1646 list_del_init(&ack->transmitted_list);
1647 sctp_chunk_free(ack);
1648 }
1649 }
1650
1651 /* Clean up the ASCONF_ACK queue */
1652 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1653 {
1654 struct sctp_chunk *ack;
1655 struct sctp_chunk *tmp;
1656
1657 /* We can remove all the entries from the queue up to
1658 * the "Peer-Sequence-Number".
1659 */
1660 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1661 transmitted_list) {
1662 if (ack->subh.addip_hdr->serial ==
1663 htonl(asoc->peer.addip_serial))
1664 break;
1665
1666 list_del_init(&ack->transmitted_list);
1667 sctp_chunk_free(ack);
1668 }
1669 }
1670
1671 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1672 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1673 const struct sctp_association *asoc,
1674 __be32 serial)
1675 {
1676 struct sctp_chunk *ack;
1677
1678 /* Walk through the list of cached ASCONF-ACKs and find the
1679 * ack chunk whose serial number matches that of the request.
1680 */
1681 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1682 if (sctp_chunk_pending(ack))
1683 continue;
1684 if (ack->subh.addip_hdr->serial == serial) {
1685 sctp_chunk_hold(ack);
1686 return ack;
1687 }
1688 }
1689
1690 return NULL;
1691 }
1692
1693 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1694 {
1695 /* Free any cached ASCONF_ACK chunk. */
1696 sctp_assoc_free_asconf_acks(asoc);
1697
1698 /* Free the ASCONF queue. */
1699 sctp_assoc_free_asconf_queue(asoc);
1700
1701 /* Free any cached ASCONF chunk. */
1702 if (asoc->addip_last_asconf)
1703 sctp_chunk_free(asoc->addip_last_asconf);
1704 }