]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/sctp/associola.c
Merge tag 's390-5.4-6' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-focal-kernel.git] / net / sctp / associola.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001 Intel Corp.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * This module provides the abstraction for an SCTP association.
12 *
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 * lksctp developers <linux-sctp@vger.kernel.org>
16 *
17 * Written or modified by:
18 * La Monte H.P. Yarroll <piggy@acm.org>
19 * Karl Knutson <karl@athena.chicago.il.us>
20 * Jon Grimm <jgrimm@us.ibm.com>
21 * Xingang Guo <xingang.guo@intel.com>
22 * Hui Huang <hui.huang@nokia.com>
23 * Sridhar Samudrala <sri@us.ibm.com>
24 * Daisy Chang <daisyc@us.ibm.com>
25 * Ryan Layer <rmlayer@us.ibm.com>
26 * Kevin Gao <kevin.gao@intel.com>
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47
48 /* 1st Level Abstractions. */
49
50 /* Initialize a new association from provided memory. */
51 static struct sctp_association *sctp_association_init(
52 struct sctp_association *asoc,
53 const struct sctp_endpoint *ep,
54 const struct sock *sk,
55 enum sctp_scope scope, gfp_t gfp)
56 {
57 struct sctp_sock *sp;
58 struct sctp_paramhdr *p;
59 int i;
60
61 /* Retrieve the SCTP per socket area. */
62 sp = sctp_sk((struct sock *)sk);
63
64 /* Discarding const is appropriate here. */
65 asoc->ep = (struct sctp_endpoint *)ep;
66 asoc->base.sk = (struct sock *)sk;
67
68 sctp_endpoint_hold(asoc->ep);
69 sock_hold(asoc->base.sk);
70
71 /* Initialize the common base substructure. */
72 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
73
74 /* Initialize the object handling fields. */
75 refcount_set(&asoc->base.refcnt, 1);
76
77 /* Initialize the bind addr area. */
78 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
79
80 asoc->state = SCTP_STATE_CLOSED;
81 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
82 asoc->user_frag = sp->user_frag;
83
84 /* Set the association max_retrans and RTO values from the
85 * socket values.
86 */
87 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
88 asoc->pf_retrans = sp->pf_retrans;
89
90 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
91 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
92 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
93
94 /* Initialize the association's heartbeat interval based on the
95 * sock configured value.
96 */
97 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
98
99 /* Initialize path max retrans value. */
100 asoc->pathmaxrxt = sp->pathmaxrxt;
101
102 asoc->flowlabel = sp->flowlabel;
103 asoc->dscp = sp->dscp;
104
105 /* Set association default SACK delay */
106 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
107 asoc->sackfreq = sp->sackfreq;
108
109 /* Set the association default flags controlling
110 * Heartbeat, SACK delay, and Path MTU Discovery.
111 */
112 asoc->param_flags = sp->param_flags;
113
114 /* Initialize the maximum number of new data packets that can be sent
115 * in a burst.
116 */
117 asoc->max_burst = sp->max_burst;
118
119 asoc->subscribe = sp->subscribe;
120
121 /* initialize association timers */
122 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
123 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
124 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
125
126 /* sctpimpguide Section 2.12.2
127 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
128 * recommended value of 5 times 'RTO.Max'.
129 */
130 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
131 = 5 * asoc->rto_max;
132
133 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
134 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
135
136 /* Initializes the timers */
137 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
138 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
139
140 /* Pull default initialization values from the sock options.
141 * Note: This assumes that the values have already been
142 * validated in the sock.
143 */
144 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
145 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
146 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
147
148 asoc->max_init_timeo =
149 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
150
151 /* Set the local window size for receive.
152 * This is also the rcvbuf space per association.
153 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
154 * 1500 bytes in one SCTP packet.
155 */
156 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
157 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
158 else
159 asoc->rwnd = sk->sk_rcvbuf/2;
160
161 asoc->a_rwnd = asoc->rwnd;
162
163 /* Use my own max window until I learn something better. */
164 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
165
166 /* Initialize the receive memory counter */
167 atomic_set(&asoc->rmem_alloc, 0);
168
169 init_waitqueue_head(&asoc->wait);
170
171 asoc->c.my_vtag = sctp_generate_tag(ep);
172 asoc->c.my_port = ep->base.bind_addr.port;
173
174 asoc->c.initial_tsn = sctp_generate_tsn(ep);
175
176 asoc->next_tsn = asoc->c.initial_tsn;
177
178 asoc->ctsn_ack_point = asoc->next_tsn - 1;
179 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
180 asoc->highest_sacked = asoc->ctsn_ack_point;
181 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
182
183 /* ADDIP Section 4.1 Asconf Chunk Procedures
184 *
185 * When an endpoint has an ASCONF signaled change to be sent to the
186 * remote endpoint it should do the following:
187 * ...
188 * A2) a serial number should be assigned to the chunk. The serial
189 * number SHOULD be a monotonically increasing number. The serial
190 * numbers SHOULD be initialized at the start of the
191 * association to the same value as the initial TSN.
192 */
193 asoc->addip_serial = asoc->c.initial_tsn;
194 asoc->strreset_outseq = asoc->c.initial_tsn;
195
196 INIT_LIST_HEAD(&asoc->addip_chunk_list);
197 INIT_LIST_HEAD(&asoc->asconf_ack_list);
198
199 /* Make an empty list of remote transport addresses. */
200 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
201
202 /* RFC 2960 5.1 Normal Establishment of an Association
203 *
204 * After the reception of the first data chunk in an
205 * association the endpoint must immediately respond with a
206 * sack to acknowledge the data chunk. Subsequent
207 * acknowledgements should be done as described in Section
208 * 6.2.
209 *
210 * [We implement this by telling a new association that it
211 * already received one packet.]
212 */
213 asoc->peer.sack_needed = 1;
214 asoc->peer.sack_generation = 1;
215
216 /* Create an input queue. */
217 sctp_inq_init(&asoc->base.inqueue);
218 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
219
220 /* Create an output queue. */
221 sctp_outq_init(asoc, &asoc->outqueue);
222
223 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
224 goto fail_init;
225
226 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
227 0, gfp))
228 goto fail_init;
229
230 /* Initialize default path MTU. */
231 asoc->pathmtu = sp->pathmtu;
232 sctp_assoc_update_frag_point(asoc);
233
234 /* Assume that peer would support both address types unless we are
235 * told otherwise.
236 */
237 asoc->peer.ipv4_address = 1;
238 if (asoc->base.sk->sk_family == PF_INET6)
239 asoc->peer.ipv6_address = 1;
240 INIT_LIST_HEAD(&asoc->asocs);
241
242 asoc->default_stream = sp->default_stream;
243 asoc->default_ppid = sp->default_ppid;
244 asoc->default_flags = sp->default_flags;
245 asoc->default_context = sp->default_context;
246 asoc->default_timetolive = sp->default_timetolive;
247 asoc->default_rcv_context = sp->default_rcv_context;
248
249 /* AUTH related initializations */
250 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
251 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
252 goto stream_free;
253
254 asoc->active_key_id = ep->active_key_id;
255 asoc->strreset_enable = ep->strreset_enable;
256
257 /* Save the hmacs and chunks list into this association */
258 if (ep->auth_hmacs_list)
259 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
260 ntohs(ep->auth_hmacs_list->param_hdr.length));
261 if (ep->auth_chunk_list)
262 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
263 ntohs(ep->auth_chunk_list->param_hdr.length));
264
265 /* Get the AUTH random number for this association */
266 p = (struct sctp_paramhdr *)asoc->c.auth_random;
267 p->type = SCTP_PARAM_RANDOM;
268 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
269 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
270
271 return asoc;
272
273 stream_free:
274 sctp_stream_free(&asoc->stream);
275 fail_init:
276 sock_put(asoc->base.sk);
277 sctp_endpoint_put(asoc->ep);
278 return NULL;
279 }
280
281 /* Allocate and initialize a new association */
282 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
283 const struct sock *sk,
284 enum sctp_scope scope, gfp_t gfp)
285 {
286 struct sctp_association *asoc;
287
288 asoc = kzalloc(sizeof(*asoc), gfp);
289 if (!asoc)
290 goto fail;
291
292 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
293 goto fail_init;
294
295 SCTP_DBG_OBJCNT_INC(assoc);
296
297 pr_debug("Created asoc %p\n", asoc);
298
299 return asoc;
300
301 fail_init:
302 kfree(asoc);
303 fail:
304 return NULL;
305 }
306
307 /* Free this association if possible. There may still be users, so
308 * the actual deallocation may be delayed.
309 */
310 void sctp_association_free(struct sctp_association *asoc)
311 {
312 struct sock *sk = asoc->base.sk;
313 struct sctp_transport *transport;
314 struct list_head *pos, *temp;
315 int i;
316
317 /* Only real associations count against the endpoint, so
318 * don't bother for if this is a temporary association.
319 */
320 if (!list_empty(&asoc->asocs)) {
321 list_del(&asoc->asocs);
322
323 /* Decrement the backlog value for a TCP-style listening
324 * socket.
325 */
326 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
327 sk->sk_ack_backlog--;
328 }
329
330 /* Mark as dead, so other users can know this structure is
331 * going away.
332 */
333 asoc->base.dead = true;
334
335 /* Dispose of any data lying around in the outqueue. */
336 sctp_outq_free(&asoc->outqueue);
337
338 /* Dispose of any pending messages for the upper layer. */
339 sctp_ulpq_free(&asoc->ulpq);
340
341 /* Dispose of any pending chunks on the inqueue. */
342 sctp_inq_free(&asoc->base.inqueue);
343
344 sctp_tsnmap_free(&asoc->peer.tsn_map);
345
346 /* Free stream information. */
347 sctp_stream_free(&asoc->stream);
348
349 if (asoc->strreset_chunk)
350 sctp_chunk_free(asoc->strreset_chunk);
351
352 /* Clean up the bound address list. */
353 sctp_bind_addr_free(&asoc->base.bind_addr);
354
355 /* Do we need to go through all of our timers and
356 * delete them? To be safe we will try to delete all, but we
357 * should be able to go through and make a guess based
358 * on our state.
359 */
360 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
361 if (del_timer(&asoc->timers[i]))
362 sctp_association_put(asoc);
363 }
364
365 /* Free peer's cached cookie. */
366 kfree(asoc->peer.cookie);
367 kfree(asoc->peer.peer_random);
368 kfree(asoc->peer.peer_chunks);
369 kfree(asoc->peer.peer_hmacs);
370
371 /* Release the transport structures. */
372 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
373 transport = list_entry(pos, struct sctp_transport, transports);
374 list_del_rcu(pos);
375 sctp_unhash_transport(transport);
376 sctp_transport_free(transport);
377 }
378
379 asoc->peer.transport_count = 0;
380
381 sctp_asconf_queue_teardown(asoc);
382
383 /* Free pending address space being deleted */
384 kfree(asoc->asconf_addr_del_pending);
385
386 /* AUTH - Free the endpoint shared keys */
387 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
388
389 /* AUTH - Free the association shared key */
390 sctp_auth_key_put(asoc->asoc_shared_key);
391
392 sctp_association_put(asoc);
393 }
394
395 /* Cleanup and free up an association. */
396 static void sctp_association_destroy(struct sctp_association *asoc)
397 {
398 if (unlikely(!asoc->base.dead)) {
399 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
400 return;
401 }
402
403 sctp_endpoint_put(asoc->ep);
404 sock_put(asoc->base.sk);
405
406 if (asoc->assoc_id != 0) {
407 spin_lock_bh(&sctp_assocs_id_lock);
408 idr_remove(&sctp_assocs_id, asoc->assoc_id);
409 spin_unlock_bh(&sctp_assocs_id_lock);
410 }
411
412 WARN_ON(atomic_read(&asoc->rmem_alloc));
413
414 kfree_rcu(asoc, rcu);
415 SCTP_DBG_OBJCNT_DEC(assoc);
416 }
417
418 /* Change the primary destination address for the peer. */
419 void sctp_assoc_set_primary(struct sctp_association *asoc,
420 struct sctp_transport *transport)
421 {
422 int changeover = 0;
423
424 /* it's a changeover only if we already have a primary path
425 * that we are changing
426 */
427 if (asoc->peer.primary_path != NULL &&
428 asoc->peer.primary_path != transport)
429 changeover = 1 ;
430
431 asoc->peer.primary_path = transport;
432
433 /* Set a default msg_name for events. */
434 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
435 sizeof(union sctp_addr));
436
437 /* If the primary path is changing, assume that the
438 * user wants to use this new path.
439 */
440 if ((transport->state == SCTP_ACTIVE) ||
441 (transport->state == SCTP_UNKNOWN))
442 asoc->peer.active_path = transport;
443
444 /*
445 * SFR-CACC algorithm:
446 * Upon the receipt of a request to change the primary
447 * destination address, on the data structure for the new
448 * primary destination, the sender MUST do the following:
449 *
450 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
451 * to this destination address earlier. The sender MUST set
452 * CYCLING_CHANGEOVER to indicate that this switch is a
453 * double switch to the same destination address.
454 *
455 * Really, only bother is we have data queued or outstanding on
456 * the association.
457 */
458 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
459 return;
460
461 if (transport->cacc.changeover_active)
462 transport->cacc.cycling_changeover = changeover;
463
464 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
465 * a changeover has occurred.
466 */
467 transport->cacc.changeover_active = changeover;
468
469 /* 3) The sender MUST store the next TSN to be sent in
470 * next_tsn_at_change.
471 */
472 transport->cacc.next_tsn_at_change = asoc->next_tsn;
473 }
474
475 /* Remove a transport from an association. */
476 void sctp_assoc_rm_peer(struct sctp_association *asoc,
477 struct sctp_transport *peer)
478 {
479 struct sctp_transport *transport;
480 struct list_head *pos;
481 struct sctp_chunk *ch;
482
483 pr_debug("%s: association:%p addr:%pISpc\n",
484 __func__, asoc, &peer->ipaddr.sa);
485
486 /* If we are to remove the current retran_path, update it
487 * to the next peer before removing this peer from the list.
488 */
489 if (asoc->peer.retran_path == peer)
490 sctp_assoc_update_retran_path(asoc);
491
492 /* Remove this peer from the list. */
493 list_del_rcu(&peer->transports);
494 /* Remove this peer from the transport hashtable */
495 sctp_unhash_transport(peer);
496
497 /* Get the first transport of asoc. */
498 pos = asoc->peer.transport_addr_list.next;
499 transport = list_entry(pos, struct sctp_transport, transports);
500
501 /* Update any entries that match the peer to be deleted. */
502 if (asoc->peer.primary_path == peer)
503 sctp_assoc_set_primary(asoc, transport);
504 if (asoc->peer.active_path == peer)
505 asoc->peer.active_path = transport;
506 if (asoc->peer.retran_path == peer)
507 asoc->peer.retran_path = transport;
508 if (asoc->peer.last_data_from == peer)
509 asoc->peer.last_data_from = transport;
510
511 if (asoc->strreset_chunk &&
512 asoc->strreset_chunk->transport == peer) {
513 asoc->strreset_chunk->transport = transport;
514 sctp_transport_reset_reconf_timer(transport);
515 }
516
517 /* If we remove the transport an INIT was last sent to, set it to
518 * NULL. Combined with the update of the retran path above, this
519 * will cause the next INIT to be sent to the next available
520 * transport, maintaining the cycle.
521 */
522 if (asoc->init_last_sent_to == peer)
523 asoc->init_last_sent_to = NULL;
524
525 /* If we remove the transport an SHUTDOWN was last sent to, set it
526 * to NULL. Combined with the update of the retran path above, this
527 * will cause the next SHUTDOWN to be sent to the next available
528 * transport, maintaining the cycle.
529 */
530 if (asoc->shutdown_last_sent_to == peer)
531 asoc->shutdown_last_sent_to = NULL;
532
533 /* If we remove the transport an ASCONF was last sent to, set it to
534 * NULL.
535 */
536 if (asoc->addip_last_asconf &&
537 asoc->addip_last_asconf->transport == peer)
538 asoc->addip_last_asconf->transport = NULL;
539
540 /* If we have something on the transmitted list, we have to
541 * save it off. The best place is the active path.
542 */
543 if (!list_empty(&peer->transmitted)) {
544 struct sctp_transport *active = asoc->peer.active_path;
545
546 /* Reset the transport of each chunk on this list */
547 list_for_each_entry(ch, &peer->transmitted,
548 transmitted_list) {
549 ch->transport = NULL;
550 ch->rtt_in_progress = 0;
551 }
552
553 list_splice_tail_init(&peer->transmitted,
554 &active->transmitted);
555
556 /* Start a T3 timer here in case it wasn't running so
557 * that these migrated packets have a chance to get
558 * retransmitted.
559 */
560 if (!timer_pending(&active->T3_rtx_timer))
561 if (!mod_timer(&active->T3_rtx_timer,
562 jiffies + active->rto))
563 sctp_transport_hold(active);
564 }
565
566 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
567 if (ch->transport == peer)
568 ch->transport = NULL;
569
570 asoc->peer.transport_count--;
571
572 sctp_transport_free(peer);
573 }
574
575 /* Add a transport address to an association. */
576 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
577 const union sctp_addr *addr,
578 const gfp_t gfp,
579 const int peer_state)
580 {
581 struct net *net = sock_net(asoc->base.sk);
582 struct sctp_transport *peer;
583 struct sctp_sock *sp;
584 unsigned short port;
585
586 sp = sctp_sk(asoc->base.sk);
587
588 /* AF_INET and AF_INET6 share common port field. */
589 port = ntohs(addr->v4.sin_port);
590
591 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
592 asoc, &addr->sa, peer_state);
593
594 /* Set the port if it has not been set yet. */
595 if (0 == asoc->peer.port)
596 asoc->peer.port = port;
597
598 /* Check to see if this is a duplicate. */
599 peer = sctp_assoc_lookup_paddr(asoc, addr);
600 if (peer) {
601 /* An UNKNOWN state is only set on transports added by
602 * user in sctp_connectx() call. Such transports should be
603 * considered CONFIRMED per RFC 4960, Section 5.4.
604 */
605 if (peer->state == SCTP_UNKNOWN) {
606 peer->state = SCTP_ACTIVE;
607 }
608 return peer;
609 }
610
611 peer = sctp_transport_new(net, addr, gfp);
612 if (!peer)
613 return NULL;
614
615 sctp_transport_set_owner(peer, asoc);
616
617 /* Initialize the peer's heartbeat interval based on the
618 * association configured value.
619 */
620 peer->hbinterval = asoc->hbinterval;
621
622 /* Set the path max_retrans. */
623 peer->pathmaxrxt = asoc->pathmaxrxt;
624
625 /* And the partial failure retrans threshold */
626 peer->pf_retrans = asoc->pf_retrans;
627
628 /* Initialize the peer's SACK delay timeout based on the
629 * association configured value.
630 */
631 peer->sackdelay = asoc->sackdelay;
632 peer->sackfreq = asoc->sackfreq;
633
634 if (addr->sa.sa_family == AF_INET6) {
635 __be32 info = addr->v6.sin6_flowinfo;
636
637 if (info) {
638 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
639 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
640 } else {
641 peer->flowlabel = asoc->flowlabel;
642 }
643 }
644 peer->dscp = asoc->dscp;
645
646 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
647 * based on association setting.
648 */
649 peer->param_flags = asoc->param_flags;
650
651 /* Initialize the pmtu of the transport. */
652 sctp_transport_route(peer, NULL, sp);
653
654 /* If this is the first transport addr on this association,
655 * initialize the association PMTU to the peer's PMTU.
656 * If not and the current association PMTU is higher than the new
657 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
658 */
659 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
660 min_t(int, peer->pathmtu, asoc->pathmtu) :
661 peer->pathmtu);
662
663 peer->pmtu_pending = 0;
664
665 /* The asoc->peer.port might not be meaningful yet, but
666 * initialize the packet structure anyway.
667 */
668 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
669 asoc->peer.port);
670
671 /* 7.2.1 Slow-Start
672 *
673 * o The initial cwnd before DATA transmission or after a sufficiently
674 * long idle period MUST be set to
675 * min(4*MTU, max(2*MTU, 4380 bytes))
676 *
677 * o The initial value of ssthresh MAY be arbitrarily high
678 * (for example, implementations MAY use the size of the
679 * receiver advertised window).
680 */
681 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
682
683 /* At this point, we may not have the receiver's advertised window,
684 * so initialize ssthresh to the default value and it will be set
685 * later when we process the INIT.
686 */
687 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
688
689 peer->partial_bytes_acked = 0;
690 peer->flight_size = 0;
691 peer->burst_limited = 0;
692
693 /* Set the transport's RTO.initial value */
694 peer->rto = asoc->rto_initial;
695 sctp_max_rto(asoc, peer);
696
697 /* Set the peer's active state. */
698 peer->state = peer_state;
699
700 /* Add this peer into the transport hashtable */
701 if (sctp_hash_transport(peer)) {
702 sctp_transport_free(peer);
703 return NULL;
704 }
705
706 /* Attach the remote transport to our asoc. */
707 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
708 asoc->peer.transport_count++;
709
710 /* If we do not yet have a primary path, set one. */
711 if (!asoc->peer.primary_path) {
712 sctp_assoc_set_primary(asoc, peer);
713 asoc->peer.retran_path = peer;
714 }
715
716 if (asoc->peer.active_path == asoc->peer.retran_path &&
717 peer->state != SCTP_UNCONFIRMED) {
718 asoc->peer.retran_path = peer;
719 }
720
721 return peer;
722 }
723
724 /* Delete a transport address from an association. */
725 void sctp_assoc_del_peer(struct sctp_association *asoc,
726 const union sctp_addr *addr)
727 {
728 struct list_head *pos;
729 struct list_head *temp;
730 struct sctp_transport *transport;
731
732 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
733 transport = list_entry(pos, struct sctp_transport, transports);
734 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
735 /* Do book keeping for removing the peer and free it. */
736 sctp_assoc_rm_peer(asoc, transport);
737 break;
738 }
739 }
740 }
741
742 /* Lookup a transport by address. */
743 struct sctp_transport *sctp_assoc_lookup_paddr(
744 const struct sctp_association *asoc,
745 const union sctp_addr *address)
746 {
747 struct sctp_transport *t;
748
749 /* Cycle through all transports searching for a peer address. */
750
751 list_for_each_entry(t, &asoc->peer.transport_addr_list,
752 transports) {
753 if (sctp_cmp_addr_exact(address, &t->ipaddr))
754 return t;
755 }
756
757 return NULL;
758 }
759
760 /* Remove all transports except a give one */
761 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
762 struct sctp_transport *primary)
763 {
764 struct sctp_transport *temp;
765 struct sctp_transport *t;
766
767 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
768 transports) {
769 /* if the current transport is not the primary one, delete it */
770 if (t != primary)
771 sctp_assoc_rm_peer(asoc, t);
772 }
773 }
774
775 /* Engage in transport control operations.
776 * Mark the transport up or down and send a notification to the user.
777 * Select and update the new active and retran paths.
778 */
779 void sctp_assoc_control_transport(struct sctp_association *asoc,
780 struct sctp_transport *transport,
781 enum sctp_transport_cmd command,
782 sctp_sn_error_t error)
783 {
784 struct sctp_ulpevent *event;
785 struct sockaddr_storage addr;
786 int spc_state = 0;
787 bool ulp_notify = true;
788
789 /* Record the transition on the transport. */
790 switch (command) {
791 case SCTP_TRANSPORT_UP:
792 /* If we are moving from UNCONFIRMED state due
793 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
794 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
795 */
796 if (SCTP_UNCONFIRMED == transport->state &&
797 SCTP_HEARTBEAT_SUCCESS == error)
798 spc_state = SCTP_ADDR_CONFIRMED;
799 else
800 spc_state = SCTP_ADDR_AVAILABLE;
801 /* Don't inform ULP about transition from PF to
802 * active state and set cwnd to 1 MTU, see SCTP
803 * Quick failover draft section 5.1, point 5
804 */
805 if (transport->state == SCTP_PF) {
806 ulp_notify = false;
807 transport->cwnd = asoc->pathmtu;
808 }
809 transport->state = SCTP_ACTIVE;
810 break;
811
812 case SCTP_TRANSPORT_DOWN:
813 /* If the transport was never confirmed, do not transition it
814 * to inactive state. Also, release the cached route since
815 * there may be a better route next time.
816 */
817 if (transport->state != SCTP_UNCONFIRMED)
818 transport->state = SCTP_INACTIVE;
819 else {
820 sctp_transport_dst_release(transport);
821 ulp_notify = false;
822 }
823
824 spc_state = SCTP_ADDR_UNREACHABLE;
825 break;
826
827 case SCTP_TRANSPORT_PF:
828 transport->state = SCTP_PF;
829 ulp_notify = false;
830 break;
831
832 default:
833 return;
834 }
835
836 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
837 * to the user.
838 */
839 if (ulp_notify) {
840 memset(&addr, 0, sizeof(struct sockaddr_storage));
841 memcpy(&addr, &transport->ipaddr,
842 transport->af_specific->sockaddr_len);
843
844 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
845 0, spc_state, error, GFP_ATOMIC);
846 if (event)
847 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
848 }
849
850 /* Select new active and retran paths. */
851 sctp_select_active_and_retran_path(asoc);
852 }
853
854 /* Hold a reference to an association. */
855 void sctp_association_hold(struct sctp_association *asoc)
856 {
857 refcount_inc(&asoc->base.refcnt);
858 }
859
860 /* Release a reference to an association and cleanup
861 * if there are no more references.
862 */
863 void sctp_association_put(struct sctp_association *asoc)
864 {
865 if (refcount_dec_and_test(&asoc->base.refcnt))
866 sctp_association_destroy(asoc);
867 }
868
869 /* Allocate the next TSN, Transmission Sequence Number, for the given
870 * association.
871 */
872 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
873 {
874 /* From Section 1.6 Serial Number Arithmetic:
875 * Transmission Sequence Numbers wrap around when they reach
876 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
877 * after transmitting TSN = 2*32 - 1 is TSN = 0.
878 */
879 __u32 retval = asoc->next_tsn;
880 asoc->next_tsn++;
881 asoc->unack_data++;
882
883 return retval;
884 }
885
886 /* Compare two addresses to see if they match. Wildcard addresses
887 * only match themselves.
888 */
889 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
890 const union sctp_addr *ss2)
891 {
892 struct sctp_af *af;
893
894 af = sctp_get_af_specific(ss1->sa.sa_family);
895 if (unlikely(!af))
896 return 0;
897
898 return af->cmp_addr(ss1, ss2);
899 }
900
901 /* Return an ecne chunk to get prepended to a packet.
902 * Note: We are sly and return a shared, prealloced chunk. FIXME:
903 * No we don't, but we could/should.
904 */
905 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
906 {
907 if (!asoc->need_ecne)
908 return NULL;
909
910 /* Send ECNE if needed.
911 * Not being able to allocate a chunk here is not deadly.
912 */
913 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
914 }
915
916 /*
917 * Find which transport this TSN was sent on.
918 */
919 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
920 __u32 tsn)
921 {
922 struct sctp_transport *active;
923 struct sctp_transport *match;
924 struct sctp_transport *transport;
925 struct sctp_chunk *chunk;
926 __be32 key = htonl(tsn);
927
928 match = NULL;
929
930 /*
931 * FIXME: In general, find a more efficient data structure for
932 * searching.
933 */
934
935 /*
936 * The general strategy is to search each transport's transmitted
937 * list. Return which transport this TSN lives on.
938 *
939 * Let's be hopeful and check the active_path first.
940 * Another optimization would be to know if there is only one
941 * outbound path and not have to look for the TSN at all.
942 *
943 */
944
945 active = asoc->peer.active_path;
946
947 list_for_each_entry(chunk, &active->transmitted,
948 transmitted_list) {
949
950 if (key == chunk->subh.data_hdr->tsn) {
951 match = active;
952 goto out;
953 }
954 }
955
956 /* If not found, go search all the other transports. */
957 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
958 transports) {
959
960 if (transport == active)
961 continue;
962 list_for_each_entry(chunk, &transport->transmitted,
963 transmitted_list) {
964 if (key == chunk->subh.data_hdr->tsn) {
965 match = transport;
966 goto out;
967 }
968 }
969 }
970 out:
971 return match;
972 }
973
974 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
975 static void sctp_assoc_bh_rcv(struct work_struct *work)
976 {
977 struct sctp_association *asoc =
978 container_of(work, struct sctp_association,
979 base.inqueue.immediate);
980 struct net *net = sock_net(asoc->base.sk);
981 union sctp_subtype subtype;
982 struct sctp_endpoint *ep;
983 struct sctp_chunk *chunk;
984 struct sctp_inq *inqueue;
985 int first_time = 1; /* is this the first time through the loop */
986 int error = 0;
987 int state;
988
989 /* The association should be held so we should be safe. */
990 ep = asoc->ep;
991
992 inqueue = &asoc->base.inqueue;
993 sctp_association_hold(asoc);
994 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
995 state = asoc->state;
996 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
997
998 /* If the first chunk in the packet is AUTH, do special
999 * processing specified in Section 6.3 of SCTP-AUTH spec
1000 */
1001 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1002 struct sctp_chunkhdr *next_hdr;
1003
1004 next_hdr = sctp_inq_peek(inqueue);
1005 if (!next_hdr)
1006 goto normal;
1007
1008 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1009 * chunk while saving a pointer to it so we can do
1010 * Authentication later (during cookie-echo
1011 * processing).
1012 */
1013 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1014 chunk->auth_chunk = skb_clone(chunk->skb,
1015 GFP_ATOMIC);
1016 chunk->auth = 1;
1017 continue;
1018 }
1019 }
1020
1021 normal:
1022 /* SCTP-AUTH, Section 6.3:
1023 * The receiver has a list of chunk types which it expects
1024 * to be received only after an AUTH-chunk. This list has
1025 * been sent to the peer during the association setup. It
1026 * MUST silently discard these chunks if they are not placed
1027 * after an AUTH chunk in the packet.
1028 */
1029 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1030 continue;
1031
1032 /* Remember where the last DATA chunk came from so we
1033 * know where to send the SACK.
1034 */
1035 if (sctp_chunk_is_data(chunk))
1036 asoc->peer.last_data_from = chunk->transport;
1037 else {
1038 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1039 asoc->stats.ictrlchunks++;
1040 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1041 asoc->stats.isacks++;
1042 }
1043
1044 if (chunk->transport)
1045 chunk->transport->last_time_heard = ktime_get();
1046
1047 /* Run through the state machine. */
1048 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1049 state, ep, asoc, chunk, GFP_ATOMIC);
1050
1051 /* Check to see if the association is freed in response to
1052 * the incoming chunk. If so, get out of the while loop.
1053 */
1054 if (asoc->base.dead)
1055 break;
1056
1057 /* If there is an error on chunk, discard this packet. */
1058 if (error && chunk)
1059 chunk->pdiscard = 1;
1060
1061 if (first_time)
1062 first_time = 0;
1063 }
1064 sctp_association_put(asoc);
1065 }
1066
1067 /* This routine moves an association from its old sk to a new sk. */
1068 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1069 {
1070 struct sctp_sock *newsp = sctp_sk(newsk);
1071 struct sock *oldsk = assoc->base.sk;
1072
1073 /* Delete the association from the old endpoint's list of
1074 * associations.
1075 */
1076 list_del_init(&assoc->asocs);
1077
1078 /* Decrement the backlog value for a TCP-style socket. */
1079 if (sctp_style(oldsk, TCP))
1080 oldsk->sk_ack_backlog--;
1081
1082 /* Release references to the old endpoint and the sock. */
1083 sctp_endpoint_put(assoc->ep);
1084 sock_put(assoc->base.sk);
1085
1086 /* Get a reference to the new endpoint. */
1087 assoc->ep = newsp->ep;
1088 sctp_endpoint_hold(assoc->ep);
1089
1090 /* Get a reference to the new sock. */
1091 assoc->base.sk = newsk;
1092 sock_hold(assoc->base.sk);
1093
1094 /* Add the association to the new endpoint's list of associations. */
1095 sctp_endpoint_add_asoc(newsp->ep, assoc);
1096 }
1097
1098 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1099 int sctp_assoc_update(struct sctp_association *asoc,
1100 struct sctp_association *new)
1101 {
1102 struct sctp_transport *trans;
1103 struct list_head *pos, *temp;
1104
1105 /* Copy in new parameters of peer. */
1106 asoc->c = new->c;
1107 asoc->peer.rwnd = new->peer.rwnd;
1108 asoc->peer.sack_needed = new->peer.sack_needed;
1109 asoc->peer.auth_capable = new->peer.auth_capable;
1110 asoc->peer.i = new->peer.i;
1111
1112 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1113 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1114 return -ENOMEM;
1115
1116 /* Remove any peer addresses not present in the new association. */
1117 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1118 trans = list_entry(pos, struct sctp_transport, transports);
1119 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1120 sctp_assoc_rm_peer(asoc, trans);
1121 continue;
1122 }
1123
1124 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1125 sctp_transport_reset(trans);
1126 }
1127
1128 /* If the case is A (association restart), use
1129 * initial_tsn as next_tsn. If the case is B, use
1130 * current next_tsn in case data sent to peer
1131 * has been discarded and needs retransmission.
1132 */
1133 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1134 asoc->next_tsn = new->next_tsn;
1135 asoc->ctsn_ack_point = new->ctsn_ack_point;
1136 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1137
1138 /* Reinitialize SSN for both local streams
1139 * and peer's streams.
1140 */
1141 sctp_stream_clear(&asoc->stream);
1142
1143 /* Flush the ULP reassembly and ordered queue.
1144 * Any data there will now be stale and will
1145 * cause problems.
1146 */
1147 sctp_ulpq_flush(&asoc->ulpq);
1148
1149 /* reset the overall association error count so
1150 * that the restarted association doesn't get torn
1151 * down on the next retransmission timer.
1152 */
1153 asoc->overall_error_count = 0;
1154
1155 } else {
1156 /* Add any peer addresses from the new association. */
1157 list_for_each_entry(trans, &new->peer.transport_addr_list,
1158 transports)
1159 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1160 !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1161 GFP_ATOMIC, trans->state))
1162 return -ENOMEM;
1163
1164 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1165 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1166
1167 if (sctp_state(asoc, COOKIE_WAIT))
1168 sctp_stream_update(&asoc->stream, &new->stream);
1169
1170 /* get a new assoc id if we don't have one yet. */
1171 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1172 return -ENOMEM;
1173 }
1174
1175 /* SCTP-AUTH: Save the peer parameters from the new associations
1176 * and also move the association shared keys over
1177 */
1178 kfree(asoc->peer.peer_random);
1179 asoc->peer.peer_random = new->peer.peer_random;
1180 new->peer.peer_random = NULL;
1181
1182 kfree(asoc->peer.peer_chunks);
1183 asoc->peer.peer_chunks = new->peer.peer_chunks;
1184 new->peer.peer_chunks = NULL;
1185
1186 kfree(asoc->peer.peer_hmacs);
1187 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1188 new->peer.peer_hmacs = NULL;
1189
1190 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1191 }
1192
1193 /* Update the retran path for sending a retransmitted packet.
1194 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1195 *
1196 * When there is outbound data to send and the primary path
1197 * becomes inactive (e.g., due to failures), or where the
1198 * SCTP user explicitly requests to send data to an
1199 * inactive destination transport address, before reporting
1200 * an error to its ULP, the SCTP endpoint should try to send
1201 * the data to an alternate active destination transport
1202 * address if one exists.
1203 *
1204 * When retransmitting data that timed out, if the endpoint
1205 * is multihomed, it should consider each source-destination
1206 * address pair in its retransmission selection policy.
1207 * When retransmitting timed-out data, the endpoint should
1208 * attempt to pick the most divergent source-destination
1209 * pair from the original source-destination pair to which
1210 * the packet was transmitted.
1211 *
1212 * Note: Rules for picking the most divergent source-destination
1213 * pair are an implementation decision and are not specified
1214 * within this document.
1215 *
1216 * Our basic strategy is to round-robin transports in priorities
1217 * according to sctp_trans_score() e.g., if no such
1218 * transport with state SCTP_ACTIVE exists, round-robin through
1219 * SCTP_UNKNOWN, etc. You get the picture.
1220 */
1221 static u8 sctp_trans_score(const struct sctp_transport *trans)
1222 {
1223 switch (trans->state) {
1224 case SCTP_ACTIVE:
1225 return 3; /* best case */
1226 case SCTP_UNKNOWN:
1227 return 2;
1228 case SCTP_PF:
1229 return 1;
1230 default: /* case SCTP_INACTIVE */
1231 return 0; /* worst case */
1232 }
1233 }
1234
1235 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1236 struct sctp_transport *trans2)
1237 {
1238 if (trans1->error_count > trans2->error_count) {
1239 return trans2;
1240 } else if (trans1->error_count == trans2->error_count &&
1241 ktime_after(trans2->last_time_heard,
1242 trans1->last_time_heard)) {
1243 return trans2;
1244 } else {
1245 return trans1;
1246 }
1247 }
1248
1249 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1250 struct sctp_transport *best)
1251 {
1252 u8 score_curr, score_best;
1253
1254 if (best == NULL || curr == best)
1255 return curr;
1256
1257 score_curr = sctp_trans_score(curr);
1258 score_best = sctp_trans_score(best);
1259
1260 /* First, try a score-based selection if both transport states
1261 * differ. If we're in a tie, lets try to make a more clever
1262 * decision here based on error counts and last time heard.
1263 */
1264 if (score_curr > score_best)
1265 return curr;
1266 else if (score_curr == score_best)
1267 return sctp_trans_elect_tie(best, curr);
1268 else
1269 return best;
1270 }
1271
1272 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1273 {
1274 struct sctp_transport *trans = asoc->peer.retran_path;
1275 struct sctp_transport *trans_next = NULL;
1276
1277 /* We're done as we only have the one and only path. */
1278 if (asoc->peer.transport_count == 1)
1279 return;
1280 /* If active_path and retran_path are the same and active,
1281 * then this is the only active path. Use it.
1282 */
1283 if (asoc->peer.active_path == asoc->peer.retran_path &&
1284 asoc->peer.active_path->state == SCTP_ACTIVE)
1285 return;
1286
1287 /* Iterate from retran_path's successor back to retran_path. */
1288 for (trans = list_next_entry(trans, transports); 1;
1289 trans = list_next_entry(trans, transports)) {
1290 /* Manually skip the head element. */
1291 if (&trans->transports == &asoc->peer.transport_addr_list)
1292 continue;
1293 if (trans->state == SCTP_UNCONFIRMED)
1294 continue;
1295 trans_next = sctp_trans_elect_best(trans, trans_next);
1296 /* Active is good enough for immediate return. */
1297 if (trans_next->state == SCTP_ACTIVE)
1298 break;
1299 /* We've reached the end, time to update path. */
1300 if (trans == asoc->peer.retran_path)
1301 break;
1302 }
1303
1304 asoc->peer.retran_path = trans_next;
1305
1306 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1307 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1308 }
1309
1310 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1311 {
1312 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1313 struct sctp_transport *trans_pf = NULL;
1314
1315 /* Look for the two most recently used active transports. */
1316 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1317 transports) {
1318 /* Skip uninteresting transports. */
1319 if (trans->state == SCTP_INACTIVE ||
1320 trans->state == SCTP_UNCONFIRMED)
1321 continue;
1322 /* Keep track of the best PF transport from our
1323 * list in case we don't find an active one.
1324 */
1325 if (trans->state == SCTP_PF) {
1326 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1327 continue;
1328 }
1329 /* For active transports, pick the most recent ones. */
1330 if (trans_pri == NULL ||
1331 ktime_after(trans->last_time_heard,
1332 trans_pri->last_time_heard)) {
1333 trans_sec = trans_pri;
1334 trans_pri = trans;
1335 } else if (trans_sec == NULL ||
1336 ktime_after(trans->last_time_heard,
1337 trans_sec->last_time_heard)) {
1338 trans_sec = trans;
1339 }
1340 }
1341
1342 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1343 *
1344 * By default, an endpoint should always transmit to the primary
1345 * path, unless the SCTP user explicitly specifies the
1346 * destination transport address (and possibly source transport
1347 * address) to use. [If the primary is active but not most recent,
1348 * bump the most recently used transport.]
1349 */
1350 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1351 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1352 asoc->peer.primary_path != trans_pri) {
1353 trans_sec = trans_pri;
1354 trans_pri = asoc->peer.primary_path;
1355 }
1356
1357 /* We did not find anything useful for a possible retransmission
1358 * path; either primary path that we found is the the same as
1359 * the current one, or we didn't generally find an active one.
1360 */
1361 if (trans_sec == NULL)
1362 trans_sec = trans_pri;
1363
1364 /* If we failed to find a usable transport, just camp on the
1365 * active or pick a PF iff it's the better choice.
1366 */
1367 if (trans_pri == NULL) {
1368 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1369 trans_sec = trans_pri;
1370 }
1371
1372 /* Set the active and retran transports. */
1373 asoc->peer.active_path = trans_pri;
1374 asoc->peer.retran_path = trans_sec;
1375 }
1376
1377 struct sctp_transport *
1378 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1379 struct sctp_transport *last_sent_to)
1380 {
1381 /* If this is the first time packet is sent, use the active path,
1382 * else use the retran path. If the last packet was sent over the
1383 * retran path, update the retran path and use it.
1384 */
1385 if (last_sent_to == NULL) {
1386 return asoc->peer.active_path;
1387 } else {
1388 if (last_sent_to == asoc->peer.retran_path)
1389 sctp_assoc_update_retran_path(asoc);
1390
1391 return asoc->peer.retran_path;
1392 }
1393 }
1394
1395 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1396 {
1397 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1398 sctp_datachk_len(&asoc->stream));
1399
1400 if (asoc->user_frag)
1401 frag = min_t(int, frag, asoc->user_frag);
1402
1403 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1404 sctp_datachk_len(&asoc->stream));
1405
1406 asoc->frag_point = SCTP_TRUNC4(frag);
1407 }
1408
1409 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1410 {
1411 if (asoc->pathmtu != pmtu) {
1412 asoc->pathmtu = pmtu;
1413 sctp_assoc_update_frag_point(asoc);
1414 }
1415
1416 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1417 asoc->pathmtu, asoc->frag_point);
1418 }
1419
1420 /* Update the association's pmtu and frag_point by going through all the
1421 * transports. This routine is called when a transport's PMTU has changed.
1422 */
1423 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1424 {
1425 struct sctp_transport *t;
1426 __u32 pmtu = 0;
1427
1428 if (!asoc)
1429 return;
1430
1431 /* Get the lowest pmtu of all the transports. */
1432 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1433 if (t->pmtu_pending && t->dst) {
1434 sctp_transport_update_pmtu(t,
1435 atomic_read(&t->mtu_info));
1436 t->pmtu_pending = 0;
1437 }
1438 if (!pmtu || (t->pathmtu < pmtu))
1439 pmtu = t->pathmtu;
1440 }
1441
1442 sctp_assoc_set_pmtu(asoc, pmtu);
1443 }
1444
1445 /* Should we send a SACK to update our peer? */
1446 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1447 {
1448 struct net *net = sock_net(asoc->base.sk);
1449 switch (asoc->state) {
1450 case SCTP_STATE_ESTABLISHED:
1451 case SCTP_STATE_SHUTDOWN_PENDING:
1452 case SCTP_STATE_SHUTDOWN_RECEIVED:
1453 case SCTP_STATE_SHUTDOWN_SENT:
1454 if ((asoc->rwnd > asoc->a_rwnd) &&
1455 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1456 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1457 asoc->pathmtu)))
1458 return true;
1459 break;
1460 default:
1461 break;
1462 }
1463 return false;
1464 }
1465
1466 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1467 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1468 {
1469 struct sctp_chunk *sack;
1470 struct timer_list *timer;
1471
1472 if (asoc->rwnd_over) {
1473 if (asoc->rwnd_over >= len) {
1474 asoc->rwnd_over -= len;
1475 } else {
1476 asoc->rwnd += (len - asoc->rwnd_over);
1477 asoc->rwnd_over = 0;
1478 }
1479 } else {
1480 asoc->rwnd += len;
1481 }
1482
1483 /* If we had window pressure, start recovering it
1484 * once our rwnd had reached the accumulated pressure
1485 * threshold. The idea is to recover slowly, but up
1486 * to the initial advertised window.
1487 */
1488 if (asoc->rwnd_press) {
1489 int change = min(asoc->pathmtu, asoc->rwnd_press);
1490 asoc->rwnd += change;
1491 asoc->rwnd_press -= change;
1492 }
1493
1494 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1495 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1496 asoc->a_rwnd);
1497
1498 /* Send a window update SACK if the rwnd has increased by at least the
1499 * minimum of the association's PMTU and half of the receive buffer.
1500 * The algorithm used is similar to the one described in
1501 * Section 4.2.3.3 of RFC 1122.
1502 */
1503 if (sctp_peer_needs_update(asoc)) {
1504 asoc->a_rwnd = asoc->rwnd;
1505
1506 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1507 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1508 asoc->a_rwnd);
1509
1510 sack = sctp_make_sack(asoc);
1511 if (!sack)
1512 return;
1513
1514 asoc->peer.sack_needed = 0;
1515
1516 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1517
1518 /* Stop the SACK timer. */
1519 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1520 if (del_timer(timer))
1521 sctp_association_put(asoc);
1522 }
1523 }
1524
1525 /* Decrease asoc's rwnd by len. */
1526 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1527 {
1528 int rx_count;
1529 int over = 0;
1530
1531 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1532 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1533 "asoc->rwnd_over:%u!\n", __func__, asoc,
1534 asoc->rwnd, asoc->rwnd_over);
1535
1536 if (asoc->ep->rcvbuf_policy)
1537 rx_count = atomic_read(&asoc->rmem_alloc);
1538 else
1539 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1540
1541 /* If we've reached or overflowed our receive buffer, announce
1542 * a 0 rwnd if rwnd would still be positive. Store the
1543 * the potential pressure overflow so that the window can be restored
1544 * back to original value.
1545 */
1546 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1547 over = 1;
1548
1549 if (asoc->rwnd >= len) {
1550 asoc->rwnd -= len;
1551 if (over) {
1552 asoc->rwnd_press += asoc->rwnd;
1553 asoc->rwnd = 0;
1554 }
1555 } else {
1556 asoc->rwnd_over += len - asoc->rwnd;
1557 asoc->rwnd = 0;
1558 }
1559
1560 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1561 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1562 asoc->rwnd_press);
1563 }
1564
1565 /* Build the bind address list for the association based on info from the
1566 * local endpoint and the remote peer.
1567 */
1568 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1569 enum sctp_scope scope, gfp_t gfp)
1570 {
1571 int flags;
1572
1573 /* Use scoping rules to determine the subset of addresses from
1574 * the endpoint.
1575 */
1576 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1577 if (asoc->peer.ipv4_address)
1578 flags |= SCTP_ADDR4_PEERSUPP;
1579 if (asoc->peer.ipv6_address)
1580 flags |= SCTP_ADDR6_PEERSUPP;
1581
1582 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1583 &asoc->base.bind_addr,
1584 &asoc->ep->base.bind_addr,
1585 scope, gfp, flags);
1586 }
1587
1588 /* Build the association's bind address list from the cookie. */
1589 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1590 struct sctp_cookie *cookie,
1591 gfp_t gfp)
1592 {
1593 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1594 int var_size3 = cookie->raw_addr_list_len;
1595 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1596
1597 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1598 asoc->ep->base.bind_addr.port, gfp);
1599 }
1600
1601 /* Lookup laddr in the bind address list of an association. */
1602 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1603 const union sctp_addr *laddr)
1604 {
1605 int found = 0;
1606
1607 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1608 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1609 sctp_sk(asoc->base.sk)))
1610 found = 1;
1611
1612 return found;
1613 }
1614
1615 /* Set an association id for a given association */
1616 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1617 {
1618 bool preload = gfpflags_allow_blocking(gfp);
1619 int ret;
1620
1621 /* If the id is already assigned, keep it. */
1622 if (asoc->assoc_id)
1623 return 0;
1624
1625 if (preload)
1626 idr_preload(gfp);
1627 spin_lock_bh(&sctp_assocs_id_lock);
1628 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1629 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1630 */
1631 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1632 GFP_NOWAIT);
1633 spin_unlock_bh(&sctp_assocs_id_lock);
1634 if (preload)
1635 idr_preload_end();
1636 if (ret < 0)
1637 return ret;
1638
1639 asoc->assoc_id = (sctp_assoc_t)ret;
1640 return 0;
1641 }
1642
1643 /* Free the ASCONF queue */
1644 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1645 {
1646 struct sctp_chunk *asconf;
1647 struct sctp_chunk *tmp;
1648
1649 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1650 list_del_init(&asconf->list);
1651 sctp_chunk_free(asconf);
1652 }
1653 }
1654
1655 /* Free asconf_ack cache */
1656 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1657 {
1658 struct sctp_chunk *ack;
1659 struct sctp_chunk *tmp;
1660
1661 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1662 transmitted_list) {
1663 list_del_init(&ack->transmitted_list);
1664 sctp_chunk_free(ack);
1665 }
1666 }
1667
1668 /* Clean up the ASCONF_ACK queue */
1669 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1670 {
1671 struct sctp_chunk *ack;
1672 struct sctp_chunk *tmp;
1673
1674 /* We can remove all the entries from the queue up to
1675 * the "Peer-Sequence-Number".
1676 */
1677 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1678 transmitted_list) {
1679 if (ack->subh.addip_hdr->serial ==
1680 htonl(asoc->peer.addip_serial))
1681 break;
1682
1683 list_del_init(&ack->transmitted_list);
1684 sctp_chunk_free(ack);
1685 }
1686 }
1687
1688 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1689 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1690 const struct sctp_association *asoc,
1691 __be32 serial)
1692 {
1693 struct sctp_chunk *ack;
1694
1695 /* Walk through the list of cached ASCONF-ACKs and find the
1696 * ack chunk whose serial number matches that of the request.
1697 */
1698 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1699 if (sctp_chunk_pending(ack))
1700 continue;
1701 if (ack->subh.addip_hdr->serial == serial) {
1702 sctp_chunk_hold(ack);
1703 return ack;
1704 }
1705 }
1706
1707 return NULL;
1708 }
1709
1710 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1711 {
1712 /* Free any cached ASCONF_ACK chunk. */
1713 sctp_assoc_free_asconf_acks(asoc);
1714
1715 /* Free the ASCONF queue. */
1716 sctp_assoc_free_asconf_queue(asoc);
1717
1718 /* Free any cached ASCONF chunk. */
1719 if (asoc->addip_last_asconf)
1720 sctp_chunk_free(asoc->addip_last_asconf);
1721 }