]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sctp/associola.c
Merge remote-tracking branches 'spi/topic/octeon', 'spi/topic/omap2-mcspi', 'spi...
[mirror_ubuntu-zesty-kernel.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
100
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
118
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
121
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
125
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */
129 asoc->param_flags = sp->param_flags;
130
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
133 */
134 asoc->max_burst = sp->max_burst;
135
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
155
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
176
177 asoc->a_rwnd = asoc->rwnd;
178
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
184
185 init_waitqueue_head(&asoc->wait);
186
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192 asoc->next_tsn = asoc->c.initial_tsn;
193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
208 */
209 asoc->addip_serial = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
256
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
263
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
269
270 asoc->active_key_id = ep->active_key_id;
271
272 /* Save the hmacs and chunks list into this association */
273 if (ep->auth_hmacs_list)
274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275 ntohs(ep->auth_hmacs_list->param_hdr.length));
276 if (ep->auth_chunk_list)
277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278 ntohs(ep->auth_chunk_list->param_hdr.length));
279
280 /* Get the AUTH random number for this association */
281 p = (sctp_paramhdr_t *)asoc->c.auth_random;
282 p->type = SCTP_PARAM_RANDOM;
283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285
286 return asoc;
287
288 fail_init:
289 sock_put(asoc->base.sk);
290 sctp_endpoint_put(asoc->ep);
291 return NULL;
292 }
293
294 /* Allocate and initialize a new association */
295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296 const struct sock *sk,
297 sctp_scope_t scope,
298 gfp_t gfp)
299 {
300 struct sctp_association *asoc;
301
302 asoc = kzalloc(sizeof(*asoc), gfp);
303 if (!asoc)
304 goto fail;
305
306 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307 goto fail_init;
308
309 SCTP_DBG_OBJCNT_INC(assoc);
310
311 pr_debug("Created asoc %p\n", asoc);
312
313 return asoc;
314
315 fail_init:
316 kfree(asoc);
317 fail:
318 return NULL;
319 }
320
321 /* Free this association if possible. There may still be users, so
322 * the actual deallocation may be delayed.
323 */
324 void sctp_association_free(struct sctp_association *asoc)
325 {
326 struct sock *sk = asoc->base.sk;
327 struct sctp_transport *transport;
328 struct list_head *pos, *temp;
329 int i;
330
331 /* Only real associations count against the endpoint, so
332 * don't bother for if this is a temporary association.
333 */
334 if (!list_empty(&asoc->asocs)) {
335 list_del(&asoc->asocs);
336
337 /* Decrement the backlog value for a TCP-style listening
338 * socket.
339 */
340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341 sk->sk_ack_backlog--;
342 }
343
344 /* Mark as dead, so other users can know this structure is
345 * going away.
346 */
347 asoc->base.dead = true;
348
349 /* Dispose of any data lying around in the outqueue. */
350 sctp_outq_free(&asoc->outqueue);
351
352 /* Dispose of any pending messages for the upper layer. */
353 sctp_ulpq_free(&asoc->ulpq);
354
355 /* Dispose of any pending chunks on the inqueue. */
356 sctp_inq_free(&asoc->base.inqueue);
357
358 sctp_tsnmap_free(&asoc->peer.tsn_map);
359
360 /* Free ssnmap storage. */
361 sctp_ssnmap_free(asoc->ssnmap);
362
363 /* Clean up the bound address list. */
364 sctp_bind_addr_free(&asoc->base.bind_addr);
365
366 /* Do we need to go through all of our timers and
367 * delete them? To be safe we will try to delete all, but we
368 * should be able to go through and make a guess based
369 * on our state.
370 */
371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 if (del_timer(&asoc->timers[i]))
373 sctp_association_put(asoc);
374 }
375
376 /* Free peer's cached cookie. */
377 kfree(asoc->peer.cookie);
378 kfree(asoc->peer.peer_random);
379 kfree(asoc->peer.peer_chunks);
380 kfree(asoc->peer.peer_hmacs);
381
382 /* Release the transport structures. */
383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 transport = list_entry(pos, struct sctp_transport, transports);
385 list_del_rcu(pos);
386 sctp_unhash_transport(transport);
387 sctp_transport_free(transport);
388 }
389
390 asoc->peer.transport_count = 0;
391
392 sctp_asconf_queue_teardown(asoc);
393
394 /* Free pending address space being deleted */
395 kfree(asoc->asconf_addr_del_pending);
396
397 /* AUTH - Free the endpoint shared keys */
398 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399
400 /* AUTH - Free the association shared key */
401 sctp_auth_key_put(asoc->asoc_shared_key);
402
403 sctp_association_put(asoc);
404 }
405
406 /* Cleanup and free up an association. */
407 static void sctp_association_destroy(struct sctp_association *asoc)
408 {
409 if (unlikely(!asoc->base.dead)) {
410 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
411 return;
412 }
413
414 sctp_endpoint_put(asoc->ep);
415 sock_put(asoc->base.sk);
416
417 if (asoc->assoc_id != 0) {
418 spin_lock_bh(&sctp_assocs_id_lock);
419 idr_remove(&sctp_assocs_id, asoc->assoc_id);
420 spin_unlock_bh(&sctp_assocs_id_lock);
421 }
422
423 WARN_ON(atomic_read(&asoc->rmem_alloc));
424
425 kfree(asoc);
426 SCTP_DBG_OBJCNT_DEC(assoc);
427 }
428
429 /* Change the primary destination address for the peer. */
430 void sctp_assoc_set_primary(struct sctp_association *asoc,
431 struct sctp_transport *transport)
432 {
433 int changeover = 0;
434
435 /* it's a changeover only if we already have a primary path
436 * that we are changing
437 */
438 if (asoc->peer.primary_path != NULL &&
439 asoc->peer.primary_path != transport)
440 changeover = 1 ;
441
442 asoc->peer.primary_path = transport;
443
444 /* Set a default msg_name for events. */
445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446 sizeof(union sctp_addr));
447
448 /* If the primary path is changing, assume that the
449 * user wants to use this new path.
450 */
451 if ((transport->state == SCTP_ACTIVE) ||
452 (transport->state == SCTP_UNKNOWN))
453 asoc->peer.active_path = transport;
454
455 /*
456 * SFR-CACC algorithm:
457 * Upon the receipt of a request to change the primary
458 * destination address, on the data structure for the new
459 * primary destination, the sender MUST do the following:
460 *
461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462 * to this destination address earlier. The sender MUST set
463 * CYCLING_CHANGEOVER to indicate that this switch is a
464 * double switch to the same destination address.
465 *
466 * Really, only bother is we have data queued or outstanding on
467 * the association.
468 */
469 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
470 return;
471
472 if (transport->cacc.changeover_active)
473 transport->cacc.cycling_changeover = changeover;
474
475 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
476 * a changeover has occurred.
477 */
478 transport->cacc.changeover_active = changeover;
479
480 /* 3) The sender MUST store the next TSN to be sent in
481 * next_tsn_at_change.
482 */
483 transport->cacc.next_tsn_at_change = asoc->next_tsn;
484 }
485
486 /* Remove a transport from an association. */
487 void sctp_assoc_rm_peer(struct sctp_association *asoc,
488 struct sctp_transport *peer)
489 {
490 struct list_head *pos;
491 struct sctp_transport *transport;
492
493 pr_debug("%s: association:%p addr:%pISpc\n",
494 __func__, asoc, &peer->ipaddr.sa);
495
496 /* If we are to remove the current retran_path, update it
497 * to the next peer before removing this peer from the list.
498 */
499 if (asoc->peer.retran_path == peer)
500 sctp_assoc_update_retran_path(asoc);
501
502 /* Remove this peer from the list. */
503 list_del_rcu(&peer->transports);
504 /* Remove this peer from the transport hashtable */
505 sctp_unhash_transport(peer);
506
507 /* Get the first transport of asoc. */
508 pos = asoc->peer.transport_addr_list.next;
509 transport = list_entry(pos, struct sctp_transport, transports);
510
511 /* Update any entries that match the peer to be deleted. */
512 if (asoc->peer.primary_path == peer)
513 sctp_assoc_set_primary(asoc, transport);
514 if (asoc->peer.active_path == peer)
515 asoc->peer.active_path = transport;
516 if (asoc->peer.retran_path == peer)
517 asoc->peer.retran_path = transport;
518 if (asoc->peer.last_data_from == peer)
519 asoc->peer.last_data_from = transport;
520
521 /* If we remove the transport an INIT was last sent to, set it to
522 * NULL. Combined with the update of the retran path above, this
523 * will cause the next INIT to be sent to the next available
524 * transport, maintaining the cycle.
525 */
526 if (asoc->init_last_sent_to == peer)
527 asoc->init_last_sent_to = NULL;
528
529 /* If we remove the transport an SHUTDOWN was last sent to, set it
530 * to NULL. Combined with the update of the retran path above, this
531 * will cause the next SHUTDOWN to be sent to the next available
532 * transport, maintaining the cycle.
533 */
534 if (asoc->shutdown_last_sent_to == peer)
535 asoc->shutdown_last_sent_to = NULL;
536
537 /* If we remove the transport an ASCONF was last sent to, set it to
538 * NULL.
539 */
540 if (asoc->addip_last_asconf &&
541 asoc->addip_last_asconf->transport == peer)
542 asoc->addip_last_asconf->transport = NULL;
543
544 /* If we have something on the transmitted list, we have to
545 * save it off. The best place is the active path.
546 */
547 if (!list_empty(&peer->transmitted)) {
548 struct sctp_transport *active = asoc->peer.active_path;
549 struct sctp_chunk *ch;
550
551 /* Reset the transport of each chunk on this list */
552 list_for_each_entry(ch, &peer->transmitted,
553 transmitted_list) {
554 ch->transport = NULL;
555 ch->rtt_in_progress = 0;
556 }
557
558 list_splice_tail_init(&peer->transmitted,
559 &active->transmitted);
560
561 /* Start a T3 timer here in case it wasn't running so
562 * that these migrated packets have a chance to get
563 * retransmitted.
564 */
565 if (!timer_pending(&active->T3_rtx_timer))
566 if (!mod_timer(&active->T3_rtx_timer,
567 jiffies + active->rto))
568 sctp_transport_hold(active);
569 }
570
571 asoc->peer.transport_count--;
572
573 sctp_transport_free(peer);
574 }
575
576 /* Add a transport address to an association. */
577 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
578 const union sctp_addr *addr,
579 const gfp_t gfp,
580 const int peer_state)
581 {
582 struct net *net = sock_net(asoc->base.sk);
583 struct sctp_transport *peer;
584 struct sctp_sock *sp;
585 unsigned short port;
586
587 sp = sctp_sk(asoc->base.sk);
588
589 /* AF_INET and AF_INET6 share common port field. */
590 port = ntohs(addr->v4.sin_port);
591
592 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
593 asoc, &addr->sa, peer_state);
594
595 /* Set the port if it has not been set yet. */
596 if (0 == asoc->peer.port)
597 asoc->peer.port = port;
598
599 /* Check to see if this is a duplicate. */
600 peer = sctp_assoc_lookup_paddr(asoc, addr);
601 if (peer) {
602 /* An UNKNOWN state is only set on transports added by
603 * user in sctp_connectx() call. Such transports should be
604 * considered CONFIRMED per RFC 4960, Section 5.4.
605 */
606 if (peer->state == SCTP_UNKNOWN) {
607 peer->state = SCTP_ACTIVE;
608 }
609 return peer;
610 }
611
612 peer = sctp_transport_new(net, addr, gfp);
613 if (!peer)
614 return NULL;
615
616 sctp_transport_set_owner(peer, asoc);
617
618 /* Initialize the peer's heartbeat interval based on the
619 * association configured value.
620 */
621 peer->hbinterval = asoc->hbinterval;
622
623 /* Set the path max_retrans. */
624 peer->pathmaxrxt = asoc->pathmaxrxt;
625
626 /* And the partial failure retrans threshold */
627 peer->pf_retrans = asoc->pf_retrans;
628
629 /* Initialize the peer's SACK delay timeout based on the
630 * association configured value.
631 */
632 peer->sackdelay = asoc->sackdelay;
633 peer->sackfreq = asoc->sackfreq;
634
635 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
636 * based on association setting.
637 */
638 peer->param_flags = asoc->param_flags;
639
640 sctp_transport_route(peer, NULL, sp);
641
642 /* Initialize the pmtu of the transport. */
643 if (peer->param_flags & SPP_PMTUD_DISABLE) {
644 if (asoc->pathmtu)
645 peer->pathmtu = asoc->pathmtu;
646 else
647 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
648 }
649
650 /* If this is the first transport addr on this association,
651 * initialize the association PMTU to the peer's PMTU.
652 * If not and the current association PMTU is higher than the new
653 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
654 */
655 if (asoc->pathmtu)
656 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
657 else
658 asoc->pathmtu = peer->pathmtu;
659
660 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
661 asoc->pathmtu);
662
663 peer->pmtu_pending = 0;
664
665 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
666
667 /* The asoc->peer.port might not be meaningful yet, but
668 * initialize the packet structure anyway.
669 */
670 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
671 asoc->peer.port);
672
673 /* 7.2.1 Slow-Start
674 *
675 * o The initial cwnd before DATA transmission or after a sufficiently
676 * long idle period MUST be set to
677 * min(4*MTU, max(2*MTU, 4380 bytes))
678 *
679 * o The initial value of ssthresh MAY be arbitrarily high
680 * (for example, implementations MAY use the size of the
681 * receiver advertised window).
682 */
683 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
684
685 /* At this point, we may not have the receiver's advertised window,
686 * so initialize ssthresh to the default value and it will be set
687 * later when we process the INIT.
688 */
689 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
690
691 peer->partial_bytes_acked = 0;
692 peer->flight_size = 0;
693 peer->burst_limited = 0;
694
695 /* Set the transport's RTO.initial value */
696 peer->rto = asoc->rto_initial;
697 sctp_max_rto(asoc, peer);
698
699 /* Set the peer's active state. */
700 peer->state = peer_state;
701
702 /* Attach the remote transport to our asoc. */
703 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
704 asoc->peer.transport_count++;
705 /* Add this peer into the transport hashtable */
706 sctp_hash_transport(peer);
707
708 /* If we do not yet have a primary path, set one. */
709 if (!asoc->peer.primary_path) {
710 sctp_assoc_set_primary(asoc, peer);
711 asoc->peer.retran_path = peer;
712 }
713
714 if (asoc->peer.active_path == asoc->peer.retran_path &&
715 peer->state != SCTP_UNCONFIRMED) {
716 asoc->peer.retran_path = peer;
717 }
718
719 return peer;
720 }
721
722 /* Delete a transport address from an association. */
723 void sctp_assoc_del_peer(struct sctp_association *asoc,
724 const union sctp_addr *addr)
725 {
726 struct list_head *pos;
727 struct list_head *temp;
728 struct sctp_transport *transport;
729
730 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
731 transport = list_entry(pos, struct sctp_transport, transports);
732 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
733 /* Do book keeping for removing the peer and free it. */
734 sctp_assoc_rm_peer(asoc, transport);
735 break;
736 }
737 }
738 }
739
740 /* Lookup a transport by address. */
741 struct sctp_transport *sctp_assoc_lookup_paddr(
742 const struct sctp_association *asoc,
743 const union sctp_addr *address)
744 {
745 struct sctp_transport *t;
746
747 /* Cycle through all transports searching for a peer address. */
748
749 list_for_each_entry(t, &asoc->peer.transport_addr_list,
750 transports) {
751 if (sctp_cmp_addr_exact(address, &t->ipaddr))
752 return t;
753 }
754
755 return NULL;
756 }
757
758 /* Remove all transports except a give one */
759 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
760 struct sctp_transport *primary)
761 {
762 struct sctp_transport *temp;
763 struct sctp_transport *t;
764
765 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
766 transports) {
767 /* if the current transport is not the primary one, delete it */
768 if (t != primary)
769 sctp_assoc_rm_peer(asoc, t);
770 }
771 }
772
773 /* Engage in transport control operations.
774 * Mark the transport up or down and send a notification to the user.
775 * Select and update the new active and retran paths.
776 */
777 void sctp_assoc_control_transport(struct sctp_association *asoc,
778 struct sctp_transport *transport,
779 sctp_transport_cmd_t command,
780 sctp_sn_error_t error)
781 {
782 struct sctp_ulpevent *event;
783 struct sockaddr_storage addr;
784 int spc_state = 0;
785 bool ulp_notify = true;
786
787 /* Record the transition on the transport. */
788 switch (command) {
789 case SCTP_TRANSPORT_UP:
790 /* If we are moving from UNCONFIRMED state due
791 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
792 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
793 */
794 if (SCTP_UNCONFIRMED == transport->state &&
795 SCTP_HEARTBEAT_SUCCESS == error)
796 spc_state = SCTP_ADDR_CONFIRMED;
797 else
798 spc_state = SCTP_ADDR_AVAILABLE;
799 /* Don't inform ULP about transition from PF to
800 * active state and set cwnd to 1 MTU, see SCTP
801 * Quick failover draft section 5.1, point 5
802 */
803 if (transport->state == SCTP_PF) {
804 ulp_notify = false;
805 transport->cwnd = asoc->pathmtu;
806 }
807 transport->state = SCTP_ACTIVE;
808 break;
809
810 case SCTP_TRANSPORT_DOWN:
811 /* If the transport was never confirmed, do not transition it
812 * to inactive state. Also, release the cached route since
813 * there may be a better route next time.
814 */
815 if (transport->state != SCTP_UNCONFIRMED)
816 transport->state = SCTP_INACTIVE;
817 else {
818 dst_release(transport->dst);
819 transport->dst = NULL;
820 ulp_notify = false;
821 }
822
823 spc_state = SCTP_ADDR_UNREACHABLE;
824 break;
825
826 case SCTP_TRANSPORT_PF:
827 transport->state = SCTP_PF;
828 ulp_notify = false;
829 break;
830
831 default:
832 return;
833 }
834
835 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
836 * to the user.
837 */
838 if (ulp_notify) {
839 memset(&addr, 0, sizeof(struct sockaddr_storage));
840 memcpy(&addr, &transport->ipaddr,
841 transport->af_specific->sockaddr_len);
842
843 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
844 0, spc_state, error, GFP_ATOMIC);
845 if (event)
846 sctp_ulpq_tail_event(&asoc->ulpq, event);
847 }
848
849 /* Select new active and retran paths. */
850 sctp_select_active_and_retran_path(asoc);
851 }
852
853 /* Hold a reference to an association. */
854 void sctp_association_hold(struct sctp_association *asoc)
855 {
856 atomic_inc(&asoc->base.refcnt);
857 }
858
859 /* Release a reference to an association and cleanup
860 * if there are no more references.
861 */
862 void sctp_association_put(struct sctp_association *asoc)
863 {
864 if (atomic_dec_and_test(&asoc->base.refcnt))
865 sctp_association_destroy(asoc);
866 }
867
868 /* Allocate the next TSN, Transmission Sequence Number, for the given
869 * association.
870 */
871 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
872 {
873 /* From Section 1.6 Serial Number Arithmetic:
874 * Transmission Sequence Numbers wrap around when they reach
875 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
876 * after transmitting TSN = 2*32 - 1 is TSN = 0.
877 */
878 __u32 retval = asoc->next_tsn;
879 asoc->next_tsn++;
880 asoc->unack_data++;
881
882 return retval;
883 }
884
885 /* Compare two addresses to see if they match. Wildcard addresses
886 * only match themselves.
887 */
888 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
889 const union sctp_addr *ss2)
890 {
891 struct sctp_af *af;
892
893 af = sctp_get_af_specific(ss1->sa.sa_family);
894 if (unlikely(!af))
895 return 0;
896
897 return af->cmp_addr(ss1, ss2);
898 }
899
900 /* Return an ecne chunk to get prepended to a packet.
901 * Note: We are sly and return a shared, prealloced chunk. FIXME:
902 * No we don't, but we could/should.
903 */
904 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
905 {
906 if (!asoc->need_ecne)
907 return NULL;
908
909 /* Send ECNE if needed.
910 * Not being able to allocate a chunk here is not deadly.
911 */
912 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
913 }
914
915 /*
916 * Find which transport this TSN was sent on.
917 */
918 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
919 __u32 tsn)
920 {
921 struct sctp_transport *active;
922 struct sctp_transport *match;
923 struct sctp_transport *transport;
924 struct sctp_chunk *chunk;
925 __be32 key = htonl(tsn);
926
927 match = NULL;
928
929 /*
930 * FIXME: In general, find a more efficient data structure for
931 * searching.
932 */
933
934 /*
935 * The general strategy is to search each transport's transmitted
936 * list. Return which transport this TSN lives on.
937 *
938 * Let's be hopeful and check the active_path first.
939 * Another optimization would be to know if there is only one
940 * outbound path and not have to look for the TSN at all.
941 *
942 */
943
944 active = asoc->peer.active_path;
945
946 list_for_each_entry(chunk, &active->transmitted,
947 transmitted_list) {
948
949 if (key == chunk->subh.data_hdr->tsn) {
950 match = active;
951 goto out;
952 }
953 }
954
955 /* If not found, go search all the other transports. */
956 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
957 transports) {
958
959 if (transport == active)
960 continue;
961 list_for_each_entry(chunk, &transport->transmitted,
962 transmitted_list) {
963 if (key == chunk->subh.data_hdr->tsn) {
964 match = transport;
965 goto out;
966 }
967 }
968 }
969 out:
970 return match;
971 }
972
973 /* Is this the association we are looking for? */
974 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
975 struct net *net,
976 const union sctp_addr *laddr,
977 const union sctp_addr *paddr)
978 {
979 struct sctp_transport *transport;
980
981 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
982 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
983 net_eq(sock_net(asoc->base.sk), net)) {
984 transport = sctp_assoc_lookup_paddr(asoc, paddr);
985 if (!transport)
986 goto out;
987
988 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
989 sctp_sk(asoc->base.sk)))
990 goto out;
991 }
992 transport = NULL;
993
994 out:
995 return transport;
996 }
997
998 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
999 static void sctp_assoc_bh_rcv(struct work_struct *work)
1000 {
1001 struct sctp_association *asoc =
1002 container_of(work, struct sctp_association,
1003 base.inqueue.immediate);
1004 struct net *net = sock_net(asoc->base.sk);
1005 struct sctp_endpoint *ep;
1006 struct sctp_chunk *chunk;
1007 struct sctp_inq *inqueue;
1008 int state;
1009 sctp_subtype_t subtype;
1010 int error = 0;
1011
1012 /* The association should be held so we should be safe. */
1013 ep = asoc->ep;
1014
1015 inqueue = &asoc->base.inqueue;
1016 sctp_association_hold(asoc);
1017 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1018 state = asoc->state;
1019 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1020
1021 /* SCTP-AUTH, Section 6.3:
1022 * The receiver has a list of chunk types which it expects
1023 * to be received only after an AUTH-chunk. This list has
1024 * been sent to the peer during the association setup. It
1025 * MUST silently discard these chunks if they are not placed
1026 * after an AUTH chunk in the packet.
1027 */
1028 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1029 continue;
1030
1031 /* Remember where the last DATA chunk came from so we
1032 * know where to send the SACK.
1033 */
1034 if (sctp_chunk_is_data(chunk))
1035 asoc->peer.last_data_from = chunk->transport;
1036 else {
1037 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1038 asoc->stats.ictrlchunks++;
1039 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1040 asoc->stats.isacks++;
1041 }
1042
1043 if (chunk->transport)
1044 chunk->transport->last_time_heard = ktime_get();
1045
1046 /* Run through the state machine. */
1047 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1048 state, ep, asoc, chunk, GFP_ATOMIC);
1049
1050 /* Check to see if the association is freed in response to
1051 * the incoming chunk. If so, get out of the while loop.
1052 */
1053 if (asoc->base.dead)
1054 break;
1055
1056 /* If there is an error on chunk, discard this packet. */
1057 if (error && chunk)
1058 chunk->pdiscard = 1;
1059 }
1060 sctp_association_put(asoc);
1061 }
1062
1063 /* This routine moves an association from its old sk to a new sk. */
1064 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1065 {
1066 struct sctp_sock *newsp = sctp_sk(newsk);
1067 struct sock *oldsk = assoc->base.sk;
1068
1069 /* Delete the association from the old endpoint's list of
1070 * associations.
1071 */
1072 list_del_init(&assoc->asocs);
1073
1074 /* Decrement the backlog value for a TCP-style socket. */
1075 if (sctp_style(oldsk, TCP))
1076 oldsk->sk_ack_backlog--;
1077
1078 /* Release references to the old endpoint and the sock. */
1079 sctp_endpoint_put(assoc->ep);
1080 sock_put(assoc->base.sk);
1081
1082 /* Get a reference to the new endpoint. */
1083 assoc->ep = newsp->ep;
1084 sctp_endpoint_hold(assoc->ep);
1085
1086 /* Get a reference to the new sock. */
1087 assoc->base.sk = newsk;
1088 sock_hold(assoc->base.sk);
1089
1090 /* Add the association to the new endpoint's list of associations. */
1091 sctp_endpoint_add_asoc(newsp->ep, assoc);
1092 }
1093
1094 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1095 void sctp_assoc_update(struct sctp_association *asoc,
1096 struct sctp_association *new)
1097 {
1098 struct sctp_transport *trans;
1099 struct list_head *pos, *temp;
1100
1101 /* Copy in new parameters of peer. */
1102 asoc->c = new->c;
1103 asoc->peer.rwnd = new->peer.rwnd;
1104 asoc->peer.sack_needed = new->peer.sack_needed;
1105 asoc->peer.auth_capable = new->peer.auth_capable;
1106 asoc->peer.i = new->peer.i;
1107 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1108 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1109
1110 /* Remove any peer addresses not present in the new association. */
1111 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1112 trans = list_entry(pos, struct sctp_transport, transports);
1113 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1114 sctp_assoc_rm_peer(asoc, trans);
1115 continue;
1116 }
1117
1118 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1119 sctp_transport_reset(trans);
1120 }
1121
1122 /* If the case is A (association restart), use
1123 * initial_tsn as next_tsn. If the case is B, use
1124 * current next_tsn in case data sent to peer
1125 * has been discarded and needs retransmission.
1126 */
1127 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1128 asoc->next_tsn = new->next_tsn;
1129 asoc->ctsn_ack_point = new->ctsn_ack_point;
1130 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1131
1132 /* Reinitialize SSN for both local streams
1133 * and peer's streams.
1134 */
1135 sctp_ssnmap_clear(asoc->ssnmap);
1136
1137 /* Flush the ULP reassembly and ordered queue.
1138 * Any data there will now be stale and will
1139 * cause problems.
1140 */
1141 sctp_ulpq_flush(&asoc->ulpq);
1142
1143 /* reset the overall association error count so
1144 * that the restarted association doesn't get torn
1145 * down on the next retransmission timer.
1146 */
1147 asoc->overall_error_count = 0;
1148
1149 } else {
1150 /* Add any peer addresses from the new association. */
1151 list_for_each_entry(trans, &new->peer.transport_addr_list,
1152 transports) {
1153 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1154 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1155 GFP_ATOMIC, trans->state);
1156 }
1157
1158 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1159 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1160 if (!asoc->ssnmap) {
1161 /* Move the ssnmap. */
1162 asoc->ssnmap = new->ssnmap;
1163 new->ssnmap = NULL;
1164 }
1165
1166 if (!asoc->assoc_id) {
1167 /* get a new association id since we don't have one
1168 * yet.
1169 */
1170 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1171 }
1172 }
1173
1174 /* SCTP-AUTH: Save the peer parameters from the new associations
1175 * and also move the association shared keys over
1176 */
1177 kfree(asoc->peer.peer_random);
1178 asoc->peer.peer_random = new->peer.peer_random;
1179 new->peer.peer_random = NULL;
1180
1181 kfree(asoc->peer.peer_chunks);
1182 asoc->peer.peer_chunks = new->peer.peer_chunks;
1183 new->peer.peer_chunks = NULL;
1184
1185 kfree(asoc->peer.peer_hmacs);
1186 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1187 new->peer.peer_hmacs = NULL;
1188
1189 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1190 }
1191
1192 /* Update the retran path for sending a retransmitted packet.
1193 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1194 *
1195 * When there is outbound data to send and the primary path
1196 * becomes inactive (e.g., due to failures), or where the
1197 * SCTP user explicitly requests to send data to an
1198 * inactive destination transport address, before reporting
1199 * an error to its ULP, the SCTP endpoint should try to send
1200 * the data to an alternate active destination transport
1201 * address if one exists.
1202 *
1203 * When retransmitting data that timed out, if the endpoint
1204 * is multihomed, it should consider each source-destination
1205 * address pair in its retransmission selection policy.
1206 * When retransmitting timed-out data, the endpoint should
1207 * attempt to pick the most divergent source-destination
1208 * pair from the original source-destination pair to which
1209 * the packet was transmitted.
1210 *
1211 * Note: Rules for picking the most divergent source-destination
1212 * pair are an implementation decision and are not specified
1213 * within this document.
1214 *
1215 * Our basic strategy is to round-robin transports in priorities
1216 * according to sctp_trans_score() e.g., if no such
1217 * transport with state SCTP_ACTIVE exists, round-robin through
1218 * SCTP_UNKNOWN, etc. You get the picture.
1219 */
1220 static u8 sctp_trans_score(const struct sctp_transport *trans)
1221 {
1222 switch (trans->state) {
1223 case SCTP_ACTIVE:
1224 return 3; /* best case */
1225 case SCTP_UNKNOWN:
1226 return 2;
1227 case SCTP_PF:
1228 return 1;
1229 default: /* case SCTP_INACTIVE */
1230 return 0; /* worst case */
1231 }
1232 }
1233
1234 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1235 struct sctp_transport *trans2)
1236 {
1237 if (trans1->error_count > trans2->error_count) {
1238 return trans2;
1239 } else if (trans1->error_count == trans2->error_count &&
1240 ktime_after(trans2->last_time_heard,
1241 trans1->last_time_heard)) {
1242 return trans2;
1243 } else {
1244 return trans1;
1245 }
1246 }
1247
1248 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1249 struct sctp_transport *best)
1250 {
1251 u8 score_curr, score_best;
1252
1253 if (best == NULL || curr == best)
1254 return curr;
1255
1256 score_curr = sctp_trans_score(curr);
1257 score_best = sctp_trans_score(best);
1258
1259 /* First, try a score-based selection if both transport states
1260 * differ. If we're in a tie, lets try to make a more clever
1261 * decision here based on error counts and last time heard.
1262 */
1263 if (score_curr > score_best)
1264 return curr;
1265 else if (score_curr == score_best)
1266 return sctp_trans_elect_tie(best, curr);
1267 else
1268 return best;
1269 }
1270
1271 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1272 {
1273 struct sctp_transport *trans = asoc->peer.retran_path;
1274 struct sctp_transport *trans_next = NULL;
1275
1276 /* We're done as we only have the one and only path. */
1277 if (asoc->peer.transport_count == 1)
1278 return;
1279 /* If active_path and retran_path are the same and active,
1280 * then this is the only active path. Use it.
1281 */
1282 if (asoc->peer.active_path == asoc->peer.retran_path &&
1283 asoc->peer.active_path->state == SCTP_ACTIVE)
1284 return;
1285
1286 /* Iterate from retran_path's successor back to retran_path. */
1287 for (trans = list_next_entry(trans, transports); 1;
1288 trans = list_next_entry(trans, transports)) {
1289 /* Manually skip the head element. */
1290 if (&trans->transports == &asoc->peer.transport_addr_list)
1291 continue;
1292 if (trans->state == SCTP_UNCONFIRMED)
1293 continue;
1294 trans_next = sctp_trans_elect_best(trans, trans_next);
1295 /* Active is good enough for immediate return. */
1296 if (trans_next->state == SCTP_ACTIVE)
1297 break;
1298 /* We've reached the end, time to update path. */
1299 if (trans == asoc->peer.retran_path)
1300 break;
1301 }
1302
1303 asoc->peer.retran_path = trans_next;
1304
1305 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1306 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1307 }
1308
1309 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1310 {
1311 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1312 struct sctp_transport *trans_pf = NULL;
1313
1314 /* Look for the two most recently used active transports. */
1315 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1316 transports) {
1317 /* Skip uninteresting transports. */
1318 if (trans->state == SCTP_INACTIVE ||
1319 trans->state == SCTP_UNCONFIRMED)
1320 continue;
1321 /* Keep track of the best PF transport from our
1322 * list in case we don't find an active one.
1323 */
1324 if (trans->state == SCTP_PF) {
1325 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1326 continue;
1327 }
1328 /* For active transports, pick the most recent ones. */
1329 if (trans_pri == NULL ||
1330 ktime_after(trans->last_time_heard,
1331 trans_pri->last_time_heard)) {
1332 trans_sec = trans_pri;
1333 trans_pri = trans;
1334 } else if (trans_sec == NULL ||
1335 ktime_after(trans->last_time_heard,
1336 trans_sec->last_time_heard)) {
1337 trans_sec = trans;
1338 }
1339 }
1340
1341 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1342 *
1343 * By default, an endpoint should always transmit to the primary
1344 * path, unless the SCTP user explicitly specifies the
1345 * destination transport address (and possibly source transport
1346 * address) to use. [If the primary is active but not most recent,
1347 * bump the most recently used transport.]
1348 */
1349 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1350 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1351 asoc->peer.primary_path != trans_pri) {
1352 trans_sec = trans_pri;
1353 trans_pri = asoc->peer.primary_path;
1354 }
1355
1356 /* We did not find anything useful for a possible retransmission
1357 * path; either primary path that we found is the the same as
1358 * the current one, or we didn't generally find an active one.
1359 */
1360 if (trans_sec == NULL)
1361 trans_sec = trans_pri;
1362
1363 /* If we failed to find a usable transport, just camp on the
1364 * active or pick a PF iff it's the better choice.
1365 */
1366 if (trans_pri == NULL) {
1367 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1368 trans_sec = trans_pri;
1369 }
1370
1371 /* Set the active and retran transports. */
1372 asoc->peer.active_path = trans_pri;
1373 asoc->peer.retran_path = trans_sec;
1374 }
1375
1376 struct sctp_transport *
1377 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1378 struct sctp_transport *last_sent_to)
1379 {
1380 /* If this is the first time packet is sent, use the active path,
1381 * else use the retran path. If the last packet was sent over the
1382 * retran path, update the retran path and use it.
1383 */
1384 if (last_sent_to == NULL) {
1385 return asoc->peer.active_path;
1386 } else {
1387 if (last_sent_to == asoc->peer.retran_path)
1388 sctp_assoc_update_retran_path(asoc);
1389
1390 return asoc->peer.retran_path;
1391 }
1392 }
1393
1394 /* Update the association's pmtu and frag_point by going through all the
1395 * transports. This routine is called when a transport's PMTU has changed.
1396 */
1397 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1398 {
1399 struct sctp_transport *t;
1400 __u32 pmtu = 0;
1401
1402 if (!asoc)
1403 return;
1404
1405 /* Get the lowest pmtu of all the transports. */
1406 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1407 transports) {
1408 if (t->pmtu_pending && t->dst) {
1409 sctp_transport_update_pmtu(sk, t,
1410 WORD_TRUNC(dst_mtu(t->dst)));
1411 t->pmtu_pending = 0;
1412 }
1413 if (!pmtu || (t->pathmtu < pmtu))
1414 pmtu = t->pathmtu;
1415 }
1416
1417 if (pmtu) {
1418 asoc->pathmtu = pmtu;
1419 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1420 }
1421
1422 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1423 asoc->pathmtu, asoc->frag_point);
1424 }
1425
1426 /* Should we send a SACK to update our peer? */
1427 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1428 {
1429 struct net *net = sock_net(asoc->base.sk);
1430 switch (asoc->state) {
1431 case SCTP_STATE_ESTABLISHED:
1432 case SCTP_STATE_SHUTDOWN_PENDING:
1433 case SCTP_STATE_SHUTDOWN_RECEIVED:
1434 case SCTP_STATE_SHUTDOWN_SENT:
1435 if ((asoc->rwnd > asoc->a_rwnd) &&
1436 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1437 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1438 asoc->pathmtu)))
1439 return true;
1440 break;
1441 default:
1442 break;
1443 }
1444 return false;
1445 }
1446
1447 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1448 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1449 {
1450 struct sctp_chunk *sack;
1451 struct timer_list *timer;
1452
1453 if (asoc->rwnd_over) {
1454 if (asoc->rwnd_over >= len) {
1455 asoc->rwnd_over -= len;
1456 } else {
1457 asoc->rwnd += (len - asoc->rwnd_over);
1458 asoc->rwnd_over = 0;
1459 }
1460 } else {
1461 asoc->rwnd += len;
1462 }
1463
1464 /* If we had window pressure, start recovering it
1465 * once our rwnd had reached the accumulated pressure
1466 * threshold. The idea is to recover slowly, but up
1467 * to the initial advertised window.
1468 */
1469 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1470 int change = min(asoc->pathmtu, asoc->rwnd_press);
1471 asoc->rwnd += change;
1472 asoc->rwnd_press -= change;
1473 }
1474
1475 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1476 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1477 asoc->a_rwnd);
1478
1479 /* Send a window update SACK if the rwnd has increased by at least the
1480 * minimum of the association's PMTU and half of the receive buffer.
1481 * The algorithm used is similar to the one described in
1482 * Section 4.2.3.3 of RFC 1122.
1483 */
1484 if (sctp_peer_needs_update(asoc)) {
1485 asoc->a_rwnd = asoc->rwnd;
1486
1487 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1488 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1489 asoc->a_rwnd);
1490
1491 sack = sctp_make_sack(asoc);
1492 if (!sack)
1493 return;
1494
1495 asoc->peer.sack_needed = 0;
1496
1497 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1498
1499 /* Stop the SACK timer. */
1500 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1501 if (del_timer(timer))
1502 sctp_association_put(asoc);
1503 }
1504 }
1505
1506 /* Decrease asoc's rwnd by len. */
1507 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1508 {
1509 int rx_count;
1510 int over = 0;
1511
1512 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1513 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1514 "asoc->rwnd_over:%u!\n", __func__, asoc,
1515 asoc->rwnd, asoc->rwnd_over);
1516
1517 if (asoc->ep->rcvbuf_policy)
1518 rx_count = atomic_read(&asoc->rmem_alloc);
1519 else
1520 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1521
1522 /* If we've reached or overflowed our receive buffer, announce
1523 * a 0 rwnd if rwnd would still be positive. Store the
1524 * the potential pressure overflow so that the window can be restored
1525 * back to original value.
1526 */
1527 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1528 over = 1;
1529
1530 if (asoc->rwnd >= len) {
1531 asoc->rwnd -= len;
1532 if (over) {
1533 asoc->rwnd_press += asoc->rwnd;
1534 asoc->rwnd = 0;
1535 }
1536 } else {
1537 asoc->rwnd_over = len - asoc->rwnd;
1538 asoc->rwnd = 0;
1539 }
1540
1541 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1542 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1543 asoc->rwnd_press);
1544 }
1545
1546 /* Build the bind address list for the association based on info from the
1547 * local endpoint and the remote peer.
1548 */
1549 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1550 sctp_scope_t scope, gfp_t gfp)
1551 {
1552 int flags;
1553
1554 /* Use scoping rules to determine the subset of addresses from
1555 * the endpoint.
1556 */
1557 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1558 if (asoc->peer.ipv4_address)
1559 flags |= SCTP_ADDR4_PEERSUPP;
1560 if (asoc->peer.ipv6_address)
1561 flags |= SCTP_ADDR6_PEERSUPP;
1562
1563 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1564 &asoc->base.bind_addr,
1565 &asoc->ep->base.bind_addr,
1566 scope, gfp, flags);
1567 }
1568
1569 /* Build the association's bind address list from the cookie. */
1570 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1571 struct sctp_cookie *cookie,
1572 gfp_t gfp)
1573 {
1574 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1575 int var_size3 = cookie->raw_addr_list_len;
1576 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1577
1578 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1579 asoc->ep->base.bind_addr.port, gfp);
1580 }
1581
1582 /* Lookup laddr in the bind address list of an association. */
1583 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1584 const union sctp_addr *laddr)
1585 {
1586 int found = 0;
1587
1588 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1589 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1590 sctp_sk(asoc->base.sk)))
1591 found = 1;
1592
1593 return found;
1594 }
1595
1596 /* Set an association id for a given association */
1597 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1598 {
1599 bool preload = gfpflags_allow_blocking(gfp);
1600 int ret;
1601
1602 /* If the id is already assigned, keep it. */
1603 if (asoc->assoc_id)
1604 return 0;
1605
1606 if (preload)
1607 idr_preload(gfp);
1608 spin_lock_bh(&sctp_assocs_id_lock);
1609 /* 0 is not a valid assoc_id, must be >= 1 */
1610 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1611 spin_unlock_bh(&sctp_assocs_id_lock);
1612 if (preload)
1613 idr_preload_end();
1614 if (ret < 0)
1615 return ret;
1616
1617 asoc->assoc_id = (sctp_assoc_t)ret;
1618 return 0;
1619 }
1620
1621 /* Free the ASCONF queue */
1622 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1623 {
1624 struct sctp_chunk *asconf;
1625 struct sctp_chunk *tmp;
1626
1627 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1628 list_del_init(&asconf->list);
1629 sctp_chunk_free(asconf);
1630 }
1631 }
1632
1633 /* Free asconf_ack cache */
1634 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1635 {
1636 struct sctp_chunk *ack;
1637 struct sctp_chunk *tmp;
1638
1639 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1640 transmitted_list) {
1641 list_del_init(&ack->transmitted_list);
1642 sctp_chunk_free(ack);
1643 }
1644 }
1645
1646 /* Clean up the ASCONF_ACK queue */
1647 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1648 {
1649 struct sctp_chunk *ack;
1650 struct sctp_chunk *tmp;
1651
1652 /* We can remove all the entries from the queue up to
1653 * the "Peer-Sequence-Number".
1654 */
1655 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1656 transmitted_list) {
1657 if (ack->subh.addip_hdr->serial ==
1658 htonl(asoc->peer.addip_serial))
1659 break;
1660
1661 list_del_init(&ack->transmitted_list);
1662 sctp_chunk_free(ack);
1663 }
1664 }
1665
1666 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1667 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1668 const struct sctp_association *asoc,
1669 __be32 serial)
1670 {
1671 struct sctp_chunk *ack;
1672
1673 /* Walk through the list of cached ASCONF-ACKs and find the
1674 * ack chunk whose serial number matches that of the request.
1675 */
1676 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1677 if (sctp_chunk_pending(ack))
1678 continue;
1679 if (ack->subh.addip_hdr->serial == serial) {
1680 sctp_chunk_hold(ack);
1681 return ack;
1682 }
1683 }
1684
1685 return NULL;
1686 }
1687
1688 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1689 {
1690 /* Free any cached ASCONF_ACK chunk. */
1691 sctp_assoc_free_asconf_acks(asoc);
1692
1693 /* Free the ASCONF queue. */
1694 sctp_assoc_free_asconf_queue(asoc);
1695
1696 /* Free any cached ASCONF chunk. */
1697 if (asoc->addip_last_asconf)
1698 sctp_chunk_free(asoc->addip_last_asconf);
1699 }