]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/associola.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Jon Grimm <jgrimm@us.ibm.com>
37 * Xingang Guo <xingang.guo@intel.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Sridhar Samudrala <sri@us.ibm.com>
40 * Daisy Chang <daisyc@us.ibm.com>
41 * Ryan Layer <rmlayer@us.ibm.com>
42 * Kevin Gao <kevin.gao@intel.com>
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/types.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51
52 #include <linux/slab.h>
53 #include <linux/in.h>
54 #include <net/ipv6.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57
58 /* Forward declarations for internal functions. */
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93 asoc->base.dead = false;
94
95 /* Initialize the bind addr area. */
96 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
97
98 asoc->state = SCTP_STATE_CLOSED;
99 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
100 asoc->frag_point = 0;
101 asoc->user_frag = sp->user_frag;
102
103 /* Set the association max_retrans and RTO values from the
104 * socket values.
105 */
106 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
107 asoc->pf_retrans = net->sctp.pf_retrans;
108
109 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
110 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
111 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
112
113 asoc->overall_error_count = 0;
114
115 /* Initialize the association's heartbeat interval based on the
116 * sock configured value.
117 */
118 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
119
120 /* Initialize path max retrans value. */
121 asoc->pathmaxrxt = sp->pathmaxrxt;
122
123 /* Initialize default path MTU. */
124 asoc->pathmtu = sp->pathmtu;
125
126 /* Set association default SACK delay */
127 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
128 asoc->sackfreq = sp->sackfreq;
129
130 /* Set the association default flags controlling
131 * Heartbeat, SACK delay, and Path MTU Discovery.
132 */
133 asoc->param_flags = sp->param_flags;
134
135 /* Initialize the maximum mumber of new data packets that can be sent
136 * in a burst.
137 */
138 asoc->max_burst = sp->max_burst;
139
140 /* initialize association timers */
141 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
142 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
143 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
146 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
147
148 /* sctpimpguide Section 2.12.2
149 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
150 * recommended value of 5 times 'RTO.Max'.
151 */
152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
153 = 5 * asoc->rto_max;
154
155 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
156 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
157 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
158
159 /* Initializes the timers */
160 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
161 setup_timer(&asoc->timers[i], sctp_timer_events[i],
162 (unsigned long)asoc);
163
164 /* Pull default initialization values from the sock options.
165 * Note: This assumes that the values have already been
166 * validated in the sock.
167 */
168 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
169 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
170 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
171
172 asoc->max_init_timeo =
173 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
174
175 /* Allocate storage for the ssnmap after the inbound and outbound
176 * streams have been negotiated during Init.
177 */
178 asoc->ssnmap = NULL;
179
180 /* Set the local window size for receive.
181 * This is also the rcvbuf space per association.
182 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
183 * 1500 bytes in one SCTP packet.
184 */
185 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
186 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
187 else
188 asoc->rwnd = sk->sk_rcvbuf/2;
189
190 asoc->a_rwnd = asoc->rwnd;
191
192 asoc->rwnd_over = 0;
193 asoc->rwnd_press = 0;
194
195 /* Use my own max window until I learn something better. */
196 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
197
198 /* Set the sndbuf size for transmit. */
199 asoc->sndbuf_used = 0;
200
201 /* Initialize the receive memory counter */
202 atomic_set(&asoc->rmem_alloc, 0);
203
204 init_waitqueue_head(&asoc->wait);
205
206 asoc->c.my_vtag = sctp_generate_tag(ep);
207 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
208 asoc->c.peer_vtag = 0;
209 asoc->c.my_ttag = 0;
210 asoc->c.peer_ttag = 0;
211 asoc->c.my_port = ep->base.bind_addr.port;
212
213 asoc->c.initial_tsn = sctp_generate_tsn(ep);
214
215 asoc->next_tsn = asoc->c.initial_tsn;
216
217 asoc->ctsn_ack_point = asoc->next_tsn - 1;
218 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
219 asoc->highest_sacked = asoc->ctsn_ack_point;
220 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
221 asoc->unack_data = 0;
222
223 /* ADDIP Section 4.1 Asconf Chunk Procedures
224 *
225 * When an endpoint has an ASCONF signaled change to be sent to the
226 * remote endpoint it should do the following:
227 * ...
228 * A2) a serial number should be assigned to the chunk. The serial
229 * number SHOULD be a monotonically increasing number. The serial
230 * numbers SHOULD be initialized at the start of the
231 * association to the same value as the initial TSN.
232 */
233 asoc->addip_serial = asoc->c.initial_tsn;
234
235 INIT_LIST_HEAD(&asoc->addip_chunk_list);
236 INIT_LIST_HEAD(&asoc->asconf_ack_list);
237
238 /* Make an empty list of remote transport addresses. */
239 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
240 asoc->peer.transport_count = 0;
241
242 /* RFC 2960 5.1 Normal Establishment of an Association
243 *
244 * After the reception of the first data chunk in an
245 * association the endpoint must immediately respond with a
246 * sack to acknowledge the data chunk. Subsequent
247 * acknowledgements should be done as described in Section
248 * 6.2.
249 *
250 * [We implement this by telling a new association that it
251 * already received one packet.]
252 */
253 asoc->peer.sack_needed = 1;
254 asoc->peer.sack_cnt = 0;
255 asoc->peer.sack_generation = 1;
256
257 /* Assume that the peer will tell us if he recognizes ASCONF
258 * as part of INIT exchange.
259 * The sctp_addip_noauth option is there for backward compatibilty
260 * and will revert old behavior.
261 */
262 asoc->peer.asconf_capable = 0;
263 if (net->sctp.addip_noauth)
264 asoc->peer.asconf_capable = 1;
265 asoc->asconf_addr_del_pending = NULL;
266 asoc->src_out_of_asoc_ok = 0;
267 asoc->new_transport = NULL;
268
269 /* Create an input queue. */
270 sctp_inq_init(&asoc->base.inqueue);
271 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
272
273 /* Create an output queue. */
274 sctp_outq_init(asoc, &asoc->outqueue);
275
276 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
277 goto fail_init;
278
279 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
280
281 asoc->need_ecne = 0;
282
283 asoc->assoc_id = 0;
284
285 /* Assume that peer would support both address types unless we are
286 * told otherwise.
287 */
288 asoc->peer.ipv4_address = 1;
289 if (asoc->base.sk->sk_family == PF_INET6)
290 asoc->peer.ipv6_address = 1;
291 INIT_LIST_HEAD(&asoc->asocs);
292
293 asoc->default_stream = sp->default_stream;
294 asoc->default_ppid = sp->default_ppid;
295 asoc->default_flags = sp->default_flags;
296 asoc->default_context = sp->default_context;
297 asoc->default_timetolive = sp->default_timetolive;
298 asoc->default_rcv_context = sp->default_rcv_context;
299
300 /* SCTP_GET_ASSOC_STATS COUNTERS */
301 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
302
303 /* AUTH related initializations */
304 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
305 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
306 if (err)
307 goto fail_init;
308
309 asoc->active_key_id = ep->active_key_id;
310 asoc->asoc_shared_key = NULL;
311
312 asoc->default_hmac_id = 0;
313 /* Save the hmacs and chunks list into this association */
314 if (ep->auth_hmacs_list)
315 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
316 ntohs(ep->auth_hmacs_list->param_hdr.length));
317 if (ep->auth_chunk_list)
318 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
319 ntohs(ep->auth_chunk_list->param_hdr.length));
320
321 /* Get the AUTH random number for this association */
322 p = (sctp_paramhdr_t *)asoc->c.auth_random;
323 p->type = SCTP_PARAM_RANDOM;
324 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
325 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
326
327 return asoc;
328
329 fail_init:
330 sock_put(asoc->base.sk);
331 sctp_endpoint_put(asoc->ep);
332 return NULL;
333 }
334
335 /* Allocate and initialize a new association */
336 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
337 const struct sock *sk,
338 sctp_scope_t scope,
339 gfp_t gfp)
340 {
341 struct sctp_association *asoc;
342
343 asoc = kzalloc(sizeof(*asoc), gfp);
344 if (!asoc)
345 goto fail;
346
347 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
348 goto fail_init;
349
350 SCTP_DBG_OBJCNT_INC(assoc);
351
352 pr_debug("Created asoc %p\n", asoc);
353
354 return asoc;
355
356 fail_init:
357 kfree(asoc);
358 fail:
359 return NULL;
360 }
361
362 /* Free this association if possible. There may still be users, so
363 * the actual deallocation may be delayed.
364 */
365 void sctp_association_free(struct sctp_association *asoc)
366 {
367 struct sock *sk = asoc->base.sk;
368 struct sctp_transport *transport;
369 struct list_head *pos, *temp;
370 int i;
371
372 /* Only real associations count against the endpoint, so
373 * don't bother for if this is a temporary association.
374 */
375 if (!asoc->temp) {
376 list_del(&asoc->asocs);
377
378 /* Decrement the backlog value for a TCP-style listening
379 * socket.
380 */
381 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
382 sk->sk_ack_backlog--;
383 }
384
385 /* Mark as dead, so other users can know this structure is
386 * going away.
387 */
388 asoc->base.dead = true;
389
390 /* Dispose of any data lying around in the outqueue. */
391 sctp_outq_free(&asoc->outqueue);
392
393 /* Dispose of any pending messages for the upper layer. */
394 sctp_ulpq_free(&asoc->ulpq);
395
396 /* Dispose of any pending chunks on the inqueue. */
397 sctp_inq_free(&asoc->base.inqueue);
398
399 sctp_tsnmap_free(&asoc->peer.tsn_map);
400
401 /* Free ssnmap storage. */
402 sctp_ssnmap_free(asoc->ssnmap);
403
404 /* Clean up the bound address list. */
405 sctp_bind_addr_free(&asoc->base.bind_addr);
406
407 /* Do we need to go through all of our timers and
408 * delete them? To be safe we will try to delete all, but we
409 * should be able to go through and make a guess based
410 * on our state.
411 */
412 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
413 if (del_timer(&asoc->timers[i]))
414 sctp_association_put(asoc);
415 }
416
417 /* Free peer's cached cookie. */
418 kfree(asoc->peer.cookie);
419 kfree(asoc->peer.peer_random);
420 kfree(asoc->peer.peer_chunks);
421 kfree(asoc->peer.peer_hmacs);
422
423 /* Release the transport structures. */
424 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
425 transport = list_entry(pos, struct sctp_transport, transports);
426 list_del_rcu(pos);
427 sctp_transport_free(transport);
428 }
429
430 asoc->peer.transport_count = 0;
431
432 sctp_asconf_queue_teardown(asoc);
433
434 /* Free pending address space being deleted */
435 if (asoc->asconf_addr_del_pending != NULL)
436 kfree(asoc->asconf_addr_del_pending);
437
438 /* AUTH - Free the endpoint shared keys */
439 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
440
441 /* AUTH - Free the association shared key */
442 sctp_auth_key_put(asoc->asoc_shared_key);
443
444 sctp_association_put(asoc);
445 }
446
447 /* Cleanup and free up an association. */
448 static void sctp_association_destroy(struct sctp_association *asoc)
449 {
450 if (unlikely(!asoc->base.dead)) {
451 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
452 return;
453 }
454
455 sctp_endpoint_put(asoc->ep);
456 sock_put(asoc->base.sk);
457
458 if (asoc->assoc_id != 0) {
459 spin_lock_bh(&sctp_assocs_id_lock);
460 idr_remove(&sctp_assocs_id, asoc->assoc_id);
461 spin_unlock_bh(&sctp_assocs_id_lock);
462 }
463
464 WARN_ON(atomic_read(&asoc->rmem_alloc));
465
466 kfree(asoc);
467 SCTP_DBG_OBJCNT_DEC(assoc);
468 }
469
470 /* Change the primary destination address for the peer. */
471 void sctp_assoc_set_primary(struct sctp_association *asoc,
472 struct sctp_transport *transport)
473 {
474 int changeover = 0;
475
476 /* it's a changeover only if we already have a primary path
477 * that we are changing
478 */
479 if (asoc->peer.primary_path != NULL &&
480 asoc->peer.primary_path != transport)
481 changeover = 1 ;
482
483 asoc->peer.primary_path = transport;
484
485 /* Set a default msg_name for events. */
486 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
487 sizeof(union sctp_addr));
488
489 /* If the primary path is changing, assume that the
490 * user wants to use this new path.
491 */
492 if ((transport->state == SCTP_ACTIVE) ||
493 (transport->state == SCTP_UNKNOWN))
494 asoc->peer.active_path = transport;
495
496 /*
497 * SFR-CACC algorithm:
498 * Upon the receipt of a request to change the primary
499 * destination address, on the data structure for the new
500 * primary destination, the sender MUST do the following:
501 *
502 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
503 * to this destination address earlier. The sender MUST set
504 * CYCLING_CHANGEOVER to indicate that this switch is a
505 * double switch to the same destination address.
506 *
507 * Really, only bother is we have data queued or outstanding on
508 * the association.
509 */
510 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
511 return;
512
513 if (transport->cacc.changeover_active)
514 transport->cacc.cycling_changeover = changeover;
515
516 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
517 * a changeover has occurred.
518 */
519 transport->cacc.changeover_active = changeover;
520
521 /* 3) The sender MUST store the next TSN to be sent in
522 * next_tsn_at_change.
523 */
524 transport->cacc.next_tsn_at_change = asoc->next_tsn;
525 }
526
527 /* Remove a transport from an association. */
528 void sctp_assoc_rm_peer(struct sctp_association *asoc,
529 struct sctp_transport *peer)
530 {
531 struct list_head *pos;
532 struct sctp_transport *transport;
533
534 pr_debug("%s: association:%p addr:%pISpc\n",
535 __func__, asoc, &peer->ipaddr.sa);
536
537 /* If we are to remove the current retran_path, update it
538 * to the next peer before removing this peer from the list.
539 */
540 if (asoc->peer.retran_path == peer)
541 sctp_assoc_update_retran_path(asoc);
542
543 /* Remove this peer from the list. */
544 list_del_rcu(&peer->transports);
545
546 /* Get the first transport of asoc. */
547 pos = asoc->peer.transport_addr_list.next;
548 transport = list_entry(pos, struct sctp_transport, transports);
549
550 /* Update any entries that match the peer to be deleted. */
551 if (asoc->peer.primary_path == peer)
552 sctp_assoc_set_primary(asoc, transport);
553 if (asoc->peer.active_path == peer)
554 asoc->peer.active_path = transport;
555 if (asoc->peer.retran_path == peer)
556 asoc->peer.retran_path = transport;
557 if (asoc->peer.last_data_from == peer)
558 asoc->peer.last_data_from = transport;
559
560 /* If we remove the transport an INIT was last sent to, set it to
561 * NULL. Combined with the update of the retran path above, this
562 * will cause the next INIT to be sent to the next available
563 * transport, maintaining the cycle.
564 */
565 if (asoc->init_last_sent_to == peer)
566 asoc->init_last_sent_to = NULL;
567
568 /* If we remove the transport an SHUTDOWN was last sent to, set it
569 * to NULL. Combined with the update of the retran path above, this
570 * will cause the next SHUTDOWN to be sent to the next available
571 * transport, maintaining the cycle.
572 */
573 if (asoc->shutdown_last_sent_to == peer)
574 asoc->shutdown_last_sent_to = NULL;
575
576 /* If we remove the transport an ASCONF was last sent to, set it to
577 * NULL.
578 */
579 if (asoc->addip_last_asconf &&
580 asoc->addip_last_asconf->transport == peer)
581 asoc->addip_last_asconf->transport = NULL;
582
583 /* If we have something on the transmitted list, we have to
584 * save it off. The best place is the active path.
585 */
586 if (!list_empty(&peer->transmitted)) {
587 struct sctp_transport *active = asoc->peer.active_path;
588 struct sctp_chunk *ch;
589
590 /* Reset the transport of each chunk on this list */
591 list_for_each_entry(ch, &peer->transmitted,
592 transmitted_list) {
593 ch->transport = NULL;
594 ch->rtt_in_progress = 0;
595 }
596
597 list_splice_tail_init(&peer->transmitted,
598 &active->transmitted);
599
600 /* Start a T3 timer here in case it wasn't running so
601 * that these migrated packets have a chance to get
602 * retransmitted.
603 */
604 if (!timer_pending(&active->T3_rtx_timer))
605 if (!mod_timer(&active->T3_rtx_timer,
606 jiffies + active->rto))
607 sctp_transport_hold(active);
608 }
609
610 asoc->peer.transport_count--;
611
612 sctp_transport_free(peer);
613 }
614
615 /* Add a transport address to an association. */
616 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
617 const union sctp_addr *addr,
618 const gfp_t gfp,
619 const int peer_state)
620 {
621 struct net *net = sock_net(asoc->base.sk);
622 struct sctp_transport *peer;
623 struct sctp_sock *sp;
624 unsigned short port;
625
626 sp = sctp_sk(asoc->base.sk);
627
628 /* AF_INET and AF_INET6 share common port field. */
629 port = ntohs(addr->v4.sin_port);
630
631 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
632 asoc, &addr->sa, peer_state);
633
634 /* Set the port if it has not been set yet. */
635 if (0 == asoc->peer.port)
636 asoc->peer.port = port;
637
638 /* Check to see if this is a duplicate. */
639 peer = sctp_assoc_lookup_paddr(asoc, addr);
640 if (peer) {
641 /* An UNKNOWN state is only set on transports added by
642 * user in sctp_connectx() call. Such transports should be
643 * considered CONFIRMED per RFC 4960, Section 5.4.
644 */
645 if (peer->state == SCTP_UNKNOWN) {
646 peer->state = SCTP_ACTIVE;
647 }
648 return peer;
649 }
650
651 peer = sctp_transport_new(net, addr, gfp);
652 if (!peer)
653 return NULL;
654
655 sctp_transport_set_owner(peer, asoc);
656
657 /* Initialize the peer's heartbeat interval based on the
658 * association configured value.
659 */
660 peer->hbinterval = asoc->hbinterval;
661
662 /* Set the path max_retrans. */
663 peer->pathmaxrxt = asoc->pathmaxrxt;
664
665 /* And the partial failure retrans threshold */
666 peer->pf_retrans = asoc->pf_retrans;
667
668 /* Initialize the peer's SACK delay timeout based on the
669 * association configured value.
670 */
671 peer->sackdelay = asoc->sackdelay;
672 peer->sackfreq = asoc->sackfreq;
673
674 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
675 * based on association setting.
676 */
677 peer->param_flags = asoc->param_flags;
678
679 sctp_transport_route(peer, NULL, sp);
680
681 /* Initialize the pmtu of the transport. */
682 if (peer->param_flags & SPP_PMTUD_DISABLE) {
683 if (asoc->pathmtu)
684 peer->pathmtu = asoc->pathmtu;
685 else
686 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
687 }
688
689 /* If this is the first transport addr on this association,
690 * initialize the association PMTU to the peer's PMTU.
691 * If not and the current association PMTU is higher than the new
692 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
693 */
694 if (asoc->pathmtu)
695 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
696 else
697 asoc->pathmtu = peer->pathmtu;
698
699 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
700 asoc->pathmtu);
701
702 peer->pmtu_pending = 0;
703
704 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
705
706 /* The asoc->peer.port might not be meaningful yet, but
707 * initialize the packet structure anyway.
708 */
709 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
710 asoc->peer.port);
711
712 /* 7.2.1 Slow-Start
713 *
714 * o The initial cwnd before DATA transmission or after a sufficiently
715 * long idle period MUST be set to
716 * min(4*MTU, max(2*MTU, 4380 bytes))
717 *
718 * o The initial value of ssthresh MAY be arbitrarily high
719 * (for example, implementations MAY use the size of the
720 * receiver advertised window).
721 */
722 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
723
724 /* At this point, we may not have the receiver's advertised window,
725 * so initialize ssthresh to the default value and it will be set
726 * later when we process the INIT.
727 */
728 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
729
730 peer->partial_bytes_acked = 0;
731 peer->flight_size = 0;
732 peer->burst_limited = 0;
733
734 /* Set the transport's RTO.initial value */
735 peer->rto = asoc->rto_initial;
736 sctp_max_rto(asoc, peer);
737
738 /* Set the peer's active state. */
739 peer->state = peer_state;
740
741 /* Attach the remote transport to our asoc. */
742 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
743 asoc->peer.transport_count++;
744
745 /* If we do not yet have a primary path, set one. */
746 if (!asoc->peer.primary_path) {
747 sctp_assoc_set_primary(asoc, peer);
748 asoc->peer.retran_path = peer;
749 }
750
751 if (asoc->peer.active_path == asoc->peer.retran_path &&
752 peer->state != SCTP_UNCONFIRMED) {
753 asoc->peer.retran_path = peer;
754 }
755
756 return peer;
757 }
758
759 /* Delete a transport address from an association. */
760 void sctp_assoc_del_peer(struct sctp_association *asoc,
761 const union sctp_addr *addr)
762 {
763 struct list_head *pos;
764 struct list_head *temp;
765 struct sctp_transport *transport;
766
767 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
768 transport = list_entry(pos, struct sctp_transport, transports);
769 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
770 /* Do book keeping for removing the peer and free it. */
771 sctp_assoc_rm_peer(asoc, transport);
772 break;
773 }
774 }
775 }
776
777 /* Lookup a transport by address. */
778 struct sctp_transport *sctp_assoc_lookup_paddr(
779 const struct sctp_association *asoc,
780 const union sctp_addr *address)
781 {
782 struct sctp_transport *t;
783
784 /* Cycle through all transports searching for a peer address. */
785
786 list_for_each_entry(t, &asoc->peer.transport_addr_list,
787 transports) {
788 if (sctp_cmp_addr_exact(address, &t->ipaddr))
789 return t;
790 }
791
792 return NULL;
793 }
794
795 /* Remove all transports except a give one */
796 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
797 struct sctp_transport *primary)
798 {
799 struct sctp_transport *temp;
800 struct sctp_transport *t;
801
802 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
803 transports) {
804 /* if the current transport is not the primary one, delete it */
805 if (t != primary)
806 sctp_assoc_rm_peer(asoc, t);
807 }
808 }
809
810 /* Engage in transport control operations.
811 * Mark the transport up or down and send a notification to the user.
812 * Select and update the new active and retran paths.
813 */
814 void sctp_assoc_control_transport(struct sctp_association *asoc,
815 struct sctp_transport *transport,
816 sctp_transport_cmd_t command,
817 sctp_sn_error_t error)
818 {
819 struct sctp_transport *t = NULL;
820 struct sctp_transport *first;
821 struct sctp_transport *second;
822 struct sctp_ulpevent *event;
823 struct sockaddr_storage addr;
824 int spc_state = 0;
825 bool ulp_notify = true;
826
827 /* Record the transition on the transport. */
828 switch (command) {
829 case SCTP_TRANSPORT_UP:
830 /* If we are moving from UNCONFIRMED state due
831 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
832 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
833 */
834 if (SCTP_UNCONFIRMED == transport->state &&
835 SCTP_HEARTBEAT_SUCCESS == error)
836 spc_state = SCTP_ADDR_CONFIRMED;
837 else
838 spc_state = SCTP_ADDR_AVAILABLE;
839 /* Don't inform ULP about transition from PF to
840 * active state and set cwnd to 1 MTU, see SCTP
841 * Quick failover draft section 5.1, point 5
842 */
843 if (transport->state == SCTP_PF) {
844 ulp_notify = false;
845 transport->cwnd = asoc->pathmtu;
846 }
847 transport->state = SCTP_ACTIVE;
848 break;
849
850 case SCTP_TRANSPORT_DOWN:
851 /* If the transport was never confirmed, do not transition it
852 * to inactive state. Also, release the cached route since
853 * there may be a better route next time.
854 */
855 if (transport->state != SCTP_UNCONFIRMED)
856 transport->state = SCTP_INACTIVE;
857 else {
858 dst_release(transport->dst);
859 transport->dst = NULL;
860 }
861
862 spc_state = SCTP_ADDR_UNREACHABLE;
863 break;
864
865 case SCTP_TRANSPORT_PF:
866 transport->state = SCTP_PF;
867 ulp_notify = false;
868 break;
869
870 default:
871 return;
872 }
873
874 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
875 * user.
876 */
877 if (ulp_notify) {
878 memset(&addr, 0, sizeof(struct sockaddr_storage));
879 memcpy(&addr, &transport->ipaddr,
880 transport->af_specific->sockaddr_len);
881 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
882 0, spc_state, error, GFP_ATOMIC);
883 if (event)
884 sctp_ulpq_tail_event(&asoc->ulpq, event);
885 }
886
887 /* Select new active and retran paths. */
888
889 /* Look for the two most recently used active transports.
890 *
891 * This code produces the wrong ordering whenever jiffies
892 * rolls over, but we still get usable transports, so we don't
893 * worry about it.
894 */
895 first = NULL; second = NULL;
896
897 list_for_each_entry(t, &asoc->peer.transport_addr_list,
898 transports) {
899
900 if ((t->state == SCTP_INACTIVE) ||
901 (t->state == SCTP_UNCONFIRMED) ||
902 (t->state == SCTP_PF))
903 continue;
904 if (!first || t->last_time_heard > first->last_time_heard) {
905 second = first;
906 first = t;
907 } else if (!second ||
908 t->last_time_heard > second->last_time_heard)
909 second = t;
910 }
911
912 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
913 *
914 * By default, an endpoint should always transmit to the
915 * primary path, unless the SCTP user explicitly specifies the
916 * destination transport address (and possibly source
917 * transport address) to use.
918 *
919 * [If the primary is active but not most recent, bump the most
920 * recently used transport.]
921 */
922 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
923 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
924 first != asoc->peer.primary_path) {
925 second = first;
926 first = asoc->peer.primary_path;
927 }
928
929 if (!second)
930 second = first;
931 /* If we failed to find a usable transport, just camp on the
932 * primary, even if it is inactive.
933 */
934 if (!first) {
935 first = asoc->peer.primary_path;
936 second = asoc->peer.primary_path;
937 }
938
939 /* Set the active and retran transports. */
940 asoc->peer.active_path = first;
941 asoc->peer.retran_path = second;
942 }
943
944 /* Hold a reference to an association. */
945 void sctp_association_hold(struct sctp_association *asoc)
946 {
947 atomic_inc(&asoc->base.refcnt);
948 }
949
950 /* Release a reference to an association and cleanup
951 * if there are no more references.
952 */
953 void sctp_association_put(struct sctp_association *asoc)
954 {
955 if (atomic_dec_and_test(&asoc->base.refcnt))
956 sctp_association_destroy(asoc);
957 }
958
959 /* Allocate the next TSN, Transmission Sequence Number, for the given
960 * association.
961 */
962 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
963 {
964 /* From Section 1.6 Serial Number Arithmetic:
965 * Transmission Sequence Numbers wrap around when they reach
966 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
967 * after transmitting TSN = 2*32 - 1 is TSN = 0.
968 */
969 __u32 retval = asoc->next_tsn;
970 asoc->next_tsn++;
971 asoc->unack_data++;
972
973 return retval;
974 }
975
976 /* Compare two addresses to see if they match. Wildcard addresses
977 * only match themselves.
978 */
979 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
980 const union sctp_addr *ss2)
981 {
982 struct sctp_af *af;
983
984 af = sctp_get_af_specific(ss1->sa.sa_family);
985 if (unlikely(!af))
986 return 0;
987
988 return af->cmp_addr(ss1, ss2);
989 }
990
991 /* Return an ecne chunk to get prepended to a packet.
992 * Note: We are sly and return a shared, prealloced chunk. FIXME:
993 * No we don't, but we could/should.
994 */
995 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
996 {
997 struct sctp_chunk *chunk;
998
999 /* Send ECNE if needed.
1000 * Not being able to allocate a chunk here is not deadly.
1001 */
1002 if (asoc->need_ecne)
1003 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1004 else
1005 chunk = NULL;
1006
1007 return chunk;
1008 }
1009
1010 /*
1011 * Find which transport this TSN was sent on.
1012 */
1013 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1014 __u32 tsn)
1015 {
1016 struct sctp_transport *active;
1017 struct sctp_transport *match;
1018 struct sctp_transport *transport;
1019 struct sctp_chunk *chunk;
1020 __be32 key = htonl(tsn);
1021
1022 match = NULL;
1023
1024 /*
1025 * FIXME: In general, find a more efficient data structure for
1026 * searching.
1027 */
1028
1029 /*
1030 * The general strategy is to search each transport's transmitted
1031 * list. Return which transport this TSN lives on.
1032 *
1033 * Let's be hopeful and check the active_path first.
1034 * Another optimization would be to know if there is only one
1035 * outbound path and not have to look for the TSN at all.
1036 *
1037 */
1038
1039 active = asoc->peer.active_path;
1040
1041 list_for_each_entry(chunk, &active->transmitted,
1042 transmitted_list) {
1043
1044 if (key == chunk->subh.data_hdr->tsn) {
1045 match = active;
1046 goto out;
1047 }
1048 }
1049
1050 /* If not found, go search all the other transports. */
1051 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1052 transports) {
1053
1054 if (transport == active)
1055 continue;
1056 list_for_each_entry(chunk, &transport->transmitted,
1057 transmitted_list) {
1058 if (key == chunk->subh.data_hdr->tsn) {
1059 match = transport;
1060 goto out;
1061 }
1062 }
1063 }
1064 out:
1065 return match;
1066 }
1067
1068 /* Is this the association we are looking for? */
1069 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1070 struct net *net,
1071 const union sctp_addr *laddr,
1072 const union sctp_addr *paddr)
1073 {
1074 struct sctp_transport *transport;
1075
1076 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1077 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1078 net_eq(sock_net(asoc->base.sk), net)) {
1079 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1080 if (!transport)
1081 goto out;
1082
1083 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1084 sctp_sk(asoc->base.sk)))
1085 goto out;
1086 }
1087 transport = NULL;
1088
1089 out:
1090 return transport;
1091 }
1092
1093 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1094 static void sctp_assoc_bh_rcv(struct work_struct *work)
1095 {
1096 struct sctp_association *asoc =
1097 container_of(work, struct sctp_association,
1098 base.inqueue.immediate);
1099 struct net *net = sock_net(asoc->base.sk);
1100 struct sctp_endpoint *ep;
1101 struct sctp_chunk *chunk;
1102 struct sctp_inq *inqueue;
1103 int state;
1104 sctp_subtype_t subtype;
1105 int error = 0;
1106
1107 /* The association should be held so we should be safe. */
1108 ep = asoc->ep;
1109
1110 inqueue = &asoc->base.inqueue;
1111 sctp_association_hold(asoc);
1112 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1113 state = asoc->state;
1114 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1115
1116 /* SCTP-AUTH, Section 6.3:
1117 * The receiver has a list of chunk types which it expects
1118 * to be received only after an AUTH-chunk. This list has
1119 * been sent to the peer during the association setup. It
1120 * MUST silently discard these chunks if they are not placed
1121 * after an AUTH chunk in the packet.
1122 */
1123 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1124 continue;
1125
1126 /* Remember where the last DATA chunk came from so we
1127 * know where to send the SACK.
1128 */
1129 if (sctp_chunk_is_data(chunk))
1130 asoc->peer.last_data_from = chunk->transport;
1131 else {
1132 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1133 asoc->stats.ictrlchunks++;
1134 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1135 asoc->stats.isacks++;
1136 }
1137
1138 if (chunk->transport)
1139 chunk->transport->last_time_heard = jiffies;
1140
1141 /* Run through the state machine. */
1142 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1143 state, ep, asoc, chunk, GFP_ATOMIC);
1144
1145 /* Check to see if the association is freed in response to
1146 * the incoming chunk. If so, get out of the while loop.
1147 */
1148 if (asoc->base.dead)
1149 break;
1150
1151 /* If there is an error on chunk, discard this packet. */
1152 if (error && chunk)
1153 chunk->pdiscard = 1;
1154 }
1155 sctp_association_put(asoc);
1156 }
1157
1158 /* This routine moves an association from its old sk to a new sk. */
1159 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1160 {
1161 struct sctp_sock *newsp = sctp_sk(newsk);
1162 struct sock *oldsk = assoc->base.sk;
1163
1164 /* Delete the association from the old endpoint's list of
1165 * associations.
1166 */
1167 list_del_init(&assoc->asocs);
1168
1169 /* Decrement the backlog value for a TCP-style socket. */
1170 if (sctp_style(oldsk, TCP))
1171 oldsk->sk_ack_backlog--;
1172
1173 /* Release references to the old endpoint and the sock. */
1174 sctp_endpoint_put(assoc->ep);
1175 sock_put(assoc->base.sk);
1176
1177 /* Get a reference to the new endpoint. */
1178 assoc->ep = newsp->ep;
1179 sctp_endpoint_hold(assoc->ep);
1180
1181 /* Get a reference to the new sock. */
1182 assoc->base.sk = newsk;
1183 sock_hold(assoc->base.sk);
1184
1185 /* Add the association to the new endpoint's list of associations. */
1186 sctp_endpoint_add_asoc(newsp->ep, assoc);
1187 }
1188
1189 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1190 void sctp_assoc_update(struct sctp_association *asoc,
1191 struct sctp_association *new)
1192 {
1193 struct sctp_transport *trans;
1194 struct list_head *pos, *temp;
1195
1196 /* Copy in new parameters of peer. */
1197 asoc->c = new->c;
1198 asoc->peer.rwnd = new->peer.rwnd;
1199 asoc->peer.sack_needed = new->peer.sack_needed;
1200 asoc->peer.i = new->peer.i;
1201 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1202 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1203
1204 /* Remove any peer addresses not present in the new association. */
1205 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1206 trans = list_entry(pos, struct sctp_transport, transports);
1207 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1208 sctp_assoc_rm_peer(asoc, trans);
1209 continue;
1210 }
1211
1212 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1213 sctp_transport_reset(trans);
1214 }
1215
1216 /* If the case is A (association restart), use
1217 * initial_tsn as next_tsn. If the case is B, use
1218 * current next_tsn in case data sent to peer
1219 * has been discarded and needs retransmission.
1220 */
1221 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1222 asoc->next_tsn = new->next_tsn;
1223 asoc->ctsn_ack_point = new->ctsn_ack_point;
1224 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1225
1226 /* Reinitialize SSN for both local streams
1227 * and peer's streams.
1228 */
1229 sctp_ssnmap_clear(asoc->ssnmap);
1230
1231 /* Flush the ULP reassembly and ordered queue.
1232 * Any data there will now be stale and will
1233 * cause problems.
1234 */
1235 sctp_ulpq_flush(&asoc->ulpq);
1236
1237 /* reset the overall association error count so
1238 * that the restarted association doesn't get torn
1239 * down on the next retransmission timer.
1240 */
1241 asoc->overall_error_count = 0;
1242
1243 } else {
1244 /* Add any peer addresses from the new association. */
1245 list_for_each_entry(trans, &new->peer.transport_addr_list,
1246 transports) {
1247 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1248 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1249 GFP_ATOMIC, trans->state);
1250 }
1251
1252 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1253 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1254 if (!asoc->ssnmap) {
1255 /* Move the ssnmap. */
1256 asoc->ssnmap = new->ssnmap;
1257 new->ssnmap = NULL;
1258 }
1259
1260 if (!asoc->assoc_id) {
1261 /* get a new association id since we don't have one
1262 * yet.
1263 */
1264 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1265 }
1266 }
1267
1268 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1269 * and also move the association shared keys over
1270 */
1271 kfree(asoc->peer.peer_random);
1272 asoc->peer.peer_random = new->peer.peer_random;
1273 new->peer.peer_random = NULL;
1274
1275 kfree(asoc->peer.peer_chunks);
1276 asoc->peer.peer_chunks = new->peer.peer_chunks;
1277 new->peer.peer_chunks = NULL;
1278
1279 kfree(asoc->peer.peer_hmacs);
1280 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1281 new->peer.peer_hmacs = NULL;
1282
1283 sctp_auth_key_put(asoc->asoc_shared_key);
1284 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1285 }
1286
1287 /* Update the retran path for sending a retransmitted packet.
1288 * Round-robin through the active transports, else round-robin
1289 * through the inactive transports as this is the next best thing
1290 * we can try.
1291 */
1292 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1293 {
1294 struct sctp_transport *t, *next;
1295 struct list_head *head = &asoc->peer.transport_addr_list;
1296 struct list_head *pos;
1297
1298 if (asoc->peer.transport_count == 1)
1299 return;
1300
1301 /* Find the next transport in a round-robin fashion. */
1302 t = asoc->peer.retran_path;
1303 pos = &t->transports;
1304 next = NULL;
1305
1306 while (1) {
1307 /* Skip the head. */
1308 if (pos->next == head)
1309 pos = head->next;
1310 else
1311 pos = pos->next;
1312
1313 t = list_entry(pos, struct sctp_transport, transports);
1314
1315 /* We have exhausted the list, but didn't find any
1316 * other active transports. If so, use the next
1317 * transport.
1318 */
1319 if (t == asoc->peer.retran_path) {
1320 t = next;
1321 break;
1322 }
1323
1324 /* Try to find an active transport. */
1325
1326 if ((t->state == SCTP_ACTIVE) ||
1327 (t->state == SCTP_UNKNOWN)) {
1328 break;
1329 } else {
1330 /* Keep track of the next transport in case
1331 * we don't find any active transport.
1332 */
1333 if (t->state != SCTP_UNCONFIRMED && !next)
1334 next = t;
1335 }
1336 }
1337
1338 if (t)
1339 asoc->peer.retran_path = t;
1340 else
1341 t = asoc->peer.retran_path;
1342
1343 pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc,
1344 &t->ipaddr.sa);
1345 }
1346
1347 /* Choose the transport for sending retransmit packet. */
1348 struct sctp_transport *sctp_assoc_choose_alter_transport(
1349 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1350 {
1351 /* If this is the first time packet is sent, use the active path,
1352 * else use the retran path. If the last packet was sent over the
1353 * retran path, update the retran path and use it.
1354 */
1355 if (!last_sent_to)
1356 return asoc->peer.active_path;
1357 else {
1358 if (last_sent_to == asoc->peer.retran_path)
1359 sctp_assoc_update_retran_path(asoc);
1360 return asoc->peer.retran_path;
1361 }
1362 }
1363
1364 /* Update the association's pmtu and frag_point by going through all the
1365 * transports. This routine is called when a transport's PMTU has changed.
1366 */
1367 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1368 {
1369 struct sctp_transport *t;
1370 __u32 pmtu = 0;
1371
1372 if (!asoc)
1373 return;
1374
1375 /* Get the lowest pmtu of all the transports. */
1376 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1377 transports) {
1378 if (t->pmtu_pending && t->dst) {
1379 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1380 t->pmtu_pending = 0;
1381 }
1382 if (!pmtu || (t->pathmtu < pmtu))
1383 pmtu = t->pathmtu;
1384 }
1385
1386 if (pmtu) {
1387 asoc->pathmtu = pmtu;
1388 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1389 }
1390
1391 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1392 asoc->pathmtu, asoc->frag_point);
1393 }
1394
1395 /* Should we send a SACK to update our peer? */
1396 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1397 {
1398 struct net *net = sock_net(asoc->base.sk);
1399 switch (asoc->state) {
1400 case SCTP_STATE_ESTABLISHED:
1401 case SCTP_STATE_SHUTDOWN_PENDING:
1402 case SCTP_STATE_SHUTDOWN_RECEIVED:
1403 case SCTP_STATE_SHUTDOWN_SENT:
1404 if ((asoc->rwnd > asoc->a_rwnd) &&
1405 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1406 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1407 asoc->pathmtu)))
1408 return 1;
1409 break;
1410 default:
1411 break;
1412 }
1413 return 0;
1414 }
1415
1416 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1417 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1418 {
1419 struct sctp_chunk *sack;
1420 struct timer_list *timer;
1421
1422 if (asoc->rwnd_over) {
1423 if (asoc->rwnd_over >= len) {
1424 asoc->rwnd_over -= len;
1425 } else {
1426 asoc->rwnd += (len - asoc->rwnd_over);
1427 asoc->rwnd_over = 0;
1428 }
1429 } else {
1430 asoc->rwnd += len;
1431 }
1432
1433 /* If we had window pressure, start recovering it
1434 * once our rwnd had reached the accumulated pressure
1435 * threshold. The idea is to recover slowly, but up
1436 * to the initial advertised window.
1437 */
1438 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1439 int change = min(asoc->pathmtu, asoc->rwnd_press);
1440 asoc->rwnd += change;
1441 asoc->rwnd_press -= change;
1442 }
1443
1444 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1445 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1446 asoc->a_rwnd);
1447
1448 /* Send a window update SACK if the rwnd has increased by at least the
1449 * minimum of the association's PMTU and half of the receive buffer.
1450 * The algorithm used is similar to the one described in
1451 * Section 4.2.3.3 of RFC 1122.
1452 */
1453 if (sctp_peer_needs_update(asoc)) {
1454 asoc->a_rwnd = asoc->rwnd;
1455
1456 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1457 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1458 asoc->a_rwnd);
1459
1460 sack = sctp_make_sack(asoc);
1461 if (!sack)
1462 return;
1463
1464 asoc->peer.sack_needed = 0;
1465
1466 sctp_outq_tail(&asoc->outqueue, sack);
1467
1468 /* Stop the SACK timer. */
1469 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1470 if (del_timer(timer))
1471 sctp_association_put(asoc);
1472 }
1473 }
1474
1475 /* Decrease asoc's rwnd by len. */
1476 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1477 {
1478 int rx_count;
1479 int over = 0;
1480
1481 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1482 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1483 "asoc->rwnd_over:%u!\n", __func__, asoc,
1484 asoc->rwnd, asoc->rwnd_over);
1485
1486 if (asoc->ep->rcvbuf_policy)
1487 rx_count = atomic_read(&asoc->rmem_alloc);
1488 else
1489 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1490
1491 /* If we've reached or overflowed our receive buffer, announce
1492 * a 0 rwnd if rwnd would still be positive. Store the
1493 * the pottential pressure overflow so that the window can be restored
1494 * back to original value.
1495 */
1496 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1497 over = 1;
1498
1499 if (asoc->rwnd >= len) {
1500 asoc->rwnd -= len;
1501 if (over) {
1502 asoc->rwnd_press += asoc->rwnd;
1503 asoc->rwnd = 0;
1504 }
1505 } else {
1506 asoc->rwnd_over = len - asoc->rwnd;
1507 asoc->rwnd = 0;
1508 }
1509
1510 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1511 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1512 asoc->rwnd_press);
1513 }
1514
1515 /* Build the bind address list for the association based on info from the
1516 * local endpoint and the remote peer.
1517 */
1518 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1519 sctp_scope_t scope, gfp_t gfp)
1520 {
1521 int flags;
1522
1523 /* Use scoping rules to determine the subset of addresses from
1524 * the endpoint.
1525 */
1526 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1527 if (asoc->peer.ipv4_address)
1528 flags |= SCTP_ADDR4_PEERSUPP;
1529 if (asoc->peer.ipv6_address)
1530 flags |= SCTP_ADDR6_PEERSUPP;
1531
1532 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1533 &asoc->base.bind_addr,
1534 &asoc->ep->base.bind_addr,
1535 scope, gfp, flags);
1536 }
1537
1538 /* Build the association's bind address list from the cookie. */
1539 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1540 struct sctp_cookie *cookie,
1541 gfp_t gfp)
1542 {
1543 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1544 int var_size3 = cookie->raw_addr_list_len;
1545 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1546
1547 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1548 asoc->ep->base.bind_addr.port, gfp);
1549 }
1550
1551 /* Lookup laddr in the bind address list of an association. */
1552 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1553 const union sctp_addr *laddr)
1554 {
1555 int found = 0;
1556
1557 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1558 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1559 sctp_sk(asoc->base.sk)))
1560 found = 1;
1561
1562 return found;
1563 }
1564
1565 /* Set an association id for a given association */
1566 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1567 {
1568 bool preload = gfp & __GFP_WAIT;
1569 int ret;
1570
1571 /* If the id is already assigned, keep it. */
1572 if (asoc->assoc_id)
1573 return 0;
1574
1575 if (preload)
1576 idr_preload(gfp);
1577 spin_lock_bh(&sctp_assocs_id_lock);
1578 /* 0 is not a valid assoc_id, must be >= 1 */
1579 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1580 spin_unlock_bh(&sctp_assocs_id_lock);
1581 if (preload)
1582 idr_preload_end();
1583 if (ret < 0)
1584 return ret;
1585
1586 asoc->assoc_id = (sctp_assoc_t)ret;
1587 return 0;
1588 }
1589
1590 /* Free the ASCONF queue */
1591 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1592 {
1593 struct sctp_chunk *asconf;
1594 struct sctp_chunk *tmp;
1595
1596 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1597 list_del_init(&asconf->list);
1598 sctp_chunk_free(asconf);
1599 }
1600 }
1601
1602 /* Free asconf_ack cache */
1603 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1604 {
1605 struct sctp_chunk *ack;
1606 struct sctp_chunk *tmp;
1607
1608 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1609 transmitted_list) {
1610 list_del_init(&ack->transmitted_list);
1611 sctp_chunk_free(ack);
1612 }
1613 }
1614
1615 /* Clean up the ASCONF_ACK queue */
1616 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1617 {
1618 struct sctp_chunk *ack;
1619 struct sctp_chunk *tmp;
1620
1621 /* We can remove all the entries from the queue up to
1622 * the "Peer-Sequence-Number".
1623 */
1624 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1625 transmitted_list) {
1626 if (ack->subh.addip_hdr->serial ==
1627 htonl(asoc->peer.addip_serial))
1628 break;
1629
1630 list_del_init(&ack->transmitted_list);
1631 sctp_chunk_free(ack);
1632 }
1633 }
1634
1635 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1636 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1637 const struct sctp_association *asoc,
1638 __be32 serial)
1639 {
1640 struct sctp_chunk *ack;
1641
1642 /* Walk through the list of cached ASCONF-ACKs and find the
1643 * ack chunk whose serial number matches that of the request.
1644 */
1645 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1646 if (ack->subh.addip_hdr->serial == serial) {
1647 sctp_chunk_hold(ack);
1648 return ack;
1649 }
1650 }
1651
1652 return NULL;
1653 }
1654
1655 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1656 {
1657 /* Free any cached ASCONF_ACK chunk. */
1658 sctp_assoc_free_asconf_acks(asoc);
1659
1660 /* Free the ASCONF queue. */
1661 sctp_assoc_free_asconf_queue(asoc);
1662
1663 /* Free any cached ASCONF chunk. */
1664 if (asoc->addip_last_asconf)
1665 sctp_chunk_free(asoc->addip_last_asconf);
1666 }