]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sctp/input.c
Merge branch 'fix/sun8i' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[mirror_ubuntu-bionic-kernel.git] / net / sctp / input.c
1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
42 */
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 struct sk_buff *skb,
64 const union sctp_addr *paddr,
65 const union sctp_addr *laddr,
66 struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 struct net *net,
71 const union sctp_addr *local,
72 const union sctp_addr *peer,
73 struct sctp_transport **pt);
74
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76
77
78 /* Calculate the SCTP checksum of an SCTP packet. */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 struct sctphdr *sh = sctp_hdr(skb);
82 __le32 cmp = sh->checksum;
83 __le32 val = sctp_compute_cksum(skb, 0);
84
85 if (val != cmp) {
86 /* CRC failure, dump it. */
87 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 return -1;
89 }
90 return 0;
91 }
92
93 /*
94 * This is the routine which IP calls when receiving an SCTP packet.
95 */
96 int sctp_rcv(struct sk_buff *skb)
97 {
98 struct sock *sk;
99 struct sctp_association *asoc;
100 struct sctp_endpoint *ep = NULL;
101 struct sctp_ep_common *rcvr;
102 struct sctp_transport *transport = NULL;
103 struct sctp_chunk *chunk;
104 union sctp_addr src;
105 union sctp_addr dest;
106 int family;
107 struct sctp_af *af;
108 struct net *net = dev_net(skb->dev);
109
110 if (skb->pkt_type != PACKET_HOST)
111 goto discard_it;
112
113 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
114
115 /* If packet is too small to contain a single chunk, let's not
116 * waste time on it anymore.
117 */
118 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 skb_transport_offset(skb))
120 goto discard_it;
121
122 /* If the packet is fragmented and we need to do crc checking,
123 * it's better to just linearize it otherwise crc computing
124 * takes longer.
125 */
126 if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
127 skb_linearize(skb)) ||
128 !pskb_may_pull(skb, sizeof(struct sctphdr)))
129 goto discard_it;
130
131 /* Pull up the IP header. */
132 __skb_pull(skb, skb_transport_offset(skb));
133
134 skb->csum_valid = 0; /* Previous value not applicable */
135 if (skb_csum_unnecessary(skb))
136 __skb_decr_checksum_unnecessary(skb);
137 else if (!sctp_checksum_disable &&
138 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
139 sctp_rcv_checksum(net, skb) < 0)
140 goto discard_it;
141 skb->csum_valid = 1;
142
143 __skb_pull(skb, sizeof(struct sctphdr));
144
145 family = ipver2af(ip_hdr(skb)->version);
146 af = sctp_get_af_specific(family);
147 if (unlikely(!af))
148 goto discard_it;
149 SCTP_INPUT_CB(skb)->af = af;
150
151 /* Initialize local addresses for lookups. */
152 af->from_skb(&src, skb, 1);
153 af->from_skb(&dest, skb, 0);
154
155 /* If the packet is to or from a non-unicast address,
156 * silently discard the packet.
157 *
158 * This is not clearly defined in the RFC except in section
159 * 8.4 - OOTB handling. However, based on the book "Stream Control
160 * Transmission Protocol" 2.1, "It is important to note that the
161 * IP address of an SCTP transport address must be a routable
162 * unicast address. In other words, IP multicast addresses and
163 * IP broadcast addresses cannot be used in an SCTP transport
164 * address."
165 */
166 if (!af->addr_valid(&src, NULL, skb) ||
167 !af->addr_valid(&dest, NULL, skb))
168 goto discard_it;
169
170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171
172 if (!asoc)
173 ep = __sctp_rcv_lookup_endpoint(net, &dest);
174
175 /* Retrieve the common input handling substructure. */
176 rcvr = asoc ? &asoc->base : &ep->base;
177 sk = rcvr->sk;
178
179 /*
180 * If a frame arrives on an interface and the receiving socket is
181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 */
183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 if (transport) {
185 sctp_transport_put(transport);
186 asoc = NULL;
187 transport = NULL;
188 } else {
189 sctp_endpoint_put(ep);
190 ep = NULL;
191 }
192 sk = net->sctp.ctl_sock;
193 ep = sctp_sk(sk)->ep;
194 sctp_endpoint_hold(ep);
195 rcvr = &ep->base;
196 }
197
198 /*
199 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 * An SCTP packet is called an "out of the blue" (OOTB)
201 * packet if it is correctly formed, i.e., passed the
202 * receiver's checksum check, but the receiver is not
203 * able to identify the association to which this
204 * packet belongs.
205 */
206 if (!asoc) {
207 if (sctp_rcv_ootb(skb)) {
208 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 goto discard_release;
210 }
211 }
212
213 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 goto discard_release;
215 nf_reset(skb);
216
217 if (sk_filter(sk, skb))
218 goto discard_release;
219
220 /* Create an SCTP packet structure. */
221 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
222 if (!chunk)
223 goto discard_release;
224 SCTP_INPUT_CB(skb)->chunk = chunk;
225
226 /* Remember what endpoint is to handle this packet. */
227 chunk->rcvr = rcvr;
228
229 /* Remember the SCTP header. */
230 chunk->sctp_hdr = sctp_hdr(skb);
231
232 /* Set the source and destination addresses of the incoming chunk. */
233 sctp_init_addrs(chunk, &src, &dest);
234
235 /* Remember where we came from. */
236 chunk->transport = transport;
237
238 /* Acquire access to the sock lock. Note: We are safe from other
239 * bottom halves on this lock, but a user may be in the lock too,
240 * so check if it is busy.
241 */
242 bh_lock_sock(sk);
243
244 if (sk != rcvr->sk) {
245 /* Our cached sk is different from the rcvr->sk. This is
246 * because migrate()/accept() may have moved the association
247 * to a new socket and released all the sockets. So now we
248 * are holding a lock on the old socket while the user may
249 * be doing something with the new socket. Switch our veiw
250 * of the current sk.
251 */
252 bh_unlock_sock(sk);
253 sk = rcvr->sk;
254 bh_lock_sock(sk);
255 }
256
257 if (sock_owned_by_user(sk)) {
258 if (sctp_add_backlog(sk, skb)) {
259 bh_unlock_sock(sk);
260 sctp_chunk_free(chunk);
261 skb = NULL; /* sctp_chunk_free already freed the skb */
262 goto discard_release;
263 }
264 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
265 } else {
266 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
268 }
269
270 bh_unlock_sock(sk);
271
272 /* Release the asoc/ep ref we took in the lookup calls. */
273 if (transport)
274 sctp_transport_put(transport);
275 else
276 sctp_endpoint_put(ep);
277
278 return 0;
279
280 discard_it:
281 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
282 kfree_skb(skb);
283 return 0;
284
285 discard_release:
286 /* Release the asoc/ep ref we took in the lookup calls. */
287 if (transport)
288 sctp_transport_put(transport);
289 else
290 sctp_endpoint_put(ep);
291
292 goto discard_it;
293 }
294
295 /* Process the backlog queue of the socket. Every skb on
296 * the backlog holds a ref on an association or endpoint.
297 * We hold this ref throughout the state machine to make
298 * sure that the structure we need is still around.
299 */
300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
301 {
302 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 struct sctp_transport *t = chunk->transport;
305 struct sctp_ep_common *rcvr = NULL;
306 int backloged = 0;
307
308 rcvr = chunk->rcvr;
309
310 /* If the rcvr is dead then the association or endpoint
311 * has been deleted and we can safely drop the chunk
312 * and refs that we are holding.
313 */
314 if (rcvr->dead) {
315 sctp_chunk_free(chunk);
316 goto done;
317 }
318
319 if (unlikely(rcvr->sk != sk)) {
320 /* In this case, the association moved from one socket to
321 * another. We are currently sitting on the backlog of the
322 * old socket, so we need to move.
323 * However, since we are here in the process context we
324 * need to take make sure that the user doesn't own
325 * the new socket when we process the packet.
326 * If the new socket is user-owned, queue the chunk to the
327 * backlog of the new socket without dropping any refs.
328 * Otherwise, we can safely push the chunk on the inqueue.
329 */
330
331 sk = rcvr->sk;
332 local_bh_disable();
333 bh_lock_sock(sk);
334
335 if (sock_owned_by_user(sk)) {
336 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
337 sctp_chunk_free(chunk);
338 else
339 backloged = 1;
340 } else
341 sctp_inq_push(inqueue, chunk);
342
343 bh_unlock_sock(sk);
344 local_bh_enable();
345
346 /* If the chunk was backloged again, don't drop refs */
347 if (backloged)
348 return 0;
349 } else {
350 sctp_inq_push(inqueue, chunk);
351 }
352
353 done:
354 /* Release the refs we took in sctp_add_backlog */
355 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 sctp_transport_put(t);
357 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 sctp_endpoint_put(sctp_ep(rcvr));
359 else
360 BUG();
361
362 return 0;
363 }
364
365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 struct sctp_transport *t = chunk->transport;
369 struct sctp_ep_common *rcvr = chunk->rcvr;
370 int ret;
371
372 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
373 if (!ret) {
374 /* Hold the assoc/ep while hanging on the backlog queue.
375 * This way, we know structures we need will not disappear
376 * from us
377 */
378 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
379 sctp_transport_hold(t);
380 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
381 sctp_endpoint_hold(sctp_ep(rcvr));
382 else
383 BUG();
384 }
385 return ret;
386
387 }
388
389 /* Handle icmp frag needed error. */
390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
391 struct sctp_transport *t, __u32 pmtu)
392 {
393 if (!t || (t->pathmtu <= pmtu))
394 return;
395
396 if (sock_owned_by_user(sk)) {
397 asoc->pmtu_pending = 1;
398 t->pmtu_pending = 1;
399 return;
400 }
401
402 if (t->param_flags & SPP_PMTUD_ENABLE) {
403 /* Update transports view of the MTU */
404 sctp_transport_update_pmtu(sk, t, pmtu);
405
406 /* Update association pmtu. */
407 sctp_assoc_sync_pmtu(sk, asoc);
408 }
409
410 /* Retransmit with the new pmtu setting.
411 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
412 * Needed will never be sent, but if a message was sent before
413 * PMTU discovery was disabled that was larger than the PMTU, it
414 * would not be fragmented, so it must be re-transmitted fragmented.
415 */
416 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
417 }
418
419 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
420 struct sk_buff *skb)
421 {
422 struct dst_entry *dst;
423
424 if (!t)
425 return;
426 dst = sctp_transport_dst_check(t);
427 if (dst)
428 dst->ops->redirect(dst, sk, skb);
429 }
430
431 /*
432 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
433 *
434 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
435 * or a "Protocol Unreachable" treat this message as an abort
436 * with the T bit set.
437 *
438 * This function sends an event to the state machine, which will abort the
439 * association.
440 *
441 */
442 void sctp_icmp_proto_unreachable(struct sock *sk,
443 struct sctp_association *asoc,
444 struct sctp_transport *t)
445 {
446 if (sock_owned_by_user(sk)) {
447 if (timer_pending(&t->proto_unreach_timer))
448 return;
449 else {
450 if (!mod_timer(&t->proto_unreach_timer,
451 jiffies + (HZ/20)))
452 sctp_association_hold(asoc);
453 }
454 } else {
455 struct net *net = sock_net(sk);
456
457 pr_debug("%s: unrecognized next header type "
458 "encountered!\n", __func__);
459
460 if (del_timer(&t->proto_unreach_timer))
461 sctp_association_put(asoc);
462
463 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
464 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
465 asoc->state, asoc->ep, asoc, t,
466 GFP_ATOMIC);
467 }
468 }
469
470 /* Common lookup code for icmp/icmpv6 error handler. */
471 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
472 struct sctphdr *sctphdr,
473 struct sctp_association **app,
474 struct sctp_transport **tpp)
475 {
476 union sctp_addr saddr;
477 union sctp_addr daddr;
478 struct sctp_af *af;
479 struct sock *sk = NULL;
480 struct sctp_association *asoc;
481 struct sctp_transport *transport = NULL;
482 struct sctp_init_chunk *chunkhdr;
483 __u32 vtag = ntohl(sctphdr->vtag);
484 int len = skb->len - ((void *)sctphdr - (void *)skb->data);
485
486 *app = NULL; *tpp = NULL;
487
488 af = sctp_get_af_specific(family);
489 if (unlikely(!af)) {
490 return NULL;
491 }
492
493 /* Initialize local addresses for lookups. */
494 af->from_skb(&saddr, skb, 1);
495 af->from_skb(&daddr, skb, 0);
496
497 /* Look for an association that matches the incoming ICMP error
498 * packet.
499 */
500 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
501 if (!asoc)
502 return NULL;
503
504 sk = asoc->base.sk;
505
506 /* RFC 4960, Appendix C. ICMP Handling
507 *
508 * ICMP6) An implementation MUST validate that the Verification Tag
509 * contained in the ICMP message matches the Verification Tag of
510 * the peer. If the Verification Tag is not 0 and does NOT
511 * match, discard the ICMP message. If it is 0 and the ICMP
512 * message contains enough bytes to verify that the chunk type is
513 * an INIT chunk and that the Initiate Tag matches the tag of the
514 * peer, continue with ICMP7. If the ICMP message is too short
515 * or the chunk type or the Initiate Tag does not match, silently
516 * discard the packet.
517 */
518 if (vtag == 0) {
519 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
520 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
521 + sizeof(__be32) ||
522 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
523 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
524 goto out;
525 }
526 } else if (vtag != asoc->c.peer_vtag) {
527 goto out;
528 }
529
530 bh_lock_sock(sk);
531
532 /* If too many ICMPs get dropped on busy
533 * servers this needs to be solved differently.
534 */
535 if (sock_owned_by_user(sk))
536 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
537
538 *app = asoc;
539 *tpp = transport;
540 return sk;
541
542 out:
543 sctp_transport_put(transport);
544 return NULL;
545 }
546
547 /* Common cleanup code for icmp/icmpv6 error handler. */
548 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
549 {
550 bh_unlock_sock(sk);
551 sctp_transport_put(t);
552 }
553
554 /*
555 * This routine is called by the ICMP module when it gets some
556 * sort of error condition. If err < 0 then the socket should
557 * be closed and the error returned to the user. If err > 0
558 * it's just the icmp type << 8 | icmp code. After adjustment
559 * header points to the first 8 bytes of the sctp header. We need
560 * to find the appropriate port.
561 *
562 * The locking strategy used here is very "optimistic". When
563 * someone else accesses the socket the ICMP is just dropped
564 * and for some paths there is no check at all.
565 * A more general error queue to queue errors for later handling
566 * is probably better.
567 *
568 */
569 void sctp_v4_err(struct sk_buff *skb, __u32 info)
570 {
571 const struct iphdr *iph = (const struct iphdr *)skb->data;
572 const int ihlen = iph->ihl * 4;
573 const int type = icmp_hdr(skb)->type;
574 const int code = icmp_hdr(skb)->code;
575 struct sock *sk;
576 struct sctp_association *asoc = NULL;
577 struct sctp_transport *transport;
578 struct inet_sock *inet;
579 __u16 saveip, savesctp;
580 int err;
581 struct net *net = dev_net(skb->dev);
582
583 /* Fix up skb to look at the embedded net header. */
584 saveip = skb->network_header;
585 savesctp = skb->transport_header;
586 skb_reset_network_header(skb);
587 skb_set_transport_header(skb, ihlen);
588 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
589 /* Put back, the original values. */
590 skb->network_header = saveip;
591 skb->transport_header = savesctp;
592 if (!sk) {
593 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
594 return;
595 }
596 /* Warning: The sock lock is held. Remember to call
597 * sctp_err_finish!
598 */
599
600 switch (type) {
601 case ICMP_PARAMETERPROB:
602 err = EPROTO;
603 break;
604 case ICMP_DEST_UNREACH:
605 if (code > NR_ICMP_UNREACH)
606 goto out_unlock;
607
608 /* PMTU discovery (RFC1191) */
609 if (ICMP_FRAG_NEEDED == code) {
610 sctp_icmp_frag_needed(sk, asoc, transport,
611 SCTP_TRUNC4(info));
612 goto out_unlock;
613 } else {
614 if (ICMP_PROT_UNREACH == code) {
615 sctp_icmp_proto_unreachable(sk, asoc,
616 transport);
617 goto out_unlock;
618 }
619 }
620 err = icmp_err_convert[code].errno;
621 break;
622 case ICMP_TIME_EXCEEDED:
623 /* Ignore any time exceeded errors due to fragment reassembly
624 * timeouts.
625 */
626 if (ICMP_EXC_FRAGTIME == code)
627 goto out_unlock;
628
629 err = EHOSTUNREACH;
630 break;
631 case ICMP_REDIRECT:
632 sctp_icmp_redirect(sk, transport, skb);
633 /* Fall through to out_unlock. */
634 default:
635 goto out_unlock;
636 }
637
638 inet = inet_sk(sk);
639 if (!sock_owned_by_user(sk) && inet->recverr) {
640 sk->sk_err = err;
641 sk->sk_error_report(sk);
642 } else { /* Only an error on timeout */
643 sk->sk_err_soft = err;
644 }
645
646 out_unlock:
647 sctp_err_finish(sk, transport);
648 }
649
650 /*
651 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
652 *
653 * This function scans all the chunks in the OOTB packet to determine if
654 * the packet should be discarded right away. If a response might be needed
655 * for this packet, or, if further processing is possible, the packet will
656 * be queued to a proper inqueue for the next phase of handling.
657 *
658 * Output:
659 * Return 0 - If further processing is needed.
660 * Return 1 - If the packet can be discarded right away.
661 */
662 static int sctp_rcv_ootb(struct sk_buff *skb)
663 {
664 sctp_chunkhdr_t *ch, _ch;
665 int ch_end, offset = 0;
666
667 /* Scan through all the chunks in the packet. */
668 do {
669 /* Make sure we have at least the header there */
670 if (offset + sizeof(sctp_chunkhdr_t) > skb->len)
671 break;
672
673 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
674
675 /* Break out if chunk length is less then minimal. */
676 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
677 break;
678
679 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
680 if (ch_end > skb->len)
681 break;
682
683 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
684 * receiver MUST silently discard the OOTB packet and take no
685 * further action.
686 */
687 if (SCTP_CID_ABORT == ch->type)
688 goto discard;
689
690 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
691 * chunk, the receiver should silently discard the packet
692 * and take no further action.
693 */
694 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
695 goto discard;
696
697 /* RFC 4460, 2.11.2
698 * This will discard packets with INIT chunk bundled as
699 * subsequent chunks in the packet. When INIT is first,
700 * the normal INIT processing will discard the chunk.
701 */
702 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
703 goto discard;
704
705 offset = ch_end;
706 } while (ch_end < skb->len);
707
708 return 0;
709
710 discard:
711 return 1;
712 }
713
714 /* Insert endpoint into the hash table. */
715 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
716 {
717 struct net *net = sock_net(ep->base.sk);
718 struct sctp_ep_common *epb;
719 struct sctp_hashbucket *head;
720
721 epb = &ep->base;
722
723 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
724 head = &sctp_ep_hashtable[epb->hashent];
725
726 write_lock(&head->lock);
727 hlist_add_head(&epb->node, &head->chain);
728 write_unlock(&head->lock);
729 }
730
731 /* Add an endpoint to the hash. Local BH-safe. */
732 void sctp_hash_endpoint(struct sctp_endpoint *ep)
733 {
734 local_bh_disable();
735 __sctp_hash_endpoint(ep);
736 local_bh_enable();
737 }
738
739 /* Remove endpoint from the hash table. */
740 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
741 {
742 struct net *net = sock_net(ep->base.sk);
743 struct sctp_hashbucket *head;
744 struct sctp_ep_common *epb;
745
746 epb = &ep->base;
747
748 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
749
750 head = &sctp_ep_hashtable[epb->hashent];
751
752 write_lock(&head->lock);
753 hlist_del_init(&epb->node);
754 write_unlock(&head->lock);
755 }
756
757 /* Remove endpoint from the hash. Local BH-safe. */
758 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
759 {
760 local_bh_disable();
761 __sctp_unhash_endpoint(ep);
762 local_bh_enable();
763 }
764
765 /* Look up an endpoint. */
766 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
767 const union sctp_addr *laddr)
768 {
769 struct sctp_hashbucket *head;
770 struct sctp_ep_common *epb;
771 struct sctp_endpoint *ep;
772 int hash;
773
774 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
775 head = &sctp_ep_hashtable[hash];
776 read_lock(&head->lock);
777 sctp_for_each_hentry(epb, &head->chain) {
778 ep = sctp_ep(epb);
779 if (sctp_endpoint_is_match(ep, net, laddr))
780 goto hit;
781 }
782
783 ep = sctp_sk(net->sctp.ctl_sock)->ep;
784
785 hit:
786 sctp_endpoint_hold(ep);
787 read_unlock(&head->lock);
788 return ep;
789 }
790
791 /* rhashtable for transport */
792 struct sctp_hash_cmp_arg {
793 const union sctp_addr *paddr;
794 const struct net *net;
795 u16 lport;
796 };
797
798 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
799 const void *ptr)
800 {
801 struct sctp_transport *t = (struct sctp_transport *)ptr;
802 const struct sctp_hash_cmp_arg *x = arg->key;
803 int err = 1;
804
805 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
806 return err;
807 if (!sctp_transport_hold(t))
808 return err;
809
810 if (!net_eq(sock_net(t->asoc->base.sk), x->net))
811 goto out;
812 if (x->lport != htons(t->asoc->base.bind_addr.port))
813 goto out;
814
815 err = 0;
816 out:
817 sctp_transport_put(t);
818 return err;
819 }
820
821 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
822 {
823 const struct sctp_transport *t = data;
824 const union sctp_addr *paddr = &t->ipaddr;
825 const struct net *net = sock_net(t->asoc->base.sk);
826 u16 lport = htons(t->asoc->base.bind_addr.port);
827 u32 addr;
828
829 if (paddr->sa.sa_family == AF_INET6)
830 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
831 else
832 addr = paddr->v4.sin_addr.s_addr;
833
834 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
835 (__force __u32)lport, net_hash_mix(net), seed);
836 }
837
838 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
839 {
840 const struct sctp_hash_cmp_arg *x = data;
841 const union sctp_addr *paddr = x->paddr;
842 const struct net *net = x->net;
843 u16 lport = x->lport;
844 u32 addr;
845
846 if (paddr->sa.sa_family == AF_INET6)
847 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
848 else
849 addr = paddr->v4.sin_addr.s_addr;
850
851 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
852 (__force __u32)lport, net_hash_mix(net), seed);
853 }
854
855 static const struct rhashtable_params sctp_hash_params = {
856 .head_offset = offsetof(struct sctp_transport, node),
857 .hashfn = sctp_hash_key,
858 .obj_hashfn = sctp_hash_obj,
859 .obj_cmpfn = sctp_hash_cmp,
860 .automatic_shrinking = true,
861 };
862
863 int sctp_transport_hashtable_init(void)
864 {
865 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
866 }
867
868 void sctp_transport_hashtable_destroy(void)
869 {
870 rhltable_destroy(&sctp_transport_hashtable);
871 }
872
873 int sctp_hash_transport(struct sctp_transport *t)
874 {
875 struct sctp_transport *transport;
876 struct rhlist_head *tmp, *list;
877 struct sctp_hash_cmp_arg arg;
878 int err;
879
880 if (t->asoc->temp)
881 return 0;
882
883 arg.net = sock_net(t->asoc->base.sk);
884 arg.paddr = &t->ipaddr;
885 arg.lport = htons(t->asoc->base.bind_addr.port);
886
887 rcu_read_lock();
888 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
889 sctp_hash_params);
890
891 rhl_for_each_entry_rcu(transport, tmp, list, node)
892 if (transport->asoc->ep == t->asoc->ep) {
893 rcu_read_unlock();
894 err = -EEXIST;
895 goto out;
896 }
897 rcu_read_unlock();
898
899 err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
900 &t->node, sctp_hash_params);
901
902 out:
903 if (err)
904 pr_err_once("insert transport fail, errno %d\n", err);
905
906 return err;
907 }
908
909 void sctp_unhash_transport(struct sctp_transport *t)
910 {
911 if (t->asoc->temp)
912 return;
913
914 rhltable_remove(&sctp_transport_hashtable, &t->node,
915 sctp_hash_params);
916 }
917
918 /* return a transport with holding it */
919 struct sctp_transport *sctp_addrs_lookup_transport(
920 struct net *net,
921 const union sctp_addr *laddr,
922 const union sctp_addr *paddr)
923 {
924 struct rhlist_head *tmp, *list;
925 struct sctp_transport *t;
926 struct sctp_hash_cmp_arg arg = {
927 .paddr = paddr,
928 .net = net,
929 .lport = laddr->v4.sin_port,
930 };
931
932 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
933 sctp_hash_params);
934
935 rhl_for_each_entry_rcu(t, tmp, list, node) {
936 if (!sctp_transport_hold(t))
937 continue;
938
939 if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
940 laddr, sctp_sk(t->asoc->base.sk)))
941 return t;
942 sctp_transport_put(t);
943 }
944
945 return NULL;
946 }
947
948 /* return a transport without holding it, as it's only used under sock lock */
949 struct sctp_transport *sctp_epaddr_lookup_transport(
950 const struct sctp_endpoint *ep,
951 const union sctp_addr *paddr)
952 {
953 struct net *net = sock_net(ep->base.sk);
954 struct rhlist_head *tmp, *list;
955 struct sctp_transport *t;
956 struct sctp_hash_cmp_arg arg = {
957 .paddr = paddr,
958 .net = net,
959 .lport = htons(ep->base.bind_addr.port),
960 };
961
962 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
963 sctp_hash_params);
964
965 rhl_for_each_entry_rcu(t, tmp, list, node)
966 if (ep == t->asoc->ep)
967 return t;
968
969 return NULL;
970 }
971
972 /* Look up an association. */
973 static struct sctp_association *__sctp_lookup_association(
974 struct net *net,
975 const union sctp_addr *local,
976 const union sctp_addr *peer,
977 struct sctp_transport **pt)
978 {
979 struct sctp_transport *t;
980 struct sctp_association *asoc = NULL;
981
982 t = sctp_addrs_lookup_transport(net, local, peer);
983 if (!t)
984 goto out;
985
986 asoc = t->asoc;
987 *pt = t;
988
989 out:
990 return asoc;
991 }
992
993 /* Look up an association. protected by RCU read lock */
994 static
995 struct sctp_association *sctp_lookup_association(struct net *net,
996 const union sctp_addr *laddr,
997 const union sctp_addr *paddr,
998 struct sctp_transport **transportp)
999 {
1000 struct sctp_association *asoc;
1001
1002 rcu_read_lock();
1003 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1004 rcu_read_unlock();
1005
1006 return asoc;
1007 }
1008
1009 /* Is there an association matching the given local and peer addresses? */
1010 int sctp_has_association(struct net *net,
1011 const union sctp_addr *laddr,
1012 const union sctp_addr *paddr)
1013 {
1014 struct sctp_association *asoc;
1015 struct sctp_transport *transport;
1016
1017 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
1018 sctp_transport_put(transport);
1019 return 1;
1020 }
1021
1022 return 0;
1023 }
1024
1025 /*
1026 * SCTP Implementors Guide, 2.18 Handling of address
1027 * parameters within the INIT or INIT-ACK.
1028 *
1029 * D) When searching for a matching TCB upon reception of an INIT
1030 * or INIT-ACK chunk the receiver SHOULD use not only the
1031 * source address of the packet (containing the INIT or
1032 * INIT-ACK) but the receiver SHOULD also use all valid
1033 * address parameters contained within the chunk.
1034 *
1035 * 2.18.3 Solution description
1036 *
1037 * This new text clearly specifies to an implementor the need
1038 * to look within the INIT or INIT-ACK. Any implementation that
1039 * does not do this, may not be able to establish associations
1040 * in certain circumstances.
1041 *
1042 */
1043 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1044 struct sk_buff *skb,
1045 const union sctp_addr *laddr, struct sctp_transport **transportp)
1046 {
1047 struct sctp_association *asoc;
1048 union sctp_addr addr;
1049 union sctp_addr *paddr = &addr;
1050 struct sctphdr *sh = sctp_hdr(skb);
1051 union sctp_params params;
1052 sctp_init_chunk_t *init;
1053 struct sctp_af *af;
1054
1055 /*
1056 * This code will NOT touch anything inside the chunk--it is
1057 * strictly READ-ONLY.
1058 *
1059 * RFC 2960 3 SCTP packet Format
1060 *
1061 * Multiple chunks can be bundled into one SCTP packet up to
1062 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1063 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1064 * other chunk in a packet. See Section 6.10 for more details
1065 * on chunk bundling.
1066 */
1067
1068 /* Find the start of the TLVs and the end of the chunk. This is
1069 * the region we search for address parameters.
1070 */
1071 init = (sctp_init_chunk_t *)skb->data;
1072
1073 /* Walk the parameters looking for embedded addresses. */
1074 sctp_walk_params(params, init, init_hdr.params) {
1075
1076 /* Note: Ignoring hostname addresses. */
1077 af = sctp_get_af_specific(param_type2af(params.p->type));
1078 if (!af)
1079 continue;
1080
1081 af->from_addr_param(paddr, params.addr, sh->source, 0);
1082
1083 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1084 if (asoc)
1085 return asoc;
1086 }
1087
1088 return NULL;
1089 }
1090
1091 /* ADD-IP, Section 5.2
1092 * When an endpoint receives an ASCONF Chunk from the remote peer
1093 * special procedures may be needed to identify the association the
1094 * ASCONF Chunk is associated with. To properly find the association
1095 * the following procedures SHOULD be followed:
1096 *
1097 * D2) If the association is not found, use the address found in the
1098 * Address Parameter TLV combined with the port number found in the
1099 * SCTP common header. If found proceed to rule D4.
1100 *
1101 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1102 * address found in the ASCONF Address Parameter TLV of each of the
1103 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1104 */
1105 static struct sctp_association *__sctp_rcv_asconf_lookup(
1106 struct net *net,
1107 sctp_chunkhdr_t *ch,
1108 const union sctp_addr *laddr,
1109 __be16 peer_port,
1110 struct sctp_transport **transportp)
1111 {
1112 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1113 struct sctp_af *af;
1114 union sctp_addr_param *param;
1115 union sctp_addr paddr;
1116
1117 /* Skip over the ADDIP header and find the Address parameter */
1118 param = (union sctp_addr_param *)(asconf + 1);
1119
1120 af = sctp_get_af_specific(param_type2af(param->p.type));
1121 if (unlikely(!af))
1122 return NULL;
1123
1124 af->from_addr_param(&paddr, param, peer_port, 0);
1125
1126 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1127 }
1128
1129
1130 /* SCTP-AUTH, Section 6.3:
1131 * If the receiver does not find a STCB for a packet containing an AUTH
1132 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1133 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1134 * association.
1135 *
1136 * This means that any chunks that can help us identify the association need
1137 * to be looked at to find this association.
1138 */
1139 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1140 struct sk_buff *skb,
1141 const union sctp_addr *laddr,
1142 struct sctp_transport **transportp)
1143 {
1144 struct sctp_association *asoc = NULL;
1145 sctp_chunkhdr_t *ch;
1146 int have_auth = 0;
1147 unsigned int chunk_num = 1;
1148 __u8 *ch_end;
1149
1150 /* Walk through the chunks looking for AUTH or ASCONF chunks
1151 * to help us find the association.
1152 */
1153 ch = (sctp_chunkhdr_t *) skb->data;
1154 do {
1155 /* Break out if chunk length is less then minimal. */
1156 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1157 break;
1158
1159 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1160 if (ch_end > skb_tail_pointer(skb))
1161 break;
1162
1163 switch (ch->type) {
1164 case SCTP_CID_AUTH:
1165 have_auth = chunk_num;
1166 break;
1167
1168 case SCTP_CID_COOKIE_ECHO:
1169 /* If a packet arrives containing an AUTH chunk as
1170 * a first chunk, a COOKIE-ECHO chunk as the second
1171 * chunk, and possibly more chunks after them, and
1172 * the receiver does not have an STCB for that
1173 * packet, then authentication is based on
1174 * the contents of the COOKIE- ECHO chunk.
1175 */
1176 if (have_auth == 1 && chunk_num == 2)
1177 return NULL;
1178 break;
1179
1180 case SCTP_CID_ASCONF:
1181 if (have_auth || net->sctp.addip_noauth)
1182 asoc = __sctp_rcv_asconf_lookup(
1183 net, ch, laddr,
1184 sctp_hdr(skb)->source,
1185 transportp);
1186 default:
1187 break;
1188 }
1189
1190 if (asoc)
1191 break;
1192
1193 ch = (sctp_chunkhdr_t *) ch_end;
1194 chunk_num++;
1195 } while (ch_end < skb_tail_pointer(skb));
1196
1197 return asoc;
1198 }
1199
1200 /*
1201 * There are circumstances when we need to look inside the SCTP packet
1202 * for information to help us find the association. Examples
1203 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1204 * chunks.
1205 */
1206 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1207 struct sk_buff *skb,
1208 const union sctp_addr *laddr,
1209 struct sctp_transport **transportp)
1210 {
1211 sctp_chunkhdr_t *ch;
1212
1213 /* We do not allow GSO frames here as we need to linearize and
1214 * then cannot guarantee frame boundaries. This shouldn't be an
1215 * issue as packets hitting this are mostly INIT or INIT-ACK and
1216 * those cannot be on GSO-style anyway.
1217 */
1218 if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1219 return NULL;
1220
1221 ch = (sctp_chunkhdr_t *) skb->data;
1222
1223 /* The code below will attempt to walk the chunk and extract
1224 * parameter information. Before we do that, we need to verify
1225 * that the chunk length doesn't cause overflow. Otherwise, we'll
1226 * walk off the end.
1227 */
1228 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1229 return NULL;
1230
1231 /* If this is INIT/INIT-ACK look inside the chunk too. */
1232 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1233 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1234
1235 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1236 }
1237
1238 /* Lookup an association for an inbound skb. */
1239 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1240 struct sk_buff *skb,
1241 const union sctp_addr *paddr,
1242 const union sctp_addr *laddr,
1243 struct sctp_transport **transportp)
1244 {
1245 struct sctp_association *asoc;
1246
1247 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1248 if (asoc)
1249 goto out;
1250
1251 /* Further lookup for INIT/INIT-ACK packets.
1252 * SCTP Implementors Guide, 2.18 Handling of address
1253 * parameters within the INIT or INIT-ACK.
1254 */
1255 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1256 if (asoc)
1257 goto out;
1258
1259 if (paddr->sa.sa_family == AF_INET)
1260 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1261 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1262 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1263 else
1264 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1265 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1266 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1267
1268 out:
1269 return asoc;
1270 }