]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sctp/input.c
sctp: remove macros sctp_local_bh_{disable|enable}
[mirror_ubuntu-bionic-kernel.git] / net / sctp / input.c
1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
42 */
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 struct sk_buff *skb,
64 const union sctp_addr *paddr,
65 const union sctp_addr *laddr,
66 struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 struct net *net,
71 const union sctp_addr *local,
72 const union sctp_addr *peer,
73 struct sctp_transport **pt);
74
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76
77
78 /* Calculate the SCTP checksum of an SCTP packet. */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 struct sctphdr *sh = sctp_hdr(skb);
82 __le32 cmp = sh->checksum;
83 __le32 val = sctp_compute_cksum(skb, 0);
84
85 if (val != cmp) {
86 /* CRC failure, dump it. */
87 SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS);
88 return -1;
89 }
90 return 0;
91 }
92
93 struct sctp_input_cb {
94 union {
95 struct inet_skb_parm h4;
96 #if IS_ENABLED(CONFIG_IPV6)
97 struct inet6_skb_parm h6;
98 #endif
99 } header;
100 struct sctp_chunk *chunk;
101 };
102 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0]))
103
104 /*
105 * This is the routine which IP calls when receiving an SCTP packet.
106 */
107 int sctp_rcv(struct sk_buff *skb)
108 {
109 struct sock *sk;
110 struct sctp_association *asoc;
111 struct sctp_endpoint *ep = NULL;
112 struct sctp_ep_common *rcvr;
113 struct sctp_transport *transport = NULL;
114 struct sctp_chunk *chunk;
115 struct sctphdr *sh;
116 union sctp_addr src;
117 union sctp_addr dest;
118 int family;
119 struct sctp_af *af;
120 struct net *net = dev_net(skb->dev);
121
122 if (skb->pkt_type != PACKET_HOST)
123 goto discard_it;
124
125 SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS);
126
127 if (skb_linearize(skb))
128 goto discard_it;
129
130 sh = sctp_hdr(skb);
131
132 /* Pull up the IP and SCTP headers. */
133 __skb_pull(skb, skb_transport_offset(skb));
134 if (skb->len < sizeof(struct sctphdr))
135 goto discard_it;
136 if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
137 sctp_rcv_checksum(net, skb) < 0)
138 goto discard_it;
139
140 skb_pull(skb, sizeof(struct sctphdr));
141
142 /* Make sure we at least have chunk headers worth of data left. */
143 if (skb->len < sizeof(struct sctp_chunkhdr))
144 goto discard_it;
145
146 family = ipver2af(ip_hdr(skb)->version);
147 af = sctp_get_af_specific(family);
148 if (unlikely(!af))
149 goto discard_it;
150
151 /* Initialize local addresses for lookups. */
152 af->from_skb(&src, skb, 1);
153 af->from_skb(&dest, skb, 0);
154
155 /* If the packet is to or from a non-unicast address,
156 * silently discard the packet.
157 *
158 * This is not clearly defined in the RFC except in section
159 * 8.4 - OOTB handling. However, based on the book "Stream Control
160 * Transmission Protocol" 2.1, "It is important to note that the
161 * IP address of an SCTP transport address must be a routable
162 * unicast address. In other words, IP multicast addresses and
163 * IP broadcast addresses cannot be used in an SCTP transport
164 * address."
165 */
166 if (!af->addr_valid(&src, NULL, skb) ||
167 !af->addr_valid(&dest, NULL, skb))
168 goto discard_it;
169
170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171
172 if (!asoc)
173 ep = __sctp_rcv_lookup_endpoint(net, &dest);
174
175 /* Retrieve the common input handling substructure. */
176 rcvr = asoc ? &asoc->base : &ep->base;
177 sk = rcvr->sk;
178
179 /*
180 * If a frame arrives on an interface and the receiving socket is
181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 */
183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 if (asoc) {
185 sctp_association_put(asoc);
186 asoc = NULL;
187 } else {
188 sctp_endpoint_put(ep);
189 ep = NULL;
190 }
191 sk = net->sctp.ctl_sock;
192 ep = sctp_sk(sk)->ep;
193 sctp_endpoint_hold(ep);
194 rcvr = &ep->base;
195 }
196
197 /*
198 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
199 * An SCTP packet is called an "out of the blue" (OOTB)
200 * packet if it is correctly formed, i.e., passed the
201 * receiver's checksum check, but the receiver is not
202 * able to identify the association to which this
203 * packet belongs.
204 */
205 if (!asoc) {
206 if (sctp_rcv_ootb(skb)) {
207 SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES);
208 goto discard_release;
209 }
210 }
211
212 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
213 goto discard_release;
214 nf_reset(skb);
215
216 if (sk_filter(sk, skb))
217 goto discard_release;
218
219 /* Create an SCTP packet structure. */
220 chunk = sctp_chunkify(skb, asoc, sk);
221 if (!chunk)
222 goto discard_release;
223 SCTP_INPUT_CB(skb)->chunk = chunk;
224
225 /* Remember what endpoint is to handle this packet. */
226 chunk->rcvr = rcvr;
227
228 /* Remember the SCTP header. */
229 chunk->sctp_hdr = sh;
230
231 /* Set the source and destination addresses of the incoming chunk. */
232 sctp_init_addrs(chunk, &src, &dest);
233
234 /* Remember where we came from. */
235 chunk->transport = transport;
236
237 /* Acquire access to the sock lock. Note: We are safe from other
238 * bottom halves on this lock, but a user may be in the lock too,
239 * so check if it is busy.
240 */
241 sctp_bh_lock_sock(sk);
242
243 if (sk != rcvr->sk) {
244 /* Our cached sk is different from the rcvr->sk. This is
245 * because migrate()/accept() may have moved the association
246 * to a new socket and released all the sockets. So now we
247 * are holding a lock on the old socket while the user may
248 * be doing something with the new socket. Switch our veiw
249 * of the current sk.
250 */
251 sctp_bh_unlock_sock(sk);
252 sk = rcvr->sk;
253 sctp_bh_lock_sock(sk);
254 }
255
256 if (sock_owned_by_user(sk)) {
257 if (sctp_add_backlog(sk, skb)) {
258 sctp_bh_unlock_sock(sk);
259 sctp_chunk_free(chunk);
260 skb = NULL; /* sctp_chunk_free already freed the skb */
261 goto discard_release;
262 }
263 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG);
264 } else {
265 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ);
266 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
267 }
268
269 sctp_bh_unlock_sock(sk);
270
271 /* Release the asoc/ep ref we took in the lookup calls. */
272 if (asoc)
273 sctp_association_put(asoc);
274 else
275 sctp_endpoint_put(ep);
276
277 return 0;
278
279 discard_it:
280 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS);
281 kfree_skb(skb);
282 return 0;
283
284 discard_release:
285 /* Release the asoc/ep ref we took in the lookup calls. */
286 if (asoc)
287 sctp_association_put(asoc);
288 else
289 sctp_endpoint_put(ep);
290
291 goto discard_it;
292 }
293
294 /* Process the backlog queue of the socket. Every skb on
295 * the backlog holds a ref on an association or endpoint.
296 * We hold this ref throughout the state machine to make
297 * sure that the structure we need is still around.
298 */
299 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
300 {
301 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
302 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
303 struct sctp_ep_common *rcvr = NULL;
304 int backloged = 0;
305
306 rcvr = chunk->rcvr;
307
308 /* If the rcvr is dead then the association or endpoint
309 * has been deleted and we can safely drop the chunk
310 * and refs that we are holding.
311 */
312 if (rcvr->dead) {
313 sctp_chunk_free(chunk);
314 goto done;
315 }
316
317 if (unlikely(rcvr->sk != sk)) {
318 /* In this case, the association moved from one socket to
319 * another. We are currently sitting on the backlog of the
320 * old socket, so we need to move.
321 * However, since we are here in the process context we
322 * need to take make sure that the user doesn't own
323 * the new socket when we process the packet.
324 * If the new socket is user-owned, queue the chunk to the
325 * backlog of the new socket without dropping any refs.
326 * Otherwise, we can safely push the chunk on the inqueue.
327 */
328
329 sk = rcvr->sk;
330 sctp_bh_lock_sock(sk);
331
332 if (sock_owned_by_user(sk)) {
333 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
334 sctp_chunk_free(chunk);
335 else
336 backloged = 1;
337 } else
338 sctp_inq_push(inqueue, chunk);
339
340 sctp_bh_unlock_sock(sk);
341
342 /* If the chunk was backloged again, don't drop refs */
343 if (backloged)
344 return 0;
345 } else {
346 sctp_inq_push(inqueue, chunk);
347 }
348
349 done:
350 /* Release the refs we took in sctp_add_backlog */
351 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
352 sctp_association_put(sctp_assoc(rcvr));
353 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
354 sctp_endpoint_put(sctp_ep(rcvr));
355 else
356 BUG();
357
358 return 0;
359 }
360
361 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
362 {
363 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
364 struct sctp_ep_common *rcvr = chunk->rcvr;
365 int ret;
366
367 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
368 if (!ret) {
369 /* Hold the assoc/ep while hanging on the backlog queue.
370 * This way, we know structures we need will not disappear
371 * from us
372 */
373 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
374 sctp_association_hold(sctp_assoc(rcvr));
375 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
376 sctp_endpoint_hold(sctp_ep(rcvr));
377 else
378 BUG();
379 }
380 return ret;
381
382 }
383
384 /* Handle icmp frag needed error. */
385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
386 struct sctp_transport *t, __u32 pmtu)
387 {
388 if (!t || (t->pathmtu <= pmtu))
389 return;
390
391 if (sock_owned_by_user(sk)) {
392 asoc->pmtu_pending = 1;
393 t->pmtu_pending = 1;
394 return;
395 }
396
397 if (t->param_flags & SPP_PMTUD_ENABLE) {
398 /* Update transports view of the MTU */
399 sctp_transport_update_pmtu(sk, t, pmtu);
400
401 /* Update association pmtu. */
402 sctp_assoc_sync_pmtu(sk, asoc);
403 }
404
405 /* Retransmit with the new pmtu setting.
406 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
407 * Needed will never be sent, but if a message was sent before
408 * PMTU discovery was disabled that was larger than the PMTU, it
409 * would not be fragmented, so it must be re-transmitted fragmented.
410 */
411 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
412 }
413
414 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
415 struct sk_buff *skb)
416 {
417 struct dst_entry *dst;
418
419 if (!t)
420 return;
421 dst = sctp_transport_dst_check(t);
422 if (dst)
423 dst->ops->redirect(dst, sk, skb);
424 }
425
426 /*
427 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428 *
429 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
430 * or a "Protocol Unreachable" treat this message as an abort
431 * with the T bit set.
432 *
433 * This function sends an event to the state machine, which will abort the
434 * association.
435 *
436 */
437 void sctp_icmp_proto_unreachable(struct sock *sk,
438 struct sctp_association *asoc,
439 struct sctp_transport *t)
440 {
441 if (sock_owned_by_user(sk)) {
442 if (timer_pending(&t->proto_unreach_timer))
443 return;
444 else {
445 if (!mod_timer(&t->proto_unreach_timer,
446 jiffies + (HZ/20)))
447 sctp_association_hold(asoc);
448 }
449 } else {
450 struct net *net = sock_net(sk);
451
452 pr_debug("%s: unrecognized next header type "
453 "encountered!\n", __func__);
454
455 if (del_timer(&t->proto_unreach_timer))
456 sctp_association_put(asoc);
457
458 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
459 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
460 asoc->state, asoc->ep, asoc, t,
461 GFP_ATOMIC);
462 }
463 }
464
465 /* Common lookup code for icmp/icmpv6 error handler. */
466 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
467 struct sctphdr *sctphdr,
468 struct sctp_association **app,
469 struct sctp_transport **tpp)
470 {
471 union sctp_addr saddr;
472 union sctp_addr daddr;
473 struct sctp_af *af;
474 struct sock *sk = NULL;
475 struct sctp_association *asoc;
476 struct sctp_transport *transport = NULL;
477 struct sctp_init_chunk *chunkhdr;
478 __u32 vtag = ntohl(sctphdr->vtag);
479 int len = skb->len - ((void *)sctphdr - (void *)skb->data);
480
481 *app = NULL; *tpp = NULL;
482
483 af = sctp_get_af_specific(family);
484 if (unlikely(!af)) {
485 return NULL;
486 }
487
488 /* Initialize local addresses for lookups. */
489 af->from_skb(&saddr, skb, 1);
490 af->from_skb(&daddr, skb, 0);
491
492 /* Look for an association that matches the incoming ICMP error
493 * packet.
494 */
495 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
496 if (!asoc)
497 return NULL;
498
499 sk = asoc->base.sk;
500
501 /* RFC 4960, Appendix C. ICMP Handling
502 *
503 * ICMP6) An implementation MUST validate that the Verification Tag
504 * contained in the ICMP message matches the Verification Tag of
505 * the peer. If the Verification Tag is not 0 and does NOT
506 * match, discard the ICMP message. If it is 0 and the ICMP
507 * message contains enough bytes to verify that the chunk type is
508 * an INIT chunk and that the Initiate Tag matches the tag of the
509 * peer, continue with ICMP7. If the ICMP message is too short
510 * or the chunk type or the Initiate Tag does not match, silently
511 * discard the packet.
512 */
513 if (vtag == 0) {
514 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
515 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
516 + sizeof(__be32) ||
517 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
518 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
519 goto out;
520 }
521 } else if (vtag != asoc->c.peer_vtag) {
522 goto out;
523 }
524
525 sctp_bh_lock_sock(sk);
526
527 /* If too many ICMPs get dropped on busy
528 * servers this needs to be solved differently.
529 */
530 if (sock_owned_by_user(sk))
531 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
532
533 *app = asoc;
534 *tpp = transport;
535 return sk;
536
537 out:
538 sctp_association_put(asoc);
539 return NULL;
540 }
541
542 /* Common cleanup code for icmp/icmpv6 error handler. */
543 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
544 {
545 sctp_bh_unlock_sock(sk);
546 sctp_association_put(asoc);
547 }
548
549 /*
550 * This routine is called by the ICMP module when it gets some
551 * sort of error condition. If err < 0 then the socket should
552 * be closed and the error returned to the user. If err > 0
553 * it's just the icmp type << 8 | icmp code. After adjustment
554 * header points to the first 8 bytes of the sctp header. We need
555 * to find the appropriate port.
556 *
557 * The locking strategy used here is very "optimistic". When
558 * someone else accesses the socket the ICMP is just dropped
559 * and for some paths there is no check at all.
560 * A more general error queue to queue errors for later handling
561 * is probably better.
562 *
563 */
564 void sctp_v4_err(struct sk_buff *skb, __u32 info)
565 {
566 const struct iphdr *iph = (const struct iphdr *)skb->data;
567 const int ihlen = iph->ihl * 4;
568 const int type = icmp_hdr(skb)->type;
569 const int code = icmp_hdr(skb)->code;
570 struct sock *sk;
571 struct sctp_association *asoc = NULL;
572 struct sctp_transport *transport;
573 struct inet_sock *inet;
574 __u16 saveip, savesctp;
575 int err;
576 struct net *net = dev_net(skb->dev);
577
578 if (skb->len < ihlen + 8) {
579 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
580 return;
581 }
582
583 /* Fix up skb to look at the embedded net header. */
584 saveip = skb->network_header;
585 savesctp = skb->transport_header;
586 skb_reset_network_header(skb);
587 skb_set_transport_header(skb, ihlen);
588 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
589 /* Put back, the original values. */
590 skb->network_header = saveip;
591 skb->transport_header = savesctp;
592 if (!sk) {
593 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
594 return;
595 }
596 /* Warning: The sock lock is held. Remember to call
597 * sctp_err_finish!
598 */
599
600 switch (type) {
601 case ICMP_PARAMETERPROB:
602 err = EPROTO;
603 break;
604 case ICMP_DEST_UNREACH:
605 if (code > NR_ICMP_UNREACH)
606 goto out_unlock;
607
608 /* PMTU discovery (RFC1191) */
609 if (ICMP_FRAG_NEEDED == code) {
610 sctp_icmp_frag_needed(sk, asoc, transport, info);
611 goto out_unlock;
612 } else {
613 if (ICMP_PROT_UNREACH == code) {
614 sctp_icmp_proto_unreachable(sk, asoc,
615 transport);
616 goto out_unlock;
617 }
618 }
619 err = icmp_err_convert[code].errno;
620 break;
621 case ICMP_TIME_EXCEEDED:
622 /* Ignore any time exceeded errors due to fragment reassembly
623 * timeouts.
624 */
625 if (ICMP_EXC_FRAGTIME == code)
626 goto out_unlock;
627
628 err = EHOSTUNREACH;
629 break;
630 case ICMP_REDIRECT:
631 sctp_icmp_redirect(sk, transport, skb);
632 /* Fall through to out_unlock. */
633 default:
634 goto out_unlock;
635 }
636
637 inet = inet_sk(sk);
638 if (!sock_owned_by_user(sk) && inet->recverr) {
639 sk->sk_err = err;
640 sk->sk_error_report(sk);
641 } else { /* Only an error on timeout */
642 sk->sk_err_soft = err;
643 }
644
645 out_unlock:
646 sctp_err_finish(sk, asoc);
647 }
648
649 /*
650 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
651 *
652 * This function scans all the chunks in the OOTB packet to determine if
653 * the packet should be discarded right away. If a response might be needed
654 * for this packet, or, if further processing is possible, the packet will
655 * be queued to a proper inqueue for the next phase of handling.
656 *
657 * Output:
658 * Return 0 - If further processing is needed.
659 * Return 1 - If the packet can be discarded right away.
660 */
661 static int sctp_rcv_ootb(struct sk_buff *skb)
662 {
663 sctp_chunkhdr_t *ch;
664 __u8 *ch_end;
665
666 ch = (sctp_chunkhdr_t *) skb->data;
667
668 /* Scan through all the chunks in the packet. */
669 do {
670 /* Break out if chunk length is less then minimal. */
671 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
672 break;
673
674 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
675 if (ch_end > skb_tail_pointer(skb))
676 break;
677
678 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
679 * receiver MUST silently discard the OOTB packet and take no
680 * further action.
681 */
682 if (SCTP_CID_ABORT == ch->type)
683 goto discard;
684
685 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
686 * chunk, the receiver should silently discard the packet
687 * and take no further action.
688 */
689 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
690 goto discard;
691
692 /* RFC 4460, 2.11.2
693 * This will discard packets with INIT chunk bundled as
694 * subsequent chunks in the packet. When INIT is first,
695 * the normal INIT processing will discard the chunk.
696 */
697 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
698 goto discard;
699
700 ch = (sctp_chunkhdr_t *) ch_end;
701 } while (ch_end < skb_tail_pointer(skb));
702
703 return 0;
704
705 discard:
706 return 1;
707 }
708
709 /* Insert endpoint into the hash table. */
710 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
711 {
712 struct net *net = sock_net(ep->base.sk);
713 struct sctp_ep_common *epb;
714 struct sctp_hashbucket *head;
715
716 epb = &ep->base;
717
718 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
719 head = &sctp_ep_hashtable[epb->hashent];
720
721 sctp_write_lock(&head->lock);
722 hlist_add_head(&epb->node, &head->chain);
723 sctp_write_unlock(&head->lock);
724 }
725
726 /* Add an endpoint to the hash. Local BH-safe. */
727 void sctp_hash_endpoint(struct sctp_endpoint *ep)
728 {
729 local_bh_disable();
730 __sctp_hash_endpoint(ep);
731 local_bh_enable();
732 }
733
734 /* Remove endpoint from the hash table. */
735 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
736 {
737 struct net *net = sock_net(ep->base.sk);
738 struct sctp_hashbucket *head;
739 struct sctp_ep_common *epb;
740
741 epb = &ep->base;
742
743 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
744
745 head = &sctp_ep_hashtable[epb->hashent];
746
747 sctp_write_lock(&head->lock);
748 hlist_del_init(&epb->node);
749 sctp_write_unlock(&head->lock);
750 }
751
752 /* Remove endpoint from the hash. Local BH-safe. */
753 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
754 {
755 local_bh_disable();
756 __sctp_unhash_endpoint(ep);
757 local_bh_enable();
758 }
759
760 /* Look up an endpoint. */
761 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
762 const union sctp_addr *laddr)
763 {
764 struct sctp_hashbucket *head;
765 struct sctp_ep_common *epb;
766 struct sctp_endpoint *ep;
767 int hash;
768
769 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
770 head = &sctp_ep_hashtable[hash];
771 read_lock(&head->lock);
772 sctp_for_each_hentry(epb, &head->chain) {
773 ep = sctp_ep(epb);
774 if (sctp_endpoint_is_match(ep, net, laddr))
775 goto hit;
776 }
777
778 ep = sctp_sk(net->sctp.ctl_sock)->ep;
779
780 hit:
781 sctp_endpoint_hold(ep);
782 read_unlock(&head->lock);
783 return ep;
784 }
785
786 /* Insert association into the hash table. */
787 static void __sctp_hash_established(struct sctp_association *asoc)
788 {
789 struct net *net = sock_net(asoc->base.sk);
790 struct sctp_ep_common *epb;
791 struct sctp_hashbucket *head;
792
793 epb = &asoc->base;
794
795 /* Calculate which chain this entry will belong to. */
796 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
797 asoc->peer.port);
798
799 head = &sctp_assoc_hashtable[epb->hashent];
800
801 sctp_write_lock(&head->lock);
802 hlist_add_head(&epb->node, &head->chain);
803 sctp_write_unlock(&head->lock);
804 }
805
806 /* Add an association to the hash. Local BH-safe. */
807 void sctp_hash_established(struct sctp_association *asoc)
808 {
809 if (asoc->temp)
810 return;
811
812 local_bh_disable();
813 __sctp_hash_established(asoc);
814 local_bh_enable();
815 }
816
817 /* Remove association from the hash table. */
818 static void __sctp_unhash_established(struct sctp_association *asoc)
819 {
820 struct net *net = sock_net(asoc->base.sk);
821 struct sctp_hashbucket *head;
822 struct sctp_ep_common *epb;
823
824 epb = &asoc->base;
825
826 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
827 asoc->peer.port);
828
829 head = &sctp_assoc_hashtable[epb->hashent];
830
831 sctp_write_lock(&head->lock);
832 hlist_del_init(&epb->node);
833 sctp_write_unlock(&head->lock);
834 }
835
836 /* Remove association from the hash table. Local BH-safe. */
837 void sctp_unhash_established(struct sctp_association *asoc)
838 {
839 if (asoc->temp)
840 return;
841
842 local_bh_disable();
843 __sctp_unhash_established(asoc);
844 local_bh_enable();
845 }
846
847 /* Look up an association. */
848 static struct sctp_association *__sctp_lookup_association(
849 struct net *net,
850 const union sctp_addr *local,
851 const union sctp_addr *peer,
852 struct sctp_transport **pt)
853 {
854 struct sctp_hashbucket *head;
855 struct sctp_ep_common *epb;
856 struct sctp_association *asoc;
857 struct sctp_transport *transport;
858 int hash;
859
860 /* Optimize here for direct hit, only listening connections can
861 * have wildcards anyways.
862 */
863 hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port),
864 ntohs(peer->v4.sin_port));
865 head = &sctp_assoc_hashtable[hash];
866 read_lock(&head->lock);
867 sctp_for_each_hentry(epb, &head->chain) {
868 asoc = sctp_assoc(epb);
869 transport = sctp_assoc_is_match(asoc, net, local, peer);
870 if (transport)
871 goto hit;
872 }
873
874 read_unlock(&head->lock);
875
876 return NULL;
877
878 hit:
879 *pt = transport;
880 sctp_association_hold(asoc);
881 read_unlock(&head->lock);
882 return asoc;
883 }
884
885 /* Look up an association. BH-safe. */
886 static
887 struct sctp_association *sctp_lookup_association(struct net *net,
888 const union sctp_addr *laddr,
889 const union sctp_addr *paddr,
890 struct sctp_transport **transportp)
891 {
892 struct sctp_association *asoc;
893
894 local_bh_disable();
895 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
896 local_bh_enable();
897
898 return asoc;
899 }
900
901 /* Is there an association matching the given local and peer addresses? */
902 int sctp_has_association(struct net *net,
903 const union sctp_addr *laddr,
904 const union sctp_addr *paddr)
905 {
906 struct sctp_association *asoc;
907 struct sctp_transport *transport;
908
909 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
910 sctp_association_put(asoc);
911 return 1;
912 }
913
914 return 0;
915 }
916
917 /*
918 * SCTP Implementors Guide, 2.18 Handling of address
919 * parameters within the INIT or INIT-ACK.
920 *
921 * D) When searching for a matching TCB upon reception of an INIT
922 * or INIT-ACK chunk the receiver SHOULD use not only the
923 * source address of the packet (containing the INIT or
924 * INIT-ACK) but the receiver SHOULD also use all valid
925 * address parameters contained within the chunk.
926 *
927 * 2.18.3 Solution description
928 *
929 * This new text clearly specifies to an implementor the need
930 * to look within the INIT or INIT-ACK. Any implementation that
931 * does not do this, may not be able to establish associations
932 * in certain circumstances.
933 *
934 */
935 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
936 struct sk_buff *skb,
937 const union sctp_addr *laddr, struct sctp_transport **transportp)
938 {
939 struct sctp_association *asoc;
940 union sctp_addr addr;
941 union sctp_addr *paddr = &addr;
942 struct sctphdr *sh = sctp_hdr(skb);
943 union sctp_params params;
944 sctp_init_chunk_t *init;
945 struct sctp_transport *transport;
946 struct sctp_af *af;
947
948 /*
949 * This code will NOT touch anything inside the chunk--it is
950 * strictly READ-ONLY.
951 *
952 * RFC 2960 3 SCTP packet Format
953 *
954 * Multiple chunks can be bundled into one SCTP packet up to
955 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
956 * COMPLETE chunks. These chunks MUST NOT be bundled with any
957 * other chunk in a packet. See Section 6.10 for more details
958 * on chunk bundling.
959 */
960
961 /* Find the start of the TLVs and the end of the chunk. This is
962 * the region we search for address parameters.
963 */
964 init = (sctp_init_chunk_t *)skb->data;
965
966 /* Walk the parameters looking for embedded addresses. */
967 sctp_walk_params(params, init, init_hdr.params) {
968
969 /* Note: Ignoring hostname addresses. */
970 af = sctp_get_af_specific(param_type2af(params.p->type));
971 if (!af)
972 continue;
973
974 af->from_addr_param(paddr, params.addr, sh->source, 0);
975
976 asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
977 if (asoc)
978 return asoc;
979 }
980
981 return NULL;
982 }
983
984 /* ADD-IP, Section 5.2
985 * When an endpoint receives an ASCONF Chunk from the remote peer
986 * special procedures may be needed to identify the association the
987 * ASCONF Chunk is associated with. To properly find the association
988 * the following procedures SHOULD be followed:
989 *
990 * D2) If the association is not found, use the address found in the
991 * Address Parameter TLV combined with the port number found in the
992 * SCTP common header. If found proceed to rule D4.
993 *
994 * D2-ext) If more than one ASCONF Chunks are packed together, use the
995 * address found in the ASCONF Address Parameter TLV of each of the
996 * subsequent ASCONF Chunks. If found, proceed to rule D4.
997 */
998 static struct sctp_association *__sctp_rcv_asconf_lookup(
999 struct net *net,
1000 sctp_chunkhdr_t *ch,
1001 const union sctp_addr *laddr,
1002 __be16 peer_port,
1003 struct sctp_transport **transportp)
1004 {
1005 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1006 struct sctp_af *af;
1007 union sctp_addr_param *param;
1008 union sctp_addr paddr;
1009
1010 /* Skip over the ADDIP header and find the Address parameter */
1011 param = (union sctp_addr_param *)(asconf + 1);
1012
1013 af = sctp_get_af_specific(param_type2af(param->p.type));
1014 if (unlikely(!af))
1015 return NULL;
1016
1017 af->from_addr_param(&paddr, param, peer_port, 0);
1018
1019 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1020 }
1021
1022
1023 /* SCTP-AUTH, Section 6.3:
1024 * If the receiver does not find a STCB for a packet containing an AUTH
1025 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1026 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1027 * association.
1028 *
1029 * This means that any chunks that can help us identify the association need
1030 * to be looked at to find this association.
1031 */
1032 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1033 struct sk_buff *skb,
1034 const union sctp_addr *laddr,
1035 struct sctp_transport **transportp)
1036 {
1037 struct sctp_association *asoc = NULL;
1038 sctp_chunkhdr_t *ch;
1039 int have_auth = 0;
1040 unsigned int chunk_num = 1;
1041 __u8 *ch_end;
1042
1043 /* Walk through the chunks looking for AUTH or ASCONF chunks
1044 * to help us find the association.
1045 */
1046 ch = (sctp_chunkhdr_t *) skb->data;
1047 do {
1048 /* Break out if chunk length is less then minimal. */
1049 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1050 break;
1051
1052 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1053 if (ch_end > skb_tail_pointer(skb))
1054 break;
1055
1056 switch (ch->type) {
1057 case SCTP_CID_AUTH:
1058 have_auth = chunk_num;
1059 break;
1060
1061 case SCTP_CID_COOKIE_ECHO:
1062 /* If a packet arrives containing an AUTH chunk as
1063 * a first chunk, a COOKIE-ECHO chunk as the second
1064 * chunk, and possibly more chunks after them, and
1065 * the receiver does not have an STCB for that
1066 * packet, then authentication is based on
1067 * the contents of the COOKIE- ECHO chunk.
1068 */
1069 if (have_auth == 1 && chunk_num == 2)
1070 return NULL;
1071 break;
1072
1073 case SCTP_CID_ASCONF:
1074 if (have_auth || net->sctp.addip_noauth)
1075 asoc = __sctp_rcv_asconf_lookup(
1076 net, ch, laddr,
1077 sctp_hdr(skb)->source,
1078 transportp);
1079 default:
1080 break;
1081 }
1082
1083 if (asoc)
1084 break;
1085
1086 ch = (sctp_chunkhdr_t *) ch_end;
1087 chunk_num++;
1088 } while (ch_end < skb_tail_pointer(skb));
1089
1090 return asoc;
1091 }
1092
1093 /*
1094 * There are circumstances when we need to look inside the SCTP packet
1095 * for information to help us find the association. Examples
1096 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1097 * chunks.
1098 */
1099 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1100 struct sk_buff *skb,
1101 const union sctp_addr *laddr,
1102 struct sctp_transport **transportp)
1103 {
1104 sctp_chunkhdr_t *ch;
1105
1106 ch = (sctp_chunkhdr_t *) skb->data;
1107
1108 /* The code below will attempt to walk the chunk and extract
1109 * parameter information. Before we do that, we need to verify
1110 * that the chunk length doesn't cause overflow. Otherwise, we'll
1111 * walk off the end.
1112 */
1113 if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1114 return NULL;
1115
1116 /* If this is INIT/INIT-ACK look inside the chunk too. */
1117 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1118 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1119
1120 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1121 }
1122
1123 /* Lookup an association for an inbound skb. */
1124 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1125 struct sk_buff *skb,
1126 const union sctp_addr *paddr,
1127 const union sctp_addr *laddr,
1128 struct sctp_transport **transportp)
1129 {
1130 struct sctp_association *asoc;
1131
1132 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1133
1134 /* Further lookup for INIT/INIT-ACK packets.
1135 * SCTP Implementors Guide, 2.18 Handling of address
1136 * parameters within the INIT or INIT-ACK.
1137 */
1138 if (!asoc)
1139 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1140
1141 return asoc;
1142 }