]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sctp/outqueue.c
PCI: Reprogram bridge prefetch registers on resume
[mirror_ubuntu-bionic-kernel.git] / net / sctp / outqueue.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
50
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 #include <net/sctp/stream_sched.h>
54
55 /* Declare internal functions here. */
56 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
57 static void sctp_check_transmitted(struct sctp_outq *q,
58 struct list_head *transmitted_queue,
59 struct sctp_transport *transport,
60 union sctp_addr *saddr,
61 struct sctp_sackhdr *sack,
62 __u32 *highest_new_tsn);
63
64 static void sctp_mark_missing(struct sctp_outq *q,
65 struct list_head *transmitted_queue,
66 struct sctp_transport *transport,
67 __u32 highest_new_tsn,
68 int count_of_newacks);
69
70 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
71
72 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
73
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq *q,
76 struct sctp_chunk *ch)
77 {
78 struct sctp_stream_out_ext *oute;
79 __u16 stream;
80
81 list_add(&ch->list, &q->out_chunk_list);
82 q->out_qlen += ch->skb->len;
83
84 stream = sctp_chunk_stream_no(ch);
85 oute = q->asoc->stream.out[stream].ext;
86 list_add(&ch->stream_list, &oute->outq);
87 }
88
89 /* Take data from the front of the queue. */
90 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
91 {
92 return q->sched->dequeue(q);
93 }
94
95 /* Add data chunk to the end of the queue. */
96 static inline void sctp_outq_tail_data(struct sctp_outq *q,
97 struct sctp_chunk *ch)
98 {
99 struct sctp_stream_out_ext *oute;
100 __u16 stream;
101
102 list_add_tail(&ch->list, &q->out_chunk_list);
103 q->out_qlen += ch->skb->len;
104
105 stream = sctp_chunk_stream_no(ch);
106 oute = q->asoc->stream.out[stream].ext;
107 list_add_tail(&ch->stream_list, &oute->outq);
108 }
109
110 /*
111 * SFR-CACC algorithm:
112 * D) If count_of_newacks is greater than or equal to 2
113 * and t was not sent to the current primary then the
114 * sender MUST NOT increment missing report count for t.
115 */
116 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
117 struct sctp_transport *transport,
118 int count_of_newacks)
119 {
120 if (count_of_newacks >= 2 && transport != primary)
121 return 1;
122 return 0;
123 }
124
125 /*
126 * SFR-CACC algorithm:
127 * F) If count_of_newacks is less than 2, let d be the
128 * destination to which t was sent. If cacc_saw_newack
129 * is 0 for destination d, then the sender MUST NOT
130 * increment missing report count for t.
131 */
132 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
133 int count_of_newacks)
134 {
135 if (count_of_newacks < 2 &&
136 (transport && !transport->cacc.cacc_saw_newack))
137 return 1;
138 return 0;
139 }
140
141 /*
142 * SFR-CACC algorithm:
143 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
144 * execute steps C, D, F.
145 *
146 * C has been implemented in sctp_outq_sack
147 */
148 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
149 struct sctp_transport *transport,
150 int count_of_newacks)
151 {
152 if (!primary->cacc.cycling_changeover) {
153 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
154 return 1;
155 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
156 return 1;
157 return 0;
158 }
159 return 0;
160 }
161
162 /*
163 * SFR-CACC algorithm:
164 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
165 * than next_tsn_at_change of the current primary, then
166 * the sender MUST NOT increment missing report count
167 * for t.
168 */
169 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
170 {
171 if (primary->cacc.cycling_changeover &&
172 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
173 return 1;
174 return 0;
175 }
176
177 /*
178 * SFR-CACC algorithm:
179 * 3) If the missing report count for TSN t is to be
180 * incremented according to [RFC2960] and
181 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
182 * then the sender MUST further execute steps 3.1 and
183 * 3.2 to determine if the missing report count for
184 * TSN t SHOULD NOT be incremented.
185 *
186 * 3.3) If 3.1 and 3.2 do not dictate that the missing
187 * report count for t should not be incremented, then
188 * the sender SHOULD increment missing report count for
189 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
190 */
191 static inline int sctp_cacc_skip(struct sctp_transport *primary,
192 struct sctp_transport *transport,
193 int count_of_newacks,
194 __u32 tsn)
195 {
196 if (primary->cacc.changeover_active &&
197 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
198 sctp_cacc_skip_3_2(primary, tsn)))
199 return 1;
200 return 0;
201 }
202
203 /* Initialize an existing sctp_outq. This does the boring stuff.
204 * You still need to define handlers if you really want to DO
205 * something with this structure...
206 */
207 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
208 {
209 memset(q, 0, sizeof(struct sctp_outq));
210
211 q->asoc = asoc;
212 INIT_LIST_HEAD(&q->out_chunk_list);
213 INIT_LIST_HEAD(&q->control_chunk_list);
214 INIT_LIST_HEAD(&q->retransmit);
215 INIT_LIST_HEAD(&q->sacked);
216 INIT_LIST_HEAD(&q->abandoned);
217 sctp_sched_set_sched(asoc, SCTP_SS_FCFS);
218 }
219
220 /* Free the outqueue structure and any related pending chunks.
221 */
222 static void __sctp_outq_teardown(struct sctp_outq *q)
223 {
224 struct sctp_transport *transport;
225 struct list_head *lchunk, *temp;
226 struct sctp_chunk *chunk, *tmp;
227
228 /* Throw away unacknowledged chunks. */
229 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
230 transports) {
231 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
232 chunk = list_entry(lchunk, struct sctp_chunk,
233 transmitted_list);
234 /* Mark as part of a failed message. */
235 sctp_chunk_fail(chunk, q->error);
236 sctp_chunk_free(chunk);
237 }
238 }
239
240 /* Throw away chunks that have been gap ACKed. */
241 list_for_each_safe(lchunk, temp, &q->sacked) {
242 list_del_init(lchunk);
243 chunk = list_entry(lchunk, struct sctp_chunk,
244 transmitted_list);
245 sctp_chunk_fail(chunk, q->error);
246 sctp_chunk_free(chunk);
247 }
248
249 /* Throw away any chunks in the retransmit queue. */
250 list_for_each_safe(lchunk, temp, &q->retransmit) {
251 list_del_init(lchunk);
252 chunk = list_entry(lchunk, struct sctp_chunk,
253 transmitted_list);
254 sctp_chunk_fail(chunk, q->error);
255 sctp_chunk_free(chunk);
256 }
257
258 /* Throw away any chunks that are in the abandoned queue. */
259 list_for_each_safe(lchunk, temp, &q->abandoned) {
260 list_del_init(lchunk);
261 chunk = list_entry(lchunk, struct sctp_chunk,
262 transmitted_list);
263 sctp_chunk_fail(chunk, q->error);
264 sctp_chunk_free(chunk);
265 }
266
267 /* Throw away any leftover data chunks. */
268 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
269 sctp_sched_dequeue_done(q, chunk);
270
271 /* Mark as send failure. */
272 sctp_chunk_fail(chunk, q->error);
273 sctp_chunk_free(chunk);
274 }
275
276 /* Throw away any leftover control chunks. */
277 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
278 list_del_init(&chunk->list);
279 sctp_chunk_free(chunk);
280 }
281 }
282
283 void sctp_outq_teardown(struct sctp_outq *q)
284 {
285 __sctp_outq_teardown(q);
286 sctp_outq_init(q->asoc, q);
287 }
288
289 /* Free the outqueue structure and any related pending chunks. */
290 void sctp_outq_free(struct sctp_outq *q)
291 {
292 /* Throw away leftover chunks. */
293 __sctp_outq_teardown(q);
294 }
295
296 /* Put a new chunk in an sctp_outq. */
297 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
298 {
299 struct net *net = sock_net(q->asoc->base.sk);
300
301 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
302 chunk && chunk->chunk_hdr ?
303 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
304 "illegal chunk");
305
306 /* If it is data, queue it up, otherwise, send it
307 * immediately.
308 */
309 if (sctp_chunk_is_data(chunk)) {
310 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
311 __func__, q, chunk, chunk && chunk->chunk_hdr ?
312 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
313 "illegal chunk");
314
315 sctp_outq_tail_data(q, chunk);
316 if (chunk->asoc->peer.prsctp_capable &&
317 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
318 chunk->asoc->sent_cnt_removable++;
319 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
320 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
321 else
322 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
323 } else {
324 list_add_tail(&chunk->list, &q->control_chunk_list);
325 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
326 }
327
328 if (!q->cork)
329 sctp_outq_flush(q, 0, gfp);
330 }
331
332 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
333 * and the abandoned list are in ascending order.
334 */
335 static void sctp_insert_list(struct list_head *head, struct list_head *new)
336 {
337 struct list_head *pos;
338 struct sctp_chunk *nchunk, *lchunk;
339 __u32 ntsn, ltsn;
340 int done = 0;
341
342 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
343 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
344
345 list_for_each(pos, head) {
346 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
347 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
348 if (TSN_lt(ntsn, ltsn)) {
349 list_add(new, pos->prev);
350 done = 1;
351 break;
352 }
353 }
354 if (!done)
355 list_add_tail(new, head);
356 }
357
358 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
359 struct sctp_sndrcvinfo *sinfo,
360 struct list_head *queue, int msg_len)
361 {
362 struct sctp_chunk *chk, *temp;
363
364 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
365 struct sctp_stream_out *streamout;
366
367 if (!chk->msg->abandoned &&
368 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
369 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
370 continue;
371
372 chk->msg->abandoned = 1;
373 list_del_init(&chk->transmitted_list);
374 sctp_insert_list(&asoc->outqueue.abandoned,
375 &chk->transmitted_list);
376
377 streamout = &asoc->stream.out[chk->sinfo.sinfo_stream];
378 asoc->sent_cnt_removable--;
379 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
380 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
381
382 if (queue != &asoc->outqueue.retransmit &&
383 !chk->tsn_gap_acked) {
384 if (chk->transport)
385 chk->transport->flight_size -=
386 sctp_data_size(chk);
387 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
388 }
389
390 msg_len -= SCTP_DATA_SNDSIZE(chk) +
391 sizeof(struct sk_buff) +
392 sizeof(struct sctp_chunk);
393 if (msg_len <= 0)
394 break;
395 }
396
397 return msg_len;
398 }
399
400 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
401 struct sctp_sndrcvinfo *sinfo, int msg_len)
402 {
403 struct sctp_outq *q = &asoc->outqueue;
404 struct sctp_chunk *chk, *temp;
405
406 q->sched->unsched_all(&asoc->stream);
407
408 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
409 if (!chk->msg->abandoned &&
410 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
411 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
412 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
413 continue;
414
415 chk->msg->abandoned = 1;
416 sctp_sched_dequeue_common(q, chk);
417 asoc->sent_cnt_removable--;
418 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
419 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
420 struct sctp_stream_out *streamout =
421 &asoc->stream.out[chk->sinfo.sinfo_stream];
422
423 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
424 }
425
426 msg_len -= SCTP_DATA_SNDSIZE(chk) +
427 sizeof(struct sk_buff) +
428 sizeof(struct sctp_chunk);
429 sctp_chunk_free(chk);
430 if (msg_len <= 0)
431 break;
432 }
433
434 q->sched->sched_all(&asoc->stream);
435
436 return msg_len;
437 }
438
439 /* Abandon the chunks according their priorities */
440 void sctp_prsctp_prune(struct sctp_association *asoc,
441 struct sctp_sndrcvinfo *sinfo, int msg_len)
442 {
443 struct sctp_transport *transport;
444
445 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
446 return;
447
448 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
449 &asoc->outqueue.retransmit,
450 msg_len);
451 if (msg_len <= 0)
452 return;
453
454 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
455 transports) {
456 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
457 &transport->transmitted,
458 msg_len);
459 if (msg_len <= 0)
460 return;
461 }
462
463 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
464 }
465
466 /* Mark all the eligible packets on a transport for retransmission. */
467 void sctp_retransmit_mark(struct sctp_outq *q,
468 struct sctp_transport *transport,
469 __u8 reason)
470 {
471 struct list_head *lchunk, *ltemp;
472 struct sctp_chunk *chunk;
473
474 /* Walk through the specified transmitted queue. */
475 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
476 chunk = list_entry(lchunk, struct sctp_chunk,
477 transmitted_list);
478
479 /* If the chunk is abandoned, move it to abandoned list. */
480 if (sctp_chunk_abandoned(chunk)) {
481 list_del_init(lchunk);
482 sctp_insert_list(&q->abandoned, lchunk);
483
484 /* If this chunk has not been previousely acked,
485 * stop considering it 'outstanding'. Our peer
486 * will most likely never see it since it will
487 * not be retransmitted
488 */
489 if (!chunk->tsn_gap_acked) {
490 if (chunk->transport)
491 chunk->transport->flight_size -=
492 sctp_data_size(chunk);
493 q->outstanding_bytes -= sctp_data_size(chunk);
494 q->asoc->peer.rwnd += sctp_data_size(chunk);
495 }
496 continue;
497 }
498
499 /* If we are doing retransmission due to a timeout or pmtu
500 * discovery, only the chunks that are not yet acked should
501 * be added to the retransmit queue.
502 */
503 if ((reason == SCTP_RTXR_FAST_RTX &&
504 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
505 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
506 /* RFC 2960 6.2.1 Processing a Received SACK
507 *
508 * C) Any time a DATA chunk is marked for
509 * retransmission (via either T3-rtx timer expiration
510 * (Section 6.3.3) or via fast retransmit
511 * (Section 7.2.4)), add the data size of those
512 * chunks to the rwnd.
513 */
514 q->asoc->peer.rwnd += sctp_data_size(chunk);
515 q->outstanding_bytes -= sctp_data_size(chunk);
516 if (chunk->transport)
517 transport->flight_size -= sctp_data_size(chunk);
518
519 /* sctpimpguide-05 Section 2.8.2
520 * M5) If a T3-rtx timer expires, the
521 * 'TSN.Missing.Report' of all affected TSNs is set
522 * to 0.
523 */
524 chunk->tsn_missing_report = 0;
525
526 /* If a chunk that is being used for RTT measurement
527 * has to be retransmitted, we cannot use this chunk
528 * anymore for RTT measurements. Reset rto_pending so
529 * that a new RTT measurement is started when a new
530 * data chunk is sent.
531 */
532 if (chunk->rtt_in_progress) {
533 chunk->rtt_in_progress = 0;
534 transport->rto_pending = 0;
535 }
536
537 /* Move the chunk to the retransmit queue. The chunks
538 * on the retransmit queue are always kept in order.
539 */
540 list_del_init(lchunk);
541 sctp_insert_list(&q->retransmit, lchunk);
542 }
543 }
544
545 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
546 "flight_size:%d, pba:%d\n", __func__, transport, reason,
547 transport->cwnd, transport->ssthresh, transport->flight_size,
548 transport->partial_bytes_acked);
549 }
550
551 /* Mark all the eligible packets on a transport for retransmission and force
552 * one packet out.
553 */
554 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
555 enum sctp_retransmit_reason reason)
556 {
557 struct net *net = sock_net(q->asoc->base.sk);
558
559 switch (reason) {
560 case SCTP_RTXR_T3_RTX:
561 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
562 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
563 /* Update the retran path if the T3-rtx timer has expired for
564 * the current retran path.
565 */
566 if (transport == transport->asoc->peer.retran_path)
567 sctp_assoc_update_retran_path(transport->asoc);
568 transport->asoc->rtx_data_chunks +=
569 transport->asoc->unack_data;
570 break;
571 case SCTP_RTXR_FAST_RTX:
572 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
573 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
574 q->fast_rtx = 1;
575 break;
576 case SCTP_RTXR_PMTUD:
577 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
578 break;
579 case SCTP_RTXR_T1_RTX:
580 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
581 transport->asoc->init_retries++;
582 break;
583 default:
584 BUG();
585 }
586
587 sctp_retransmit_mark(q, transport, reason);
588
589 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
590 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
591 * following the procedures outlined in C1 - C5.
592 */
593 if (reason == SCTP_RTXR_T3_RTX)
594 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
595
596 /* Flush the queues only on timeout, since fast_rtx is only
597 * triggered during sack processing and the queue
598 * will be flushed at the end.
599 */
600 if (reason != SCTP_RTXR_FAST_RTX)
601 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
602 }
603
604 /*
605 * Transmit DATA chunks on the retransmit queue. Upon return from
606 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
607 * need to be transmitted by the caller.
608 * We assume that pkt->transport has already been set.
609 *
610 * The return value is a normal kernel error return value.
611 */
612 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
613 int rtx_timeout, int *start_timer)
614 {
615 struct sctp_transport *transport = pkt->transport;
616 struct sctp_chunk *chunk, *chunk1;
617 struct list_head *lqueue;
618 enum sctp_xmit status;
619 int error = 0;
620 int timer = 0;
621 int done = 0;
622 int fast_rtx;
623
624 lqueue = &q->retransmit;
625 fast_rtx = q->fast_rtx;
626
627 /* This loop handles time-out retransmissions, fast retransmissions,
628 * and retransmissions due to opening of whindow.
629 *
630 * RFC 2960 6.3.3 Handle T3-rtx Expiration
631 *
632 * E3) Determine how many of the earliest (i.e., lowest TSN)
633 * outstanding DATA chunks for the address for which the
634 * T3-rtx has expired will fit into a single packet, subject
635 * to the MTU constraint for the path corresponding to the
636 * destination transport address to which the retransmission
637 * is being sent (this may be different from the address for
638 * which the timer expires [see Section 6.4]). Call this value
639 * K. Bundle and retransmit those K DATA chunks in a single
640 * packet to the destination endpoint.
641 *
642 * [Just to be painfully clear, if we are retransmitting
643 * because a timeout just happened, we should send only ONE
644 * packet of retransmitted data.]
645 *
646 * For fast retransmissions we also send only ONE packet. However,
647 * if we are just flushing the queue due to open window, we'll
648 * try to send as much as possible.
649 */
650 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
651 /* If the chunk is abandoned, move it to abandoned list. */
652 if (sctp_chunk_abandoned(chunk)) {
653 list_del_init(&chunk->transmitted_list);
654 sctp_insert_list(&q->abandoned,
655 &chunk->transmitted_list);
656 continue;
657 }
658
659 /* Make sure that Gap Acked TSNs are not retransmitted. A
660 * simple approach is just to move such TSNs out of the
661 * way and into a 'transmitted' queue and skip to the
662 * next chunk.
663 */
664 if (chunk->tsn_gap_acked) {
665 list_move_tail(&chunk->transmitted_list,
666 &transport->transmitted);
667 continue;
668 }
669
670 /* If we are doing fast retransmit, ignore non-fast_rtransmit
671 * chunks
672 */
673 if (fast_rtx && !chunk->fast_retransmit)
674 continue;
675
676 redo:
677 /* Attempt to append this chunk to the packet. */
678 status = sctp_packet_append_chunk(pkt, chunk);
679
680 switch (status) {
681 case SCTP_XMIT_PMTU_FULL:
682 if (!pkt->has_data && !pkt->has_cookie_echo) {
683 /* If this packet did not contain DATA then
684 * retransmission did not happen, so do it
685 * again. We'll ignore the error here since
686 * control chunks are already freed so there
687 * is nothing we can do.
688 */
689 sctp_packet_transmit(pkt, GFP_ATOMIC);
690 goto redo;
691 }
692
693 /* Send this packet. */
694 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
695
696 /* If we are retransmitting, we should only
697 * send a single packet.
698 * Otherwise, try appending this chunk again.
699 */
700 if (rtx_timeout || fast_rtx)
701 done = 1;
702 else
703 goto redo;
704
705 /* Bundle next chunk in the next round. */
706 break;
707
708 case SCTP_XMIT_RWND_FULL:
709 /* Send this packet. */
710 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
711
712 /* Stop sending DATA as there is no more room
713 * at the receiver.
714 */
715 done = 1;
716 break;
717
718 case SCTP_XMIT_DELAY:
719 /* Send this packet. */
720 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
721
722 /* Stop sending DATA because of nagle delay. */
723 done = 1;
724 break;
725
726 default:
727 /* The append was successful, so add this chunk to
728 * the transmitted list.
729 */
730 list_move_tail(&chunk->transmitted_list,
731 &transport->transmitted);
732
733 /* Mark the chunk as ineligible for fast retransmit
734 * after it is retransmitted.
735 */
736 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
737 chunk->fast_retransmit = SCTP_DONT_FRTX;
738
739 q->asoc->stats.rtxchunks++;
740 break;
741 }
742
743 /* Set the timer if there were no errors */
744 if (!error && !timer)
745 timer = 1;
746
747 if (done)
748 break;
749 }
750
751 /* If we are here due to a retransmit timeout or a fast
752 * retransmit and if there are any chunks left in the retransmit
753 * queue that could not fit in the PMTU sized packet, they need
754 * to be marked as ineligible for a subsequent fast retransmit.
755 */
756 if (rtx_timeout || fast_rtx) {
757 list_for_each_entry(chunk1, lqueue, transmitted_list) {
758 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
759 chunk1->fast_retransmit = SCTP_DONT_FRTX;
760 }
761 }
762
763 *start_timer = timer;
764
765 /* Clear fast retransmit hint */
766 if (fast_rtx)
767 q->fast_rtx = 0;
768
769 return error;
770 }
771
772 /* Cork the outqueue so queued chunks are really queued. */
773 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
774 {
775 if (q->cork)
776 q->cork = 0;
777
778 sctp_outq_flush(q, 0, gfp);
779 }
780
781
782 /*
783 * Try to flush an outqueue.
784 *
785 * Description: Send everything in q which we legally can, subject to
786 * congestion limitations.
787 * * Note: This function can be called from multiple contexts so appropriate
788 * locking concerns must be made. Today we use the sock lock to protect
789 * this function.
790 */
791 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
792 {
793 struct sctp_packet *packet;
794 struct sctp_packet singleton;
795 struct sctp_association *asoc = q->asoc;
796 __u16 sport = asoc->base.bind_addr.port;
797 __u16 dport = asoc->peer.port;
798 __u32 vtag = asoc->peer.i.init_tag;
799 struct sctp_transport *transport = NULL;
800 struct sctp_transport *new_transport;
801 struct sctp_chunk *chunk, *tmp;
802 enum sctp_xmit status;
803 int error = 0;
804 int start_timer = 0;
805 int one_packet = 0;
806
807 /* These transports have chunks to send. */
808 struct list_head transport_list;
809 struct list_head *ltransport;
810
811 INIT_LIST_HEAD(&transport_list);
812 packet = NULL;
813
814 /*
815 * 6.10 Bundling
816 * ...
817 * When bundling control chunks with DATA chunks, an
818 * endpoint MUST place control chunks first in the outbound
819 * SCTP packet. The transmitter MUST transmit DATA chunks
820 * within a SCTP packet in increasing order of TSN.
821 * ...
822 */
823
824 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
825 /* RFC 5061, 5.3
826 * F1) This means that until such time as the ASCONF
827 * containing the add is acknowledged, the sender MUST
828 * NOT use the new IP address as a source for ANY SCTP
829 * packet except on carrying an ASCONF Chunk.
830 */
831 if (asoc->src_out_of_asoc_ok &&
832 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
833 continue;
834
835 list_del_init(&chunk->list);
836
837 /* Pick the right transport to use. */
838 new_transport = chunk->transport;
839
840 if (!new_transport) {
841 /*
842 * If we have a prior transport pointer, see if
843 * the destination address of the chunk
844 * matches the destination address of the
845 * current transport. If not a match, then
846 * try to look up the transport with a given
847 * destination address. We do this because
848 * after processing ASCONFs, we may have new
849 * transports created.
850 */
851 if (transport &&
852 sctp_cmp_addr_exact(&chunk->dest,
853 &transport->ipaddr))
854 new_transport = transport;
855 else
856 new_transport = sctp_assoc_lookup_paddr(asoc,
857 &chunk->dest);
858
859 /* if we still don't have a new transport, then
860 * use the current active path.
861 */
862 if (!new_transport)
863 new_transport = asoc->peer.active_path;
864 } else if ((new_transport->state == SCTP_INACTIVE) ||
865 (new_transport->state == SCTP_UNCONFIRMED) ||
866 (new_transport->state == SCTP_PF)) {
867 /* If the chunk is Heartbeat or Heartbeat Ack,
868 * send it to chunk->transport, even if it's
869 * inactive.
870 *
871 * 3.3.6 Heartbeat Acknowledgement:
872 * ...
873 * A HEARTBEAT ACK is always sent to the source IP
874 * address of the IP datagram containing the
875 * HEARTBEAT chunk to which this ack is responding.
876 * ...
877 *
878 * ASCONF_ACKs also must be sent to the source.
879 */
880 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
881 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
882 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
883 new_transport = asoc->peer.active_path;
884 }
885
886 /* Are we switching transports?
887 * Take care of transport locks.
888 */
889 if (new_transport != transport) {
890 transport = new_transport;
891 if (list_empty(&transport->send_ready)) {
892 list_add_tail(&transport->send_ready,
893 &transport_list);
894 }
895 packet = &transport->packet;
896 sctp_packet_config(packet, vtag,
897 asoc->peer.ecn_capable);
898 }
899
900 switch (chunk->chunk_hdr->type) {
901 /*
902 * 6.10 Bundling
903 * ...
904 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
905 * COMPLETE with any other chunks. [Send them immediately.]
906 */
907 case SCTP_CID_INIT:
908 case SCTP_CID_INIT_ACK:
909 case SCTP_CID_SHUTDOWN_COMPLETE:
910 sctp_packet_init(&singleton, transport, sport, dport);
911 sctp_packet_config(&singleton, vtag, 0);
912 sctp_packet_append_chunk(&singleton, chunk);
913 error = sctp_packet_transmit(&singleton, gfp);
914 if (error < 0) {
915 asoc->base.sk->sk_err = -error;
916 return;
917 }
918 break;
919
920 case SCTP_CID_ABORT:
921 if (sctp_test_T_bit(chunk))
922 packet->vtag = asoc->c.my_vtag;
923 /* fallthru */
924 /* The following chunks are "response" chunks, i.e.
925 * they are generated in response to something we
926 * received. If we are sending these, then we can
927 * send only 1 packet containing these chunks.
928 */
929 case SCTP_CID_HEARTBEAT_ACK:
930 case SCTP_CID_SHUTDOWN_ACK:
931 case SCTP_CID_COOKIE_ACK:
932 case SCTP_CID_COOKIE_ECHO:
933 case SCTP_CID_ERROR:
934 case SCTP_CID_ECN_CWR:
935 case SCTP_CID_ASCONF_ACK:
936 one_packet = 1;
937 /* Fall through */
938
939 case SCTP_CID_SACK:
940 case SCTP_CID_HEARTBEAT:
941 case SCTP_CID_SHUTDOWN:
942 case SCTP_CID_ECN_ECNE:
943 case SCTP_CID_ASCONF:
944 case SCTP_CID_FWD_TSN:
945 case SCTP_CID_RECONF:
946 status = sctp_packet_transmit_chunk(packet, chunk,
947 one_packet, gfp);
948 if (status != SCTP_XMIT_OK) {
949 /* put the chunk back */
950 list_add(&chunk->list, &q->control_chunk_list);
951 break;
952 }
953
954 asoc->stats.octrlchunks++;
955 /* PR-SCTP C5) If a FORWARD TSN is sent, the
956 * sender MUST assure that at least one T3-rtx
957 * timer is running.
958 */
959 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) {
960 sctp_transport_reset_t3_rtx(transport);
961 transport->last_time_sent = jiffies;
962 }
963
964 if (chunk == asoc->strreset_chunk)
965 sctp_transport_reset_reconf_timer(transport);
966
967 break;
968
969 default:
970 /* We built a chunk with an illegal type! */
971 BUG();
972 }
973 }
974
975 if (q->asoc->src_out_of_asoc_ok)
976 goto sctp_flush_out;
977
978 /* Is it OK to send data chunks? */
979 switch (asoc->state) {
980 case SCTP_STATE_COOKIE_ECHOED:
981 /* Only allow bundling when this packet has a COOKIE-ECHO
982 * chunk.
983 */
984 if (!packet || !packet->has_cookie_echo)
985 break;
986
987 /* fallthru */
988 case SCTP_STATE_ESTABLISHED:
989 case SCTP_STATE_SHUTDOWN_PENDING:
990 case SCTP_STATE_SHUTDOWN_RECEIVED:
991 /*
992 * RFC 2960 6.1 Transmission of DATA Chunks
993 *
994 * C) When the time comes for the sender to transmit,
995 * before sending new DATA chunks, the sender MUST
996 * first transmit any outstanding DATA chunks which
997 * are marked for retransmission (limited by the
998 * current cwnd).
999 */
1000 if (!list_empty(&q->retransmit)) {
1001 if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
1002 goto sctp_flush_out;
1003 if (transport == asoc->peer.retran_path)
1004 goto retran;
1005
1006 /* Switch transports & prepare the packet. */
1007
1008 transport = asoc->peer.retran_path;
1009
1010 if (list_empty(&transport->send_ready)) {
1011 list_add_tail(&transport->send_ready,
1012 &transport_list);
1013 }
1014
1015 packet = &transport->packet;
1016 sctp_packet_config(packet, vtag,
1017 asoc->peer.ecn_capable);
1018 retran:
1019 error = sctp_outq_flush_rtx(q, packet,
1020 rtx_timeout, &start_timer);
1021 if (error < 0)
1022 asoc->base.sk->sk_err = -error;
1023
1024 if (start_timer) {
1025 sctp_transport_reset_t3_rtx(transport);
1026 transport->last_time_sent = jiffies;
1027 }
1028
1029 /* This can happen on COOKIE-ECHO resend. Only
1030 * one chunk can get bundled with a COOKIE-ECHO.
1031 */
1032 if (packet->has_cookie_echo)
1033 goto sctp_flush_out;
1034
1035 /* Don't send new data if there is still data
1036 * waiting to retransmit.
1037 */
1038 if (!list_empty(&q->retransmit))
1039 goto sctp_flush_out;
1040 }
1041
1042 /* Apply Max.Burst limitation to the current transport in
1043 * case it will be used for new data. We are going to
1044 * rest it before we return, but we want to apply the limit
1045 * to the currently queued data.
1046 */
1047 if (transport)
1048 sctp_transport_burst_limited(transport);
1049
1050 /* Finally, transmit new packets. */
1051 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
1052 __u32 sid = ntohs(chunk->subh.data_hdr->stream);
1053
1054 /* Has this chunk expired? */
1055 if (sctp_chunk_abandoned(chunk)) {
1056 sctp_sched_dequeue_done(q, chunk);
1057 sctp_chunk_fail(chunk, 0);
1058 sctp_chunk_free(chunk);
1059 continue;
1060 }
1061
1062 if (asoc->stream.out[sid].state == SCTP_STREAM_CLOSED) {
1063 sctp_outq_head_data(q, chunk);
1064 goto sctp_flush_out;
1065 }
1066
1067 /* If there is a specified transport, use it.
1068 * Otherwise, we want to use the active path.
1069 */
1070 new_transport = chunk->transport;
1071 if (!new_transport ||
1072 ((new_transport->state == SCTP_INACTIVE) ||
1073 (new_transport->state == SCTP_UNCONFIRMED) ||
1074 (new_transport->state == SCTP_PF)))
1075 new_transport = asoc->peer.active_path;
1076 if (new_transport->state == SCTP_UNCONFIRMED) {
1077 WARN_ONCE(1, "Attempt to send packet on unconfirmed path.");
1078 sctp_sched_dequeue_done(q, chunk);
1079 sctp_chunk_fail(chunk, 0);
1080 sctp_chunk_free(chunk);
1081 continue;
1082 }
1083
1084 /* Change packets if necessary. */
1085 if (new_transport != transport) {
1086 transport = new_transport;
1087
1088 /* Schedule to have this transport's
1089 * packet flushed.
1090 */
1091 if (list_empty(&transport->send_ready)) {
1092 list_add_tail(&transport->send_ready,
1093 &transport_list);
1094 }
1095
1096 packet = &transport->packet;
1097 sctp_packet_config(packet, vtag,
1098 asoc->peer.ecn_capable);
1099 /* We've switched transports, so apply the
1100 * Burst limit to the new transport.
1101 */
1102 sctp_transport_burst_limited(transport);
1103 }
1104
1105 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1106 "skb->users:%d\n",
1107 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1108 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1109 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1110 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1111 refcount_read(&chunk->skb->users) : -1);
1112
1113 /* Add the chunk to the packet. */
1114 status = sctp_packet_transmit_chunk(packet, chunk, 0, gfp);
1115
1116 switch (status) {
1117 case SCTP_XMIT_PMTU_FULL:
1118 case SCTP_XMIT_RWND_FULL:
1119 case SCTP_XMIT_DELAY:
1120 /* We could not append this chunk, so put
1121 * the chunk back on the output queue.
1122 */
1123 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1124 __func__, ntohl(chunk->subh.data_hdr->tsn),
1125 status);
1126
1127 sctp_outq_head_data(q, chunk);
1128 goto sctp_flush_out;
1129
1130 case SCTP_XMIT_OK:
1131 /* The sender is in the SHUTDOWN-PENDING state,
1132 * The sender MAY set the I-bit in the DATA
1133 * chunk header.
1134 */
1135 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1136 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1137 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1138 asoc->stats.ouodchunks++;
1139 else
1140 asoc->stats.oodchunks++;
1141
1142 /* Only now it's safe to consider this
1143 * chunk as sent, sched-wise.
1144 */
1145 sctp_sched_dequeue_done(q, chunk);
1146
1147 break;
1148
1149 default:
1150 BUG();
1151 }
1152
1153 /* BUG: We assume that the sctp_packet_transmit()
1154 * call below will succeed all the time and add the
1155 * chunk to the transmitted list and restart the
1156 * timers.
1157 * It is possible that the call can fail under OOM
1158 * conditions.
1159 *
1160 * Is this really a problem? Won't this behave
1161 * like a lost TSN?
1162 */
1163 list_add_tail(&chunk->transmitted_list,
1164 &transport->transmitted);
1165
1166 sctp_transport_reset_t3_rtx(transport);
1167 transport->last_time_sent = jiffies;
1168
1169 /* Only let one DATA chunk get bundled with a
1170 * COOKIE-ECHO chunk.
1171 */
1172 if (packet->has_cookie_echo)
1173 goto sctp_flush_out;
1174 }
1175 break;
1176
1177 default:
1178 /* Do nothing. */
1179 break;
1180 }
1181
1182 sctp_flush_out:
1183
1184 /* Before returning, examine all the transports touched in
1185 * this call. Right now, we bluntly force clear all the
1186 * transports. Things might change after we implement Nagle.
1187 * But such an examination is still required.
1188 *
1189 * --xguo
1190 */
1191 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL) {
1192 struct sctp_transport *t = list_entry(ltransport,
1193 struct sctp_transport,
1194 send_ready);
1195 packet = &t->packet;
1196 if (!sctp_packet_empty(packet)) {
1197 error = sctp_packet_transmit(packet, gfp);
1198 if (error < 0)
1199 asoc->base.sk->sk_err = -error;
1200 }
1201
1202 /* Clear the burst limited state, if any */
1203 sctp_transport_burst_reset(t);
1204 }
1205 }
1206
1207 /* Update unack_data based on the incoming SACK chunk */
1208 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1209 struct sctp_sackhdr *sack)
1210 {
1211 union sctp_sack_variable *frags;
1212 __u16 unack_data;
1213 int i;
1214
1215 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1216
1217 frags = sack->variable;
1218 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1219 unack_data -= ((ntohs(frags[i].gab.end) -
1220 ntohs(frags[i].gab.start) + 1));
1221 }
1222
1223 assoc->unack_data = unack_data;
1224 }
1225
1226 /* This is where we REALLY process a SACK.
1227 *
1228 * Process the SACK against the outqueue. Mostly, this just frees
1229 * things off the transmitted queue.
1230 */
1231 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1232 {
1233 struct sctp_association *asoc = q->asoc;
1234 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1235 struct sctp_transport *transport;
1236 struct sctp_chunk *tchunk = NULL;
1237 struct list_head *lchunk, *transport_list, *temp;
1238 union sctp_sack_variable *frags = sack->variable;
1239 __u32 sack_ctsn, ctsn, tsn;
1240 __u32 highest_tsn, highest_new_tsn;
1241 __u32 sack_a_rwnd;
1242 unsigned int outstanding;
1243 struct sctp_transport *primary = asoc->peer.primary_path;
1244 int count_of_newacks = 0;
1245 int gap_ack_blocks;
1246 u8 accum_moved = 0;
1247
1248 /* Grab the association's destination address list. */
1249 transport_list = &asoc->peer.transport_addr_list;
1250
1251 sack_ctsn = ntohl(sack->cum_tsn_ack);
1252 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1253 asoc->stats.gapcnt += gap_ack_blocks;
1254 /*
1255 * SFR-CACC algorithm:
1256 * On receipt of a SACK the sender SHOULD execute the
1257 * following statements.
1258 *
1259 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1260 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1261 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1262 * all destinations.
1263 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1264 * is set the receiver of the SACK MUST take the following actions:
1265 *
1266 * A) Initialize the cacc_saw_newack to 0 for all destination
1267 * addresses.
1268 *
1269 * Only bother if changeover_active is set. Otherwise, this is
1270 * totally suboptimal to do on every SACK.
1271 */
1272 if (primary->cacc.changeover_active) {
1273 u8 clear_cycling = 0;
1274
1275 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1276 primary->cacc.changeover_active = 0;
1277 clear_cycling = 1;
1278 }
1279
1280 if (clear_cycling || gap_ack_blocks) {
1281 list_for_each_entry(transport, transport_list,
1282 transports) {
1283 if (clear_cycling)
1284 transport->cacc.cycling_changeover = 0;
1285 if (gap_ack_blocks)
1286 transport->cacc.cacc_saw_newack = 0;
1287 }
1288 }
1289 }
1290
1291 /* Get the highest TSN in the sack. */
1292 highest_tsn = sack_ctsn;
1293 if (gap_ack_blocks)
1294 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1295
1296 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1297 asoc->highest_sacked = highest_tsn;
1298
1299 highest_new_tsn = sack_ctsn;
1300
1301 /* Run through the retransmit queue. Credit bytes received
1302 * and free those chunks that we can.
1303 */
1304 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1305
1306 /* Run through the transmitted queue.
1307 * Credit bytes received and free those chunks which we can.
1308 *
1309 * This is a MASSIVE candidate for optimization.
1310 */
1311 list_for_each_entry(transport, transport_list, transports) {
1312 sctp_check_transmitted(q, &transport->transmitted,
1313 transport, &chunk->source, sack,
1314 &highest_new_tsn);
1315 /*
1316 * SFR-CACC algorithm:
1317 * C) Let count_of_newacks be the number of
1318 * destinations for which cacc_saw_newack is set.
1319 */
1320 if (transport->cacc.cacc_saw_newack)
1321 count_of_newacks++;
1322 }
1323
1324 /* Move the Cumulative TSN Ack Point if appropriate. */
1325 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1326 asoc->ctsn_ack_point = sack_ctsn;
1327 accum_moved = 1;
1328 }
1329
1330 if (gap_ack_blocks) {
1331
1332 if (asoc->fast_recovery && accum_moved)
1333 highest_new_tsn = highest_tsn;
1334
1335 list_for_each_entry(transport, transport_list, transports)
1336 sctp_mark_missing(q, &transport->transmitted, transport,
1337 highest_new_tsn, count_of_newacks);
1338 }
1339
1340 /* Update unack_data field in the assoc. */
1341 sctp_sack_update_unack_data(asoc, sack);
1342
1343 ctsn = asoc->ctsn_ack_point;
1344
1345 /* Throw away stuff rotting on the sack queue. */
1346 list_for_each_safe(lchunk, temp, &q->sacked) {
1347 tchunk = list_entry(lchunk, struct sctp_chunk,
1348 transmitted_list);
1349 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1350 if (TSN_lte(tsn, ctsn)) {
1351 list_del_init(&tchunk->transmitted_list);
1352 if (asoc->peer.prsctp_capable &&
1353 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1354 asoc->sent_cnt_removable--;
1355 sctp_chunk_free(tchunk);
1356 }
1357 }
1358
1359 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1360 * number of bytes still outstanding after processing the
1361 * Cumulative TSN Ack and the Gap Ack Blocks.
1362 */
1363
1364 sack_a_rwnd = ntohl(sack->a_rwnd);
1365 asoc->peer.zero_window_announced = !sack_a_rwnd;
1366 outstanding = q->outstanding_bytes;
1367
1368 if (outstanding < sack_a_rwnd)
1369 sack_a_rwnd -= outstanding;
1370 else
1371 sack_a_rwnd = 0;
1372
1373 asoc->peer.rwnd = sack_a_rwnd;
1374
1375 sctp_generate_fwdtsn(q, sack_ctsn);
1376
1377 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1378 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1379 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1380 asoc->adv_peer_ack_point);
1381
1382 return sctp_outq_is_empty(q);
1383 }
1384
1385 /* Is the outqueue empty?
1386 * The queue is empty when we have not pending data, no in-flight data
1387 * and nothing pending retransmissions.
1388 */
1389 int sctp_outq_is_empty(const struct sctp_outq *q)
1390 {
1391 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1392 list_empty(&q->retransmit);
1393 }
1394
1395 /********************************************************************
1396 * 2nd Level Abstractions
1397 ********************************************************************/
1398
1399 /* Go through a transport's transmitted list or the association's retransmit
1400 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1401 * The retransmit list will not have an associated transport.
1402 *
1403 * I added coherent debug information output. --xguo
1404 *
1405 * Instead of printing 'sacked' or 'kept' for each TSN on the
1406 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1407 * KEPT TSN6-TSN7, etc.
1408 */
1409 static void sctp_check_transmitted(struct sctp_outq *q,
1410 struct list_head *transmitted_queue,
1411 struct sctp_transport *transport,
1412 union sctp_addr *saddr,
1413 struct sctp_sackhdr *sack,
1414 __u32 *highest_new_tsn_in_sack)
1415 {
1416 struct list_head *lchunk;
1417 struct sctp_chunk *tchunk;
1418 struct list_head tlist;
1419 __u32 tsn;
1420 __u32 sack_ctsn;
1421 __u32 rtt;
1422 __u8 restart_timer = 0;
1423 int bytes_acked = 0;
1424 int migrate_bytes = 0;
1425 bool forward_progress = false;
1426
1427 sack_ctsn = ntohl(sack->cum_tsn_ack);
1428
1429 INIT_LIST_HEAD(&tlist);
1430
1431 /* The while loop will skip empty transmitted queues. */
1432 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1433 tchunk = list_entry(lchunk, struct sctp_chunk,
1434 transmitted_list);
1435
1436 if (sctp_chunk_abandoned(tchunk)) {
1437 /* Move the chunk to abandoned list. */
1438 sctp_insert_list(&q->abandoned, lchunk);
1439
1440 /* If this chunk has not been acked, stop
1441 * considering it as 'outstanding'.
1442 */
1443 if (transmitted_queue != &q->retransmit &&
1444 !tchunk->tsn_gap_acked) {
1445 if (tchunk->transport)
1446 tchunk->transport->flight_size -=
1447 sctp_data_size(tchunk);
1448 q->outstanding_bytes -= sctp_data_size(tchunk);
1449 }
1450 continue;
1451 }
1452
1453 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1454 if (sctp_acked(sack, tsn)) {
1455 /* If this queue is the retransmit queue, the
1456 * retransmit timer has already reclaimed
1457 * the outstanding bytes for this chunk, so only
1458 * count bytes associated with a transport.
1459 */
1460 if (transport) {
1461 /* If this chunk is being used for RTT
1462 * measurement, calculate the RTT and update
1463 * the RTO using this value.
1464 *
1465 * 6.3.1 C5) Karn's algorithm: RTT measurements
1466 * MUST NOT be made using packets that were
1467 * retransmitted (and thus for which it is
1468 * ambiguous whether the reply was for the
1469 * first instance of the packet or a later
1470 * instance).
1471 */
1472 if (!tchunk->tsn_gap_acked &&
1473 !sctp_chunk_retransmitted(tchunk) &&
1474 tchunk->rtt_in_progress) {
1475 tchunk->rtt_in_progress = 0;
1476 rtt = jiffies - tchunk->sent_at;
1477 sctp_transport_update_rto(transport,
1478 rtt);
1479 }
1480 }
1481
1482 /* If the chunk hasn't been marked as ACKED,
1483 * mark it and account bytes_acked if the
1484 * chunk had a valid transport (it will not
1485 * have a transport if ASCONF had deleted it
1486 * while DATA was outstanding).
1487 */
1488 if (!tchunk->tsn_gap_acked) {
1489 tchunk->tsn_gap_acked = 1;
1490 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1491 *highest_new_tsn_in_sack = tsn;
1492 bytes_acked += sctp_data_size(tchunk);
1493 if (!tchunk->transport)
1494 migrate_bytes += sctp_data_size(tchunk);
1495 forward_progress = true;
1496 }
1497
1498 if (TSN_lte(tsn, sack_ctsn)) {
1499 /* RFC 2960 6.3.2 Retransmission Timer Rules
1500 *
1501 * R3) Whenever a SACK is received
1502 * that acknowledges the DATA chunk
1503 * with the earliest outstanding TSN
1504 * for that address, restart T3-rtx
1505 * timer for that address with its
1506 * current RTO.
1507 */
1508 restart_timer = 1;
1509 forward_progress = true;
1510
1511 if (!tchunk->tsn_gap_acked) {
1512 /*
1513 * SFR-CACC algorithm:
1514 * 2) If the SACK contains gap acks
1515 * and the flag CHANGEOVER_ACTIVE is
1516 * set the receiver of the SACK MUST
1517 * take the following action:
1518 *
1519 * B) For each TSN t being acked that
1520 * has not been acked in any SACK so
1521 * far, set cacc_saw_newack to 1 for
1522 * the destination that the TSN was
1523 * sent to.
1524 */
1525 if (transport &&
1526 sack->num_gap_ack_blocks &&
1527 q->asoc->peer.primary_path->cacc.
1528 changeover_active)
1529 transport->cacc.cacc_saw_newack
1530 = 1;
1531 }
1532
1533 list_add_tail(&tchunk->transmitted_list,
1534 &q->sacked);
1535 } else {
1536 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1537 * M2) Each time a SACK arrives reporting
1538 * 'Stray DATA chunk(s)' record the highest TSN
1539 * reported as newly acknowledged, call this
1540 * value 'HighestTSNinSack'. A newly
1541 * acknowledged DATA chunk is one not
1542 * previously acknowledged in a SACK.
1543 *
1544 * When the SCTP sender of data receives a SACK
1545 * chunk that acknowledges, for the first time,
1546 * the receipt of a DATA chunk, all the still
1547 * unacknowledged DATA chunks whose TSN is
1548 * older than that newly acknowledged DATA
1549 * chunk, are qualified as 'Stray DATA chunks'.
1550 */
1551 list_add_tail(lchunk, &tlist);
1552 }
1553 } else {
1554 if (tchunk->tsn_gap_acked) {
1555 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1556 __func__, tsn);
1557
1558 tchunk->tsn_gap_acked = 0;
1559
1560 if (tchunk->transport)
1561 bytes_acked -= sctp_data_size(tchunk);
1562
1563 /* RFC 2960 6.3.2 Retransmission Timer Rules
1564 *
1565 * R4) Whenever a SACK is received missing a
1566 * TSN that was previously acknowledged via a
1567 * Gap Ack Block, start T3-rtx for the
1568 * destination address to which the DATA
1569 * chunk was originally
1570 * transmitted if it is not already running.
1571 */
1572 restart_timer = 1;
1573 }
1574
1575 list_add_tail(lchunk, &tlist);
1576 }
1577 }
1578
1579 if (transport) {
1580 if (bytes_acked) {
1581 struct sctp_association *asoc = transport->asoc;
1582
1583 /* We may have counted DATA that was migrated
1584 * to this transport due to DEL-IP operation.
1585 * Subtract those bytes, since the were never
1586 * send on this transport and shouldn't be
1587 * credited to this transport.
1588 */
1589 bytes_acked -= migrate_bytes;
1590
1591 /* 8.2. When an outstanding TSN is acknowledged,
1592 * the endpoint shall clear the error counter of
1593 * the destination transport address to which the
1594 * DATA chunk was last sent.
1595 * The association's overall error counter is
1596 * also cleared.
1597 */
1598 transport->error_count = 0;
1599 transport->asoc->overall_error_count = 0;
1600 forward_progress = true;
1601
1602 /*
1603 * While in SHUTDOWN PENDING, we may have started
1604 * the T5 shutdown guard timer after reaching the
1605 * retransmission limit. Stop that timer as soon
1606 * as the receiver acknowledged any data.
1607 */
1608 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1609 del_timer(&asoc->timers
1610 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1611 sctp_association_put(asoc);
1612
1613 /* Mark the destination transport address as
1614 * active if it is not so marked.
1615 */
1616 if ((transport->state == SCTP_INACTIVE ||
1617 transport->state == SCTP_UNCONFIRMED) &&
1618 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1619 sctp_assoc_control_transport(
1620 transport->asoc,
1621 transport,
1622 SCTP_TRANSPORT_UP,
1623 SCTP_RECEIVED_SACK);
1624 }
1625
1626 sctp_transport_raise_cwnd(transport, sack_ctsn,
1627 bytes_acked);
1628
1629 transport->flight_size -= bytes_acked;
1630 if (transport->flight_size == 0)
1631 transport->partial_bytes_acked = 0;
1632 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1633 } else {
1634 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1635 * When a sender is doing zero window probing, it
1636 * should not timeout the association if it continues
1637 * to receive new packets from the receiver. The
1638 * reason is that the receiver MAY keep its window
1639 * closed for an indefinite time.
1640 * A sender is doing zero window probing when the
1641 * receiver's advertised window is zero, and there is
1642 * only one data chunk in flight to the receiver.
1643 *
1644 * Allow the association to timeout while in SHUTDOWN
1645 * PENDING or SHUTDOWN RECEIVED in case the receiver
1646 * stays in zero window mode forever.
1647 */
1648 if (!q->asoc->peer.rwnd &&
1649 !list_empty(&tlist) &&
1650 (sack_ctsn+2 == q->asoc->next_tsn) &&
1651 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1652 pr_debug("%s: sack received for zero window "
1653 "probe:%u\n", __func__, sack_ctsn);
1654
1655 q->asoc->overall_error_count = 0;
1656 transport->error_count = 0;
1657 }
1658 }
1659
1660 /* RFC 2960 6.3.2 Retransmission Timer Rules
1661 *
1662 * R2) Whenever all outstanding data sent to an address have
1663 * been acknowledged, turn off the T3-rtx timer of that
1664 * address.
1665 */
1666 if (!transport->flight_size) {
1667 if (del_timer(&transport->T3_rtx_timer))
1668 sctp_transport_put(transport);
1669 } else if (restart_timer) {
1670 if (!mod_timer(&transport->T3_rtx_timer,
1671 jiffies + transport->rto))
1672 sctp_transport_hold(transport);
1673 }
1674
1675 if (forward_progress) {
1676 if (transport->dst)
1677 sctp_transport_dst_confirm(transport);
1678 }
1679 }
1680
1681 list_splice(&tlist, transmitted_queue);
1682 }
1683
1684 /* Mark chunks as missing and consequently may get retransmitted. */
1685 static void sctp_mark_missing(struct sctp_outq *q,
1686 struct list_head *transmitted_queue,
1687 struct sctp_transport *transport,
1688 __u32 highest_new_tsn_in_sack,
1689 int count_of_newacks)
1690 {
1691 struct sctp_chunk *chunk;
1692 __u32 tsn;
1693 char do_fast_retransmit = 0;
1694 struct sctp_association *asoc = q->asoc;
1695 struct sctp_transport *primary = asoc->peer.primary_path;
1696
1697 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1698
1699 tsn = ntohl(chunk->subh.data_hdr->tsn);
1700
1701 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1702 * 'Unacknowledged TSN's', if the TSN number of an
1703 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1704 * value, increment the 'TSN.Missing.Report' count on that
1705 * chunk if it has NOT been fast retransmitted or marked for
1706 * fast retransmit already.
1707 */
1708 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1709 !chunk->tsn_gap_acked &&
1710 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1711
1712 /* SFR-CACC may require us to skip marking
1713 * this chunk as missing.
1714 */
1715 if (!transport || !sctp_cacc_skip(primary,
1716 chunk->transport,
1717 count_of_newacks, tsn)) {
1718 chunk->tsn_missing_report++;
1719
1720 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1721 __func__, tsn, chunk->tsn_missing_report);
1722 }
1723 }
1724 /*
1725 * M4) If any DATA chunk is found to have a
1726 * 'TSN.Missing.Report'
1727 * value larger than or equal to 3, mark that chunk for
1728 * retransmission and start the fast retransmit procedure.
1729 */
1730
1731 if (chunk->tsn_missing_report >= 3) {
1732 chunk->fast_retransmit = SCTP_NEED_FRTX;
1733 do_fast_retransmit = 1;
1734 }
1735 }
1736
1737 if (transport) {
1738 if (do_fast_retransmit)
1739 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1740
1741 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1742 "flight_size:%d, pba:%d\n", __func__, transport,
1743 transport->cwnd, transport->ssthresh,
1744 transport->flight_size, transport->partial_bytes_acked);
1745 }
1746 }
1747
1748 /* Is the given TSN acked by this packet? */
1749 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1750 {
1751 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1752 union sctp_sack_variable *frags;
1753 __u16 tsn_offset, blocks;
1754 int i;
1755
1756 if (TSN_lte(tsn, ctsn))
1757 goto pass;
1758
1759 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1760 *
1761 * Gap Ack Blocks:
1762 * These fields contain the Gap Ack Blocks. They are repeated
1763 * for each Gap Ack Block up to the number of Gap Ack Blocks
1764 * defined in the Number of Gap Ack Blocks field. All DATA
1765 * chunks with TSNs greater than or equal to (Cumulative TSN
1766 * Ack + Gap Ack Block Start) and less than or equal to
1767 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1768 * Block are assumed to have been received correctly.
1769 */
1770
1771 frags = sack->variable;
1772 blocks = ntohs(sack->num_gap_ack_blocks);
1773 tsn_offset = tsn - ctsn;
1774 for (i = 0; i < blocks; ++i) {
1775 if (tsn_offset >= ntohs(frags[i].gab.start) &&
1776 tsn_offset <= ntohs(frags[i].gab.end))
1777 goto pass;
1778 }
1779
1780 return 0;
1781 pass:
1782 return 1;
1783 }
1784
1785 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1786 int nskips, __be16 stream)
1787 {
1788 int i;
1789
1790 for (i = 0; i < nskips; i++) {
1791 if (skiplist[i].stream == stream)
1792 return i;
1793 }
1794 return i;
1795 }
1796
1797 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1798 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1799 {
1800 struct sctp_association *asoc = q->asoc;
1801 struct sctp_chunk *ftsn_chunk = NULL;
1802 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1803 int nskips = 0;
1804 int skip_pos = 0;
1805 __u32 tsn;
1806 struct sctp_chunk *chunk;
1807 struct list_head *lchunk, *temp;
1808
1809 if (!asoc->peer.prsctp_capable)
1810 return;
1811
1812 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1813 * received SACK.
1814 *
1815 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1816 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1817 */
1818 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1819 asoc->adv_peer_ack_point = ctsn;
1820
1821 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1822 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1823 * the chunk next in the out-queue space is marked as "abandoned" as
1824 * shown in the following example:
1825 *
1826 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1827 * and the Advanced.Peer.Ack.Point is updated to this value:
1828 *
1829 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1830 * normal SACK processing local advancement
1831 * ... ...
1832 * Adv.Ack.Pt-> 102 acked 102 acked
1833 * 103 abandoned 103 abandoned
1834 * 104 abandoned Adv.Ack.P-> 104 abandoned
1835 * 105 105
1836 * 106 acked 106 acked
1837 * ... ...
1838 *
1839 * In this example, the data sender successfully advanced the
1840 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1841 */
1842 list_for_each_safe(lchunk, temp, &q->abandoned) {
1843 chunk = list_entry(lchunk, struct sctp_chunk,
1844 transmitted_list);
1845 tsn = ntohl(chunk->subh.data_hdr->tsn);
1846
1847 /* Remove any chunks in the abandoned queue that are acked by
1848 * the ctsn.
1849 */
1850 if (TSN_lte(tsn, ctsn)) {
1851 list_del_init(lchunk);
1852 sctp_chunk_free(chunk);
1853 } else {
1854 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1855 asoc->adv_peer_ack_point = tsn;
1856 if (chunk->chunk_hdr->flags &
1857 SCTP_DATA_UNORDERED)
1858 continue;
1859 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1860 nskips,
1861 chunk->subh.data_hdr->stream);
1862 ftsn_skip_arr[skip_pos].stream =
1863 chunk->subh.data_hdr->stream;
1864 ftsn_skip_arr[skip_pos].ssn =
1865 chunk->subh.data_hdr->ssn;
1866 if (skip_pos == nskips)
1867 nskips++;
1868 if (nskips == 10)
1869 break;
1870 } else
1871 break;
1872 }
1873 }
1874
1875 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1876 * is greater than the Cumulative TSN ACK carried in the received
1877 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1878 * chunk containing the latest value of the
1879 * "Advanced.Peer.Ack.Point".
1880 *
1881 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1882 * list each stream and sequence number in the forwarded TSN. This
1883 * information will enable the receiver to easily find any
1884 * stranded TSN's waiting on stream reorder queues. Each stream
1885 * SHOULD only be reported once; this means that if multiple
1886 * abandoned messages occur in the same stream then only the
1887 * highest abandoned stream sequence number is reported. If the
1888 * total size of the FORWARD TSN does NOT fit in a single MTU then
1889 * the sender of the FORWARD TSN SHOULD lower the
1890 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1891 * single MTU.
1892 */
1893 if (asoc->adv_peer_ack_point > ctsn)
1894 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1895 nskips, &ftsn_skip_arr[0]);
1896
1897 if (ftsn_chunk) {
1898 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1899 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1900 }
1901 }