]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/outqueue.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / net / sctp / outqueue.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
50
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53
54 /* Declare internal functions here. */
55 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
56 static void sctp_check_transmitted(struct sctp_outq *q,
57 struct list_head *transmitted_queue,
58 struct sctp_transport *transport,
59 union sctp_addr *saddr,
60 struct sctp_sackhdr *sack,
61 __u32 *highest_new_tsn);
62
63 static void sctp_mark_missing(struct sctp_outq *q,
64 struct list_head *transmitted_queue,
65 struct sctp_transport *transport,
66 __u32 highest_new_tsn,
67 int count_of_newacks);
68
69 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
70
71 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
72
73 /* Add data to the front of the queue. */
74 static inline void sctp_outq_head_data(struct sctp_outq *q,
75 struct sctp_chunk *ch)
76 {
77 list_add(&ch->list, &q->out_chunk_list);
78 q->out_qlen += ch->skb->len;
79 }
80
81 /* Take data from the front of the queue. */
82 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
83 {
84 struct sctp_chunk *ch = NULL;
85
86 if (!list_empty(&q->out_chunk_list)) {
87 struct list_head *entry = q->out_chunk_list.next;
88
89 ch = list_entry(entry, struct sctp_chunk, list);
90 list_del_init(entry);
91 q->out_qlen -= ch->skb->len;
92 }
93 return ch;
94 }
95 /* Add data chunk to the end of the queue. */
96 static inline void sctp_outq_tail_data(struct sctp_outq *q,
97 struct sctp_chunk *ch)
98 {
99 list_add_tail(&ch->list, &q->out_chunk_list);
100 q->out_qlen += ch->skb->len;
101 }
102
103 /*
104 * SFR-CACC algorithm:
105 * D) If count_of_newacks is greater than or equal to 2
106 * and t was not sent to the current primary then the
107 * sender MUST NOT increment missing report count for t.
108 */
109 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
110 struct sctp_transport *transport,
111 int count_of_newacks)
112 {
113 if (count_of_newacks >= 2 && transport != primary)
114 return 1;
115 return 0;
116 }
117
118 /*
119 * SFR-CACC algorithm:
120 * F) If count_of_newacks is less than 2, let d be the
121 * destination to which t was sent. If cacc_saw_newack
122 * is 0 for destination d, then the sender MUST NOT
123 * increment missing report count for t.
124 */
125 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
126 int count_of_newacks)
127 {
128 if (count_of_newacks < 2 &&
129 (transport && !transport->cacc.cacc_saw_newack))
130 return 1;
131 return 0;
132 }
133
134 /*
135 * SFR-CACC algorithm:
136 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
137 * execute steps C, D, F.
138 *
139 * C has been implemented in sctp_outq_sack
140 */
141 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
142 struct sctp_transport *transport,
143 int count_of_newacks)
144 {
145 if (!primary->cacc.cycling_changeover) {
146 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
147 return 1;
148 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
149 return 1;
150 return 0;
151 }
152 return 0;
153 }
154
155 /*
156 * SFR-CACC algorithm:
157 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
158 * than next_tsn_at_change of the current primary, then
159 * the sender MUST NOT increment missing report count
160 * for t.
161 */
162 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
163 {
164 if (primary->cacc.cycling_changeover &&
165 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
166 return 1;
167 return 0;
168 }
169
170 /*
171 * SFR-CACC algorithm:
172 * 3) If the missing report count for TSN t is to be
173 * incremented according to [RFC2960] and
174 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
175 * then the sender MUST further execute steps 3.1 and
176 * 3.2 to determine if the missing report count for
177 * TSN t SHOULD NOT be incremented.
178 *
179 * 3.3) If 3.1 and 3.2 do not dictate that the missing
180 * report count for t should not be incremented, then
181 * the sender SHOULD increment missing report count for
182 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
183 */
184 static inline int sctp_cacc_skip(struct sctp_transport *primary,
185 struct sctp_transport *transport,
186 int count_of_newacks,
187 __u32 tsn)
188 {
189 if (primary->cacc.changeover_active &&
190 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
191 sctp_cacc_skip_3_2(primary, tsn)))
192 return 1;
193 return 0;
194 }
195
196 /* Initialize an existing sctp_outq. This does the boring stuff.
197 * You still need to define handlers if you really want to DO
198 * something with this structure...
199 */
200 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
201 {
202 memset(q, 0, sizeof(struct sctp_outq));
203
204 q->asoc = asoc;
205 INIT_LIST_HEAD(&q->out_chunk_list);
206 INIT_LIST_HEAD(&q->control_chunk_list);
207 INIT_LIST_HEAD(&q->retransmit);
208 INIT_LIST_HEAD(&q->sacked);
209 INIT_LIST_HEAD(&q->abandoned);
210 }
211
212 /* Free the outqueue structure and any related pending chunks.
213 */
214 static void __sctp_outq_teardown(struct sctp_outq *q)
215 {
216 struct sctp_transport *transport;
217 struct list_head *lchunk, *temp;
218 struct sctp_chunk *chunk, *tmp;
219
220 /* Throw away unacknowledged chunks. */
221 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
222 transports) {
223 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
224 chunk = list_entry(lchunk, struct sctp_chunk,
225 transmitted_list);
226 /* Mark as part of a failed message. */
227 sctp_chunk_fail(chunk, q->error);
228 sctp_chunk_free(chunk);
229 }
230 }
231
232 /* Throw away chunks that have been gap ACKed. */
233 list_for_each_safe(lchunk, temp, &q->sacked) {
234 list_del_init(lchunk);
235 chunk = list_entry(lchunk, struct sctp_chunk,
236 transmitted_list);
237 sctp_chunk_fail(chunk, q->error);
238 sctp_chunk_free(chunk);
239 }
240
241 /* Throw away any chunks in the retransmit queue. */
242 list_for_each_safe(lchunk, temp, &q->retransmit) {
243 list_del_init(lchunk);
244 chunk = list_entry(lchunk, struct sctp_chunk,
245 transmitted_list);
246 sctp_chunk_fail(chunk, q->error);
247 sctp_chunk_free(chunk);
248 }
249
250 /* Throw away any chunks that are in the abandoned queue. */
251 list_for_each_safe(lchunk, temp, &q->abandoned) {
252 list_del_init(lchunk);
253 chunk = list_entry(lchunk, struct sctp_chunk,
254 transmitted_list);
255 sctp_chunk_fail(chunk, q->error);
256 sctp_chunk_free(chunk);
257 }
258
259 /* Throw away any leftover data chunks. */
260 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
261
262 /* Mark as send failure. */
263 sctp_chunk_fail(chunk, q->error);
264 sctp_chunk_free(chunk);
265 }
266
267 /* Throw away any leftover control chunks. */
268 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
269 list_del_init(&chunk->list);
270 sctp_chunk_free(chunk);
271 }
272 }
273
274 void sctp_outq_teardown(struct sctp_outq *q)
275 {
276 __sctp_outq_teardown(q);
277 sctp_outq_init(q->asoc, q);
278 }
279
280 /* Free the outqueue structure and any related pending chunks. */
281 void sctp_outq_free(struct sctp_outq *q)
282 {
283 /* Throw away leftover chunks. */
284 __sctp_outq_teardown(q);
285 }
286
287 /* Put a new chunk in an sctp_outq. */
288 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
289 {
290 struct net *net = sock_net(q->asoc->base.sk);
291
292 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
293 chunk && chunk->chunk_hdr ?
294 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
295 "illegal chunk");
296
297 /* If it is data, queue it up, otherwise, send it
298 * immediately.
299 */
300 if (sctp_chunk_is_data(chunk)) {
301 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
302 __func__, q, chunk, chunk && chunk->chunk_hdr ?
303 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
304 "illegal chunk");
305
306 sctp_outq_tail_data(q, chunk);
307 if (chunk->asoc->peer.prsctp_capable &&
308 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
309 chunk->asoc->sent_cnt_removable++;
310 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
311 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
312 else
313 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
314 } else {
315 list_add_tail(&chunk->list, &q->control_chunk_list);
316 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
317 }
318
319 if (!q->cork)
320 sctp_outq_flush(q, 0, gfp);
321 }
322
323 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
324 * and the abandoned list are in ascending order.
325 */
326 static void sctp_insert_list(struct list_head *head, struct list_head *new)
327 {
328 struct list_head *pos;
329 struct sctp_chunk *nchunk, *lchunk;
330 __u32 ntsn, ltsn;
331 int done = 0;
332
333 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
334 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
335
336 list_for_each(pos, head) {
337 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
338 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
339 if (TSN_lt(ntsn, ltsn)) {
340 list_add(new, pos->prev);
341 done = 1;
342 break;
343 }
344 }
345 if (!done)
346 list_add_tail(new, head);
347 }
348
349 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
350 struct sctp_sndrcvinfo *sinfo,
351 struct list_head *queue, int msg_len)
352 {
353 struct sctp_chunk *chk, *temp;
354
355 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
356 struct sctp_stream_out *streamout;
357
358 if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
359 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)
360 continue;
361
362 list_del_init(&chk->transmitted_list);
363 sctp_insert_list(&asoc->outqueue.abandoned,
364 &chk->transmitted_list);
365
366 streamout = &asoc->stream.out[chk->sinfo.sinfo_stream];
367 asoc->sent_cnt_removable--;
368 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
369 streamout->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
370
371 if (!chk->tsn_gap_acked) {
372 if (chk->transport)
373 chk->transport->flight_size -=
374 sctp_data_size(chk);
375 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
376 }
377
378 msg_len -= SCTP_DATA_SNDSIZE(chk) +
379 sizeof(struct sk_buff) +
380 sizeof(struct sctp_chunk);
381 if (msg_len <= 0)
382 break;
383 }
384
385 return msg_len;
386 }
387
388 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
389 struct sctp_sndrcvinfo *sinfo, int msg_len)
390 {
391 struct sctp_outq *q = &asoc->outqueue;
392 struct sctp_chunk *chk, *temp;
393
394 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
395 if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
396 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)
397 continue;
398
399 list_del_init(&chk->list);
400 q->out_qlen -= chk->skb->len;
401 asoc->sent_cnt_removable--;
402 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
403 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
404 struct sctp_stream_out *streamout =
405 &asoc->stream.out[chk->sinfo.sinfo_stream];
406
407 streamout->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
408 }
409
410 msg_len -= SCTP_DATA_SNDSIZE(chk) +
411 sizeof(struct sk_buff) +
412 sizeof(struct sctp_chunk);
413 sctp_chunk_free(chk);
414 if (msg_len <= 0)
415 break;
416 }
417
418 return msg_len;
419 }
420
421 /* Abandon the chunks according their priorities */
422 void sctp_prsctp_prune(struct sctp_association *asoc,
423 struct sctp_sndrcvinfo *sinfo, int msg_len)
424 {
425 struct sctp_transport *transport;
426
427 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
428 return;
429
430 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
431 &asoc->outqueue.retransmit,
432 msg_len);
433 if (msg_len <= 0)
434 return;
435
436 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
437 transports) {
438 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
439 &transport->transmitted,
440 msg_len);
441 if (msg_len <= 0)
442 return;
443 }
444
445 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
446 }
447
448 /* Mark all the eligible packets on a transport for retransmission. */
449 void sctp_retransmit_mark(struct sctp_outq *q,
450 struct sctp_transport *transport,
451 __u8 reason)
452 {
453 struct list_head *lchunk, *ltemp;
454 struct sctp_chunk *chunk;
455
456 /* Walk through the specified transmitted queue. */
457 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
458 chunk = list_entry(lchunk, struct sctp_chunk,
459 transmitted_list);
460
461 /* If the chunk is abandoned, move it to abandoned list. */
462 if (sctp_chunk_abandoned(chunk)) {
463 list_del_init(lchunk);
464 sctp_insert_list(&q->abandoned, lchunk);
465
466 /* If this chunk has not been previousely acked,
467 * stop considering it 'outstanding'. Our peer
468 * will most likely never see it since it will
469 * not be retransmitted
470 */
471 if (!chunk->tsn_gap_acked) {
472 if (chunk->transport)
473 chunk->transport->flight_size -=
474 sctp_data_size(chunk);
475 q->outstanding_bytes -= sctp_data_size(chunk);
476 q->asoc->peer.rwnd += sctp_data_size(chunk);
477 }
478 continue;
479 }
480
481 /* If we are doing retransmission due to a timeout or pmtu
482 * discovery, only the chunks that are not yet acked should
483 * be added to the retransmit queue.
484 */
485 if ((reason == SCTP_RTXR_FAST_RTX &&
486 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
487 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
488 /* RFC 2960 6.2.1 Processing a Received SACK
489 *
490 * C) Any time a DATA chunk is marked for
491 * retransmission (via either T3-rtx timer expiration
492 * (Section 6.3.3) or via fast retransmit
493 * (Section 7.2.4)), add the data size of those
494 * chunks to the rwnd.
495 */
496 q->asoc->peer.rwnd += sctp_data_size(chunk);
497 q->outstanding_bytes -= sctp_data_size(chunk);
498 if (chunk->transport)
499 transport->flight_size -= sctp_data_size(chunk);
500
501 /* sctpimpguide-05 Section 2.8.2
502 * M5) If a T3-rtx timer expires, the
503 * 'TSN.Missing.Report' of all affected TSNs is set
504 * to 0.
505 */
506 chunk->tsn_missing_report = 0;
507
508 /* If a chunk that is being used for RTT measurement
509 * has to be retransmitted, we cannot use this chunk
510 * anymore for RTT measurements. Reset rto_pending so
511 * that a new RTT measurement is started when a new
512 * data chunk is sent.
513 */
514 if (chunk->rtt_in_progress) {
515 chunk->rtt_in_progress = 0;
516 transport->rto_pending = 0;
517 }
518
519 /* Move the chunk to the retransmit queue. The chunks
520 * on the retransmit queue are always kept in order.
521 */
522 list_del_init(lchunk);
523 sctp_insert_list(&q->retransmit, lchunk);
524 }
525 }
526
527 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
528 "flight_size:%d, pba:%d\n", __func__, transport, reason,
529 transport->cwnd, transport->ssthresh, transport->flight_size,
530 transport->partial_bytes_acked);
531 }
532
533 /* Mark all the eligible packets on a transport for retransmission and force
534 * one packet out.
535 */
536 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
537 sctp_retransmit_reason_t reason)
538 {
539 struct net *net = sock_net(q->asoc->base.sk);
540
541 switch (reason) {
542 case SCTP_RTXR_T3_RTX:
543 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
544 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
545 /* Update the retran path if the T3-rtx timer has expired for
546 * the current retran path.
547 */
548 if (transport == transport->asoc->peer.retran_path)
549 sctp_assoc_update_retran_path(transport->asoc);
550 transport->asoc->rtx_data_chunks +=
551 transport->asoc->unack_data;
552 break;
553 case SCTP_RTXR_FAST_RTX:
554 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
555 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
556 q->fast_rtx = 1;
557 break;
558 case SCTP_RTXR_PMTUD:
559 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
560 break;
561 case SCTP_RTXR_T1_RTX:
562 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
563 transport->asoc->init_retries++;
564 break;
565 default:
566 BUG();
567 }
568
569 sctp_retransmit_mark(q, transport, reason);
570
571 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
572 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
573 * following the procedures outlined in C1 - C5.
574 */
575 if (reason == SCTP_RTXR_T3_RTX)
576 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
577
578 /* Flush the queues only on timeout, since fast_rtx is only
579 * triggered during sack processing and the queue
580 * will be flushed at the end.
581 */
582 if (reason != SCTP_RTXR_FAST_RTX)
583 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
584 }
585
586 /*
587 * Transmit DATA chunks on the retransmit queue. Upon return from
588 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
589 * need to be transmitted by the caller.
590 * We assume that pkt->transport has already been set.
591 *
592 * The return value is a normal kernel error return value.
593 */
594 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
595 int rtx_timeout, int *start_timer)
596 {
597 struct list_head *lqueue;
598 struct sctp_transport *transport = pkt->transport;
599 sctp_xmit_t status;
600 struct sctp_chunk *chunk, *chunk1;
601 int fast_rtx;
602 int error = 0;
603 int timer = 0;
604 int done = 0;
605
606 lqueue = &q->retransmit;
607 fast_rtx = q->fast_rtx;
608
609 /* This loop handles time-out retransmissions, fast retransmissions,
610 * and retransmissions due to opening of whindow.
611 *
612 * RFC 2960 6.3.3 Handle T3-rtx Expiration
613 *
614 * E3) Determine how many of the earliest (i.e., lowest TSN)
615 * outstanding DATA chunks for the address for which the
616 * T3-rtx has expired will fit into a single packet, subject
617 * to the MTU constraint for the path corresponding to the
618 * destination transport address to which the retransmission
619 * is being sent (this may be different from the address for
620 * which the timer expires [see Section 6.4]). Call this value
621 * K. Bundle and retransmit those K DATA chunks in a single
622 * packet to the destination endpoint.
623 *
624 * [Just to be painfully clear, if we are retransmitting
625 * because a timeout just happened, we should send only ONE
626 * packet of retransmitted data.]
627 *
628 * For fast retransmissions we also send only ONE packet. However,
629 * if we are just flushing the queue due to open window, we'll
630 * try to send as much as possible.
631 */
632 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
633 /* If the chunk is abandoned, move it to abandoned list. */
634 if (sctp_chunk_abandoned(chunk)) {
635 list_del_init(&chunk->transmitted_list);
636 sctp_insert_list(&q->abandoned,
637 &chunk->transmitted_list);
638 continue;
639 }
640
641 /* Make sure that Gap Acked TSNs are not retransmitted. A
642 * simple approach is just to move such TSNs out of the
643 * way and into a 'transmitted' queue and skip to the
644 * next chunk.
645 */
646 if (chunk->tsn_gap_acked) {
647 list_move_tail(&chunk->transmitted_list,
648 &transport->transmitted);
649 continue;
650 }
651
652 /* If we are doing fast retransmit, ignore non-fast_rtransmit
653 * chunks
654 */
655 if (fast_rtx && !chunk->fast_retransmit)
656 continue;
657
658 redo:
659 /* Attempt to append this chunk to the packet. */
660 status = sctp_packet_append_chunk(pkt, chunk);
661
662 switch (status) {
663 case SCTP_XMIT_PMTU_FULL:
664 if (!pkt->has_data && !pkt->has_cookie_echo) {
665 /* If this packet did not contain DATA then
666 * retransmission did not happen, so do it
667 * again. We'll ignore the error here since
668 * control chunks are already freed so there
669 * is nothing we can do.
670 */
671 sctp_packet_transmit(pkt, GFP_ATOMIC);
672 goto redo;
673 }
674
675 /* Send this packet. */
676 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
677
678 /* If we are retransmitting, we should only
679 * send a single packet.
680 * Otherwise, try appending this chunk again.
681 */
682 if (rtx_timeout || fast_rtx)
683 done = 1;
684 else
685 goto redo;
686
687 /* Bundle next chunk in the next round. */
688 break;
689
690 case SCTP_XMIT_RWND_FULL:
691 /* Send this packet. */
692 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
693
694 /* Stop sending DATA as there is no more room
695 * at the receiver.
696 */
697 done = 1;
698 break;
699
700 case SCTP_XMIT_DELAY:
701 /* Send this packet. */
702 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
703
704 /* Stop sending DATA because of nagle delay. */
705 done = 1;
706 break;
707
708 default:
709 /* The append was successful, so add this chunk to
710 * the transmitted list.
711 */
712 list_move_tail(&chunk->transmitted_list,
713 &transport->transmitted);
714
715 /* Mark the chunk as ineligible for fast retransmit
716 * after it is retransmitted.
717 */
718 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
719 chunk->fast_retransmit = SCTP_DONT_FRTX;
720
721 q->asoc->stats.rtxchunks++;
722 break;
723 }
724
725 /* Set the timer if there were no errors */
726 if (!error && !timer)
727 timer = 1;
728
729 if (done)
730 break;
731 }
732
733 /* If we are here due to a retransmit timeout or a fast
734 * retransmit and if there are any chunks left in the retransmit
735 * queue that could not fit in the PMTU sized packet, they need
736 * to be marked as ineligible for a subsequent fast retransmit.
737 */
738 if (rtx_timeout || fast_rtx) {
739 list_for_each_entry(chunk1, lqueue, transmitted_list) {
740 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
741 chunk1->fast_retransmit = SCTP_DONT_FRTX;
742 }
743 }
744
745 *start_timer = timer;
746
747 /* Clear fast retransmit hint */
748 if (fast_rtx)
749 q->fast_rtx = 0;
750
751 return error;
752 }
753
754 /* Cork the outqueue so queued chunks are really queued. */
755 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
756 {
757 if (q->cork)
758 q->cork = 0;
759
760 sctp_outq_flush(q, 0, gfp);
761 }
762
763
764 /*
765 * Try to flush an outqueue.
766 *
767 * Description: Send everything in q which we legally can, subject to
768 * congestion limitations.
769 * * Note: This function can be called from multiple contexts so appropriate
770 * locking concerns must be made. Today we use the sock lock to protect
771 * this function.
772 */
773 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
774 {
775 struct sctp_packet *packet;
776 struct sctp_packet singleton;
777 struct sctp_association *asoc = q->asoc;
778 __u16 sport = asoc->base.bind_addr.port;
779 __u16 dport = asoc->peer.port;
780 __u32 vtag = asoc->peer.i.init_tag;
781 struct sctp_transport *transport = NULL;
782 struct sctp_transport *new_transport;
783 struct sctp_chunk *chunk, *tmp;
784 sctp_xmit_t status;
785 int error = 0;
786 int start_timer = 0;
787 int one_packet = 0;
788
789 /* These transports have chunks to send. */
790 struct list_head transport_list;
791 struct list_head *ltransport;
792
793 INIT_LIST_HEAD(&transport_list);
794 packet = NULL;
795
796 /*
797 * 6.10 Bundling
798 * ...
799 * When bundling control chunks with DATA chunks, an
800 * endpoint MUST place control chunks first in the outbound
801 * SCTP packet. The transmitter MUST transmit DATA chunks
802 * within a SCTP packet in increasing order of TSN.
803 * ...
804 */
805
806 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
807 /* RFC 5061, 5.3
808 * F1) This means that until such time as the ASCONF
809 * containing the add is acknowledged, the sender MUST
810 * NOT use the new IP address as a source for ANY SCTP
811 * packet except on carrying an ASCONF Chunk.
812 */
813 if (asoc->src_out_of_asoc_ok &&
814 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
815 continue;
816
817 list_del_init(&chunk->list);
818
819 /* Pick the right transport to use. */
820 new_transport = chunk->transport;
821
822 if (!new_transport) {
823 /*
824 * If we have a prior transport pointer, see if
825 * the destination address of the chunk
826 * matches the destination address of the
827 * current transport. If not a match, then
828 * try to look up the transport with a given
829 * destination address. We do this because
830 * after processing ASCONFs, we may have new
831 * transports created.
832 */
833 if (transport &&
834 sctp_cmp_addr_exact(&chunk->dest,
835 &transport->ipaddr))
836 new_transport = transport;
837 else
838 new_transport = sctp_assoc_lookup_paddr(asoc,
839 &chunk->dest);
840
841 /* if we still don't have a new transport, then
842 * use the current active path.
843 */
844 if (!new_transport)
845 new_transport = asoc->peer.active_path;
846 } else if ((new_transport->state == SCTP_INACTIVE) ||
847 (new_transport->state == SCTP_UNCONFIRMED) ||
848 (new_transport->state == SCTP_PF)) {
849 /* If the chunk is Heartbeat or Heartbeat Ack,
850 * send it to chunk->transport, even if it's
851 * inactive.
852 *
853 * 3.3.6 Heartbeat Acknowledgement:
854 * ...
855 * A HEARTBEAT ACK is always sent to the source IP
856 * address of the IP datagram containing the
857 * HEARTBEAT chunk to which this ack is responding.
858 * ...
859 *
860 * ASCONF_ACKs also must be sent to the source.
861 */
862 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
863 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
864 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
865 new_transport = asoc->peer.active_path;
866 }
867
868 /* Are we switching transports?
869 * Take care of transport locks.
870 */
871 if (new_transport != transport) {
872 transport = new_transport;
873 if (list_empty(&transport->send_ready)) {
874 list_add_tail(&transport->send_ready,
875 &transport_list);
876 }
877 packet = &transport->packet;
878 sctp_packet_config(packet, vtag,
879 asoc->peer.ecn_capable);
880 }
881
882 switch (chunk->chunk_hdr->type) {
883 /*
884 * 6.10 Bundling
885 * ...
886 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
887 * COMPLETE with any other chunks. [Send them immediately.]
888 */
889 case SCTP_CID_INIT:
890 case SCTP_CID_INIT_ACK:
891 case SCTP_CID_SHUTDOWN_COMPLETE:
892 sctp_packet_init(&singleton, transport, sport, dport);
893 sctp_packet_config(&singleton, vtag, 0);
894 sctp_packet_append_chunk(&singleton, chunk);
895 error = sctp_packet_transmit(&singleton, gfp);
896 if (error < 0) {
897 asoc->base.sk->sk_err = -error;
898 return;
899 }
900 break;
901
902 case SCTP_CID_ABORT:
903 if (sctp_test_T_bit(chunk)) {
904 packet->vtag = asoc->c.my_vtag;
905 }
906 /* The following chunks are "response" chunks, i.e.
907 * they are generated in response to something we
908 * received. If we are sending these, then we can
909 * send only 1 packet containing these chunks.
910 */
911 case SCTP_CID_HEARTBEAT_ACK:
912 case SCTP_CID_SHUTDOWN_ACK:
913 case SCTP_CID_COOKIE_ACK:
914 case SCTP_CID_COOKIE_ECHO:
915 case SCTP_CID_ERROR:
916 case SCTP_CID_ECN_CWR:
917 case SCTP_CID_ASCONF_ACK:
918 one_packet = 1;
919 /* Fall through */
920
921 case SCTP_CID_SACK:
922 case SCTP_CID_HEARTBEAT:
923 case SCTP_CID_SHUTDOWN:
924 case SCTP_CID_ECN_ECNE:
925 case SCTP_CID_ASCONF:
926 case SCTP_CID_FWD_TSN:
927 case SCTP_CID_RECONF:
928 status = sctp_packet_transmit_chunk(packet, chunk,
929 one_packet, gfp);
930 if (status != SCTP_XMIT_OK) {
931 /* put the chunk back */
932 list_add(&chunk->list, &q->control_chunk_list);
933 break;
934 }
935
936 asoc->stats.octrlchunks++;
937 /* PR-SCTP C5) If a FORWARD TSN is sent, the
938 * sender MUST assure that at least one T3-rtx
939 * timer is running.
940 */
941 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) {
942 sctp_transport_reset_t3_rtx(transport);
943 transport->last_time_sent = jiffies;
944 }
945
946 if (chunk == asoc->strreset_chunk)
947 sctp_transport_reset_reconf_timer(transport);
948
949 break;
950
951 default:
952 /* We built a chunk with an illegal type! */
953 BUG();
954 }
955 }
956
957 if (q->asoc->src_out_of_asoc_ok)
958 goto sctp_flush_out;
959
960 /* Is it OK to send data chunks? */
961 switch (asoc->state) {
962 case SCTP_STATE_COOKIE_ECHOED:
963 /* Only allow bundling when this packet has a COOKIE-ECHO
964 * chunk.
965 */
966 if (!packet || !packet->has_cookie_echo)
967 break;
968
969 /* fallthru */
970 case SCTP_STATE_ESTABLISHED:
971 case SCTP_STATE_SHUTDOWN_PENDING:
972 case SCTP_STATE_SHUTDOWN_RECEIVED:
973 /*
974 * RFC 2960 6.1 Transmission of DATA Chunks
975 *
976 * C) When the time comes for the sender to transmit,
977 * before sending new DATA chunks, the sender MUST
978 * first transmit any outstanding DATA chunks which
979 * are marked for retransmission (limited by the
980 * current cwnd).
981 */
982 if (!list_empty(&q->retransmit)) {
983 if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
984 goto sctp_flush_out;
985 if (transport == asoc->peer.retran_path)
986 goto retran;
987
988 /* Switch transports & prepare the packet. */
989
990 transport = asoc->peer.retran_path;
991
992 if (list_empty(&transport->send_ready)) {
993 list_add_tail(&transport->send_ready,
994 &transport_list);
995 }
996
997 packet = &transport->packet;
998 sctp_packet_config(packet, vtag,
999 asoc->peer.ecn_capable);
1000 retran:
1001 error = sctp_outq_flush_rtx(q, packet,
1002 rtx_timeout, &start_timer);
1003 if (error < 0)
1004 asoc->base.sk->sk_err = -error;
1005
1006 if (start_timer) {
1007 sctp_transport_reset_t3_rtx(transport);
1008 transport->last_time_sent = jiffies;
1009 }
1010
1011 /* This can happen on COOKIE-ECHO resend. Only
1012 * one chunk can get bundled with a COOKIE-ECHO.
1013 */
1014 if (packet->has_cookie_echo)
1015 goto sctp_flush_out;
1016
1017 /* Don't send new data if there is still data
1018 * waiting to retransmit.
1019 */
1020 if (!list_empty(&q->retransmit))
1021 goto sctp_flush_out;
1022 }
1023
1024 /* Apply Max.Burst limitation to the current transport in
1025 * case it will be used for new data. We are going to
1026 * rest it before we return, but we want to apply the limit
1027 * to the currently queued data.
1028 */
1029 if (transport)
1030 sctp_transport_burst_limited(transport);
1031
1032 /* Finally, transmit new packets. */
1033 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
1034 __u32 sid = ntohs(chunk->subh.data_hdr->stream);
1035
1036 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
1037 * stream identifier.
1038 */
1039 if (chunk->sinfo.sinfo_stream >= asoc->stream.outcnt) {
1040
1041 /* Mark as failed send. */
1042 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
1043 if (asoc->peer.prsctp_capable &&
1044 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1045 asoc->sent_cnt_removable--;
1046 sctp_chunk_free(chunk);
1047 continue;
1048 }
1049
1050 /* Has this chunk expired? */
1051 if (sctp_chunk_abandoned(chunk)) {
1052 sctp_chunk_fail(chunk, 0);
1053 sctp_chunk_free(chunk);
1054 continue;
1055 }
1056
1057 if (asoc->stream.out[sid].state == SCTP_STREAM_CLOSED) {
1058 sctp_outq_head_data(q, chunk);
1059 goto sctp_flush_out;
1060 }
1061
1062 /* If there is a specified transport, use it.
1063 * Otherwise, we want to use the active path.
1064 */
1065 new_transport = chunk->transport;
1066 if (!new_transport ||
1067 ((new_transport->state == SCTP_INACTIVE) ||
1068 (new_transport->state == SCTP_UNCONFIRMED) ||
1069 (new_transport->state == SCTP_PF)))
1070 new_transport = asoc->peer.active_path;
1071 if (new_transport->state == SCTP_UNCONFIRMED) {
1072 WARN_ONCE(1, "Attempt to send packet on unconfirmed path.");
1073 sctp_chunk_fail(chunk, 0);
1074 sctp_chunk_free(chunk);
1075 continue;
1076 }
1077
1078 /* Change packets if necessary. */
1079 if (new_transport != transport) {
1080 transport = new_transport;
1081
1082 /* Schedule to have this transport's
1083 * packet flushed.
1084 */
1085 if (list_empty(&transport->send_ready)) {
1086 list_add_tail(&transport->send_ready,
1087 &transport_list);
1088 }
1089
1090 packet = &transport->packet;
1091 sctp_packet_config(packet, vtag,
1092 asoc->peer.ecn_capable);
1093 /* We've switched transports, so apply the
1094 * Burst limit to the new transport.
1095 */
1096 sctp_transport_burst_limited(transport);
1097 }
1098
1099 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1100 "skb->users:%d\n",
1101 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1102 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1103 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1104 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1105 refcount_read(&chunk->skb->users) : -1);
1106
1107 /* Add the chunk to the packet. */
1108 status = sctp_packet_transmit_chunk(packet, chunk, 0, gfp);
1109
1110 switch (status) {
1111 case SCTP_XMIT_PMTU_FULL:
1112 case SCTP_XMIT_RWND_FULL:
1113 case SCTP_XMIT_DELAY:
1114 /* We could not append this chunk, so put
1115 * the chunk back on the output queue.
1116 */
1117 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1118 __func__, ntohl(chunk->subh.data_hdr->tsn),
1119 status);
1120
1121 sctp_outq_head_data(q, chunk);
1122 goto sctp_flush_out;
1123
1124 case SCTP_XMIT_OK:
1125 /* The sender is in the SHUTDOWN-PENDING state,
1126 * The sender MAY set the I-bit in the DATA
1127 * chunk header.
1128 */
1129 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1130 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1131 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1132 asoc->stats.ouodchunks++;
1133 else
1134 asoc->stats.oodchunks++;
1135
1136 break;
1137
1138 default:
1139 BUG();
1140 }
1141
1142 /* BUG: We assume that the sctp_packet_transmit()
1143 * call below will succeed all the time and add the
1144 * chunk to the transmitted list and restart the
1145 * timers.
1146 * It is possible that the call can fail under OOM
1147 * conditions.
1148 *
1149 * Is this really a problem? Won't this behave
1150 * like a lost TSN?
1151 */
1152 list_add_tail(&chunk->transmitted_list,
1153 &transport->transmitted);
1154
1155 sctp_transport_reset_t3_rtx(transport);
1156 transport->last_time_sent = jiffies;
1157
1158 /* Only let one DATA chunk get bundled with a
1159 * COOKIE-ECHO chunk.
1160 */
1161 if (packet->has_cookie_echo)
1162 goto sctp_flush_out;
1163 }
1164 break;
1165
1166 default:
1167 /* Do nothing. */
1168 break;
1169 }
1170
1171 sctp_flush_out:
1172
1173 /* Before returning, examine all the transports touched in
1174 * this call. Right now, we bluntly force clear all the
1175 * transports. Things might change after we implement Nagle.
1176 * But such an examination is still required.
1177 *
1178 * --xguo
1179 */
1180 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL) {
1181 struct sctp_transport *t = list_entry(ltransport,
1182 struct sctp_transport,
1183 send_ready);
1184 packet = &t->packet;
1185 if (!sctp_packet_empty(packet)) {
1186 error = sctp_packet_transmit(packet, gfp);
1187 if (error < 0)
1188 asoc->base.sk->sk_err = -error;
1189 }
1190
1191 /* Clear the burst limited state, if any */
1192 sctp_transport_burst_reset(t);
1193 }
1194 }
1195
1196 /* Update unack_data based on the incoming SACK chunk */
1197 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1198 struct sctp_sackhdr *sack)
1199 {
1200 sctp_sack_variable_t *frags;
1201 __u16 unack_data;
1202 int i;
1203
1204 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1205
1206 frags = sack->variable;
1207 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1208 unack_data -= ((ntohs(frags[i].gab.end) -
1209 ntohs(frags[i].gab.start) + 1));
1210 }
1211
1212 assoc->unack_data = unack_data;
1213 }
1214
1215 /* This is where we REALLY process a SACK.
1216 *
1217 * Process the SACK against the outqueue. Mostly, this just frees
1218 * things off the transmitted queue.
1219 */
1220 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1221 {
1222 struct sctp_association *asoc = q->asoc;
1223 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1224 struct sctp_transport *transport;
1225 struct sctp_chunk *tchunk = NULL;
1226 struct list_head *lchunk, *transport_list, *temp;
1227 sctp_sack_variable_t *frags = sack->variable;
1228 __u32 sack_ctsn, ctsn, tsn;
1229 __u32 highest_tsn, highest_new_tsn;
1230 __u32 sack_a_rwnd;
1231 unsigned int outstanding;
1232 struct sctp_transport *primary = asoc->peer.primary_path;
1233 int count_of_newacks = 0;
1234 int gap_ack_blocks;
1235 u8 accum_moved = 0;
1236
1237 /* Grab the association's destination address list. */
1238 transport_list = &asoc->peer.transport_addr_list;
1239
1240 sack_ctsn = ntohl(sack->cum_tsn_ack);
1241 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1242 asoc->stats.gapcnt += gap_ack_blocks;
1243 /*
1244 * SFR-CACC algorithm:
1245 * On receipt of a SACK the sender SHOULD execute the
1246 * following statements.
1247 *
1248 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1249 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1250 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1251 * all destinations.
1252 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1253 * is set the receiver of the SACK MUST take the following actions:
1254 *
1255 * A) Initialize the cacc_saw_newack to 0 for all destination
1256 * addresses.
1257 *
1258 * Only bother if changeover_active is set. Otherwise, this is
1259 * totally suboptimal to do on every SACK.
1260 */
1261 if (primary->cacc.changeover_active) {
1262 u8 clear_cycling = 0;
1263
1264 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1265 primary->cacc.changeover_active = 0;
1266 clear_cycling = 1;
1267 }
1268
1269 if (clear_cycling || gap_ack_blocks) {
1270 list_for_each_entry(transport, transport_list,
1271 transports) {
1272 if (clear_cycling)
1273 transport->cacc.cycling_changeover = 0;
1274 if (gap_ack_blocks)
1275 transport->cacc.cacc_saw_newack = 0;
1276 }
1277 }
1278 }
1279
1280 /* Get the highest TSN in the sack. */
1281 highest_tsn = sack_ctsn;
1282 if (gap_ack_blocks)
1283 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1284
1285 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1286 asoc->highest_sacked = highest_tsn;
1287
1288 highest_new_tsn = sack_ctsn;
1289
1290 /* Run through the retransmit queue. Credit bytes received
1291 * and free those chunks that we can.
1292 */
1293 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1294
1295 /* Run through the transmitted queue.
1296 * Credit bytes received and free those chunks which we can.
1297 *
1298 * This is a MASSIVE candidate for optimization.
1299 */
1300 list_for_each_entry(transport, transport_list, transports) {
1301 sctp_check_transmitted(q, &transport->transmitted,
1302 transport, &chunk->source, sack,
1303 &highest_new_tsn);
1304 /*
1305 * SFR-CACC algorithm:
1306 * C) Let count_of_newacks be the number of
1307 * destinations for which cacc_saw_newack is set.
1308 */
1309 if (transport->cacc.cacc_saw_newack)
1310 count_of_newacks++;
1311 }
1312
1313 /* Move the Cumulative TSN Ack Point if appropriate. */
1314 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1315 asoc->ctsn_ack_point = sack_ctsn;
1316 accum_moved = 1;
1317 }
1318
1319 if (gap_ack_blocks) {
1320
1321 if (asoc->fast_recovery && accum_moved)
1322 highest_new_tsn = highest_tsn;
1323
1324 list_for_each_entry(transport, transport_list, transports)
1325 sctp_mark_missing(q, &transport->transmitted, transport,
1326 highest_new_tsn, count_of_newacks);
1327 }
1328
1329 /* Update unack_data field in the assoc. */
1330 sctp_sack_update_unack_data(asoc, sack);
1331
1332 ctsn = asoc->ctsn_ack_point;
1333
1334 /* Throw away stuff rotting on the sack queue. */
1335 list_for_each_safe(lchunk, temp, &q->sacked) {
1336 tchunk = list_entry(lchunk, struct sctp_chunk,
1337 transmitted_list);
1338 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1339 if (TSN_lte(tsn, ctsn)) {
1340 list_del_init(&tchunk->transmitted_list);
1341 if (asoc->peer.prsctp_capable &&
1342 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1343 asoc->sent_cnt_removable--;
1344 sctp_chunk_free(tchunk);
1345 }
1346 }
1347
1348 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1349 * number of bytes still outstanding after processing the
1350 * Cumulative TSN Ack and the Gap Ack Blocks.
1351 */
1352
1353 sack_a_rwnd = ntohl(sack->a_rwnd);
1354 asoc->peer.zero_window_announced = !sack_a_rwnd;
1355 outstanding = q->outstanding_bytes;
1356
1357 if (outstanding < sack_a_rwnd)
1358 sack_a_rwnd -= outstanding;
1359 else
1360 sack_a_rwnd = 0;
1361
1362 asoc->peer.rwnd = sack_a_rwnd;
1363
1364 sctp_generate_fwdtsn(q, sack_ctsn);
1365
1366 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1367 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1368 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1369 asoc->adv_peer_ack_point);
1370
1371 return sctp_outq_is_empty(q);
1372 }
1373
1374 /* Is the outqueue empty?
1375 * The queue is empty when we have not pending data, no in-flight data
1376 * and nothing pending retransmissions.
1377 */
1378 int sctp_outq_is_empty(const struct sctp_outq *q)
1379 {
1380 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1381 list_empty(&q->retransmit);
1382 }
1383
1384 /********************************************************************
1385 * 2nd Level Abstractions
1386 ********************************************************************/
1387
1388 /* Go through a transport's transmitted list or the association's retransmit
1389 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1390 * The retransmit list will not have an associated transport.
1391 *
1392 * I added coherent debug information output. --xguo
1393 *
1394 * Instead of printing 'sacked' or 'kept' for each TSN on the
1395 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1396 * KEPT TSN6-TSN7, etc.
1397 */
1398 static void sctp_check_transmitted(struct sctp_outq *q,
1399 struct list_head *transmitted_queue,
1400 struct sctp_transport *transport,
1401 union sctp_addr *saddr,
1402 struct sctp_sackhdr *sack,
1403 __u32 *highest_new_tsn_in_sack)
1404 {
1405 struct list_head *lchunk;
1406 struct sctp_chunk *tchunk;
1407 struct list_head tlist;
1408 __u32 tsn;
1409 __u32 sack_ctsn;
1410 __u32 rtt;
1411 __u8 restart_timer = 0;
1412 int bytes_acked = 0;
1413 int migrate_bytes = 0;
1414 bool forward_progress = false;
1415
1416 sack_ctsn = ntohl(sack->cum_tsn_ack);
1417
1418 INIT_LIST_HEAD(&tlist);
1419
1420 /* The while loop will skip empty transmitted queues. */
1421 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1422 tchunk = list_entry(lchunk, struct sctp_chunk,
1423 transmitted_list);
1424
1425 if (sctp_chunk_abandoned(tchunk)) {
1426 /* Move the chunk to abandoned list. */
1427 sctp_insert_list(&q->abandoned, lchunk);
1428
1429 /* If this chunk has not been acked, stop
1430 * considering it as 'outstanding'.
1431 */
1432 if (!tchunk->tsn_gap_acked) {
1433 if (tchunk->transport)
1434 tchunk->transport->flight_size -=
1435 sctp_data_size(tchunk);
1436 q->outstanding_bytes -= sctp_data_size(tchunk);
1437 }
1438 continue;
1439 }
1440
1441 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1442 if (sctp_acked(sack, tsn)) {
1443 /* If this queue is the retransmit queue, the
1444 * retransmit timer has already reclaimed
1445 * the outstanding bytes for this chunk, so only
1446 * count bytes associated with a transport.
1447 */
1448 if (transport) {
1449 /* If this chunk is being used for RTT
1450 * measurement, calculate the RTT and update
1451 * the RTO using this value.
1452 *
1453 * 6.3.1 C5) Karn's algorithm: RTT measurements
1454 * MUST NOT be made using packets that were
1455 * retransmitted (and thus for which it is
1456 * ambiguous whether the reply was for the
1457 * first instance of the packet or a later
1458 * instance).
1459 */
1460 if (!tchunk->tsn_gap_acked &&
1461 !sctp_chunk_retransmitted(tchunk) &&
1462 tchunk->rtt_in_progress) {
1463 tchunk->rtt_in_progress = 0;
1464 rtt = jiffies - tchunk->sent_at;
1465 sctp_transport_update_rto(transport,
1466 rtt);
1467 }
1468 }
1469
1470 /* If the chunk hasn't been marked as ACKED,
1471 * mark it and account bytes_acked if the
1472 * chunk had a valid transport (it will not
1473 * have a transport if ASCONF had deleted it
1474 * while DATA was outstanding).
1475 */
1476 if (!tchunk->tsn_gap_acked) {
1477 tchunk->tsn_gap_acked = 1;
1478 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1479 *highest_new_tsn_in_sack = tsn;
1480 bytes_acked += sctp_data_size(tchunk);
1481 if (!tchunk->transport)
1482 migrate_bytes += sctp_data_size(tchunk);
1483 forward_progress = true;
1484 }
1485
1486 if (TSN_lte(tsn, sack_ctsn)) {
1487 /* RFC 2960 6.3.2 Retransmission Timer Rules
1488 *
1489 * R3) Whenever a SACK is received
1490 * that acknowledges the DATA chunk
1491 * with the earliest outstanding TSN
1492 * for that address, restart T3-rtx
1493 * timer for that address with its
1494 * current RTO.
1495 */
1496 restart_timer = 1;
1497 forward_progress = true;
1498
1499 if (!tchunk->tsn_gap_acked) {
1500 /*
1501 * SFR-CACC algorithm:
1502 * 2) If the SACK contains gap acks
1503 * and the flag CHANGEOVER_ACTIVE is
1504 * set the receiver of the SACK MUST
1505 * take the following action:
1506 *
1507 * B) For each TSN t being acked that
1508 * has not been acked in any SACK so
1509 * far, set cacc_saw_newack to 1 for
1510 * the destination that the TSN was
1511 * sent to.
1512 */
1513 if (transport &&
1514 sack->num_gap_ack_blocks &&
1515 q->asoc->peer.primary_path->cacc.
1516 changeover_active)
1517 transport->cacc.cacc_saw_newack
1518 = 1;
1519 }
1520
1521 list_add_tail(&tchunk->transmitted_list,
1522 &q->sacked);
1523 } else {
1524 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1525 * M2) Each time a SACK arrives reporting
1526 * 'Stray DATA chunk(s)' record the highest TSN
1527 * reported as newly acknowledged, call this
1528 * value 'HighestTSNinSack'. A newly
1529 * acknowledged DATA chunk is one not
1530 * previously acknowledged in a SACK.
1531 *
1532 * When the SCTP sender of data receives a SACK
1533 * chunk that acknowledges, for the first time,
1534 * the receipt of a DATA chunk, all the still
1535 * unacknowledged DATA chunks whose TSN is
1536 * older than that newly acknowledged DATA
1537 * chunk, are qualified as 'Stray DATA chunks'.
1538 */
1539 list_add_tail(lchunk, &tlist);
1540 }
1541 } else {
1542 if (tchunk->tsn_gap_acked) {
1543 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1544 __func__, tsn);
1545
1546 tchunk->tsn_gap_acked = 0;
1547
1548 if (tchunk->transport)
1549 bytes_acked -= sctp_data_size(tchunk);
1550
1551 /* RFC 2960 6.3.2 Retransmission Timer Rules
1552 *
1553 * R4) Whenever a SACK is received missing a
1554 * TSN that was previously acknowledged via a
1555 * Gap Ack Block, start T3-rtx for the
1556 * destination address to which the DATA
1557 * chunk was originally
1558 * transmitted if it is not already running.
1559 */
1560 restart_timer = 1;
1561 }
1562
1563 list_add_tail(lchunk, &tlist);
1564 }
1565 }
1566
1567 if (transport) {
1568 if (bytes_acked) {
1569 struct sctp_association *asoc = transport->asoc;
1570
1571 /* We may have counted DATA that was migrated
1572 * to this transport due to DEL-IP operation.
1573 * Subtract those bytes, since the were never
1574 * send on this transport and shouldn't be
1575 * credited to this transport.
1576 */
1577 bytes_acked -= migrate_bytes;
1578
1579 /* 8.2. When an outstanding TSN is acknowledged,
1580 * the endpoint shall clear the error counter of
1581 * the destination transport address to which the
1582 * DATA chunk was last sent.
1583 * The association's overall error counter is
1584 * also cleared.
1585 */
1586 transport->error_count = 0;
1587 transport->asoc->overall_error_count = 0;
1588 forward_progress = true;
1589
1590 /*
1591 * While in SHUTDOWN PENDING, we may have started
1592 * the T5 shutdown guard timer after reaching the
1593 * retransmission limit. Stop that timer as soon
1594 * as the receiver acknowledged any data.
1595 */
1596 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1597 del_timer(&asoc->timers
1598 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1599 sctp_association_put(asoc);
1600
1601 /* Mark the destination transport address as
1602 * active if it is not so marked.
1603 */
1604 if ((transport->state == SCTP_INACTIVE ||
1605 transport->state == SCTP_UNCONFIRMED) &&
1606 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1607 sctp_assoc_control_transport(
1608 transport->asoc,
1609 transport,
1610 SCTP_TRANSPORT_UP,
1611 SCTP_RECEIVED_SACK);
1612 }
1613
1614 sctp_transport_raise_cwnd(transport, sack_ctsn,
1615 bytes_acked);
1616
1617 transport->flight_size -= bytes_acked;
1618 if (transport->flight_size == 0)
1619 transport->partial_bytes_acked = 0;
1620 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1621 } else {
1622 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1623 * When a sender is doing zero window probing, it
1624 * should not timeout the association if it continues
1625 * to receive new packets from the receiver. The
1626 * reason is that the receiver MAY keep its window
1627 * closed for an indefinite time.
1628 * A sender is doing zero window probing when the
1629 * receiver's advertised window is zero, and there is
1630 * only one data chunk in flight to the receiver.
1631 *
1632 * Allow the association to timeout while in SHUTDOWN
1633 * PENDING or SHUTDOWN RECEIVED in case the receiver
1634 * stays in zero window mode forever.
1635 */
1636 if (!q->asoc->peer.rwnd &&
1637 !list_empty(&tlist) &&
1638 (sack_ctsn+2 == q->asoc->next_tsn) &&
1639 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1640 pr_debug("%s: sack received for zero window "
1641 "probe:%u\n", __func__, sack_ctsn);
1642
1643 q->asoc->overall_error_count = 0;
1644 transport->error_count = 0;
1645 }
1646 }
1647
1648 /* RFC 2960 6.3.2 Retransmission Timer Rules
1649 *
1650 * R2) Whenever all outstanding data sent to an address have
1651 * been acknowledged, turn off the T3-rtx timer of that
1652 * address.
1653 */
1654 if (!transport->flight_size) {
1655 if (del_timer(&transport->T3_rtx_timer))
1656 sctp_transport_put(transport);
1657 } else if (restart_timer) {
1658 if (!mod_timer(&transport->T3_rtx_timer,
1659 jiffies + transport->rto))
1660 sctp_transport_hold(transport);
1661 }
1662
1663 if (forward_progress) {
1664 if (transport->dst)
1665 sctp_transport_dst_confirm(transport);
1666 }
1667 }
1668
1669 list_splice(&tlist, transmitted_queue);
1670 }
1671
1672 /* Mark chunks as missing and consequently may get retransmitted. */
1673 static void sctp_mark_missing(struct sctp_outq *q,
1674 struct list_head *transmitted_queue,
1675 struct sctp_transport *transport,
1676 __u32 highest_new_tsn_in_sack,
1677 int count_of_newacks)
1678 {
1679 struct sctp_chunk *chunk;
1680 __u32 tsn;
1681 char do_fast_retransmit = 0;
1682 struct sctp_association *asoc = q->asoc;
1683 struct sctp_transport *primary = asoc->peer.primary_path;
1684
1685 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1686
1687 tsn = ntohl(chunk->subh.data_hdr->tsn);
1688
1689 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1690 * 'Unacknowledged TSN's', if the TSN number of an
1691 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1692 * value, increment the 'TSN.Missing.Report' count on that
1693 * chunk if it has NOT been fast retransmitted or marked for
1694 * fast retransmit already.
1695 */
1696 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1697 !chunk->tsn_gap_acked &&
1698 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1699
1700 /* SFR-CACC may require us to skip marking
1701 * this chunk as missing.
1702 */
1703 if (!transport || !sctp_cacc_skip(primary,
1704 chunk->transport,
1705 count_of_newacks, tsn)) {
1706 chunk->tsn_missing_report++;
1707
1708 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1709 __func__, tsn, chunk->tsn_missing_report);
1710 }
1711 }
1712 /*
1713 * M4) If any DATA chunk is found to have a
1714 * 'TSN.Missing.Report'
1715 * value larger than or equal to 3, mark that chunk for
1716 * retransmission and start the fast retransmit procedure.
1717 */
1718
1719 if (chunk->tsn_missing_report >= 3) {
1720 chunk->fast_retransmit = SCTP_NEED_FRTX;
1721 do_fast_retransmit = 1;
1722 }
1723 }
1724
1725 if (transport) {
1726 if (do_fast_retransmit)
1727 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1728
1729 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1730 "flight_size:%d, pba:%d\n", __func__, transport,
1731 transport->cwnd, transport->ssthresh,
1732 transport->flight_size, transport->partial_bytes_acked);
1733 }
1734 }
1735
1736 /* Is the given TSN acked by this packet? */
1737 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1738 {
1739 int i;
1740 sctp_sack_variable_t *frags;
1741 __u16 tsn_offset, blocks;
1742 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1743
1744 if (TSN_lte(tsn, ctsn))
1745 goto pass;
1746
1747 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1748 *
1749 * Gap Ack Blocks:
1750 * These fields contain the Gap Ack Blocks. They are repeated
1751 * for each Gap Ack Block up to the number of Gap Ack Blocks
1752 * defined in the Number of Gap Ack Blocks field. All DATA
1753 * chunks with TSNs greater than or equal to (Cumulative TSN
1754 * Ack + Gap Ack Block Start) and less than or equal to
1755 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1756 * Block are assumed to have been received correctly.
1757 */
1758
1759 frags = sack->variable;
1760 blocks = ntohs(sack->num_gap_ack_blocks);
1761 tsn_offset = tsn - ctsn;
1762 for (i = 0; i < blocks; ++i) {
1763 if (tsn_offset >= ntohs(frags[i].gab.start) &&
1764 tsn_offset <= ntohs(frags[i].gab.end))
1765 goto pass;
1766 }
1767
1768 return 0;
1769 pass:
1770 return 1;
1771 }
1772
1773 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1774 int nskips, __be16 stream)
1775 {
1776 int i;
1777
1778 for (i = 0; i < nskips; i++) {
1779 if (skiplist[i].stream == stream)
1780 return i;
1781 }
1782 return i;
1783 }
1784
1785 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1786 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1787 {
1788 struct sctp_association *asoc = q->asoc;
1789 struct sctp_chunk *ftsn_chunk = NULL;
1790 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1791 int nskips = 0;
1792 int skip_pos = 0;
1793 __u32 tsn;
1794 struct sctp_chunk *chunk;
1795 struct list_head *lchunk, *temp;
1796
1797 if (!asoc->peer.prsctp_capable)
1798 return;
1799
1800 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1801 * received SACK.
1802 *
1803 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1804 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1805 */
1806 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1807 asoc->adv_peer_ack_point = ctsn;
1808
1809 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1810 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1811 * the chunk next in the out-queue space is marked as "abandoned" as
1812 * shown in the following example:
1813 *
1814 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1815 * and the Advanced.Peer.Ack.Point is updated to this value:
1816 *
1817 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1818 * normal SACK processing local advancement
1819 * ... ...
1820 * Adv.Ack.Pt-> 102 acked 102 acked
1821 * 103 abandoned 103 abandoned
1822 * 104 abandoned Adv.Ack.P-> 104 abandoned
1823 * 105 105
1824 * 106 acked 106 acked
1825 * ... ...
1826 *
1827 * In this example, the data sender successfully advanced the
1828 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1829 */
1830 list_for_each_safe(lchunk, temp, &q->abandoned) {
1831 chunk = list_entry(lchunk, struct sctp_chunk,
1832 transmitted_list);
1833 tsn = ntohl(chunk->subh.data_hdr->tsn);
1834
1835 /* Remove any chunks in the abandoned queue that are acked by
1836 * the ctsn.
1837 */
1838 if (TSN_lte(tsn, ctsn)) {
1839 list_del_init(lchunk);
1840 sctp_chunk_free(chunk);
1841 } else {
1842 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1843 asoc->adv_peer_ack_point = tsn;
1844 if (chunk->chunk_hdr->flags &
1845 SCTP_DATA_UNORDERED)
1846 continue;
1847 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1848 nskips,
1849 chunk->subh.data_hdr->stream);
1850 ftsn_skip_arr[skip_pos].stream =
1851 chunk->subh.data_hdr->stream;
1852 ftsn_skip_arr[skip_pos].ssn =
1853 chunk->subh.data_hdr->ssn;
1854 if (skip_pos == nskips)
1855 nskips++;
1856 if (nskips == 10)
1857 break;
1858 } else
1859 break;
1860 }
1861 }
1862
1863 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1864 * is greater than the Cumulative TSN ACK carried in the received
1865 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1866 * chunk containing the latest value of the
1867 * "Advanced.Peer.Ack.Point".
1868 *
1869 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1870 * list each stream and sequence number in the forwarded TSN. This
1871 * information will enable the receiver to easily find any
1872 * stranded TSN's waiting on stream reorder queues. Each stream
1873 * SHOULD only be reported once; this means that if multiple
1874 * abandoned messages occur in the same stream then only the
1875 * highest abandoned stream sequence number is reported. If the
1876 * total size of the FORWARD TSN does NOT fit in a single MTU then
1877 * the sender of the FORWARD TSN SHOULD lower the
1878 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1879 * single MTU.
1880 */
1881 if (asoc->adv_peer_ack_point > ctsn)
1882 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1883 nskips, &ftsn_skip_arr[0]);
1884
1885 if (ftsn_chunk) {
1886 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1887 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1888 }
1889 }