]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sctp/outqueue.c
Merge branches 'amba', 'fixes', 'kees', 'misc' and 'unstable/sa11x0' into for-next
[mirror_ubuntu-jammy-kernel.git] / net / sctp / outqueue.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Perry Melange <pmelange@null.cc.uic.edu>
37 * Xingang Guo <xingang.guo@intel.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Sridhar Samudrala <sri@us.ibm.com>
40 * Jon Grimm <jgrimm@us.ibm.com>
41 */
42
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45 #include <linux/types.h>
46 #include <linux/list.h> /* For struct list_head */
47 #include <linux/socket.h>
48 #include <linux/ip.h>
49 #include <linux/slab.h>
50 #include <net/sock.h> /* For skb_set_owner_w */
51
52 #include <net/sctp/sctp.h>
53 #include <net/sctp/sm.h>
54
55 /* Declare internal functions here. */
56 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
57 static void sctp_check_transmitted(struct sctp_outq *q,
58 struct list_head *transmitted_queue,
59 struct sctp_transport *transport,
60 union sctp_addr *saddr,
61 struct sctp_sackhdr *sack,
62 __u32 *highest_new_tsn);
63
64 static void sctp_mark_missing(struct sctp_outq *q,
65 struct list_head *transmitted_queue,
66 struct sctp_transport *transport,
67 __u32 highest_new_tsn,
68 int count_of_newacks);
69
70 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
71
72 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
73
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq *q,
76 struct sctp_chunk *ch)
77 {
78 list_add(&ch->list, &q->out_chunk_list);
79 q->out_qlen += ch->skb->len;
80 }
81
82 /* Take data from the front of the queue. */
83 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
84 {
85 struct sctp_chunk *ch = NULL;
86
87 if (!list_empty(&q->out_chunk_list)) {
88 struct list_head *entry = q->out_chunk_list.next;
89
90 ch = list_entry(entry, struct sctp_chunk, list);
91 list_del_init(entry);
92 q->out_qlen -= ch->skb->len;
93 }
94 return ch;
95 }
96 /* Add data chunk to the end of the queue. */
97 static inline void sctp_outq_tail_data(struct sctp_outq *q,
98 struct sctp_chunk *ch)
99 {
100 list_add_tail(&ch->list, &q->out_chunk_list);
101 q->out_qlen += ch->skb->len;
102 }
103
104 /*
105 * SFR-CACC algorithm:
106 * D) If count_of_newacks is greater than or equal to 2
107 * and t was not sent to the current primary then the
108 * sender MUST NOT increment missing report count for t.
109 */
110 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
111 struct sctp_transport *transport,
112 int count_of_newacks)
113 {
114 if (count_of_newacks >=2 && transport != primary)
115 return 1;
116 return 0;
117 }
118
119 /*
120 * SFR-CACC algorithm:
121 * F) If count_of_newacks is less than 2, let d be the
122 * destination to which t was sent. If cacc_saw_newack
123 * is 0 for destination d, then the sender MUST NOT
124 * increment missing report count for t.
125 */
126 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
127 int count_of_newacks)
128 {
129 if (count_of_newacks < 2 &&
130 (transport && !transport->cacc.cacc_saw_newack))
131 return 1;
132 return 0;
133 }
134
135 /*
136 * SFR-CACC algorithm:
137 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
138 * execute steps C, D, F.
139 *
140 * C has been implemented in sctp_outq_sack
141 */
142 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
143 struct sctp_transport *transport,
144 int count_of_newacks)
145 {
146 if (!primary->cacc.cycling_changeover) {
147 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
148 return 1;
149 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
150 return 1;
151 return 0;
152 }
153 return 0;
154 }
155
156 /*
157 * SFR-CACC algorithm:
158 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
159 * than next_tsn_at_change of the current primary, then
160 * the sender MUST NOT increment missing report count
161 * for t.
162 */
163 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
164 {
165 if (primary->cacc.cycling_changeover &&
166 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
167 return 1;
168 return 0;
169 }
170
171 /*
172 * SFR-CACC algorithm:
173 * 3) If the missing report count for TSN t is to be
174 * incremented according to [RFC2960] and
175 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
176 * then the sender MUST further execute steps 3.1 and
177 * 3.2 to determine if the missing report count for
178 * TSN t SHOULD NOT be incremented.
179 *
180 * 3.3) If 3.1 and 3.2 do not dictate that the missing
181 * report count for t should not be incremented, then
182 * the sender SHOULD increment missing report count for
183 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
184 */
185 static inline int sctp_cacc_skip(struct sctp_transport *primary,
186 struct sctp_transport *transport,
187 int count_of_newacks,
188 __u32 tsn)
189 {
190 if (primary->cacc.changeover_active &&
191 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
192 sctp_cacc_skip_3_2(primary, tsn)))
193 return 1;
194 return 0;
195 }
196
197 /* Initialize an existing sctp_outq. This does the boring stuff.
198 * You still need to define handlers if you really want to DO
199 * something with this structure...
200 */
201 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
202 {
203 memset(q, 0, sizeof(struct sctp_outq));
204
205 q->asoc = asoc;
206 INIT_LIST_HEAD(&q->out_chunk_list);
207 INIT_LIST_HEAD(&q->control_chunk_list);
208 INIT_LIST_HEAD(&q->retransmit);
209 INIT_LIST_HEAD(&q->sacked);
210 INIT_LIST_HEAD(&q->abandoned);
211
212 q->empty = 1;
213 }
214
215 /* Free the outqueue structure and any related pending chunks.
216 */
217 static void __sctp_outq_teardown(struct sctp_outq *q)
218 {
219 struct sctp_transport *transport;
220 struct list_head *lchunk, *temp;
221 struct sctp_chunk *chunk, *tmp;
222
223 /* Throw away unacknowledged chunks. */
224 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
225 transports) {
226 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
227 chunk = list_entry(lchunk, struct sctp_chunk,
228 transmitted_list);
229 /* Mark as part of a failed message. */
230 sctp_chunk_fail(chunk, q->error);
231 sctp_chunk_free(chunk);
232 }
233 }
234
235 /* Throw away chunks that have been gap ACKed. */
236 list_for_each_safe(lchunk, temp, &q->sacked) {
237 list_del_init(lchunk);
238 chunk = list_entry(lchunk, struct sctp_chunk,
239 transmitted_list);
240 sctp_chunk_fail(chunk, q->error);
241 sctp_chunk_free(chunk);
242 }
243
244 /* Throw away any chunks in the retransmit queue. */
245 list_for_each_safe(lchunk, temp, &q->retransmit) {
246 list_del_init(lchunk);
247 chunk = list_entry(lchunk, struct sctp_chunk,
248 transmitted_list);
249 sctp_chunk_fail(chunk, q->error);
250 sctp_chunk_free(chunk);
251 }
252
253 /* Throw away any chunks that are in the abandoned queue. */
254 list_for_each_safe(lchunk, temp, &q->abandoned) {
255 list_del_init(lchunk);
256 chunk = list_entry(lchunk, struct sctp_chunk,
257 transmitted_list);
258 sctp_chunk_fail(chunk, q->error);
259 sctp_chunk_free(chunk);
260 }
261
262 /* Throw away any leftover data chunks. */
263 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
264
265 /* Mark as send failure. */
266 sctp_chunk_fail(chunk, q->error);
267 sctp_chunk_free(chunk);
268 }
269
270 /* Throw away any leftover control chunks. */
271 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
272 list_del_init(&chunk->list);
273 sctp_chunk_free(chunk);
274 }
275 }
276
277 void sctp_outq_teardown(struct sctp_outq *q)
278 {
279 __sctp_outq_teardown(q);
280 sctp_outq_init(q->asoc, q);
281 }
282
283 /* Free the outqueue structure and any related pending chunks. */
284 void sctp_outq_free(struct sctp_outq *q)
285 {
286 /* Throw away leftover chunks. */
287 __sctp_outq_teardown(q);
288 }
289
290 /* Put a new chunk in an sctp_outq. */
291 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
292 {
293 struct net *net = sock_net(q->asoc->base.sk);
294 int error = 0;
295
296 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
297 chunk && chunk->chunk_hdr ?
298 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
299 "illegal chunk");
300
301 /* If it is data, queue it up, otherwise, send it
302 * immediately.
303 */
304 if (sctp_chunk_is_data(chunk)) {
305 /* Is it OK to queue data chunks? */
306 /* From 9. Termination of Association
307 *
308 * When either endpoint performs a shutdown, the
309 * association on each peer will stop accepting new
310 * data from its user and only deliver data in queue
311 * at the time of sending or receiving the SHUTDOWN
312 * chunk.
313 */
314 switch (q->asoc->state) {
315 case SCTP_STATE_CLOSED:
316 case SCTP_STATE_SHUTDOWN_PENDING:
317 case SCTP_STATE_SHUTDOWN_SENT:
318 case SCTP_STATE_SHUTDOWN_RECEIVED:
319 case SCTP_STATE_SHUTDOWN_ACK_SENT:
320 /* Cannot send after transport endpoint shutdown */
321 error = -ESHUTDOWN;
322 break;
323
324 default:
325 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
326 __func__, q, chunk, chunk && chunk->chunk_hdr ?
327 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
328 "illegal chunk");
329
330 sctp_outq_tail_data(q, chunk);
331 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
332 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
333 else
334 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
335 q->empty = 0;
336 break;
337 }
338 } else {
339 list_add_tail(&chunk->list, &q->control_chunk_list);
340 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
341 }
342
343 if (error < 0)
344 return error;
345
346 if (!q->cork)
347 error = sctp_outq_flush(q, 0);
348
349 return error;
350 }
351
352 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
353 * and the abandoned list are in ascending order.
354 */
355 static void sctp_insert_list(struct list_head *head, struct list_head *new)
356 {
357 struct list_head *pos;
358 struct sctp_chunk *nchunk, *lchunk;
359 __u32 ntsn, ltsn;
360 int done = 0;
361
362 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
363 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
364
365 list_for_each(pos, head) {
366 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
367 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
368 if (TSN_lt(ntsn, ltsn)) {
369 list_add(new, pos->prev);
370 done = 1;
371 break;
372 }
373 }
374 if (!done)
375 list_add_tail(new, head);
376 }
377
378 /* Mark all the eligible packets on a transport for retransmission. */
379 void sctp_retransmit_mark(struct sctp_outq *q,
380 struct sctp_transport *transport,
381 __u8 reason)
382 {
383 struct list_head *lchunk, *ltemp;
384 struct sctp_chunk *chunk;
385
386 /* Walk through the specified transmitted queue. */
387 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
388 chunk = list_entry(lchunk, struct sctp_chunk,
389 transmitted_list);
390
391 /* If the chunk is abandoned, move it to abandoned list. */
392 if (sctp_chunk_abandoned(chunk)) {
393 list_del_init(lchunk);
394 sctp_insert_list(&q->abandoned, lchunk);
395
396 /* If this chunk has not been previousely acked,
397 * stop considering it 'outstanding'. Our peer
398 * will most likely never see it since it will
399 * not be retransmitted
400 */
401 if (!chunk->tsn_gap_acked) {
402 if (chunk->transport)
403 chunk->transport->flight_size -=
404 sctp_data_size(chunk);
405 q->outstanding_bytes -= sctp_data_size(chunk);
406 q->asoc->peer.rwnd += sctp_data_size(chunk);
407 }
408 continue;
409 }
410
411 /* If we are doing retransmission due to a timeout or pmtu
412 * discovery, only the chunks that are not yet acked should
413 * be added to the retransmit queue.
414 */
415 if ((reason == SCTP_RTXR_FAST_RTX &&
416 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
417 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
418 /* RFC 2960 6.2.1 Processing a Received SACK
419 *
420 * C) Any time a DATA chunk is marked for
421 * retransmission (via either T3-rtx timer expiration
422 * (Section 6.3.3) or via fast retransmit
423 * (Section 7.2.4)), add the data size of those
424 * chunks to the rwnd.
425 */
426 q->asoc->peer.rwnd += sctp_data_size(chunk);
427 q->outstanding_bytes -= sctp_data_size(chunk);
428 if (chunk->transport)
429 transport->flight_size -= sctp_data_size(chunk);
430
431 /* sctpimpguide-05 Section 2.8.2
432 * M5) If a T3-rtx timer expires, the
433 * 'TSN.Missing.Report' of all affected TSNs is set
434 * to 0.
435 */
436 chunk->tsn_missing_report = 0;
437
438 /* If a chunk that is being used for RTT measurement
439 * has to be retransmitted, we cannot use this chunk
440 * anymore for RTT measurements. Reset rto_pending so
441 * that a new RTT measurement is started when a new
442 * data chunk is sent.
443 */
444 if (chunk->rtt_in_progress) {
445 chunk->rtt_in_progress = 0;
446 transport->rto_pending = 0;
447 }
448
449 chunk->resent = 1;
450
451 /* Move the chunk to the retransmit queue. The chunks
452 * on the retransmit queue are always kept in order.
453 */
454 list_del_init(lchunk);
455 sctp_insert_list(&q->retransmit, lchunk);
456 }
457 }
458
459 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
460 "flight_size:%d, pba:%d\n", __func__, transport, reason,
461 transport->cwnd, transport->ssthresh, transport->flight_size,
462 transport->partial_bytes_acked);
463 }
464
465 /* Mark all the eligible packets on a transport for retransmission and force
466 * one packet out.
467 */
468 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
469 sctp_retransmit_reason_t reason)
470 {
471 struct net *net = sock_net(q->asoc->base.sk);
472 int error = 0;
473
474 switch(reason) {
475 case SCTP_RTXR_T3_RTX:
476 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
477 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
478 /* Update the retran path if the T3-rtx timer has expired for
479 * the current retran path.
480 */
481 if (transport == transport->asoc->peer.retran_path)
482 sctp_assoc_update_retran_path(transport->asoc);
483 transport->asoc->rtx_data_chunks +=
484 transport->asoc->unack_data;
485 break;
486 case SCTP_RTXR_FAST_RTX:
487 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
488 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
489 q->fast_rtx = 1;
490 break;
491 case SCTP_RTXR_PMTUD:
492 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
493 break;
494 case SCTP_RTXR_T1_RTX:
495 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
496 transport->asoc->init_retries++;
497 break;
498 default:
499 BUG();
500 }
501
502 sctp_retransmit_mark(q, transport, reason);
503
504 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
505 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
506 * following the procedures outlined in C1 - C5.
507 */
508 if (reason == SCTP_RTXR_T3_RTX)
509 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
510
511 /* Flush the queues only on timeout, since fast_rtx is only
512 * triggered during sack processing and the queue
513 * will be flushed at the end.
514 */
515 if (reason != SCTP_RTXR_FAST_RTX)
516 error = sctp_outq_flush(q, /* rtx_timeout */ 1);
517
518 if (error)
519 q->asoc->base.sk->sk_err = -error;
520 }
521
522 /*
523 * Transmit DATA chunks on the retransmit queue. Upon return from
524 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
525 * need to be transmitted by the caller.
526 * We assume that pkt->transport has already been set.
527 *
528 * The return value is a normal kernel error return value.
529 */
530 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
531 int rtx_timeout, int *start_timer)
532 {
533 struct list_head *lqueue;
534 struct sctp_transport *transport = pkt->transport;
535 sctp_xmit_t status;
536 struct sctp_chunk *chunk, *chunk1;
537 int fast_rtx;
538 int error = 0;
539 int timer = 0;
540 int done = 0;
541
542 lqueue = &q->retransmit;
543 fast_rtx = q->fast_rtx;
544
545 /* This loop handles time-out retransmissions, fast retransmissions,
546 * and retransmissions due to opening of whindow.
547 *
548 * RFC 2960 6.3.3 Handle T3-rtx Expiration
549 *
550 * E3) Determine how many of the earliest (i.e., lowest TSN)
551 * outstanding DATA chunks for the address for which the
552 * T3-rtx has expired will fit into a single packet, subject
553 * to the MTU constraint for the path corresponding to the
554 * destination transport address to which the retransmission
555 * is being sent (this may be different from the address for
556 * which the timer expires [see Section 6.4]). Call this value
557 * K. Bundle and retransmit those K DATA chunks in a single
558 * packet to the destination endpoint.
559 *
560 * [Just to be painfully clear, if we are retransmitting
561 * because a timeout just happened, we should send only ONE
562 * packet of retransmitted data.]
563 *
564 * For fast retransmissions we also send only ONE packet. However,
565 * if we are just flushing the queue due to open window, we'll
566 * try to send as much as possible.
567 */
568 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
569 /* If the chunk is abandoned, move it to abandoned list. */
570 if (sctp_chunk_abandoned(chunk)) {
571 list_del_init(&chunk->transmitted_list);
572 sctp_insert_list(&q->abandoned,
573 &chunk->transmitted_list);
574 continue;
575 }
576
577 /* Make sure that Gap Acked TSNs are not retransmitted. A
578 * simple approach is just to move such TSNs out of the
579 * way and into a 'transmitted' queue and skip to the
580 * next chunk.
581 */
582 if (chunk->tsn_gap_acked) {
583 list_move_tail(&chunk->transmitted_list,
584 &transport->transmitted);
585 continue;
586 }
587
588 /* If we are doing fast retransmit, ignore non-fast_rtransmit
589 * chunks
590 */
591 if (fast_rtx && !chunk->fast_retransmit)
592 continue;
593
594 redo:
595 /* Attempt to append this chunk to the packet. */
596 status = sctp_packet_append_chunk(pkt, chunk);
597
598 switch (status) {
599 case SCTP_XMIT_PMTU_FULL:
600 if (!pkt->has_data && !pkt->has_cookie_echo) {
601 /* If this packet did not contain DATA then
602 * retransmission did not happen, so do it
603 * again. We'll ignore the error here since
604 * control chunks are already freed so there
605 * is nothing we can do.
606 */
607 sctp_packet_transmit(pkt);
608 goto redo;
609 }
610
611 /* Send this packet. */
612 error = sctp_packet_transmit(pkt);
613
614 /* If we are retransmitting, we should only
615 * send a single packet.
616 * Otherwise, try appending this chunk again.
617 */
618 if (rtx_timeout || fast_rtx)
619 done = 1;
620 else
621 goto redo;
622
623 /* Bundle next chunk in the next round. */
624 break;
625
626 case SCTP_XMIT_RWND_FULL:
627 /* Send this packet. */
628 error = sctp_packet_transmit(pkt);
629
630 /* Stop sending DATA as there is no more room
631 * at the receiver.
632 */
633 done = 1;
634 break;
635
636 case SCTP_XMIT_NAGLE_DELAY:
637 /* Send this packet. */
638 error = sctp_packet_transmit(pkt);
639
640 /* Stop sending DATA because of nagle delay. */
641 done = 1;
642 break;
643
644 default:
645 /* The append was successful, so add this chunk to
646 * the transmitted list.
647 */
648 list_move_tail(&chunk->transmitted_list,
649 &transport->transmitted);
650
651 /* Mark the chunk as ineligible for fast retransmit
652 * after it is retransmitted.
653 */
654 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
655 chunk->fast_retransmit = SCTP_DONT_FRTX;
656
657 q->empty = 0;
658 q->asoc->stats.rtxchunks++;
659 break;
660 }
661
662 /* Set the timer if there were no errors */
663 if (!error && !timer)
664 timer = 1;
665
666 if (done)
667 break;
668 }
669
670 /* If we are here due to a retransmit timeout or a fast
671 * retransmit and if there are any chunks left in the retransmit
672 * queue that could not fit in the PMTU sized packet, they need
673 * to be marked as ineligible for a subsequent fast retransmit.
674 */
675 if (rtx_timeout || fast_rtx) {
676 list_for_each_entry(chunk1, lqueue, transmitted_list) {
677 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
678 chunk1->fast_retransmit = SCTP_DONT_FRTX;
679 }
680 }
681
682 *start_timer = timer;
683
684 /* Clear fast retransmit hint */
685 if (fast_rtx)
686 q->fast_rtx = 0;
687
688 return error;
689 }
690
691 /* Cork the outqueue so queued chunks are really queued. */
692 int sctp_outq_uncork(struct sctp_outq *q)
693 {
694 if (q->cork)
695 q->cork = 0;
696
697 return sctp_outq_flush(q, 0);
698 }
699
700
701 /*
702 * Try to flush an outqueue.
703 *
704 * Description: Send everything in q which we legally can, subject to
705 * congestion limitations.
706 * * Note: This function can be called from multiple contexts so appropriate
707 * locking concerns must be made. Today we use the sock lock to protect
708 * this function.
709 */
710 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
711 {
712 struct sctp_packet *packet;
713 struct sctp_packet singleton;
714 struct sctp_association *asoc = q->asoc;
715 __u16 sport = asoc->base.bind_addr.port;
716 __u16 dport = asoc->peer.port;
717 __u32 vtag = asoc->peer.i.init_tag;
718 struct sctp_transport *transport = NULL;
719 struct sctp_transport *new_transport;
720 struct sctp_chunk *chunk, *tmp;
721 sctp_xmit_t status;
722 int error = 0;
723 int start_timer = 0;
724 int one_packet = 0;
725
726 /* These transports have chunks to send. */
727 struct list_head transport_list;
728 struct list_head *ltransport;
729
730 INIT_LIST_HEAD(&transport_list);
731 packet = NULL;
732
733 /*
734 * 6.10 Bundling
735 * ...
736 * When bundling control chunks with DATA chunks, an
737 * endpoint MUST place control chunks first in the outbound
738 * SCTP packet. The transmitter MUST transmit DATA chunks
739 * within a SCTP packet in increasing order of TSN.
740 * ...
741 */
742
743 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
744 /* RFC 5061, 5.3
745 * F1) This means that until such time as the ASCONF
746 * containing the add is acknowledged, the sender MUST
747 * NOT use the new IP address as a source for ANY SCTP
748 * packet except on carrying an ASCONF Chunk.
749 */
750 if (asoc->src_out_of_asoc_ok &&
751 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
752 continue;
753
754 list_del_init(&chunk->list);
755
756 /* Pick the right transport to use. */
757 new_transport = chunk->transport;
758
759 if (!new_transport) {
760 /*
761 * If we have a prior transport pointer, see if
762 * the destination address of the chunk
763 * matches the destination address of the
764 * current transport. If not a match, then
765 * try to look up the transport with a given
766 * destination address. We do this because
767 * after processing ASCONFs, we may have new
768 * transports created.
769 */
770 if (transport &&
771 sctp_cmp_addr_exact(&chunk->dest,
772 &transport->ipaddr))
773 new_transport = transport;
774 else
775 new_transport = sctp_assoc_lookup_paddr(asoc,
776 &chunk->dest);
777
778 /* if we still don't have a new transport, then
779 * use the current active path.
780 */
781 if (!new_transport)
782 new_transport = asoc->peer.active_path;
783 } else if ((new_transport->state == SCTP_INACTIVE) ||
784 (new_transport->state == SCTP_UNCONFIRMED) ||
785 (new_transport->state == SCTP_PF)) {
786 /* If the chunk is Heartbeat or Heartbeat Ack,
787 * send it to chunk->transport, even if it's
788 * inactive.
789 *
790 * 3.3.6 Heartbeat Acknowledgement:
791 * ...
792 * A HEARTBEAT ACK is always sent to the source IP
793 * address of the IP datagram containing the
794 * HEARTBEAT chunk to which this ack is responding.
795 * ...
796 *
797 * ASCONF_ACKs also must be sent to the source.
798 */
799 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
800 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
801 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
802 new_transport = asoc->peer.active_path;
803 }
804
805 /* Are we switching transports?
806 * Take care of transport locks.
807 */
808 if (new_transport != transport) {
809 transport = new_transport;
810 if (list_empty(&transport->send_ready)) {
811 list_add_tail(&transport->send_ready,
812 &transport_list);
813 }
814 packet = &transport->packet;
815 sctp_packet_config(packet, vtag,
816 asoc->peer.ecn_capable);
817 }
818
819 switch (chunk->chunk_hdr->type) {
820 /*
821 * 6.10 Bundling
822 * ...
823 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
824 * COMPLETE with any other chunks. [Send them immediately.]
825 */
826 case SCTP_CID_INIT:
827 case SCTP_CID_INIT_ACK:
828 case SCTP_CID_SHUTDOWN_COMPLETE:
829 sctp_packet_init(&singleton, transport, sport, dport);
830 sctp_packet_config(&singleton, vtag, 0);
831 sctp_packet_append_chunk(&singleton, chunk);
832 error = sctp_packet_transmit(&singleton);
833 if (error < 0)
834 return error;
835 break;
836
837 case SCTP_CID_ABORT:
838 if (sctp_test_T_bit(chunk)) {
839 packet->vtag = asoc->c.my_vtag;
840 }
841 /* The following chunks are "response" chunks, i.e.
842 * they are generated in response to something we
843 * received. If we are sending these, then we can
844 * send only 1 packet containing these chunks.
845 */
846 case SCTP_CID_HEARTBEAT_ACK:
847 case SCTP_CID_SHUTDOWN_ACK:
848 case SCTP_CID_COOKIE_ACK:
849 case SCTP_CID_COOKIE_ECHO:
850 case SCTP_CID_ERROR:
851 case SCTP_CID_ECN_CWR:
852 case SCTP_CID_ASCONF_ACK:
853 one_packet = 1;
854 /* Fall through */
855
856 case SCTP_CID_SACK:
857 case SCTP_CID_HEARTBEAT:
858 case SCTP_CID_SHUTDOWN:
859 case SCTP_CID_ECN_ECNE:
860 case SCTP_CID_ASCONF:
861 case SCTP_CID_FWD_TSN:
862 status = sctp_packet_transmit_chunk(packet, chunk,
863 one_packet);
864 if (status != SCTP_XMIT_OK) {
865 /* put the chunk back */
866 list_add(&chunk->list, &q->control_chunk_list);
867 } else {
868 asoc->stats.octrlchunks++;
869 /* PR-SCTP C5) If a FORWARD TSN is sent, the
870 * sender MUST assure that at least one T3-rtx
871 * timer is running.
872 */
873 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN)
874 sctp_transport_reset_timers(transport);
875 }
876 break;
877
878 default:
879 /* We built a chunk with an illegal type! */
880 BUG();
881 }
882 }
883
884 if (q->asoc->src_out_of_asoc_ok)
885 goto sctp_flush_out;
886
887 /* Is it OK to send data chunks? */
888 switch (asoc->state) {
889 case SCTP_STATE_COOKIE_ECHOED:
890 /* Only allow bundling when this packet has a COOKIE-ECHO
891 * chunk.
892 */
893 if (!packet || !packet->has_cookie_echo)
894 break;
895
896 /* fallthru */
897 case SCTP_STATE_ESTABLISHED:
898 case SCTP_STATE_SHUTDOWN_PENDING:
899 case SCTP_STATE_SHUTDOWN_RECEIVED:
900 /*
901 * RFC 2960 6.1 Transmission of DATA Chunks
902 *
903 * C) When the time comes for the sender to transmit,
904 * before sending new DATA chunks, the sender MUST
905 * first transmit any outstanding DATA chunks which
906 * are marked for retransmission (limited by the
907 * current cwnd).
908 */
909 if (!list_empty(&q->retransmit)) {
910 if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
911 goto sctp_flush_out;
912 if (transport == asoc->peer.retran_path)
913 goto retran;
914
915 /* Switch transports & prepare the packet. */
916
917 transport = asoc->peer.retran_path;
918
919 if (list_empty(&transport->send_ready)) {
920 list_add_tail(&transport->send_ready,
921 &transport_list);
922 }
923
924 packet = &transport->packet;
925 sctp_packet_config(packet, vtag,
926 asoc->peer.ecn_capable);
927 retran:
928 error = sctp_outq_flush_rtx(q, packet,
929 rtx_timeout, &start_timer);
930
931 if (start_timer)
932 sctp_transport_reset_timers(transport);
933
934 /* This can happen on COOKIE-ECHO resend. Only
935 * one chunk can get bundled with a COOKIE-ECHO.
936 */
937 if (packet->has_cookie_echo)
938 goto sctp_flush_out;
939
940 /* Don't send new data if there is still data
941 * waiting to retransmit.
942 */
943 if (!list_empty(&q->retransmit))
944 goto sctp_flush_out;
945 }
946
947 /* Apply Max.Burst limitation to the current transport in
948 * case it will be used for new data. We are going to
949 * rest it before we return, but we want to apply the limit
950 * to the currently queued data.
951 */
952 if (transport)
953 sctp_transport_burst_limited(transport);
954
955 /* Finally, transmit new packets. */
956 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
957 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
958 * stream identifier.
959 */
960 if (chunk->sinfo.sinfo_stream >=
961 asoc->c.sinit_num_ostreams) {
962
963 /* Mark as failed send. */
964 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
965 sctp_chunk_free(chunk);
966 continue;
967 }
968
969 /* Has this chunk expired? */
970 if (sctp_chunk_abandoned(chunk)) {
971 sctp_chunk_fail(chunk, 0);
972 sctp_chunk_free(chunk);
973 continue;
974 }
975
976 /* If there is a specified transport, use it.
977 * Otherwise, we want to use the active path.
978 */
979 new_transport = chunk->transport;
980 if (!new_transport ||
981 ((new_transport->state == SCTP_INACTIVE) ||
982 (new_transport->state == SCTP_UNCONFIRMED) ||
983 (new_transport->state == SCTP_PF)))
984 new_transport = asoc->peer.active_path;
985 if (new_transport->state == SCTP_UNCONFIRMED)
986 continue;
987
988 /* Change packets if necessary. */
989 if (new_transport != transport) {
990 transport = new_transport;
991
992 /* Schedule to have this transport's
993 * packet flushed.
994 */
995 if (list_empty(&transport->send_ready)) {
996 list_add_tail(&transport->send_ready,
997 &transport_list);
998 }
999
1000 packet = &transport->packet;
1001 sctp_packet_config(packet, vtag,
1002 asoc->peer.ecn_capable);
1003 /* We've switched transports, so apply the
1004 * Burst limit to the new transport.
1005 */
1006 sctp_transport_burst_limited(transport);
1007 }
1008
1009 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1010 "skb->users:%d\n",
1011 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1012 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1013 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1014 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1015 atomic_read(&chunk->skb->users) : -1);
1016
1017 /* Add the chunk to the packet. */
1018 status = sctp_packet_transmit_chunk(packet, chunk, 0);
1019
1020 switch (status) {
1021 case SCTP_XMIT_PMTU_FULL:
1022 case SCTP_XMIT_RWND_FULL:
1023 case SCTP_XMIT_NAGLE_DELAY:
1024 /* We could not append this chunk, so put
1025 * the chunk back on the output queue.
1026 */
1027 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1028 __func__, ntohl(chunk->subh.data_hdr->tsn),
1029 status);
1030
1031 sctp_outq_head_data(q, chunk);
1032 goto sctp_flush_out;
1033 break;
1034
1035 case SCTP_XMIT_OK:
1036 /* The sender is in the SHUTDOWN-PENDING state,
1037 * The sender MAY set the I-bit in the DATA
1038 * chunk header.
1039 */
1040 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1041 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1042 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1043 asoc->stats.ouodchunks++;
1044 else
1045 asoc->stats.oodchunks++;
1046
1047 break;
1048
1049 default:
1050 BUG();
1051 }
1052
1053 /* BUG: We assume that the sctp_packet_transmit()
1054 * call below will succeed all the time and add the
1055 * chunk to the transmitted list and restart the
1056 * timers.
1057 * It is possible that the call can fail under OOM
1058 * conditions.
1059 *
1060 * Is this really a problem? Won't this behave
1061 * like a lost TSN?
1062 */
1063 list_add_tail(&chunk->transmitted_list,
1064 &transport->transmitted);
1065
1066 sctp_transport_reset_timers(transport);
1067
1068 q->empty = 0;
1069
1070 /* Only let one DATA chunk get bundled with a
1071 * COOKIE-ECHO chunk.
1072 */
1073 if (packet->has_cookie_echo)
1074 goto sctp_flush_out;
1075 }
1076 break;
1077
1078 default:
1079 /* Do nothing. */
1080 break;
1081 }
1082
1083 sctp_flush_out:
1084
1085 /* Before returning, examine all the transports touched in
1086 * this call. Right now, we bluntly force clear all the
1087 * transports. Things might change after we implement Nagle.
1088 * But such an examination is still required.
1089 *
1090 * --xguo
1091 */
1092 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1093 struct sctp_transport *t = list_entry(ltransport,
1094 struct sctp_transport,
1095 send_ready);
1096 packet = &t->packet;
1097 if (!sctp_packet_empty(packet))
1098 error = sctp_packet_transmit(packet);
1099
1100 /* Clear the burst limited state, if any */
1101 sctp_transport_burst_reset(t);
1102 }
1103
1104 return error;
1105 }
1106
1107 /* Update unack_data based on the incoming SACK chunk */
1108 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1109 struct sctp_sackhdr *sack)
1110 {
1111 sctp_sack_variable_t *frags;
1112 __u16 unack_data;
1113 int i;
1114
1115 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1116
1117 frags = sack->variable;
1118 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1119 unack_data -= ((ntohs(frags[i].gab.end) -
1120 ntohs(frags[i].gab.start) + 1));
1121 }
1122
1123 assoc->unack_data = unack_data;
1124 }
1125
1126 /* This is where we REALLY process a SACK.
1127 *
1128 * Process the SACK against the outqueue. Mostly, this just frees
1129 * things off the transmitted queue.
1130 */
1131 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1132 {
1133 struct sctp_association *asoc = q->asoc;
1134 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1135 struct sctp_transport *transport;
1136 struct sctp_chunk *tchunk = NULL;
1137 struct list_head *lchunk, *transport_list, *temp;
1138 sctp_sack_variable_t *frags = sack->variable;
1139 __u32 sack_ctsn, ctsn, tsn;
1140 __u32 highest_tsn, highest_new_tsn;
1141 __u32 sack_a_rwnd;
1142 unsigned int outstanding;
1143 struct sctp_transport *primary = asoc->peer.primary_path;
1144 int count_of_newacks = 0;
1145 int gap_ack_blocks;
1146 u8 accum_moved = 0;
1147
1148 /* Grab the association's destination address list. */
1149 transport_list = &asoc->peer.transport_addr_list;
1150
1151 sack_ctsn = ntohl(sack->cum_tsn_ack);
1152 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1153 asoc->stats.gapcnt += gap_ack_blocks;
1154 /*
1155 * SFR-CACC algorithm:
1156 * On receipt of a SACK the sender SHOULD execute the
1157 * following statements.
1158 *
1159 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1160 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1161 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1162 * all destinations.
1163 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1164 * is set the receiver of the SACK MUST take the following actions:
1165 *
1166 * A) Initialize the cacc_saw_newack to 0 for all destination
1167 * addresses.
1168 *
1169 * Only bother if changeover_active is set. Otherwise, this is
1170 * totally suboptimal to do on every SACK.
1171 */
1172 if (primary->cacc.changeover_active) {
1173 u8 clear_cycling = 0;
1174
1175 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1176 primary->cacc.changeover_active = 0;
1177 clear_cycling = 1;
1178 }
1179
1180 if (clear_cycling || gap_ack_blocks) {
1181 list_for_each_entry(transport, transport_list,
1182 transports) {
1183 if (clear_cycling)
1184 transport->cacc.cycling_changeover = 0;
1185 if (gap_ack_blocks)
1186 transport->cacc.cacc_saw_newack = 0;
1187 }
1188 }
1189 }
1190
1191 /* Get the highest TSN in the sack. */
1192 highest_tsn = sack_ctsn;
1193 if (gap_ack_blocks)
1194 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1195
1196 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1197 asoc->highest_sacked = highest_tsn;
1198
1199 highest_new_tsn = sack_ctsn;
1200
1201 /* Run through the retransmit queue. Credit bytes received
1202 * and free those chunks that we can.
1203 */
1204 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1205
1206 /* Run through the transmitted queue.
1207 * Credit bytes received and free those chunks which we can.
1208 *
1209 * This is a MASSIVE candidate for optimization.
1210 */
1211 list_for_each_entry(transport, transport_list, transports) {
1212 sctp_check_transmitted(q, &transport->transmitted,
1213 transport, &chunk->source, sack,
1214 &highest_new_tsn);
1215 /*
1216 * SFR-CACC algorithm:
1217 * C) Let count_of_newacks be the number of
1218 * destinations for which cacc_saw_newack is set.
1219 */
1220 if (transport->cacc.cacc_saw_newack)
1221 count_of_newacks ++;
1222 }
1223
1224 /* Move the Cumulative TSN Ack Point if appropriate. */
1225 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1226 asoc->ctsn_ack_point = sack_ctsn;
1227 accum_moved = 1;
1228 }
1229
1230 if (gap_ack_blocks) {
1231
1232 if (asoc->fast_recovery && accum_moved)
1233 highest_new_tsn = highest_tsn;
1234
1235 list_for_each_entry(transport, transport_list, transports)
1236 sctp_mark_missing(q, &transport->transmitted, transport,
1237 highest_new_tsn, count_of_newacks);
1238 }
1239
1240 /* Update unack_data field in the assoc. */
1241 sctp_sack_update_unack_data(asoc, sack);
1242
1243 ctsn = asoc->ctsn_ack_point;
1244
1245 /* Throw away stuff rotting on the sack queue. */
1246 list_for_each_safe(lchunk, temp, &q->sacked) {
1247 tchunk = list_entry(lchunk, struct sctp_chunk,
1248 transmitted_list);
1249 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1250 if (TSN_lte(tsn, ctsn)) {
1251 list_del_init(&tchunk->transmitted_list);
1252 sctp_chunk_free(tchunk);
1253 }
1254 }
1255
1256 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1257 * number of bytes still outstanding after processing the
1258 * Cumulative TSN Ack and the Gap Ack Blocks.
1259 */
1260
1261 sack_a_rwnd = ntohl(sack->a_rwnd);
1262 outstanding = q->outstanding_bytes;
1263
1264 if (outstanding < sack_a_rwnd)
1265 sack_a_rwnd -= outstanding;
1266 else
1267 sack_a_rwnd = 0;
1268
1269 asoc->peer.rwnd = sack_a_rwnd;
1270
1271 sctp_generate_fwdtsn(q, sack_ctsn);
1272
1273 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1274 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1275 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1276 asoc->adv_peer_ack_point);
1277
1278 /* See if all chunks are acked.
1279 * Make sure the empty queue handler will get run later.
1280 */
1281 q->empty = (list_empty(&q->out_chunk_list) &&
1282 list_empty(&q->retransmit));
1283 if (!q->empty)
1284 goto finish;
1285
1286 list_for_each_entry(transport, transport_list, transports) {
1287 q->empty = q->empty && list_empty(&transport->transmitted);
1288 if (!q->empty)
1289 goto finish;
1290 }
1291
1292 pr_debug("%s: sack queue is empty\n", __func__);
1293 finish:
1294 return q->empty;
1295 }
1296
1297 /* Is the outqueue empty? */
1298 int sctp_outq_is_empty(const struct sctp_outq *q)
1299 {
1300 return q->empty;
1301 }
1302
1303 /********************************************************************
1304 * 2nd Level Abstractions
1305 ********************************************************************/
1306
1307 /* Go through a transport's transmitted list or the association's retransmit
1308 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1309 * The retransmit list will not have an associated transport.
1310 *
1311 * I added coherent debug information output. --xguo
1312 *
1313 * Instead of printing 'sacked' or 'kept' for each TSN on the
1314 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1315 * KEPT TSN6-TSN7, etc.
1316 */
1317 static void sctp_check_transmitted(struct sctp_outq *q,
1318 struct list_head *transmitted_queue,
1319 struct sctp_transport *transport,
1320 union sctp_addr *saddr,
1321 struct sctp_sackhdr *sack,
1322 __u32 *highest_new_tsn_in_sack)
1323 {
1324 struct list_head *lchunk;
1325 struct sctp_chunk *tchunk;
1326 struct list_head tlist;
1327 __u32 tsn;
1328 __u32 sack_ctsn;
1329 __u32 rtt;
1330 __u8 restart_timer = 0;
1331 int bytes_acked = 0;
1332 int migrate_bytes = 0;
1333 bool forward_progress = false;
1334
1335 sack_ctsn = ntohl(sack->cum_tsn_ack);
1336
1337 INIT_LIST_HEAD(&tlist);
1338
1339 /* The while loop will skip empty transmitted queues. */
1340 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1341 tchunk = list_entry(lchunk, struct sctp_chunk,
1342 transmitted_list);
1343
1344 if (sctp_chunk_abandoned(tchunk)) {
1345 /* Move the chunk to abandoned list. */
1346 sctp_insert_list(&q->abandoned, lchunk);
1347
1348 /* If this chunk has not been acked, stop
1349 * considering it as 'outstanding'.
1350 */
1351 if (!tchunk->tsn_gap_acked) {
1352 if (tchunk->transport)
1353 tchunk->transport->flight_size -=
1354 sctp_data_size(tchunk);
1355 q->outstanding_bytes -= sctp_data_size(tchunk);
1356 }
1357 continue;
1358 }
1359
1360 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1361 if (sctp_acked(sack, tsn)) {
1362 /* If this queue is the retransmit queue, the
1363 * retransmit timer has already reclaimed
1364 * the outstanding bytes for this chunk, so only
1365 * count bytes associated with a transport.
1366 */
1367 if (transport) {
1368 /* If this chunk is being used for RTT
1369 * measurement, calculate the RTT and update
1370 * the RTO using this value.
1371 *
1372 * 6.3.1 C5) Karn's algorithm: RTT measurements
1373 * MUST NOT be made using packets that were
1374 * retransmitted (and thus for which it is
1375 * ambiguous whether the reply was for the
1376 * first instance of the packet or a later
1377 * instance).
1378 */
1379 if (!tchunk->tsn_gap_acked &&
1380 !tchunk->resent &&
1381 tchunk->rtt_in_progress) {
1382 tchunk->rtt_in_progress = 0;
1383 rtt = jiffies - tchunk->sent_at;
1384 sctp_transport_update_rto(transport,
1385 rtt);
1386 }
1387 }
1388
1389 /* If the chunk hasn't been marked as ACKED,
1390 * mark it and account bytes_acked if the
1391 * chunk had a valid transport (it will not
1392 * have a transport if ASCONF had deleted it
1393 * while DATA was outstanding).
1394 */
1395 if (!tchunk->tsn_gap_acked) {
1396 tchunk->tsn_gap_acked = 1;
1397 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1398 *highest_new_tsn_in_sack = tsn;
1399 bytes_acked += sctp_data_size(tchunk);
1400 if (!tchunk->transport)
1401 migrate_bytes += sctp_data_size(tchunk);
1402 forward_progress = true;
1403 }
1404
1405 if (TSN_lte(tsn, sack_ctsn)) {
1406 /* RFC 2960 6.3.2 Retransmission Timer Rules
1407 *
1408 * R3) Whenever a SACK is received
1409 * that acknowledges the DATA chunk
1410 * with the earliest outstanding TSN
1411 * for that address, restart T3-rtx
1412 * timer for that address with its
1413 * current RTO.
1414 */
1415 restart_timer = 1;
1416 forward_progress = true;
1417
1418 if (!tchunk->tsn_gap_acked) {
1419 /*
1420 * SFR-CACC algorithm:
1421 * 2) If the SACK contains gap acks
1422 * and the flag CHANGEOVER_ACTIVE is
1423 * set the receiver of the SACK MUST
1424 * take the following action:
1425 *
1426 * B) For each TSN t being acked that
1427 * has not been acked in any SACK so
1428 * far, set cacc_saw_newack to 1 for
1429 * the destination that the TSN was
1430 * sent to.
1431 */
1432 if (transport &&
1433 sack->num_gap_ack_blocks &&
1434 q->asoc->peer.primary_path->cacc.
1435 changeover_active)
1436 transport->cacc.cacc_saw_newack
1437 = 1;
1438 }
1439
1440 list_add_tail(&tchunk->transmitted_list,
1441 &q->sacked);
1442 } else {
1443 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1444 * M2) Each time a SACK arrives reporting
1445 * 'Stray DATA chunk(s)' record the highest TSN
1446 * reported as newly acknowledged, call this
1447 * value 'HighestTSNinSack'. A newly
1448 * acknowledged DATA chunk is one not
1449 * previously acknowledged in a SACK.
1450 *
1451 * When the SCTP sender of data receives a SACK
1452 * chunk that acknowledges, for the first time,
1453 * the receipt of a DATA chunk, all the still
1454 * unacknowledged DATA chunks whose TSN is
1455 * older than that newly acknowledged DATA
1456 * chunk, are qualified as 'Stray DATA chunks'.
1457 */
1458 list_add_tail(lchunk, &tlist);
1459 }
1460 } else {
1461 if (tchunk->tsn_gap_acked) {
1462 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1463 __func__, tsn);
1464
1465 tchunk->tsn_gap_acked = 0;
1466
1467 if (tchunk->transport)
1468 bytes_acked -= sctp_data_size(tchunk);
1469
1470 /* RFC 2960 6.3.2 Retransmission Timer Rules
1471 *
1472 * R4) Whenever a SACK is received missing a
1473 * TSN that was previously acknowledged via a
1474 * Gap Ack Block, start T3-rtx for the
1475 * destination address to which the DATA
1476 * chunk was originally
1477 * transmitted if it is not already running.
1478 */
1479 restart_timer = 1;
1480 }
1481
1482 list_add_tail(lchunk, &tlist);
1483 }
1484 }
1485
1486 if (transport) {
1487 if (bytes_acked) {
1488 struct sctp_association *asoc = transport->asoc;
1489
1490 /* We may have counted DATA that was migrated
1491 * to this transport due to DEL-IP operation.
1492 * Subtract those bytes, since the were never
1493 * send on this transport and shouldn't be
1494 * credited to this transport.
1495 */
1496 bytes_acked -= migrate_bytes;
1497
1498 /* 8.2. When an outstanding TSN is acknowledged,
1499 * the endpoint shall clear the error counter of
1500 * the destination transport address to which the
1501 * DATA chunk was last sent.
1502 * The association's overall error counter is
1503 * also cleared.
1504 */
1505 transport->error_count = 0;
1506 transport->asoc->overall_error_count = 0;
1507 forward_progress = true;
1508
1509 /*
1510 * While in SHUTDOWN PENDING, we may have started
1511 * the T5 shutdown guard timer after reaching the
1512 * retransmission limit. Stop that timer as soon
1513 * as the receiver acknowledged any data.
1514 */
1515 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1516 del_timer(&asoc->timers
1517 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1518 sctp_association_put(asoc);
1519
1520 /* Mark the destination transport address as
1521 * active if it is not so marked.
1522 */
1523 if ((transport->state == SCTP_INACTIVE ||
1524 transport->state == SCTP_UNCONFIRMED) &&
1525 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1526 sctp_assoc_control_transport(
1527 transport->asoc,
1528 transport,
1529 SCTP_TRANSPORT_UP,
1530 SCTP_RECEIVED_SACK);
1531 }
1532
1533 sctp_transport_raise_cwnd(transport, sack_ctsn,
1534 bytes_acked);
1535
1536 transport->flight_size -= bytes_acked;
1537 if (transport->flight_size == 0)
1538 transport->partial_bytes_acked = 0;
1539 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1540 } else {
1541 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1542 * When a sender is doing zero window probing, it
1543 * should not timeout the association if it continues
1544 * to receive new packets from the receiver. The
1545 * reason is that the receiver MAY keep its window
1546 * closed for an indefinite time.
1547 * A sender is doing zero window probing when the
1548 * receiver's advertised window is zero, and there is
1549 * only one data chunk in flight to the receiver.
1550 *
1551 * Allow the association to timeout while in SHUTDOWN
1552 * PENDING or SHUTDOWN RECEIVED in case the receiver
1553 * stays in zero window mode forever.
1554 */
1555 if (!q->asoc->peer.rwnd &&
1556 !list_empty(&tlist) &&
1557 (sack_ctsn+2 == q->asoc->next_tsn) &&
1558 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1559 pr_debug("%s: sack received for zero window "
1560 "probe:%u\n", __func__, sack_ctsn);
1561
1562 q->asoc->overall_error_count = 0;
1563 transport->error_count = 0;
1564 }
1565 }
1566
1567 /* RFC 2960 6.3.2 Retransmission Timer Rules
1568 *
1569 * R2) Whenever all outstanding data sent to an address have
1570 * been acknowledged, turn off the T3-rtx timer of that
1571 * address.
1572 */
1573 if (!transport->flight_size) {
1574 if (del_timer(&transport->T3_rtx_timer))
1575 sctp_transport_put(transport);
1576 } else if (restart_timer) {
1577 if (!mod_timer(&transport->T3_rtx_timer,
1578 jiffies + transport->rto))
1579 sctp_transport_hold(transport);
1580 }
1581
1582 if (forward_progress) {
1583 if (transport->dst)
1584 dst_confirm(transport->dst);
1585 }
1586 }
1587
1588 list_splice(&tlist, transmitted_queue);
1589 }
1590
1591 /* Mark chunks as missing and consequently may get retransmitted. */
1592 static void sctp_mark_missing(struct sctp_outq *q,
1593 struct list_head *transmitted_queue,
1594 struct sctp_transport *transport,
1595 __u32 highest_new_tsn_in_sack,
1596 int count_of_newacks)
1597 {
1598 struct sctp_chunk *chunk;
1599 __u32 tsn;
1600 char do_fast_retransmit = 0;
1601 struct sctp_association *asoc = q->asoc;
1602 struct sctp_transport *primary = asoc->peer.primary_path;
1603
1604 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1605
1606 tsn = ntohl(chunk->subh.data_hdr->tsn);
1607
1608 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1609 * 'Unacknowledged TSN's', if the TSN number of an
1610 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1611 * value, increment the 'TSN.Missing.Report' count on that
1612 * chunk if it has NOT been fast retransmitted or marked for
1613 * fast retransmit already.
1614 */
1615 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1616 !chunk->tsn_gap_acked &&
1617 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1618
1619 /* SFR-CACC may require us to skip marking
1620 * this chunk as missing.
1621 */
1622 if (!transport || !sctp_cacc_skip(primary,
1623 chunk->transport,
1624 count_of_newacks, tsn)) {
1625 chunk->tsn_missing_report++;
1626
1627 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1628 __func__, tsn, chunk->tsn_missing_report);
1629 }
1630 }
1631 /*
1632 * M4) If any DATA chunk is found to have a
1633 * 'TSN.Missing.Report'
1634 * value larger than or equal to 3, mark that chunk for
1635 * retransmission and start the fast retransmit procedure.
1636 */
1637
1638 if (chunk->tsn_missing_report >= 3) {
1639 chunk->fast_retransmit = SCTP_NEED_FRTX;
1640 do_fast_retransmit = 1;
1641 }
1642 }
1643
1644 if (transport) {
1645 if (do_fast_retransmit)
1646 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1647
1648 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1649 "flight_size:%d, pba:%d\n", __func__, transport,
1650 transport->cwnd, transport->ssthresh,
1651 transport->flight_size, transport->partial_bytes_acked);
1652 }
1653 }
1654
1655 /* Is the given TSN acked by this packet? */
1656 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1657 {
1658 int i;
1659 sctp_sack_variable_t *frags;
1660 __u16 gap;
1661 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1662
1663 if (TSN_lte(tsn, ctsn))
1664 goto pass;
1665
1666 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1667 *
1668 * Gap Ack Blocks:
1669 * These fields contain the Gap Ack Blocks. They are repeated
1670 * for each Gap Ack Block up to the number of Gap Ack Blocks
1671 * defined in the Number of Gap Ack Blocks field. All DATA
1672 * chunks with TSNs greater than or equal to (Cumulative TSN
1673 * Ack + Gap Ack Block Start) and less than or equal to
1674 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1675 * Block are assumed to have been received correctly.
1676 */
1677
1678 frags = sack->variable;
1679 gap = tsn - ctsn;
1680 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1681 if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1682 TSN_lte(gap, ntohs(frags[i].gab.end)))
1683 goto pass;
1684 }
1685
1686 return 0;
1687 pass:
1688 return 1;
1689 }
1690
1691 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1692 int nskips, __be16 stream)
1693 {
1694 int i;
1695
1696 for (i = 0; i < nskips; i++) {
1697 if (skiplist[i].stream == stream)
1698 return i;
1699 }
1700 return i;
1701 }
1702
1703 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1704 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1705 {
1706 struct sctp_association *asoc = q->asoc;
1707 struct sctp_chunk *ftsn_chunk = NULL;
1708 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1709 int nskips = 0;
1710 int skip_pos = 0;
1711 __u32 tsn;
1712 struct sctp_chunk *chunk;
1713 struct list_head *lchunk, *temp;
1714
1715 if (!asoc->peer.prsctp_capable)
1716 return;
1717
1718 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1719 * received SACK.
1720 *
1721 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1722 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1723 */
1724 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1725 asoc->adv_peer_ack_point = ctsn;
1726
1727 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1728 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1729 * the chunk next in the out-queue space is marked as "abandoned" as
1730 * shown in the following example:
1731 *
1732 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1733 * and the Advanced.Peer.Ack.Point is updated to this value:
1734 *
1735 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1736 * normal SACK processing local advancement
1737 * ... ...
1738 * Adv.Ack.Pt-> 102 acked 102 acked
1739 * 103 abandoned 103 abandoned
1740 * 104 abandoned Adv.Ack.P-> 104 abandoned
1741 * 105 105
1742 * 106 acked 106 acked
1743 * ... ...
1744 *
1745 * In this example, the data sender successfully advanced the
1746 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1747 */
1748 list_for_each_safe(lchunk, temp, &q->abandoned) {
1749 chunk = list_entry(lchunk, struct sctp_chunk,
1750 transmitted_list);
1751 tsn = ntohl(chunk->subh.data_hdr->tsn);
1752
1753 /* Remove any chunks in the abandoned queue that are acked by
1754 * the ctsn.
1755 */
1756 if (TSN_lte(tsn, ctsn)) {
1757 list_del_init(lchunk);
1758 sctp_chunk_free(chunk);
1759 } else {
1760 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1761 asoc->adv_peer_ack_point = tsn;
1762 if (chunk->chunk_hdr->flags &
1763 SCTP_DATA_UNORDERED)
1764 continue;
1765 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1766 nskips,
1767 chunk->subh.data_hdr->stream);
1768 ftsn_skip_arr[skip_pos].stream =
1769 chunk->subh.data_hdr->stream;
1770 ftsn_skip_arr[skip_pos].ssn =
1771 chunk->subh.data_hdr->ssn;
1772 if (skip_pos == nskips)
1773 nskips++;
1774 if (nskips == 10)
1775 break;
1776 } else
1777 break;
1778 }
1779 }
1780
1781 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1782 * is greater than the Cumulative TSN ACK carried in the received
1783 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1784 * chunk containing the latest value of the
1785 * "Advanced.Peer.Ack.Point".
1786 *
1787 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1788 * list each stream and sequence number in the forwarded TSN. This
1789 * information will enable the receiver to easily find any
1790 * stranded TSN's waiting on stream reorder queues. Each stream
1791 * SHOULD only be reported once; this means that if multiple
1792 * abandoned messages occur in the same stream then only the
1793 * highest abandoned stream sequence number is reported. If the
1794 * total size of the FORWARD TSN does NOT fit in a single MTU then
1795 * the sender of the FORWARD TSN SHOULD lower the
1796 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1797 * single MTU.
1798 */
1799 if (asoc->adv_peer_ack_point > ctsn)
1800 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1801 nskips, &ftsn_skip_arr[0]);
1802
1803 if (ftsn_chunk) {
1804 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1805 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1806 }
1807 }