]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sctp/sm_sideeffect.c
Merge tag 'xfs-reflink-for-linus-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-zesty-kernel.git] / net / sctp / sm_sideeffect.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 *
6 * This file is part of the SCTP kernel implementation
7 *
8 * These functions work with the state functions in sctp_sm_statefuns.c
9 * to implement that state operations. These functions implement the
10 * steps which require modifying existing data structures.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@austin.ibm.com>
36 * Hui Huang <hui.huang@nokia.com>
37 * Dajiang Zhang <dajiang.zhang@nokia.com>
38 * Daisy Chang <daisyc@us.ibm.com>
39 * Sridhar Samudrala <sri@us.ibm.com>
40 * Ardelle Fan <ardelle.fan@intel.com>
41 */
42
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45 #include <linux/skbuff.h>
46 #include <linux/types.h>
47 #include <linux/socket.h>
48 #include <linux/ip.h>
49 #include <linux/gfp.h>
50 #include <net/sock.h>
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53
54 static int sctp_cmd_interpreter(sctp_event_t event_type,
55 sctp_subtype_t subtype,
56 sctp_state_t state,
57 struct sctp_endpoint *ep,
58 struct sctp_association *asoc,
59 void *event_arg,
60 sctp_disposition_t status,
61 sctp_cmd_seq_t *commands,
62 gfp_t gfp);
63 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
64 sctp_state_t state,
65 struct sctp_endpoint *ep,
66 struct sctp_association **asoc,
67 void *event_arg,
68 sctp_disposition_t status,
69 sctp_cmd_seq_t *commands,
70 gfp_t gfp);
71
72 /********************************************************************
73 * Helper functions
74 ********************************************************************/
75
76 /* A helper function for delayed processing of INET ECN CE bit. */
77 static void sctp_do_ecn_ce_work(struct sctp_association *asoc,
78 __u32 lowest_tsn)
79 {
80 /* Save the TSN away for comparison when we receive CWR */
81
82 asoc->last_ecne_tsn = lowest_tsn;
83 asoc->need_ecne = 1;
84 }
85
86 /* Helper function for delayed processing of SCTP ECNE chunk. */
87 /* RFC 2960 Appendix A
88 *
89 * RFC 2481 details a specific bit for a sender to send in
90 * the header of its next outbound TCP segment to indicate to
91 * its peer that it has reduced its congestion window. This
92 * is termed the CWR bit. For SCTP the same indication is made
93 * by including the CWR chunk. This chunk contains one data
94 * element, i.e. the TSN number that was sent in the ECNE chunk.
95 * This element represents the lowest TSN number in the datagram
96 * that was originally marked with the CE bit.
97 */
98 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc,
99 __u32 lowest_tsn,
100 struct sctp_chunk *chunk)
101 {
102 struct sctp_chunk *repl;
103
104 /* Our previously transmitted packet ran into some congestion
105 * so we should take action by reducing cwnd and ssthresh
106 * and then ACK our peer that we we've done so by
107 * sending a CWR.
108 */
109
110 /* First, try to determine if we want to actually lower
111 * our cwnd variables. Only lower them if the ECNE looks more
112 * recent than the last response.
113 */
114 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
115 struct sctp_transport *transport;
116
117 /* Find which transport's congestion variables
118 * need to be adjusted.
119 */
120 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
121
122 /* Update the congestion variables. */
123 if (transport)
124 sctp_transport_lower_cwnd(transport,
125 SCTP_LOWER_CWND_ECNE);
126 asoc->last_cwr_tsn = lowest_tsn;
127 }
128
129 /* Always try to quiet the other end. In case of lost CWR,
130 * resend last_cwr_tsn.
131 */
132 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
133
134 /* If we run out of memory, it will look like a lost CWR. We'll
135 * get back in sync eventually.
136 */
137 return repl;
138 }
139
140 /* Helper function to do delayed processing of ECN CWR chunk. */
141 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc,
142 __u32 lowest_tsn)
143 {
144 /* Turn off ECNE getting auto-prepended to every outgoing
145 * packet
146 */
147 asoc->need_ecne = 0;
148 }
149
150 /* Generate SACK if necessary. We call this at the end of a packet. */
151 static int sctp_gen_sack(struct sctp_association *asoc, int force,
152 sctp_cmd_seq_t *commands)
153 {
154 __u32 ctsn, max_tsn_seen;
155 struct sctp_chunk *sack;
156 struct sctp_transport *trans = asoc->peer.last_data_from;
157 int error = 0;
158
159 if (force ||
160 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) ||
161 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE)))
162 asoc->peer.sack_needed = 1;
163
164 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
165 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
166
167 /* From 12.2 Parameters necessary per association (i.e. the TCB):
168 *
169 * Ack State : This flag indicates if the next received packet
170 * : is to be responded to with a SACK. ...
171 * : When DATA chunks are out of order, SACK's
172 * : are not delayed (see Section 6).
173 *
174 * [This is actually not mentioned in Section 6, but we
175 * implement it here anyway. --piggy]
176 */
177 if (max_tsn_seen != ctsn)
178 asoc->peer.sack_needed = 1;
179
180 /* From 6.2 Acknowledgement on Reception of DATA Chunks:
181 *
182 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
183 * an acknowledgement SHOULD be generated for at least every
184 * second packet (not every second DATA chunk) received, and
185 * SHOULD be generated within 200 ms of the arrival of any
186 * unacknowledged DATA chunk. ...
187 */
188 if (!asoc->peer.sack_needed) {
189 asoc->peer.sack_cnt++;
190
191 /* Set the SACK delay timeout based on the
192 * SACK delay for the last transport
193 * data was received from, or the default
194 * for the association.
195 */
196 if (trans) {
197 /* We will need a SACK for the next packet. */
198 if (asoc->peer.sack_cnt >= trans->sackfreq - 1)
199 asoc->peer.sack_needed = 1;
200
201 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
202 trans->sackdelay;
203 } else {
204 /* We will need a SACK for the next packet. */
205 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1)
206 asoc->peer.sack_needed = 1;
207
208 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
209 asoc->sackdelay;
210 }
211
212 /* Restart the SACK timer. */
213 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
214 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
215 } else {
216 __u32 old_a_rwnd = asoc->a_rwnd;
217
218 asoc->a_rwnd = asoc->rwnd;
219 sack = sctp_make_sack(asoc);
220 if (!sack) {
221 asoc->a_rwnd = old_a_rwnd;
222 goto nomem;
223 }
224
225 asoc->peer.sack_needed = 0;
226 asoc->peer.sack_cnt = 0;
227
228 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack));
229
230 /* Stop the SACK timer. */
231 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
232 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
233 }
234
235 return error;
236 nomem:
237 error = -ENOMEM;
238 return error;
239 }
240
241 /* When the T3-RTX timer expires, it calls this function to create the
242 * relevant state machine event.
243 */
244 void sctp_generate_t3_rtx_event(unsigned long peer)
245 {
246 int error;
247 struct sctp_transport *transport = (struct sctp_transport *) peer;
248 struct sctp_association *asoc = transport->asoc;
249 struct sock *sk = asoc->base.sk;
250 struct net *net = sock_net(sk);
251
252 /* Check whether a task is in the sock. */
253
254 bh_lock_sock(sk);
255 if (sock_owned_by_user(sk)) {
256 pr_debug("%s: sock is busy\n", __func__);
257
258 /* Try again later. */
259 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
260 sctp_transport_hold(transport);
261 goto out_unlock;
262 }
263
264 /* Run through the state machine. */
265 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
266 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
267 asoc->state,
268 asoc->ep, asoc,
269 transport, GFP_ATOMIC);
270
271 if (error)
272 sk->sk_err = -error;
273
274 out_unlock:
275 bh_unlock_sock(sk);
276 sctp_transport_put(transport);
277 }
278
279 /* This is a sa interface for producing timeout events. It works
280 * for timeouts which use the association as their parameter.
281 */
282 static void sctp_generate_timeout_event(struct sctp_association *asoc,
283 sctp_event_timeout_t timeout_type)
284 {
285 struct sock *sk = asoc->base.sk;
286 struct net *net = sock_net(sk);
287 int error = 0;
288
289 bh_lock_sock(sk);
290 if (sock_owned_by_user(sk)) {
291 pr_debug("%s: sock is busy: timer %d\n", __func__,
292 timeout_type);
293
294 /* Try again later. */
295 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
296 sctp_association_hold(asoc);
297 goto out_unlock;
298 }
299
300 /* Is this association really dead and just waiting around for
301 * the timer to let go of the reference?
302 */
303 if (asoc->base.dead)
304 goto out_unlock;
305
306 /* Run through the state machine. */
307 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
308 SCTP_ST_TIMEOUT(timeout_type),
309 asoc->state, asoc->ep, asoc,
310 (void *)timeout_type, GFP_ATOMIC);
311
312 if (error)
313 sk->sk_err = -error;
314
315 out_unlock:
316 bh_unlock_sock(sk);
317 sctp_association_put(asoc);
318 }
319
320 static void sctp_generate_t1_cookie_event(unsigned long data)
321 {
322 struct sctp_association *asoc = (struct sctp_association *) data;
323 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
324 }
325
326 static void sctp_generate_t1_init_event(unsigned long data)
327 {
328 struct sctp_association *asoc = (struct sctp_association *) data;
329 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
330 }
331
332 static void sctp_generate_t2_shutdown_event(unsigned long data)
333 {
334 struct sctp_association *asoc = (struct sctp_association *) data;
335 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
336 }
337
338 static void sctp_generate_t4_rto_event(unsigned long data)
339 {
340 struct sctp_association *asoc = (struct sctp_association *) data;
341 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO);
342 }
343
344 static void sctp_generate_t5_shutdown_guard_event(unsigned long data)
345 {
346 struct sctp_association *asoc = (struct sctp_association *)data;
347 sctp_generate_timeout_event(asoc,
348 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
349
350 } /* sctp_generate_t5_shutdown_guard_event() */
351
352 static void sctp_generate_autoclose_event(unsigned long data)
353 {
354 struct sctp_association *asoc = (struct sctp_association *) data;
355 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
356 }
357
358 /* Generate a heart beat event. If the sock is busy, reschedule. Make
359 * sure that the transport is still valid.
360 */
361 void sctp_generate_heartbeat_event(unsigned long data)
362 {
363 int error = 0;
364 struct sctp_transport *transport = (struct sctp_transport *) data;
365 struct sctp_association *asoc = transport->asoc;
366 struct sock *sk = asoc->base.sk;
367 struct net *net = sock_net(sk);
368 u32 elapsed, timeout;
369
370 bh_lock_sock(sk);
371 if (sock_owned_by_user(sk)) {
372 pr_debug("%s: sock is busy\n", __func__);
373
374 /* Try again later. */
375 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
376 sctp_transport_hold(transport);
377 goto out_unlock;
378 }
379
380 /* Check if we should still send the heartbeat or reschedule */
381 elapsed = jiffies - transport->last_time_sent;
382 timeout = sctp_transport_timeout(transport);
383 if (elapsed < timeout) {
384 elapsed = timeout - elapsed;
385 if (!mod_timer(&transport->hb_timer, jiffies + elapsed))
386 sctp_transport_hold(transport);
387 goto out_unlock;
388 }
389
390 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
391 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
392 asoc->state, asoc->ep, asoc,
393 transport, GFP_ATOMIC);
394
395 if (error)
396 sk->sk_err = -error;
397
398 out_unlock:
399 bh_unlock_sock(sk);
400 sctp_transport_put(transport);
401 }
402
403 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger
404 * the correct state machine transition that will close the association.
405 */
406 void sctp_generate_proto_unreach_event(unsigned long data)
407 {
408 struct sctp_transport *transport = (struct sctp_transport *) data;
409 struct sctp_association *asoc = transport->asoc;
410 struct sock *sk = asoc->base.sk;
411 struct net *net = sock_net(sk);
412
413 bh_lock_sock(sk);
414 if (sock_owned_by_user(sk)) {
415 pr_debug("%s: sock is busy\n", __func__);
416
417 /* Try again later. */
418 if (!mod_timer(&transport->proto_unreach_timer,
419 jiffies + (HZ/20)))
420 sctp_association_hold(asoc);
421 goto out_unlock;
422 }
423
424 /* Is this structure just waiting around for us to actually
425 * get destroyed?
426 */
427 if (asoc->base.dead)
428 goto out_unlock;
429
430 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
431 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
432 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC);
433
434 out_unlock:
435 bh_unlock_sock(sk);
436 sctp_association_put(asoc);
437 }
438
439
440 /* Inject a SACK Timeout event into the state machine. */
441 static void sctp_generate_sack_event(unsigned long data)
442 {
443 struct sctp_association *asoc = (struct sctp_association *) data;
444 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
445 }
446
447 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
448 NULL,
449 sctp_generate_t1_cookie_event,
450 sctp_generate_t1_init_event,
451 sctp_generate_t2_shutdown_event,
452 NULL,
453 sctp_generate_t4_rto_event,
454 sctp_generate_t5_shutdown_guard_event,
455 NULL,
456 sctp_generate_sack_event,
457 sctp_generate_autoclose_event,
458 };
459
460
461 /* RFC 2960 8.2 Path Failure Detection
462 *
463 * When its peer endpoint is multi-homed, an endpoint should keep a
464 * error counter for each of the destination transport addresses of the
465 * peer endpoint.
466 *
467 * Each time the T3-rtx timer expires on any address, or when a
468 * HEARTBEAT sent to an idle address is not acknowledged within a RTO,
469 * the error counter of that destination address will be incremented.
470 * When the value in the error counter exceeds the protocol parameter
471 * 'Path.Max.Retrans' of that destination address, the endpoint should
472 * mark the destination transport address as inactive, and a
473 * notification SHOULD be sent to the upper layer.
474 *
475 */
476 static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands,
477 struct sctp_association *asoc,
478 struct sctp_transport *transport,
479 int is_hb)
480 {
481 struct net *net = sock_net(asoc->base.sk);
482
483 /* The check for association's overall error counter exceeding the
484 * threshold is done in the state function.
485 */
486 /* We are here due to a timer expiration. If the timer was
487 * not a HEARTBEAT, then normal error tracking is done.
488 * If the timer was a heartbeat, we only increment error counts
489 * when we already have an outstanding HEARTBEAT that has not
490 * been acknowledged.
491 * Additionally, some tranport states inhibit error increments.
492 */
493 if (!is_hb) {
494 asoc->overall_error_count++;
495 if (transport->state != SCTP_INACTIVE)
496 transport->error_count++;
497 } else if (transport->hb_sent) {
498 if (transport->state != SCTP_UNCONFIRMED)
499 asoc->overall_error_count++;
500 if (transport->state != SCTP_INACTIVE)
501 transport->error_count++;
502 }
503
504 /* If the transport error count is greater than the pf_retrans
505 * threshold, and less than pathmaxrtx, and if the current state
506 * is SCTP_ACTIVE, then mark this transport as Partially Failed,
507 * see SCTP Quick Failover Draft, section 5.1
508 */
509 if (net->sctp.pf_enable &&
510 (transport->state == SCTP_ACTIVE) &&
511 (asoc->pf_retrans < transport->pathmaxrxt) &&
512 (transport->error_count > asoc->pf_retrans)) {
513
514 sctp_assoc_control_transport(asoc, transport,
515 SCTP_TRANSPORT_PF,
516 0);
517
518 /* Update the hb timer to resend a heartbeat every rto */
519 sctp_transport_reset_hb_timer(transport);
520 }
521
522 if (transport->state != SCTP_INACTIVE &&
523 (transport->error_count > transport->pathmaxrxt)) {
524 pr_debug("%s: association:%p transport addr:%pISpc failed\n",
525 __func__, asoc, &transport->ipaddr.sa);
526
527 sctp_assoc_control_transport(asoc, transport,
528 SCTP_TRANSPORT_DOWN,
529 SCTP_FAILED_THRESHOLD);
530 }
531
532 /* E2) For the destination address for which the timer
533 * expires, set RTO <- RTO * 2 ("back off the timer"). The
534 * maximum value discussed in rule C7 above (RTO.max) may be
535 * used to provide an upper bound to this doubling operation.
536 *
537 * Special Case: the first HB doesn't trigger exponential backoff.
538 * The first unacknowledged HB triggers it. We do this with a flag
539 * that indicates that we have an outstanding HB.
540 */
541 if (!is_hb || transport->hb_sent) {
542 transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
543 sctp_max_rto(asoc, transport);
544 }
545 }
546
547 /* Worker routine to handle INIT command failure. */
548 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
549 struct sctp_association *asoc,
550 unsigned int error)
551 {
552 struct sctp_ulpevent *event;
553
554 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC,
555 (__u16)error, 0, 0, NULL,
556 GFP_ATOMIC);
557
558 if (event)
559 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
560 SCTP_ULPEVENT(event));
561
562 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
563 SCTP_STATE(SCTP_STATE_CLOSED));
564
565 /* SEND_FAILED sent later when cleaning up the association. */
566 asoc->outqueue.error = error;
567 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
568 }
569
570 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
571 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
572 struct sctp_association *asoc,
573 sctp_event_t event_type,
574 sctp_subtype_t subtype,
575 struct sctp_chunk *chunk,
576 unsigned int error)
577 {
578 struct sctp_ulpevent *event;
579 struct sctp_chunk *abort;
580 /* Cancel any partial delivery in progress. */
581 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
582
583 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT)
584 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
585 (__u16)error, 0, 0, chunk,
586 GFP_ATOMIC);
587 else
588 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
589 (__u16)error, 0, 0, NULL,
590 GFP_ATOMIC);
591 if (event)
592 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
593 SCTP_ULPEVENT(event));
594
595 if (asoc->overall_error_count >= asoc->max_retrans) {
596 abort = sctp_make_violation_max_retrans(asoc, chunk);
597 if (abort)
598 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
599 SCTP_CHUNK(abort));
600 }
601
602 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
603 SCTP_STATE(SCTP_STATE_CLOSED));
604
605 /* SEND_FAILED sent later when cleaning up the association. */
606 asoc->outqueue.error = error;
607 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
608 }
609
610 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
611 * inside the cookie. In reality, this is only used for INIT-ACK processing
612 * since all other cases use "temporary" associations and can do all
613 * their work in statefuns directly.
614 */
615 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
616 struct sctp_association *asoc,
617 struct sctp_chunk *chunk,
618 sctp_init_chunk_t *peer_init,
619 gfp_t gfp)
620 {
621 int error;
622
623 /* We only process the init as a sideeffect in a single
624 * case. This is when we process the INIT-ACK. If we
625 * fail during INIT processing (due to malloc problems),
626 * just return the error and stop processing the stack.
627 */
628 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp))
629 error = -ENOMEM;
630 else
631 error = 0;
632
633 return error;
634 }
635
636 /* Helper function to break out starting up of heartbeat timers. */
637 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
638 struct sctp_association *asoc)
639 {
640 struct sctp_transport *t;
641
642 /* Start a heartbeat timer for each transport on the association.
643 * hold a reference on the transport to make sure none of
644 * the needed data structures go away.
645 */
646 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
647 sctp_transport_reset_hb_timer(t);
648 }
649
650 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
651 struct sctp_association *asoc)
652 {
653 struct sctp_transport *t;
654
655 /* Stop all heartbeat timers. */
656
657 list_for_each_entry(t, &asoc->peer.transport_addr_list,
658 transports) {
659 if (del_timer(&t->hb_timer))
660 sctp_transport_put(t);
661 }
662 }
663
664 /* Helper function to stop any pending T3-RTX timers */
665 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds,
666 struct sctp_association *asoc)
667 {
668 struct sctp_transport *t;
669
670 list_for_each_entry(t, &asoc->peer.transport_addr_list,
671 transports) {
672 if (del_timer(&t->T3_rtx_timer))
673 sctp_transport_put(t);
674 }
675 }
676
677
678 /* Helper function to handle the reception of an HEARTBEAT ACK. */
679 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
680 struct sctp_association *asoc,
681 struct sctp_transport *t,
682 struct sctp_chunk *chunk)
683 {
684 sctp_sender_hb_info_t *hbinfo;
685 int was_unconfirmed = 0;
686
687 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
688 * HEARTBEAT should clear the error counter of the destination
689 * transport address to which the HEARTBEAT was sent.
690 */
691 t->error_count = 0;
692
693 /*
694 * Although RFC4960 specifies that the overall error count must
695 * be cleared when a HEARTBEAT ACK is received, we make an
696 * exception while in SHUTDOWN PENDING. If the peer keeps its
697 * window shut forever, we may never be able to transmit our
698 * outstanding data and rely on the retransmission limit be reached
699 * to shutdown the association.
700 */
701 if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING)
702 t->asoc->overall_error_count = 0;
703
704 /* Clear the hb_sent flag to signal that we had a good
705 * acknowledgement.
706 */
707 t->hb_sent = 0;
708
709 /* Mark the destination transport address as active if it is not so
710 * marked.
711 */
712 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) {
713 was_unconfirmed = 1;
714 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
715 SCTP_HEARTBEAT_SUCCESS);
716 }
717
718 if (t->state == SCTP_PF)
719 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
720 SCTP_HEARTBEAT_SUCCESS);
721
722 /* HB-ACK was received for a the proper HB. Consider this
723 * forward progress.
724 */
725 if (t->dst)
726 dst_confirm(t->dst);
727
728 /* The receiver of the HEARTBEAT ACK should also perform an
729 * RTT measurement for that destination transport address
730 * using the time value carried in the HEARTBEAT ACK chunk.
731 * If the transport's rto_pending variable has been cleared,
732 * it was most likely due to a retransmit. However, we want
733 * to re-enable it to properly update the rto.
734 */
735 if (t->rto_pending == 0)
736 t->rto_pending = 1;
737
738 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
739 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
740
741 /* Update the heartbeat timer. */
742 sctp_transport_reset_hb_timer(t);
743
744 if (was_unconfirmed && asoc->peer.transport_count == 1)
745 sctp_transport_immediate_rtx(t);
746 }
747
748
749 /* Helper function to process the process SACK command. */
750 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
751 struct sctp_association *asoc,
752 struct sctp_chunk *chunk)
753 {
754 int err = 0;
755
756 if (sctp_outq_sack(&asoc->outqueue, chunk)) {
757 struct net *net = sock_net(asoc->base.sk);
758
759 /* There are no more TSNs awaiting SACK. */
760 err = sctp_do_sm(net, SCTP_EVENT_T_OTHER,
761 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
762 asoc->state, asoc->ep, asoc, NULL,
763 GFP_ATOMIC);
764 }
765
766 return err;
767 }
768
769 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
770 * the transport for a shutdown chunk.
771 */
772 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds,
773 struct sctp_association *asoc,
774 struct sctp_chunk *chunk)
775 {
776 struct sctp_transport *t;
777
778 if (chunk->transport)
779 t = chunk->transport;
780 else {
781 t = sctp_assoc_choose_alter_transport(asoc,
782 asoc->shutdown_last_sent_to);
783 chunk->transport = t;
784 }
785 asoc->shutdown_last_sent_to = t;
786 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
787 }
788
789 /* Helper function to change the state of an association. */
790 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds,
791 struct sctp_association *asoc,
792 sctp_state_t state)
793 {
794 struct sock *sk = asoc->base.sk;
795
796 asoc->state = state;
797
798 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]);
799
800 if (sctp_style(sk, TCP)) {
801 /* Change the sk->sk_state of a TCP-style socket that has
802 * successfully completed a connect() call.
803 */
804 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED))
805 sk->sk_state = SCTP_SS_ESTABLISHED;
806
807 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */
808 if (sctp_state(asoc, SHUTDOWN_RECEIVED) &&
809 sctp_sstate(sk, ESTABLISHED)) {
810 sk->sk_state = SCTP_SS_CLOSING;
811 sk->sk_shutdown |= RCV_SHUTDOWN;
812 }
813 }
814
815 if (sctp_state(asoc, COOKIE_WAIT)) {
816 /* Reset init timeouts since they may have been
817 * increased due to timer expirations.
818 */
819 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] =
820 asoc->rto_initial;
821 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] =
822 asoc->rto_initial;
823 }
824
825 if (sctp_state(asoc, ESTABLISHED) ||
826 sctp_state(asoc, CLOSED) ||
827 sctp_state(asoc, SHUTDOWN_RECEIVED)) {
828 /* Wake up any processes waiting in the asoc's wait queue in
829 * sctp_wait_for_connect() or sctp_wait_for_sndbuf().
830 */
831 if (waitqueue_active(&asoc->wait))
832 wake_up_interruptible(&asoc->wait);
833
834 /* Wake up any processes waiting in the sk's sleep queue of
835 * a TCP-style or UDP-style peeled-off socket in
836 * sctp_wait_for_accept() or sctp_wait_for_packet().
837 * For a UDP-style socket, the waiters are woken up by the
838 * notifications.
839 */
840 if (!sctp_style(sk, UDP))
841 sk->sk_state_change(sk);
842 }
843 }
844
845 /* Helper function to delete an association. */
846 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds,
847 struct sctp_association *asoc)
848 {
849 struct sock *sk = asoc->base.sk;
850
851 /* If it is a non-temporary association belonging to a TCP-style
852 * listening socket that is not closed, do not free it so that accept()
853 * can pick it up later.
854 */
855 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) &&
856 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK))
857 return;
858
859 sctp_association_free(asoc);
860 }
861
862 /*
863 * ADDIP Section 4.1 ASCONF Chunk Procedures
864 * A4) Start a T-4 RTO timer, using the RTO value of the selected
865 * destination address (we use active path instead of primary path just
866 * because primary path may be inactive.
867 */
868 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds,
869 struct sctp_association *asoc,
870 struct sctp_chunk *chunk)
871 {
872 struct sctp_transport *t;
873
874 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport);
875 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto;
876 chunk->transport = t;
877 }
878
879 /* Process an incoming Operation Error Chunk. */
880 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds,
881 struct sctp_association *asoc,
882 struct sctp_chunk *chunk)
883 {
884 struct sctp_errhdr *err_hdr;
885 struct sctp_ulpevent *ev;
886
887 while (chunk->chunk_end > chunk->skb->data) {
888 err_hdr = (struct sctp_errhdr *)(chunk->skb->data);
889
890 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0,
891 GFP_ATOMIC);
892 if (!ev)
893 return;
894
895 sctp_ulpq_tail_event(&asoc->ulpq, ev);
896
897 switch (err_hdr->cause) {
898 case SCTP_ERROR_UNKNOWN_CHUNK:
899 {
900 sctp_chunkhdr_t *unk_chunk_hdr;
901
902 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable;
903 switch (unk_chunk_hdr->type) {
904 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with
905 * an ERROR chunk reporting that it did not recognized
906 * the ASCONF chunk type, the sender of the ASCONF MUST
907 * NOT send any further ASCONF chunks and MUST stop its
908 * T-4 timer.
909 */
910 case SCTP_CID_ASCONF:
911 if (asoc->peer.asconf_capable == 0)
912 break;
913
914 asoc->peer.asconf_capable = 0;
915 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP,
916 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
917 break;
918 default:
919 break;
920 }
921 break;
922 }
923 default:
924 break;
925 }
926 }
927 }
928
929 /* Process variable FWDTSN chunk information. */
930 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq,
931 struct sctp_chunk *chunk)
932 {
933 struct sctp_fwdtsn_skip *skip;
934 /* Walk through all the skipped SSNs */
935 sctp_walk_fwdtsn(skip, chunk) {
936 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn));
937 }
938 }
939
940 /* Helper function to remove the association non-primary peer
941 * transports.
942 */
943 static void sctp_cmd_del_non_primary(struct sctp_association *asoc)
944 {
945 struct sctp_transport *t;
946 struct list_head *pos;
947 struct list_head *temp;
948
949 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
950 t = list_entry(pos, struct sctp_transport, transports);
951 if (!sctp_cmp_addr_exact(&t->ipaddr,
952 &asoc->peer.primary_addr)) {
953 sctp_assoc_rm_peer(asoc, t);
954 }
955 }
956 }
957
958 /* Helper function to set sk_err on a 1-1 style socket. */
959 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error)
960 {
961 struct sock *sk = asoc->base.sk;
962
963 if (!sctp_style(sk, UDP))
964 sk->sk_err = error;
965 }
966
967 /* Helper function to generate an association change event */
968 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands,
969 struct sctp_association *asoc,
970 u8 state)
971 {
972 struct sctp_ulpevent *ev;
973
974 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0,
975 asoc->c.sinit_num_ostreams,
976 asoc->c.sinit_max_instreams,
977 NULL, GFP_ATOMIC);
978 if (ev)
979 sctp_ulpq_tail_event(&asoc->ulpq, ev);
980 }
981
982 /* Helper function to generate an adaptation indication event */
983 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands,
984 struct sctp_association *asoc)
985 {
986 struct sctp_ulpevent *ev;
987
988 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
989
990 if (ev)
991 sctp_ulpq_tail_event(&asoc->ulpq, ev);
992 }
993
994
995 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc,
996 sctp_event_timeout_t timer,
997 char *name)
998 {
999 struct sctp_transport *t;
1000
1001 t = asoc->init_last_sent_to;
1002 asoc->init_err_counter++;
1003
1004 if (t->init_sent_count > (asoc->init_cycle + 1)) {
1005 asoc->timeouts[timer] *= 2;
1006 if (asoc->timeouts[timer] > asoc->max_init_timeo) {
1007 asoc->timeouts[timer] = asoc->max_init_timeo;
1008 }
1009 asoc->init_cycle++;
1010
1011 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d"
1012 " cycle:%d timeout:%ld\n", __func__, name,
1013 asoc->init_err_counter, asoc->init_cycle,
1014 asoc->timeouts[timer]);
1015 }
1016
1017 }
1018
1019 /* Send the whole message, chunk by chunk, to the outqueue.
1020 * This way the whole message is queued up and bundling if
1021 * encouraged for small fragments.
1022 */
1023 static void sctp_cmd_send_msg(struct sctp_association *asoc,
1024 struct sctp_datamsg *msg, gfp_t gfp)
1025 {
1026 struct sctp_chunk *chunk;
1027
1028 list_for_each_entry(chunk, &msg->chunks, frag_list)
1029 sctp_outq_tail(&asoc->outqueue, chunk, gfp);
1030 }
1031
1032
1033 /* Sent the next ASCONF packet currently stored in the association.
1034 * This happens after the ASCONF_ACK was succeffully processed.
1035 */
1036 static void sctp_cmd_send_asconf(struct sctp_association *asoc)
1037 {
1038 struct net *net = sock_net(asoc->base.sk);
1039
1040 /* Send the next asconf chunk from the addip chunk
1041 * queue.
1042 */
1043 if (!list_empty(&asoc->addip_chunk_list)) {
1044 struct list_head *entry = asoc->addip_chunk_list.next;
1045 struct sctp_chunk *asconf = list_entry(entry,
1046 struct sctp_chunk, list);
1047 list_del_init(entry);
1048
1049 /* Hold the chunk until an ASCONF_ACK is received. */
1050 sctp_chunk_hold(asconf);
1051 if (sctp_primitive_ASCONF(net, asoc, asconf))
1052 sctp_chunk_free(asconf);
1053 else
1054 asoc->addip_last_asconf = asconf;
1055 }
1056 }
1057
1058
1059 /* These three macros allow us to pull the debugging code out of the
1060 * main flow of sctp_do_sm() to keep attention focused on the real
1061 * functionality there.
1062 */
1063 #define debug_pre_sfn() \
1064 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \
1065 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \
1066 asoc, sctp_state_tbl[state], state_fn->name)
1067
1068 #define debug_post_sfn() \
1069 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \
1070 sctp_status_tbl[status])
1071
1072 #define debug_post_sfx() \
1073 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \
1074 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
1075 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED])
1076
1077 /*
1078 * This is the master state machine processing function.
1079 *
1080 * If you want to understand all of lksctp, this is a
1081 * good place to start.
1082 */
1083 int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype,
1084 sctp_state_t state,
1085 struct sctp_endpoint *ep,
1086 struct sctp_association *asoc,
1087 void *event_arg,
1088 gfp_t gfp)
1089 {
1090 sctp_cmd_seq_t commands;
1091 const sctp_sm_table_entry_t *state_fn;
1092 sctp_disposition_t status;
1093 int error = 0;
1094 typedef const char *(printfn_t)(sctp_subtype_t);
1095 static printfn_t *table[] = {
1096 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
1097 };
1098 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
1099
1100 /* Look up the state function, run it, and then process the
1101 * side effects. These three steps are the heart of lksctp.
1102 */
1103 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype);
1104
1105 sctp_init_cmd_seq(&commands);
1106
1107 debug_pre_sfn();
1108 status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands);
1109 debug_post_sfn();
1110
1111 error = sctp_side_effects(event_type, subtype, state,
1112 ep, &asoc, event_arg, status,
1113 &commands, gfp);
1114 debug_post_sfx();
1115
1116 return error;
1117 }
1118
1119 /*****************************************************************
1120 * This the master state function side effect processing function.
1121 *****************************************************************/
1122 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
1123 sctp_state_t state,
1124 struct sctp_endpoint *ep,
1125 struct sctp_association **asoc,
1126 void *event_arg,
1127 sctp_disposition_t status,
1128 sctp_cmd_seq_t *commands,
1129 gfp_t gfp)
1130 {
1131 int error;
1132
1133 /* FIXME - Most of the dispositions left today would be categorized
1134 * as "exceptional" dispositions. For those dispositions, it
1135 * may not be proper to run through any of the commands at all.
1136 * For example, the command interpreter might be run only with
1137 * disposition SCTP_DISPOSITION_CONSUME.
1138 */
1139 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
1140 ep, *asoc,
1141 event_arg, status,
1142 commands, gfp)))
1143 goto bail;
1144
1145 switch (status) {
1146 case SCTP_DISPOSITION_DISCARD:
1147 pr_debug("%s: ignored sctp protocol event - state:%d, "
1148 "event_type:%d, event_id:%d\n", __func__, state,
1149 event_type, subtype.chunk);
1150 break;
1151
1152 case SCTP_DISPOSITION_NOMEM:
1153 /* We ran out of memory, so we need to discard this
1154 * packet.
1155 */
1156 /* BUG--we should now recover some memory, probably by
1157 * reneging...
1158 */
1159 error = -ENOMEM;
1160 break;
1161
1162 case SCTP_DISPOSITION_DELETE_TCB:
1163 case SCTP_DISPOSITION_ABORT:
1164 /* This should now be a command. */
1165 *asoc = NULL;
1166 break;
1167
1168 case SCTP_DISPOSITION_CONSUME:
1169 /*
1170 * We should no longer have much work to do here as the
1171 * real work has been done as explicit commands above.
1172 */
1173 break;
1174
1175 case SCTP_DISPOSITION_VIOLATION:
1176 net_err_ratelimited("protocol violation state %d chunkid %d\n",
1177 state, subtype.chunk);
1178 break;
1179
1180 case SCTP_DISPOSITION_NOT_IMPL:
1181 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n",
1182 state, event_type, subtype.chunk);
1183 break;
1184
1185 case SCTP_DISPOSITION_BUG:
1186 pr_err("bug in state %d, event_type %d, event_id %d\n",
1187 state, event_type, subtype.chunk);
1188 BUG();
1189 break;
1190
1191 default:
1192 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n",
1193 status, state, event_type, subtype.chunk);
1194 BUG();
1195 break;
1196 }
1197
1198 bail:
1199 return error;
1200 }
1201
1202 /********************************************************************
1203 * 2nd Level Abstractions
1204 ********************************************************************/
1205
1206 /* This is the side-effect interpreter. */
1207 static int sctp_cmd_interpreter(sctp_event_t event_type,
1208 sctp_subtype_t subtype,
1209 sctp_state_t state,
1210 struct sctp_endpoint *ep,
1211 struct sctp_association *asoc,
1212 void *event_arg,
1213 sctp_disposition_t status,
1214 sctp_cmd_seq_t *commands,
1215 gfp_t gfp)
1216 {
1217 struct sock *sk = ep->base.sk;
1218 struct sctp_sock *sp = sctp_sk(sk);
1219 int error = 0;
1220 int force;
1221 sctp_cmd_t *cmd;
1222 struct sctp_chunk *new_obj;
1223 struct sctp_chunk *chunk = NULL;
1224 struct sctp_packet *packet;
1225 struct timer_list *timer;
1226 unsigned long timeout;
1227 struct sctp_transport *t;
1228 struct sctp_sackhdr sackh;
1229 int local_cork = 0;
1230
1231 if (SCTP_EVENT_T_TIMEOUT != event_type)
1232 chunk = event_arg;
1233
1234 /* Note: This whole file is a huge candidate for rework.
1235 * For example, each command could either have its own handler, so
1236 * the loop would look like:
1237 * while (cmds)
1238 * cmd->handle(x, y, z)
1239 * --jgrimm
1240 */
1241 while (NULL != (cmd = sctp_next_cmd(commands))) {
1242 switch (cmd->verb) {
1243 case SCTP_CMD_NOP:
1244 /* Do nothing. */
1245 break;
1246
1247 case SCTP_CMD_NEW_ASOC:
1248 /* Register a new association. */
1249 if (local_cork) {
1250 sctp_outq_uncork(&asoc->outqueue, gfp);
1251 local_cork = 0;
1252 }
1253
1254 /* Register with the endpoint. */
1255 asoc = cmd->obj.asoc;
1256 BUG_ON(asoc->peer.primary_path == NULL);
1257 sctp_endpoint_add_asoc(ep, asoc);
1258 break;
1259
1260 case SCTP_CMD_UPDATE_ASSOC:
1261 sctp_assoc_update(asoc, cmd->obj.asoc);
1262 break;
1263
1264 case SCTP_CMD_PURGE_OUTQUEUE:
1265 sctp_outq_teardown(&asoc->outqueue);
1266 break;
1267
1268 case SCTP_CMD_DELETE_TCB:
1269 if (local_cork) {
1270 sctp_outq_uncork(&asoc->outqueue, gfp);
1271 local_cork = 0;
1272 }
1273 /* Delete the current association. */
1274 sctp_cmd_delete_tcb(commands, asoc);
1275 asoc = NULL;
1276 break;
1277
1278 case SCTP_CMD_NEW_STATE:
1279 /* Enter a new state. */
1280 sctp_cmd_new_state(commands, asoc, cmd->obj.state);
1281 break;
1282
1283 case SCTP_CMD_REPORT_TSN:
1284 /* Record the arrival of a TSN. */
1285 error = sctp_tsnmap_mark(&asoc->peer.tsn_map,
1286 cmd->obj.u32, NULL);
1287 break;
1288
1289 case SCTP_CMD_REPORT_FWDTSN:
1290 /* Move the Cumulattive TSN Ack ahead. */
1291 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32);
1292
1293 /* purge the fragmentation queue */
1294 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32);
1295
1296 /* Abort any in progress partial delivery. */
1297 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
1298 break;
1299
1300 case SCTP_CMD_PROCESS_FWDTSN:
1301 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk);
1302 break;
1303
1304 case SCTP_CMD_GEN_SACK:
1305 /* Generate a Selective ACK.
1306 * The argument tells us whether to just count
1307 * the packet and MAYBE generate a SACK, or
1308 * force a SACK out.
1309 */
1310 force = cmd->obj.i32;
1311 error = sctp_gen_sack(asoc, force, commands);
1312 break;
1313
1314 case SCTP_CMD_PROCESS_SACK:
1315 /* Process an inbound SACK. */
1316 error = sctp_cmd_process_sack(commands, asoc,
1317 cmd->obj.chunk);
1318 break;
1319
1320 case SCTP_CMD_GEN_INIT_ACK:
1321 /* Generate an INIT ACK chunk. */
1322 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
1323 0);
1324 if (!new_obj)
1325 goto nomem;
1326
1327 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1328 SCTP_CHUNK(new_obj));
1329 break;
1330
1331 case SCTP_CMD_PEER_INIT:
1332 /* Process a unified INIT from the peer.
1333 * Note: Only used during INIT-ACK processing. If
1334 * there is an error just return to the outter
1335 * layer which will bail.
1336 */
1337 error = sctp_cmd_process_init(commands, asoc, chunk,
1338 cmd->obj.init, gfp);
1339 break;
1340
1341 case SCTP_CMD_GEN_COOKIE_ECHO:
1342 /* Generate a COOKIE ECHO chunk. */
1343 new_obj = sctp_make_cookie_echo(asoc, chunk);
1344 if (!new_obj) {
1345 if (cmd->obj.chunk)
1346 sctp_chunk_free(cmd->obj.chunk);
1347 goto nomem;
1348 }
1349 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1350 SCTP_CHUNK(new_obj));
1351
1352 /* If there is an ERROR chunk to be sent along with
1353 * the COOKIE_ECHO, send it, too.
1354 */
1355 if (cmd->obj.chunk)
1356 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1357 SCTP_CHUNK(cmd->obj.chunk));
1358
1359 if (new_obj->transport) {
1360 new_obj->transport->init_sent_count++;
1361 asoc->init_last_sent_to = new_obj->transport;
1362 }
1363
1364 /* FIXME - Eventually come up with a cleaner way to
1365 * enabling COOKIE-ECHO + DATA bundling during
1366 * multihoming stale cookie scenarios, the following
1367 * command plays with asoc->peer.retran_path to
1368 * avoid the problem of sending the COOKIE-ECHO and
1369 * DATA in different paths, which could result
1370 * in the association being ABORTed if the DATA chunk
1371 * is processed first by the server. Checking the
1372 * init error counter simply causes this command
1373 * to be executed only during failed attempts of
1374 * association establishment.
1375 */
1376 if ((asoc->peer.retran_path !=
1377 asoc->peer.primary_path) &&
1378 (asoc->init_err_counter > 0)) {
1379 sctp_add_cmd_sf(commands,
1380 SCTP_CMD_FORCE_PRIM_RETRAN,
1381 SCTP_NULL());
1382 }
1383
1384 break;
1385
1386 case SCTP_CMD_GEN_SHUTDOWN:
1387 /* Generate SHUTDOWN when in SHUTDOWN_SENT state.
1388 * Reset error counts.
1389 */
1390 asoc->overall_error_count = 0;
1391
1392 /* Generate a SHUTDOWN chunk. */
1393 new_obj = sctp_make_shutdown(asoc, chunk);
1394 if (!new_obj)
1395 goto nomem;
1396 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1397 SCTP_CHUNK(new_obj));
1398 break;
1399
1400 case SCTP_CMD_CHUNK_ULP:
1401 /* Send a chunk to the sockets layer. */
1402 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n",
1403 __func__, cmd->obj.chunk, &asoc->ulpq);
1404
1405 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk,
1406 GFP_ATOMIC);
1407 break;
1408
1409 case SCTP_CMD_EVENT_ULP:
1410 /* Send a notification to the sockets layer. */
1411 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n",
1412 __func__, cmd->obj.ulpevent, &asoc->ulpq);
1413
1414 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent);
1415 break;
1416
1417 case SCTP_CMD_REPLY:
1418 /* If an caller has not already corked, do cork. */
1419 if (!asoc->outqueue.cork) {
1420 sctp_outq_cork(&asoc->outqueue);
1421 local_cork = 1;
1422 }
1423 /* Send a chunk to our peer. */
1424 sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp);
1425 break;
1426
1427 case SCTP_CMD_SEND_PKT:
1428 /* Send a full packet to our peer. */
1429 packet = cmd->obj.packet;
1430 sctp_packet_transmit(packet, gfp);
1431 sctp_ootb_pkt_free(packet);
1432 break;
1433
1434 case SCTP_CMD_T1_RETRAN:
1435 /* Mark a transport for retransmission. */
1436 sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1437 SCTP_RTXR_T1_RTX);
1438 break;
1439
1440 case SCTP_CMD_RETRAN:
1441 /* Mark a transport for retransmission. */
1442 sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1443 SCTP_RTXR_T3_RTX);
1444 break;
1445
1446 case SCTP_CMD_ECN_CE:
1447 /* Do delayed CE processing. */
1448 sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
1449 break;
1450
1451 case SCTP_CMD_ECN_ECNE:
1452 /* Do delayed ECNE processing. */
1453 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
1454 chunk);
1455 if (new_obj)
1456 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1457 SCTP_CHUNK(new_obj));
1458 break;
1459
1460 case SCTP_CMD_ECN_CWR:
1461 /* Do delayed CWR processing. */
1462 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
1463 break;
1464
1465 case SCTP_CMD_SETUP_T2:
1466 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk);
1467 break;
1468
1469 case SCTP_CMD_TIMER_START_ONCE:
1470 timer = &asoc->timers[cmd->obj.to];
1471
1472 if (timer_pending(timer))
1473 break;
1474 /* fall through */
1475
1476 case SCTP_CMD_TIMER_START:
1477 timer = &asoc->timers[cmd->obj.to];
1478 timeout = asoc->timeouts[cmd->obj.to];
1479 BUG_ON(!timeout);
1480
1481 timer->expires = jiffies + timeout;
1482 sctp_association_hold(asoc);
1483 add_timer(timer);
1484 break;
1485
1486 case SCTP_CMD_TIMER_RESTART:
1487 timer = &asoc->timers[cmd->obj.to];
1488 timeout = asoc->timeouts[cmd->obj.to];
1489 if (!mod_timer(timer, jiffies + timeout))
1490 sctp_association_hold(asoc);
1491 break;
1492
1493 case SCTP_CMD_TIMER_STOP:
1494 timer = &asoc->timers[cmd->obj.to];
1495 if (del_timer(timer))
1496 sctp_association_put(asoc);
1497 break;
1498
1499 case SCTP_CMD_INIT_CHOOSE_TRANSPORT:
1500 chunk = cmd->obj.chunk;
1501 t = sctp_assoc_choose_alter_transport(asoc,
1502 asoc->init_last_sent_to);
1503 asoc->init_last_sent_to = t;
1504 chunk->transport = t;
1505 t->init_sent_count++;
1506 /* Set the new transport as primary */
1507 sctp_assoc_set_primary(asoc, t);
1508 break;
1509
1510 case SCTP_CMD_INIT_RESTART:
1511 /* Do the needed accounting and updates
1512 * associated with restarting an initialization
1513 * timer. Only multiply the timeout by two if
1514 * all transports have been tried at the current
1515 * timeout.
1516 */
1517 sctp_cmd_t1_timer_update(asoc,
1518 SCTP_EVENT_TIMEOUT_T1_INIT,
1519 "INIT");
1520
1521 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
1522 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
1523 break;
1524
1525 case SCTP_CMD_COOKIEECHO_RESTART:
1526 /* Do the needed accounting and updates
1527 * associated with restarting an initialization
1528 * timer. Only multiply the timeout by two if
1529 * all transports have been tried at the current
1530 * timeout.
1531 */
1532 sctp_cmd_t1_timer_update(asoc,
1533 SCTP_EVENT_TIMEOUT_T1_COOKIE,
1534 "COOKIE");
1535
1536 /* If we've sent any data bundled with
1537 * COOKIE-ECHO we need to resend.
1538 */
1539 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1540 transports) {
1541 sctp_retransmit_mark(&asoc->outqueue, t,
1542 SCTP_RTXR_T1_RTX);
1543 }
1544
1545 sctp_add_cmd_sf(commands,
1546 SCTP_CMD_TIMER_RESTART,
1547 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
1548 break;
1549
1550 case SCTP_CMD_INIT_FAILED:
1551 sctp_cmd_init_failed(commands, asoc, cmd->obj.err);
1552 break;
1553
1554 case SCTP_CMD_ASSOC_FAILED:
1555 sctp_cmd_assoc_failed(commands, asoc, event_type,
1556 subtype, chunk, cmd->obj.err);
1557 break;
1558
1559 case SCTP_CMD_INIT_COUNTER_INC:
1560 asoc->init_err_counter++;
1561 break;
1562
1563 case SCTP_CMD_INIT_COUNTER_RESET:
1564 asoc->init_err_counter = 0;
1565 asoc->init_cycle = 0;
1566 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1567 transports) {
1568 t->init_sent_count = 0;
1569 }
1570 break;
1571
1572 case SCTP_CMD_REPORT_DUP:
1573 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
1574 cmd->obj.u32);
1575 break;
1576
1577 case SCTP_CMD_REPORT_BAD_TAG:
1578 pr_debug("%s: vtag mismatch!\n", __func__);
1579 break;
1580
1581 case SCTP_CMD_STRIKE:
1582 /* Mark one strike against a transport. */
1583 sctp_do_8_2_transport_strike(commands, asoc,
1584 cmd->obj.transport, 0);
1585 break;
1586
1587 case SCTP_CMD_TRANSPORT_IDLE:
1588 t = cmd->obj.transport;
1589 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
1590 break;
1591
1592 case SCTP_CMD_TRANSPORT_HB_SENT:
1593 t = cmd->obj.transport;
1594 sctp_do_8_2_transport_strike(commands, asoc,
1595 t, 1);
1596 t->hb_sent = 1;
1597 break;
1598
1599 case SCTP_CMD_TRANSPORT_ON:
1600 t = cmd->obj.transport;
1601 sctp_cmd_transport_on(commands, asoc, t, chunk);
1602 break;
1603
1604 case SCTP_CMD_HB_TIMERS_START:
1605 sctp_cmd_hb_timers_start(commands, asoc);
1606 break;
1607
1608 case SCTP_CMD_HB_TIMER_UPDATE:
1609 t = cmd->obj.transport;
1610 sctp_transport_reset_hb_timer(t);
1611 break;
1612
1613 case SCTP_CMD_HB_TIMERS_STOP:
1614 sctp_cmd_hb_timers_stop(commands, asoc);
1615 break;
1616
1617 case SCTP_CMD_REPORT_ERROR:
1618 error = cmd->obj.error;
1619 break;
1620
1621 case SCTP_CMD_PROCESS_CTSN:
1622 /* Dummy up a SACK for processing. */
1623 sackh.cum_tsn_ack = cmd->obj.be32;
1624 sackh.a_rwnd = asoc->peer.rwnd +
1625 asoc->outqueue.outstanding_bytes;
1626 sackh.num_gap_ack_blocks = 0;
1627 sackh.num_dup_tsns = 0;
1628 chunk->subh.sack_hdr = &sackh;
1629 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
1630 SCTP_CHUNK(chunk));
1631 break;
1632
1633 case SCTP_CMD_DISCARD_PACKET:
1634 /* We need to discard the whole packet.
1635 * Uncork the queue since there might be
1636 * responses pending
1637 */
1638 chunk->pdiscard = 1;
1639 if (asoc) {
1640 sctp_outq_uncork(&asoc->outqueue, gfp);
1641 local_cork = 0;
1642 }
1643 break;
1644
1645 case SCTP_CMD_RTO_PENDING:
1646 t = cmd->obj.transport;
1647 t->rto_pending = 1;
1648 break;
1649
1650 case SCTP_CMD_PART_DELIVER:
1651 sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC);
1652 break;
1653
1654 case SCTP_CMD_RENEGE:
1655 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk,
1656 GFP_ATOMIC);
1657 break;
1658
1659 case SCTP_CMD_SETUP_T4:
1660 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk);
1661 break;
1662
1663 case SCTP_CMD_PROCESS_OPERR:
1664 sctp_cmd_process_operr(commands, asoc, chunk);
1665 break;
1666 case SCTP_CMD_CLEAR_INIT_TAG:
1667 asoc->peer.i.init_tag = 0;
1668 break;
1669 case SCTP_CMD_DEL_NON_PRIMARY:
1670 sctp_cmd_del_non_primary(asoc);
1671 break;
1672 case SCTP_CMD_T3_RTX_TIMERS_STOP:
1673 sctp_cmd_t3_rtx_timers_stop(commands, asoc);
1674 break;
1675 case SCTP_CMD_FORCE_PRIM_RETRAN:
1676 t = asoc->peer.retran_path;
1677 asoc->peer.retran_path = asoc->peer.primary_path;
1678 sctp_outq_uncork(&asoc->outqueue, gfp);
1679 local_cork = 0;
1680 asoc->peer.retran_path = t;
1681 break;
1682 case SCTP_CMD_SET_SK_ERR:
1683 sctp_cmd_set_sk_err(asoc, cmd->obj.error);
1684 break;
1685 case SCTP_CMD_ASSOC_CHANGE:
1686 sctp_cmd_assoc_change(commands, asoc,
1687 cmd->obj.u8);
1688 break;
1689 case SCTP_CMD_ADAPTATION_IND:
1690 sctp_cmd_adaptation_ind(commands, asoc);
1691 break;
1692
1693 case SCTP_CMD_ASSOC_SHKEY:
1694 error = sctp_auth_asoc_init_active_key(asoc,
1695 GFP_ATOMIC);
1696 break;
1697 case SCTP_CMD_UPDATE_INITTAG:
1698 asoc->peer.i.init_tag = cmd->obj.u32;
1699 break;
1700 case SCTP_CMD_SEND_MSG:
1701 if (!asoc->outqueue.cork) {
1702 sctp_outq_cork(&asoc->outqueue);
1703 local_cork = 1;
1704 }
1705 sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp);
1706 break;
1707 case SCTP_CMD_SEND_NEXT_ASCONF:
1708 sctp_cmd_send_asconf(asoc);
1709 break;
1710 case SCTP_CMD_PURGE_ASCONF_QUEUE:
1711 sctp_asconf_queue_teardown(asoc);
1712 break;
1713
1714 case SCTP_CMD_SET_ASOC:
1715 asoc = cmd->obj.asoc;
1716 break;
1717
1718 default:
1719 pr_warn("Impossible command: %u\n",
1720 cmd->verb);
1721 break;
1722 }
1723
1724 if (error)
1725 break;
1726 }
1727
1728 out:
1729 /* If this is in response to a received chunk, wait until
1730 * we are done with the packet to open the queue so that we don't
1731 * send multiple packets in response to a single request.
1732 */
1733 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) {
1734 if (chunk->end_of_packet || chunk->singleton)
1735 sctp_outq_uncork(&asoc->outqueue, gfp);
1736 } else if (local_cork)
1737 sctp_outq_uncork(&asoc->outqueue, gfp);
1738
1739 if (sp->data_ready_signalled)
1740 sp->data_ready_signalled = 0;
1741
1742 return error;
1743 nomem:
1744 error = -ENOMEM;
1745 goto out;
1746 }
1747