]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/sctp/sm_sideeffect.c
Merge branch '40GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next...
[mirror_ubuntu-hirsute-kernel.git] / net / sctp / sm_sideeffect.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 *
6 * This file is part of the SCTP kernel implementation
7 *
8 * These functions work with the state functions in sctp_sm_statefuns.c
9 * to implement that state operations. These functions implement the
10 * steps which require modifying existing data structures.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@austin.ibm.com>
36 * Hui Huang <hui.huang@nokia.com>
37 * Dajiang Zhang <dajiang.zhang@nokia.com>
38 * Daisy Chang <daisyc@us.ibm.com>
39 * Sridhar Samudrala <sri@us.ibm.com>
40 * Ardelle Fan <ardelle.fan@intel.com>
41 */
42
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44
45 #include <linux/skbuff.h>
46 #include <linux/types.h>
47 #include <linux/socket.h>
48 #include <linux/ip.h>
49 #include <linux/gfp.h>
50 #include <net/sock.h>
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53
54 static int sctp_cmd_interpreter(sctp_event_t event_type,
55 sctp_subtype_t subtype,
56 sctp_state_t state,
57 struct sctp_endpoint *ep,
58 struct sctp_association *asoc,
59 void *event_arg,
60 sctp_disposition_t status,
61 sctp_cmd_seq_t *commands,
62 gfp_t gfp);
63 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
64 sctp_state_t state,
65 struct sctp_endpoint *ep,
66 struct sctp_association **asoc,
67 void *event_arg,
68 sctp_disposition_t status,
69 sctp_cmd_seq_t *commands,
70 gfp_t gfp);
71
72 /********************************************************************
73 * Helper functions
74 ********************************************************************/
75
76 /* A helper function for delayed processing of INET ECN CE bit. */
77 static void sctp_do_ecn_ce_work(struct sctp_association *asoc,
78 __u32 lowest_tsn)
79 {
80 /* Save the TSN away for comparison when we receive CWR */
81
82 asoc->last_ecne_tsn = lowest_tsn;
83 asoc->need_ecne = 1;
84 }
85
86 /* Helper function for delayed processing of SCTP ECNE chunk. */
87 /* RFC 2960 Appendix A
88 *
89 * RFC 2481 details a specific bit for a sender to send in
90 * the header of its next outbound TCP segment to indicate to
91 * its peer that it has reduced its congestion window. This
92 * is termed the CWR bit. For SCTP the same indication is made
93 * by including the CWR chunk. This chunk contains one data
94 * element, i.e. the TSN number that was sent in the ECNE chunk.
95 * This element represents the lowest TSN number in the datagram
96 * that was originally marked with the CE bit.
97 */
98 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc,
99 __u32 lowest_tsn,
100 struct sctp_chunk *chunk)
101 {
102 struct sctp_chunk *repl;
103
104 /* Our previously transmitted packet ran into some congestion
105 * so we should take action by reducing cwnd and ssthresh
106 * and then ACK our peer that we we've done so by
107 * sending a CWR.
108 */
109
110 /* First, try to determine if we want to actually lower
111 * our cwnd variables. Only lower them if the ECNE looks more
112 * recent than the last response.
113 */
114 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
115 struct sctp_transport *transport;
116
117 /* Find which transport's congestion variables
118 * need to be adjusted.
119 */
120 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
121
122 /* Update the congestion variables. */
123 if (transport)
124 sctp_transport_lower_cwnd(transport,
125 SCTP_LOWER_CWND_ECNE);
126 asoc->last_cwr_tsn = lowest_tsn;
127 }
128
129 /* Always try to quiet the other end. In case of lost CWR,
130 * resend last_cwr_tsn.
131 */
132 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
133
134 /* If we run out of memory, it will look like a lost CWR. We'll
135 * get back in sync eventually.
136 */
137 return repl;
138 }
139
140 /* Helper function to do delayed processing of ECN CWR chunk. */
141 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc,
142 __u32 lowest_tsn)
143 {
144 /* Turn off ECNE getting auto-prepended to every outgoing
145 * packet
146 */
147 asoc->need_ecne = 0;
148 }
149
150 /* Generate SACK if necessary. We call this at the end of a packet. */
151 static int sctp_gen_sack(struct sctp_association *asoc, int force,
152 sctp_cmd_seq_t *commands)
153 {
154 __u32 ctsn, max_tsn_seen;
155 struct sctp_chunk *sack;
156 struct sctp_transport *trans = asoc->peer.last_data_from;
157 int error = 0;
158
159 if (force ||
160 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) ||
161 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE)))
162 asoc->peer.sack_needed = 1;
163
164 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
165 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
166
167 /* From 12.2 Parameters necessary per association (i.e. the TCB):
168 *
169 * Ack State : This flag indicates if the next received packet
170 * : is to be responded to with a SACK. ...
171 * : When DATA chunks are out of order, SACK's
172 * : are not delayed (see Section 6).
173 *
174 * [This is actually not mentioned in Section 6, but we
175 * implement it here anyway. --piggy]
176 */
177 if (max_tsn_seen != ctsn)
178 asoc->peer.sack_needed = 1;
179
180 /* From 6.2 Acknowledgement on Reception of DATA Chunks:
181 *
182 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
183 * an acknowledgement SHOULD be generated for at least every
184 * second packet (not every second DATA chunk) received, and
185 * SHOULD be generated within 200 ms of the arrival of any
186 * unacknowledged DATA chunk. ...
187 */
188 if (!asoc->peer.sack_needed) {
189 asoc->peer.sack_cnt++;
190
191 /* Set the SACK delay timeout based on the
192 * SACK delay for the last transport
193 * data was received from, or the default
194 * for the association.
195 */
196 if (trans) {
197 /* We will need a SACK for the next packet. */
198 if (asoc->peer.sack_cnt >= trans->sackfreq - 1)
199 asoc->peer.sack_needed = 1;
200
201 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
202 trans->sackdelay;
203 } else {
204 /* We will need a SACK for the next packet. */
205 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1)
206 asoc->peer.sack_needed = 1;
207
208 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
209 asoc->sackdelay;
210 }
211
212 /* Restart the SACK timer. */
213 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
214 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
215 } else {
216 __u32 old_a_rwnd = asoc->a_rwnd;
217
218 asoc->a_rwnd = asoc->rwnd;
219 sack = sctp_make_sack(asoc);
220 if (!sack) {
221 asoc->a_rwnd = old_a_rwnd;
222 goto nomem;
223 }
224
225 asoc->peer.sack_needed = 0;
226 asoc->peer.sack_cnt = 0;
227
228 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack));
229
230 /* Stop the SACK timer. */
231 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
232 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
233 }
234
235 return error;
236 nomem:
237 error = -ENOMEM;
238 return error;
239 }
240
241 /* When the T3-RTX timer expires, it calls this function to create the
242 * relevant state machine event.
243 */
244 void sctp_generate_t3_rtx_event(unsigned long peer)
245 {
246 int error;
247 struct sctp_transport *transport = (struct sctp_transport *) peer;
248 struct sctp_association *asoc = transport->asoc;
249 struct sock *sk = asoc->base.sk;
250 struct net *net = sock_net(sk);
251
252 /* Check whether a task is in the sock. */
253
254 bh_lock_sock(sk);
255 if (sock_owned_by_user(sk)) {
256 pr_debug("%s: sock is busy\n", __func__);
257
258 /* Try again later. */
259 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
260 sctp_transport_hold(transport);
261 goto out_unlock;
262 }
263
264 /* Run through the state machine. */
265 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
266 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
267 asoc->state,
268 asoc->ep, asoc,
269 transport, GFP_ATOMIC);
270
271 if (error)
272 sk->sk_err = -error;
273
274 out_unlock:
275 bh_unlock_sock(sk);
276 sctp_transport_put(transport);
277 }
278
279 /* This is a sa interface for producing timeout events. It works
280 * for timeouts which use the association as their parameter.
281 */
282 static void sctp_generate_timeout_event(struct sctp_association *asoc,
283 sctp_event_timeout_t timeout_type)
284 {
285 struct sock *sk = asoc->base.sk;
286 struct net *net = sock_net(sk);
287 int error = 0;
288
289 bh_lock_sock(sk);
290 if (sock_owned_by_user(sk)) {
291 pr_debug("%s: sock is busy: timer %d\n", __func__,
292 timeout_type);
293
294 /* Try again later. */
295 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
296 sctp_association_hold(asoc);
297 goto out_unlock;
298 }
299
300 /* Is this association really dead and just waiting around for
301 * the timer to let go of the reference?
302 */
303 if (asoc->base.dead)
304 goto out_unlock;
305
306 /* Run through the state machine. */
307 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
308 SCTP_ST_TIMEOUT(timeout_type),
309 asoc->state, asoc->ep, asoc,
310 (void *)timeout_type, GFP_ATOMIC);
311
312 if (error)
313 sk->sk_err = -error;
314
315 out_unlock:
316 bh_unlock_sock(sk);
317 sctp_association_put(asoc);
318 }
319
320 static void sctp_generate_t1_cookie_event(unsigned long data)
321 {
322 struct sctp_association *asoc = (struct sctp_association *) data;
323 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
324 }
325
326 static void sctp_generate_t1_init_event(unsigned long data)
327 {
328 struct sctp_association *asoc = (struct sctp_association *) data;
329 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
330 }
331
332 static void sctp_generate_t2_shutdown_event(unsigned long data)
333 {
334 struct sctp_association *asoc = (struct sctp_association *) data;
335 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
336 }
337
338 static void sctp_generate_t4_rto_event(unsigned long data)
339 {
340 struct sctp_association *asoc = (struct sctp_association *) data;
341 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO);
342 }
343
344 static void sctp_generate_t5_shutdown_guard_event(unsigned long data)
345 {
346 struct sctp_association *asoc = (struct sctp_association *)data;
347 sctp_generate_timeout_event(asoc,
348 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
349
350 } /* sctp_generate_t5_shutdown_guard_event() */
351
352 static void sctp_generate_autoclose_event(unsigned long data)
353 {
354 struct sctp_association *asoc = (struct sctp_association *) data;
355 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
356 }
357
358 /* Generate a heart beat event. If the sock is busy, reschedule. Make
359 * sure that the transport is still valid.
360 */
361 void sctp_generate_heartbeat_event(unsigned long data)
362 {
363 int error = 0;
364 struct sctp_transport *transport = (struct sctp_transport *) data;
365 struct sctp_association *asoc = transport->asoc;
366 struct sock *sk = asoc->base.sk;
367 struct net *net = sock_net(sk);
368 u32 elapsed, timeout;
369
370 bh_lock_sock(sk);
371 if (sock_owned_by_user(sk)) {
372 pr_debug("%s: sock is busy\n", __func__);
373
374 /* Try again later. */
375 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
376 sctp_transport_hold(transport);
377 goto out_unlock;
378 }
379
380 /* Check if we should still send the heartbeat or reschedule */
381 elapsed = jiffies - transport->last_time_sent;
382 timeout = sctp_transport_timeout(transport);
383 if (elapsed < timeout) {
384 elapsed = timeout - elapsed;
385 if (!mod_timer(&transport->hb_timer, jiffies + elapsed))
386 sctp_transport_hold(transport);
387 goto out_unlock;
388 }
389
390 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
391 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
392 asoc->state, asoc->ep, asoc,
393 transport, GFP_ATOMIC);
394
395 if (error)
396 sk->sk_err = -error;
397
398 out_unlock:
399 bh_unlock_sock(sk);
400 sctp_transport_put(transport);
401 }
402
403 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger
404 * the correct state machine transition that will close the association.
405 */
406 void sctp_generate_proto_unreach_event(unsigned long data)
407 {
408 struct sctp_transport *transport = (struct sctp_transport *) data;
409 struct sctp_association *asoc = transport->asoc;
410 struct sock *sk = asoc->base.sk;
411 struct net *net = sock_net(sk);
412
413 bh_lock_sock(sk);
414 if (sock_owned_by_user(sk)) {
415 pr_debug("%s: sock is busy\n", __func__);
416
417 /* Try again later. */
418 if (!mod_timer(&transport->proto_unreach_timer,
419 jiffies + (HZ/20)))
420 sctp_association_hold(asoc);
421 goto out_unlock;
422 }
423
424 /* Is this structure just waiting around for us to actually
425 * get destroyed?
426 */
427 if (asoc->base.dead)
428 goto out_unlock;
429
430 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
431 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
432 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC);
433
434 out_unlock:
435 bh_unlock_sock(sk);
436 sctp_association_put(asoc);
437 }
438
439
440 /* Inject a SACK Timeout event into the state machine. */
441 static void sctp_generate_sack_event(unsigned long data)
442 {
443 struct sctp_association *asoc = (struct sctp_association *) data;
444 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
445 }
446
447 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
448 NULL,
449 sctp_generate_t1_cookie_event,
450 sctp_generate_t1_init_event,
451 sctp_generate_t2_shutdown_event,
452 NULL,
453 sctp_generate_t4_rto_event,
454 sctp_generate_t5_shutdown_guard_event,
455 NULL,
456 sctp_generate_sack_event,
457 sctp_generate_autoclose_event,
458 };
459
460
461 /* RFC 2960 8.2 Path Failure Detection
462 *
463 * When its peer endpoint is multi-homed, an endpoint should keep a
464 * error counter for each of the destination transport addresses of the
465 * peer endpoint.
466 *
467 * Each time the T3-rtx timer expires on any address, or when a
468 * HEARTBEAT sent to an idle address is not acknowledged within a RTO,
469 * the error counter of that destination address will be incremented.
470 * When the value in the error counter exceeds the protocol parameter
471 * 'Path.Max.Retrans' of that destination address, the endpoint should
472 * mark the destination transport address as inactive, and a
473 * notification SHOULD be sent to the upper layer.
474 *
475 */
476 static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands,
477 struct sctp_association *asoc,
478 struct sctp_transport *transport,
479 int is_hb)
480 {
481 struct net *net = sock_net(asoc->base.sk);
482
483 /* The check for association's overall error counter exceeding the
484 * threshold is done in the state function.
485 */
486 /* We are here due to a timer expiration. If the timer was
487 * not a HEARTBEAT, then normal error tracking is done.
488 * If the timer was a heartbeat, we only increment error counts
489 * when we already have an outstanding HEARTBEAT that has not
490 * been acknowledged.
491 * Additionally, some tranport states inhibit error increments.
492 */
493 if (!is_hb) {
494 asoc->overall_error_count++;
495 if (transport->state != SCTP_INACTIVE)
496 transport->error_count++;
497 } else if (transport->hb_sent) {
498 if (transport->state != SCTP_UNCONFIRMED)
499 asoc->overall_error_count++;
500 if (transport->state != SCTP_INACTIVE)
501 transport->error_count++;
502 }
503
504 /* If the transport error count is greater than the pf_retrans
505 * threshold, and less than pathmaxrtx, and if the current state
506 * is SCTP_ACTIVE, then mark this transport as Partially Failed,
507 * see SCTP Quick Failover Draft, section 5.1
508 */
509 if (net->sctp.pf_enable &&
510 (transport->state == SCTP_ACTIVE) &&
511 (asoc->pf_retrans < transport->pathmaxrxt) &&
512 (transport->error_count > asoc->pf_retrans)) {
513
514 sctp_assoc_control_transport(asoc, transport,
515 SCTP_TRANSPORT_PF,
516 0);
517
518 /* Update the hb timer to resend a heartbeat every rto */
519 sctp_transport_reset_hb_timer(transport);
520 }
521
522 if (transport->state != SCTP_INACTIVE &&
523 (transport->error_count > transport->pathmaxrxt)) {
524 pr_debug("%s: association:%p transport addr:%pISpc failed\n",
525 __func__, asoc, &transport->ipaddr.sa);
526
527 sctp_assoc_control_transport(asoc, transport,
528 SCTP_TRANSPORT_DOWN,
529 SCTP_FAILED_THRESHOLD);
530 }
531
532 /* E2) For the destination address for which the timer
533 * expires, set RTO <- RTO * 2 ("back off the timer"). The
534 * maximum value discussed in rule C7 above (RTO.max) may be
535 * used to provide an upper bound to this doubling operation.
536 *
537 * Special Case: the first HB doesn't trigger exponential backoff.
538 * The first unacknowledged HB triggers it. We do this with a flag
539 * that indicates that we have an outstanding HB.
540 */
541 if (!is_hb || transport->hb_sent) {
542 transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
543 sctp_max_rto(asoc, transport);
544 }
545 }
546
547 /* Worker routine to handle INIT command failure. */
548 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
549 struct sctp_association *asoc,
550 unsigned int error)
551 {
552 struct sctp_ulpevent *event;
553
554 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC,
555 (__u16)error, 0, 0, NULL,
556 GFP_ATOMIC);
557
558 if (event)
559 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
560 SCTP_ULPEVENT(event));
561
562 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
563 SCTP_STATE(SCTP_STATE_CLOSED));
564
565 /* SEND_FAILED sent later when cleaning up the association. */
566 asoc->outqueue.error = error;
567 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
568 }
569
570 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
571 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
572 struct sctp_association *asoc,
573 sctp_event_t event_type,
574 sctp_subtype_t subtype,
575 struct sctp_chunk *chunk,
576 unsigned int error)
577 {
578 struct sctp_ulpevent *event;
579 struct sctp_chunk *abort;
580 /* Cancel any partial delivery in progress. */
581 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
582
583 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT)
584 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
585 (__u16)error, 0, 0, chunk,
586 GFP_ATOMIC);
587 else
588 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
589 (__u16)error, 0, 0, NULL,
590 GFP_ATOMIC);
591 if (event)
592 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
593 SCTP_ULPEVENT(event));
594
595 if (asoc->overall_error_count >= asoc->max_retrans) {
596 abort = sctp_make_violation_max_retrans(asoc, chunk);
597 if (abort)
598 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
599 SCTP_CHUNK(abort));
600 }
601
602 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
603 SCTP_STATE(SCTP_STATE_CLOSED));
604
605 /* SEND_FAILED sent later when cleaning up the association. */
606 asoc->outqueue.error = error;
607 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
608 }
609
610 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
611 * inside the cookie. In reality, this is only used for INIT-ACK processing
612 * since all other cases use "temporary" associations and can do all
613 * their work in statefuns directly.
614 */
615 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
616 struct sctp_association *asoc,
617 struct sctp_chunk *chunk,
618 sctp_init_chunk_t *peer_init,
619 gfp_t gfp)
620 {
621 int error;
622
623 /* We only process the init as a sideeffect in a single
624 * case. This is when we process the INIT-ACK. If we
625 * fail during INIT processing (due to malloc problems),
626 * just return the error and stop processing the stack.
627 */
628 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp))
629 error = -ENOMEM;
630 else
631 error = 0;
632
633 return error;
634 }
635
636 /* Helper function to break out starting up of heartbeat timers. */
637 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
638 struct sctp_association *asoc)
639 {
640 struct sctp_transport *t;
641
642 /* Start a heartbeat timer for each transport on the association.
643 * hold a reference on the transport to make sure none of
644 * the needed data structures go away.
645 */
646 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
647 sctp_transport_reset_hb_timer(t);
648 }
649
650 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
651 struct sctp_association *asoc)
652 {
653 struct sctp_transport *t;
654
655 /* Stop all heartbeat timers. */
656
657 list_for_each_entry(t, &asoc->peer.transport_addr_list,
658 transports) {
659 if (del_timer(&t->hb_timer))
660 sctp_transport_put(t);
661 }
662 }
663
664 /* Helper function to stop any pending T3-RTX timers */
665 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds,
666 struct sctp_association *asoc)
667 {
668 struct sctp_transport *t;
669
670 list_for_each_entry(t, &asoc->peer.transport_addr_list,
671 transports) {
672 if (del_timer(&t->T3_rtx_timer))
673 sctp_transport_put(t);
674 }
675 }
676
677
678 /* Helper function to handle the reception of an HEARTBEAT ACK. */
679 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
680 struct sctp_association *asoc,
681 struct sctp_transport *t,
682 struct sctp_chunk *chunk)
683 {
684 sctp_sender_hb_info_t *hbinfo;
685 int was_unconfirmed = 0;
686
687 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
688 * HEARTBEAT should clear the error counter of the destination
689 * transport address to which the HEARTBEAT was sent.
690 */
691 t->error_count = 0;
692
693 /*
694 * Although RFC4960 specifies that the overall error count must
695 * be cleared when a HEARTBEAT ACK is received, we make an
696 * exception while in SHUTDOWN PENDING. If the peer keeps its
697 * window shut forever, we may never be able to transmit our
698 * outstanding data and rely on the retransmission limit be reached
699 * to shutdown the association.
700 */
701 if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING)
702 t->asoc->overall_error_count = 0;
703
704 /* Clear the hb_sent flag to signal that we had a good
705 * acknowledgement.
706 */
707 t->hb_sent = 0;
708
709 /* Mark the destination transport address as active if it is not so
710 * marked.
711 */
712 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) {
713 was_unconfirmed = 1;
714 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
715 SCTP_HEARTBEAT_SUCCESS);
716 }
717
718 if (t->state == SCTP_PF)
719 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
720 SCTP_HEARTBEAT_SUCCESS);
721
722 /* HB-ACK was received for a the proper HB. Consider this
723 * forward progress.
724 */
725 if (t->dst)
726 dst_confirm(t->dst);
727
728 /* The receiver of the HEARTBEAT ACK should also perform an
729 * RTT measurement for that destination transport address
730 * using the time value carried in the HEARTBEAT ACK chunk.
731 * If the transport's rto_pending variable has been cleared,
732 * it was most likely due to a retransmit. However, we want
733 * to re-enable it to properly update the rto.
734 */
735 if (t->rto_pending == 0)
736 t->rto_pending = 1;
737
738 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
739 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
740
741 /* Update the heartbeat timer. */
742 sctp_transport_reset_hb_timer(t);
743
744 if (was_unconfirmed && asoc->peer.transport_count == 1)
745 sctp_transport_immediate_rtx(t);
746 }
747
748
749 /* Helper function to process the process SACK command. */
750 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
751 struct sctp_association *asoc,
752 struct sctp_chunk *chunk)
753 {
754 int err = 0;
755
756 if (sctp_outq_sack(&asoc->outqueue, chunk)) {
757 struct net *net = sock_net(asoc->base.sk);
758
759 /* There are no more TSNs awaiting SACK. */
760 err = sctp_do_sm(net, SCTP_EVENT_T_OTHER,
761 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
762 asoc->state, asoc->ep, asoc, NULL,
763 GFP_ATOMIC);
764 }
765
766 return err;
767 }
768
769 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
770 * the transport for a shutdown chunk.
771 */
772 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds,
773 struct sctp_association *asoc,
774 struct sctp_chunk *chunk)
775 {
776 struct sctp_transport *t;
777
778 if (chunk->transport)
779 t = chunk->transport;
780 else {
781 t = sctp_assoc_choose_alter_transport(asoc,
782 asoc->shutdown_last_sent_to);
783 chunk->transport = t;
784 }
785 asoc->shutdown_last_sent_to = t;
786 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
787 }
788
789 /* Helper function to change the state of an association. */
790 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds,
791 struct sctp_association *asoc,
792 sctp_state_t state)
793 {
794 struct sock *sk = asoc->base.sk;
795
796 asoc->state = state;
797
798 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]);
799
800 if (sctp_style(sk, TCP)) {
801 /* Change the sk->sk_state of a TCP-style socket that has
802 * successfully completed a connect() call.
803 */
804 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED))
805 sk->sk_state = SCTP_SS_ESTABLISHED;
806
807 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */
808 if (sctp_state(asoc, SHUTDOWN_RECEIVED) &&
809 sctp_sstate(sk, ESTABLISHED))
810 sk->sk_shutdown |= RCV_SHUTDOWN;
811 }
812
813 if (sctp_state(asoc, COOKIE_WAIT)) {
814 /* Reset init timeouts since they may have been
815 * increased due to timer expirations.
816 */
817 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] =
818 asoc->rto_initial;
819 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] =
820 asoc->rto_initial;
821 }
822
823 if (sctp_state(asoc, ESTABLISHED) ||
824 sctp_state(asoc, CLOSED) ||
825 sctp_state(asoc, SHUTDOWN_RECEIVED)) {
826 /* Wake up any processes waiting in the asoc's wait queue in
827 * sctp_wait_for_connect() or sctp_wait_for_sndbuf().
828 */
829 if (waitqueue_active(&asoc->wait))
830 wake_up_interruptible(&asoc->wait);
831
832 /* Wake up any processes waiting in the sk's sleep queue of
833 * a TCP-style or UDP-style peeled-off socket in
834 * sctp_wait_for_accept() or sctp_wait_for_packet().
835 * For a UDP-style socket, the waiters are woken up by the
836 * notifications.
837 */
838 if (!sctp_style(sk, UDP))
839 sk->sk_state_change(sk);
840 }
841 }
842
843 /* Helper function to delete an association. */
844 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds,
845 struct sctp_association *asoc)
846 {
847 struct sock *sk = asoc->base.sk;
848
849 /* If it is a non-temporary association belonging to a TCP-style
850 * listening socket that is not closed, do not free it so that accept()
851 * can pick it up later.
852 */
853 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) &&
854 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK))
855 return;
856
857 sctp_association_free(asoc);
858 }
859
860 /*
861 * ADDIP Section 4.1 ASCONF Chunk Procedures
862 * A4) Start a T-4 RTO timer, using the RTO value of the selected
863 * destination address (we use active path instead of primary path just
864 * because primary path may be inactive.
865 */
866 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds,
867 struct sctp_association *asoc,
868 struct sctp_chunk *chunk)
869 {
870 struct sctp_transport *t;
871
872 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport);
873 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto;
874 chunk->transport = t;
875 }
876
877 /* Process an incoming Operation Error Chunk. */
878 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds,
879 struct sctp_association *asoc,
880 struct sctp_chunk *chunk)
881 {
882 struct sctp_errhdr *err_hdr;
883 struct sctp_ulpevent *ev;
884
885 while (chunk->chunk_end > chunk->skb->data) {
886 err_hdr = (struct sctp_errhdr *)(chunk->skb->data);
887
888 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0,
889 GFP_ATOMIC);
890 if (!ev)
891 return;
892
893 sctp_ulpq_tail_event(&asoc->ulpq, ev);
894
895 switch (err_hdr->cause) {
896 case SCTP_ERROR_UNKNOWN_CHUNK:
897 {
898 sctp_chunkhdr_t *unk_chunk_hdr;
899
900 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable;
901 switch (unk_chunk_hdr->type) {
902 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with
903 * an ERROR chunk reporting that it did not recognized
904 * the ASCONF chunk type, the sender of the ASCONF MUST
905 * NOT send any further ASCONF chunks and MUST stop its
906 * T-4 timer.
907 */
908 case SCTP_CID_ASCONF:
909 if (asoc->peer.asconf_capable == 0)
910 break;
911
912 asoc->peer.asconf_capable = 0;
913 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP,
914 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
915 break;
916 default:
917 break;
918 }
919 break;
920 }
921 default:
922 break;
923 }
924 }
925 }
926
927 /* Process variable FWDTSN chunk information. */
928 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq,
929 struct sctp_chunk *chunk)
930 {
931 struct sctp_fwdtsn_skip *skip;
932 /* Walk through all the skipped SSNs */
933 sctp_walk_fwdtsn(skip, chunk) {
934 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn));
935 }
936 }
937
938 /* Helper function to remove the association non-primary peer
939 * transports.
940 */
941 static void sctp_cmd_del_non_primary(struct sctp_association *asoc)
942 {
943 struct sctp_transport *t;
944 struct list_head *pos;
945 struct list_head *temp;
946
947 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
948 t = list_entry(pos, struct sctp_transport, transports);
949 if (!sctp_cmp_addr_exact(&t->ipaddr,
950 &asoc->peer.primary_addr)) {
951 sctp_assoc_rm_peer(asoc, t);
952 }
953 }
954 }
955
956 /* Helper function to set sk_err on a 1-1 style socket. */
957 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error)
958 {
959 struct sock *sk = asoc->base.sk;
960
961 if (!sctp_style(sk, UDP))
962 sk->sk_err = error;
963 }
964
965 /* Helper function to generate an association change event */
966 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands,
967 struct sctp_association *asoc,
968 u8 state)
969 {
970 struct sctp_ulpevent *ev;
971
972 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0,
973 asoc->c.sinit_num_ostreams,
974 asoc->c.sinit_max_instreams,
975 NULL, GFP_ATOMIC);
976 if (ev)
977 sctp_ulpq_tail_event(&asoc->ulpq, ev);
978 }
979
980 /* Helper function to generate an adaptation indication event */
981 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands,
982 struct sctp_association *asoc)
983 {
984 struct sctp_ulpevent *ev;
985
986 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
987
988 if (ev)
989 sctp_ulpq_tail_event(&asoc->ulpq, ev);
990 }
991
992
993 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc,
994 sctp_event_timeout_t timer,
995 char *name)
996 {
997 struct sctp_transport *t;
998
999 t = asoc->init_last_sent_to;
1000 asoc->init_err_counter++;
1001
1002 if (t->init_sent_count > (asoc->init_cycle + 1)) {
1003 asoc->timeouts[timer] *= 2;
1004 if (asoc->timeouts[timer] > asoc->max_init_timeo) {
1005 asoc->timeouts[timer] = asoc->max_init_timeo;
1006 }
1007 asoc->init_cycle++;
1008
1009 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d"
1010 " cycle:%d timeout:%ld\n", __func__, name,
1011 asoc->init_err_counter, asoc->init_cycle,
1012 asoc->timeouts[timer]);
1013 }
1014
1015 }
1016
1017 /* Send the whole message, chunk by chunk, to the outqueue.
1018 * This way the whole message is queued up and bundling if
1019 * encouraged for small fragments.
1020 */
1021 static int sctp_cmd_send_msg(struct sctp_association *asoc,
1022 struct sctp_datamsg *msg, gfp_t gfp)
1023 {
1024 struct sctp_chunk *chunk;
1025 int error = 0;
1026
1027 list_for_each_entry(chunk, &msg->chunks, frag_list) {
1028 error = sctp_outq_tail(&asoc->outqueue, chunk, gfp);
1029 if (error)
1030 break;
1031 }
1032
1033 return error;
1034 }
1035
1036
1037 /* Sent the next ASCONF packet currently stored in the association.
1038 * This happens after the ASCONF_ACK was succeffully processed.
1039 */
1040 static void sctp_cmd_send_asconf(struct sctp_association *asoc)
1041 {
1042 struct net *net = sock_net(asoc->base.sk);
1043
1044 /* Send the next asconf chunk from the addip chunk
1045 * queue.
1046 */
1047 if (!list_empty(&asoc->addip_chunk_list)) {
1048 struct list_head *entry = asoc->addip_chunk_list.next;
1049 struct sctp_chunk *asconf = list_entry(entry,
1050 struct sctp_chunk, list);
1051 list_del_init(entry);
1052
1053 /* Hold the chunk until an ASCONF_ACK is received. */
1054 sctp_chunk_hold(asconf);
1055 if (sctp_primitive_ASCONF(net, asoc, asconf))
1056 sctp_chunk_free(asconf);
1057 else
1058 asoc->addip_last_asconf = asconf;
1059 }
1060 }
1061
1062
1063 /* These three macros allow us to pull the debugging code out of the
1064 * main flow of sctp_do_sm() to keep attention focused on the real
1065 * functionality there.
1066 */
1067 #define debug_pre_sfn() \
1068 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \
1069 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \
1070 asoc, sctp_state_tbl[state], state_fn->name)
1071
1072 #define debug_post_sfn() \
1073 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \
1074 sctp_status_tbl[status])
1075
1076 #define debug_post_sfx() \
1077 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \
1078 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
1079 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED])
1080
1081 /*
1082 * This is the master state machine processing function.
1083 *
1084 * If you want to understand all of lksctp, this is a
1085 * good place to start.
1086 */
1087 int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype,
1088 sctp_state_t state,
1089 struct sctp_endpoint *ep,
1090 struct sctp_association *asoc,
1091 void *event_arg,
1092 gfp_t gfp)
1093 {
1094 sctp_cmd_seq_t commands;
1095 const sctp_sm_table_entry_t *state_fn;
1096 sctp_disposition_t status;
1097 int error = 0;
1098 typedef const char *(printfn_t)(sctp_subtype_t);
1099 static printfn_t *table[] = {
1100 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
1101 };
1102 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
1103
1104 /* Look up the state function, run it, and then process the
1105 * side effects. These three steps are the heart of lksctp.
1106 */
1107 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype);
1108
1109 sctp_init_cmd_seq(&commands);
1110
1111 debug_pre_sfn();
1112 status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands);
1113 debug_post_sfn();
1114
1115 error = sctp_side_effects(event_type, subtype, state,
1116 ep, &asoc, event_arg, status,
1117 &commands, gfp);
1118 debug_post_sfx();
1119
1120 return error;
1121 }
1122
1123 /*****************************************************************
1124 * This the master state function side effect processing function.
1125 *****************************************************************/
1126 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
1127 sctp_state_t state,
1128 struct sctp_endpoint *ep,
1129 struct sctp_association **asoc,
1130 void *event_arg,
1131 sctp_disposition_t status,
1132 sctp_cmd_seq_t *commands,
1133 gfp_t gfp)
1134 {
1135 int error;
1136
1137 /* FIXME - Most of the dispositions left today would be categorized
1138 * as "exceptional" dispositions. For those dispositions, it
1139 * may not be proper to run through any of the commands at all.
1140 * For example, the command interpreter might be run only with
1141 * disposition SCTP_DISPOSITION_CONSUME.
1142 */
1143 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
1144 ep, *asoc,
1145 event_arg, status,
1146 commands, gfp)))
1147 goto bail;
1148
1149 switch (status) {
1150 case SCTP_DISPOSITION_DISCARD:
1151 pr_debug("%s: ignored sctp protocol event - state:%d, "
1152 "event_type:%d, event_id:%d\n", __func__, state,
1153 event_type, subtype.chunk);
1154 break;
1155
1156 case SCTP_DISPOSITION_NOMEM:
1157 /* We ran out of memory, so we need to discard this
1158 * packet.
1159 */
1160 /* BUG--we should now recover some memory, probably by
1161 * reneging...
1162 */
1163 error = -ENOMEM;
1164 break;
1165
1166 case SCTP_DISPOSITION_DELETE_TCB:
1167 case SCTP_DISPOSITION_ABORT:
1168 /* This should now be a command. */
1169 *asoc = NULL;
1170 break;
1171
1172 case SCTP_DISPOSITION_CONSUME:
1173 /*
1174 * We should no longer have much work to do here as the
1175 * real work has been done as explicit commands above.
1176 */
1177 break;
1178
1179 case SCTP_DISPOSITION_VIOLATION:
1180 net_err_ratelimited("protocol violation state %d chunkid %d\n",
1181 state, subtype.chunk);
1182 break;
1183
1184 case SCTP_DISPOSITION_NOT_IMPL:
1185 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n",
1186 state, event_type, subtype.chunk);
1187 break;
1188
1189 case SCTP_DISPOSITION_BUG:
1190 pr_err("bug in state %d, event_type %d, event_id %d\n",
1191 state, event_type, subtype.chunk);
1192 BUG();
1193 break;
1194
1195 default:
1196 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n",
1197 status, state, event_type, subtype.chunk);
1198 BUG();
1199 break;
1200 }
1201
1202 bail:
1203 return error;
1204 }
1205
1206 /********************************************************************
1207 * 2nd Level Abstractions
1208 ********************************************************************/
1209
1210 /* This is the side-effect interpreter. */
1211 static int sctp_cmd_interpreter(sctp_event_t event_type,
1212 sctp_subtype_t subtype,
1213 sctp_state_t state,
1214 struct sctp_endpoint *ep,
1215 struct sctp_association *asoc,
1216 void *event_arg,
1217 sctp_disposition_t status,
1218 sctp_cmd_seq_t *commands,
1219 gfp_t gfp)
1220 {
1221 struct sock *sk = ep->base.sk;
1222 struct sctp_sock *sp = sctp_sk(sk);
1223 int error = 0;
1224 int force;
1225 sctp_cmd_t *cmd;
1226 struct sctp_chunk *new_obj;
1227 struct sctp_chunk *chunk = NULL;
1228 struct sctp_packet *packet;
1229 struct timer_list *timer;
1230 unsigned long timeout;
1231 struct sctp_transport *t;
1232 struct sctp_sackhdr sackh;
1233 int local_cork = 0;
1234
1235 if (SCTP_EVENT_T_TIMEOUT != event_type)
1236 chunk = event_arg;
1237
1238 /* Note: This whole file is a huge candidate for rework.
1239 * For example, each command could either have its own handler, so
1240 * the loop would look like:
1241 * while (cmds)
1242 * cmd->handle(x, y, z)
1243 * --jgrimm
1244 */
1245 while (NULL != (cmd = sctp_next_cmd(commands))) {
1246 switch (cmd->verb) {
1247 case SCTP_CMD_NOP:
1248 /* Do nothing. */
1249 break;
1250
1251 case SCTP_CMD_NEW_ASOC:
1252 /* Register a new association. */
1253 if (local_cork) {
1254 sctp_outq_uncork(&asoc->outqueue, gfp);
1255 local_cork = 0;
1256 }
1257
1258 /* Register with the endpoint. */
1259 asoc = cmd->obj.asoc;
1260 BUG_ON(asoc->peer.primary_path == NULL);
1261 sctp_endpoint_add_asoc(ep, asoc);
1262 break;
1263
1264 case SCTP_CMD_UPDATE_ASSOC:
1265 sctp_assoc_update(asoc, cmd->obj.asoc);
1266 break;
1267
1268 case SCTP_CMD_PURGE_OUTQUEUE:
1269 sctp_outq_teardown(&asoc->outqueue);
1270 break;
1271
1272 case SCTP_CMD_DELETE_TCB:
1273 if (local_cork) {
1274 sctp_outq_uncork(&asoc->outqueue, gfp);
1275 local_cork = 0;
1276 }
1277 /* Delete the current association. */
1278 sctp_cmd_delete_tcb(commands, asoc);
1279 asoc = NULL;
1280 break;
1281
1282 case SCTP_CMD_NEW_STATE:
1283 /* Enter a new state. */
1284 sctp_cmd_new_state(commands, asoc, cmd->obj.state);
1285 break;
1286
1287 case SCTP_CMD_REPORT_TSN:
1288 /* Record the arrival of a TSN. */
1289 error = sctp_tsnmap_mark(&asoc->peer.tsn_map,
1290 cmd->obj.u32, NULL);
1291 break;
1292
1293 case SCTP_CMD_REPORT_FWDTSN:
1294 /* Move the Cumulattive TSN Ack ahead. */
1295 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32);
1296
1297 /* purge the fragmentation queue */
1298 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32);
1299
1300 /* Abort any in progress partial delivery. */
1301 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
1302 break;
1303
1304 case SCTP_CMD_PROCESS_FWDTSN:
1305 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk);
1306 break;
1307
1308 case SCTP_CMD_GEN_SACK:
1309 /* Generate a Selective ACK.
1310 * The argument tells us whether to just count
1311 * the packet and MAYBE generate a SACK, or
1312 * force a SACK out.
1313 */
1314 force = cmd->obj.i32;
1315 error = sctp_gen_sack(asoc, force, commands);
1316 break;
1317
1318 case SCTP_CMD_PROCESS_SACK:
1319 /* Process an inbound SACK. */
1320 error = sctp_cmd_process_sack(commands, asoc,
1321 cmd->obj.chunk);
1322 break;
1323
1324 case SCTP_CMD_GEN_INIT_ACK:
1325 /* Generate an INIT ACK chunk. */
1326 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
1327 0);
1328 if (!new_obj)
1329 goto nomem;
1330
1331 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1332 SCTP_CHUNK(new_obj));
1333 break;
1334
1335 case SCTP_CMD_PEER_INIT:
1336 /* Process a unified INIT from the peer.
1337 * Note: Only used during INIT-ACK processing. If
1338 * there is an error just return to the outter
1339 * layer which will bail.
1340 */
1341 error = sctp_cmd_process_init(commands, asoc, chunk,
1342 cmd->obj.init, gfp);
1343 break;
1344
1345 case SCTP_CMD_GEN_COOKIE_ECHO:
1346 /* Generate a COOKIE ECHO chunk. */
1347 new_obj = sctp_make_cookie_echo(asoc, chunk);
1348 if (!new_obj) {
1349 if (cmd->obj.chunk)
1350 sctp_chunk_free(cmd->obj.chunk);
1351 goto nomem;
1352 }
1353 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1354 SCTP_CHUNK(new_obj));
1355
1356 /* If there is an ERROR chunk to be sent along with
1357 * the COOKIE_ECHO, send it, too.
1358 */
1359 if (cmd->obj.chunk)
1360 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1361 SCTP_CHUNK(cmd->obj.chunk));
1362
1363 if (new_obj->transport) {
1364 new_obj->transport->init_sent_count++;
1365 asoc->init_last_sent_to = new_obj->transport;
1366 }
1367
1368 /* FIXME - Eventually come up with a cleaner way to
1369 * enabling COOKIE-ECHO + DATA bundling during
1370 * multihoming stale cookie scenarios, the following
1371 * command plays with asoc->peer.retran_path to
1372 * avoid the problem of sending the COOKIE-ECHO and
1373 * DATA in different paths, which could result
1374 * in the association being ABORTed if the DATA chunk
1375 * is processed first by the server. Checking the
1376 * init error counter simply causes this command
1377 * to be executed only during failed attempts of
1378 * association establishment.
1379 */
1380 if ((asoc->peer.retran_path !=
1381 asoc->peer.primary_path) &&
1382 (asoc->init_err_counter > 0)) {
1383 sctp_add_cmd_sf(commands,
1384 SCTP_CMD_FORCE_PRIM_RETRAN,
1385 SCTP_NULL());
1386 }
1387
1388 break;
1389
1390 case SCTP_CMD_GEN_SHUTDOWN:
1391 /* Generate SHUTDOWN when in SHUTDOWN_SENT state.
1392 * Reset error counts.
1393 */
1394 asoc->overall_error_count = 0;
1395
1396 /* Generate a SHUTDOWN chunk. */
1397 new_obj = sctp_make_shutdown(asoc, chunk);
1398 if (!new_obj)
1399 goto nomem;
1400 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1401 SCTP_CHUNK(new_obj));
1402 break;
1403
1404 case SCTP_CMD_CHUNK_ULP:
1405 /* Send a chunk to the sockets layer. */
1406 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n",
1407 __func__, cmd->obj.chunk, &asoc->ulpq);
1408
1409 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk,
1410 GFP_ATOMIC);
1411 break;
1412
1413 case SCTP_CMD_EVENT_ULP:
1414 /* Send a notification to the sockets layer. */
1415 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n",
1416 __func__, cmd->obj.ulpevent, &asoc->ulpq);
1417
1418 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent);
1419 break;
1420
1421 case SCTP_CMD_REPLY:
1422 /* If an caller has not already corked, do cork. */
1423 if (!asoc->outqueue.cork) {
1424 sctp_outq_cork(&asoc->outqueue);
1425 local_cork = 1;
1426 }
1427 /* Send a chunk to our peer. */
1428 error = sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk,
1429 gfp);
1430 break;
1431
1432 case SCTP_CMD_SEND_PKT:
1433 /* Send a full packet to our peer. */
1434 packet = cmd->obj.packet;
1435 sctp_packet_transmit(packet, gfp);
1436 sctp_ootb_pkt_free(packet);
1437 break;
1438
1439 case SCTP_CMD_T1_RETRAN:
1440 /* Mark a transport for retransmission. */
1441 sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1442 SCTP_RTXR_T1_RTX);
1443 break;
1444
1445 case SCTP_CMD_RETRAN:
1446 /* Mark a transport for retransmission. */
1447 sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1448 SCTP_RTXR_T3_RTX);
1449 break;
1450
1451 case SCTP_CMD_ECN_CE:
1452 /* Do delayed CE processing. */
1453 sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
1454 break;
1455
1456 case SCTP_CMD_ECN_ECNE:
1457 /* Do delayed ECNE processing. */
1458 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
1459 chunk);
1460 if (new_obj)
1461 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1462 SCTP_CHUNK(new_obj));
1463 break;
1464
1465 case SCTP_CMD_ECN_CWR:
1466 /* Do delayed CWR processing. */
1467 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
1468 break;
1469
1470 case SCTP_CMD_SETUP_T2:
1471 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk);
1472 break;
1473
1474 case SCTP_CMD_TIMER_START_ONCE:
1475 timer = &asoc->timers[cmd->obj.to];
1476
1477 if (timer_pending(timer))
1478 break;
1479 /* fall through */
1480
1481 case SCTP_CMD_TIMER_START:
1482 timer = &asoc->timers[cmd->obj.to];
1483 timeout = asoc->timeouts[cmd->obj.to];
1484 BUG_ON(!timeout);
1485
1486 timer->expires = jiffies + timeout;
1487 sctp_association_hold(asoc);
1488 add_timer(timer);
1489 break;
1490
1491 case SCTP_CMD_TIMER_RESTART:
1492 timer = &asoc->timers[cmd->obj.to];
1493 timeout = asoc->timeouts[cmd->obj.to];
1494 if (!mod_timer(timer, jiffies + timeout))
1495 sctp_association_hold(asoc);
1496 break;
1497
1498 case SCTP_CMD_TIMER_STOP:
1499 timer = &asoc->timers[cmd->obj.to];
1500 if (del_timer(timer))
1501 sctp_association_put(asoc);
1502 break;
1503
1504 case SCTP_CMD_INIT_CHOOSE_TRANSPORT:
1505 chunk = cmd->obj.chunk;
1506 t = sctp_assoc_choose_alter_transport(asoc,
1507 asoc->init_last_sent_to);
1508 asoc->init_last_sent_to = t;
1509 chunk->transport = t;
1510 t->init_sent_count++;
1511 /* Set the new transport as primary */
1512 sctp_assoc_set_primary(asoc, t);
1513 break;
1514
1515 case SCTP_CMD_INIT_RESTART:
1516 /* Do the needed accounting and updates
1517 * associated with restarting an initialization
1518 * timer. Only multiply the timeout by two if
1519 * all transports have been tried at the current
1520 * timeout.
1521 */
1522 sctp_cmd_t1_timer_update(asoc,
1523 SCTP_EVENT_TIMEOUT_T1_INIT,
1524 "INIT");
1525
1526 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
1527 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
1528 break;
1529
1530 case SCTP_CMD_COOKIEECHO_RESTART:
1531 /* Do the needed accounting and updates
1532 * associated with restarting an initialization
1533 * timer. Only multiply the timeout by two if
1534 * all transports have been tried at the current
1535 * timeout.
1536 */
1537 sctp_cmd_t1_timer_update(asoc,
1538 SCTP_EVENT_TIMEOUT_T1_COOKIE,
1539 "COOKIE");
1540
1541 /* If we've sent any data bundled with
1542 * COOKIE-ECHO we need to resend.
1543 */
1544 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1545 transports) {
1546 sctp_retransmit_mark(&asoc->outqueue, t,
1547 SCTP_RTXR_T1_RTX);
1548 }
1549
1550 sctp_add_cmd_sf(commands,
1551 SCTP_CMD_TIMER_RESTART,
1552 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
1553 break;
1554
1555 case SCTP_CMD_INIT_FAILED:
1556 sctp_cmd_init_failed(commands, asoc, cmd->obj.err);
1557 break;
1558
1559 case SCTP_CMD_ASSOC_FAILED:
1560 sctp_cmd_assoc_failed(commands, asoc, event_type,
1561 subtype, chunk, cmd->obj.err);
1562 break;
1563
1564 case SCTP_CMD_INIT_COUNTER_INC:
1565 asoc->init_err_counter++;
1566 break;
1567
1568 case SCTP_CMD_INIT_COUNTER_RESET:
1569 asoc->init_err_counter = 0;
1570 asoc->init_cycle = 0;
1571 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1572 transports) {
1573 t->init_sent_count = 0;
1574 }
1575 break;
1576
1577 case SCTP_CMD_REPORT_DUP:
1578 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
1579 cmd->obj.u32);
1580 break;
1581
1582 case SCTP_CMD_REPORT_BAD_TAG:
1583 pr_debug("%s: vtag mismatch!\n", __func__);
1584 break;
1585
1586 case SCTP_CMD_STRIKE:
1587 /* Mark one strike against a transport. */
1588 sctp_do_8_2_transport_strike(commands, asoc,
1589 cmd->obj.transport, 0);
1590 break;
1591
1592 case SCTP_CMD_TRANSPORT_IDLE:
1593 t = cmd->obj.transport;
1594 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
1595 break;
1596
1597 case SCTP_CMD_TRANSPORT_HB_SENT:
1598 t = cmd->obj.transport;
1599 sctp_do_8_2_transport_strike(commands, asoc,
1600 t, 1);
1601 t->hb_sent = 1;
1602 break;
1603
1604 case SCTP_CMD_TRANSPORT_ON:
1605 t = cmd->obj.transport;
1606 sctp_cmd_transport_on(commands, asoc, t, chunk);
1607 break;
1608
1609 case SCTP_CMD_HB_TIMERS_START:
1610 sctp_cmd_hb_timers_start(commands, asoc);
1611 break;
1612
1613 case SCTP_CMD_HB_TIMER_UPDATE:
1614 t = cmd->obj.transport;
1615 sctp_transport_reset_hb_timer(t);
1616 break;
1617
1618 case SCTP_CMD_HB_TIMERS_STOP:
1619 sctp_cmd_hb_timers_stop(commands, asoc);
1620 break;
1621
1622 case SCTP_CMD_REPORT_ERROR:
1623 error = cmd->obj.error;
1624 break;
1625
1626 case SCTP_CMD_PROCESS_CTSN:
1627 /* Dummy up a SACK for processing. */
1628 sackh.cum_tsn_ack = cmd->obj.be32;
1629 sackh.a_rwnd = asoc->peer.rwnd +
1630 asoc->outqueue.outstanding_bytes;
1631 sackh.num_gap_ack_blocks = 0;
1632 sackh.num_dup_tsns = 0;
1633 chunk->subh.sack_hdr = &sackh;
1634 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
1635 SCTP_CHUNK(chunk));
1636 break;
1637
1638 case SCTP_CMD_DISCARD_PACKET:
1639 /* We need to discard the whole packet.
1640 * Uncork the queue since there might be
1641 * responses pending
1642 */
1643 chunk->pdiscard = 1;
1644 if (asoc) {
1645 sctp_outq_uncork(&asoc->outqueue, gfp);
1646 local_cork = 0;
1647 }
1648 break;
1649
1650 case SCTP_CMD_RTO_PENDING:
1651 t = cmd->obj.transport;
1652 t->rto_pending = 1;
1653 break;
1654
1655 case SCTP_CMD_PART_DELIVER:
1656 sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC);
1657 break;
1658
1659 case SCTP_CMD_RENEGE:
1660 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk,
1661 GFP_ATOMIC);
1662 break;
1663
1664 case SCTP_CMD_SETUP_T4:
1665 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk);
1666 break;
1667
1668 case SCTP_CMD_PROCESS_OPERR:
1669 sctp_cmd_process_operr(commands, asoc, chunk);
1670 break;
1671 case SCTP_CMD_CLEAR_INIT_TAG:
1672 asoc->peer.i.init_tag = 0;
1673 break;
1674 case SCTP_CMD_DEL_NON_PRIMARY:
1675 sctp_cmd_del_non_primary(asoc);
1676 break;
1677 case SCTP_CMD_T3_RTX_TIMERS_STOP:
1678 sctp_cmd_t3_rtx_timers_stop(commands, asoc);
1679 break;
1680 case SCTP_CMD_FORCE_PRIM_RETRAN:
1681 t = asoc->peer.retran_path;
1682 asoc->peer.retran_path = asoc->peer.primary_path;
1683 error = sctp_outq_uncork(&asoc->outqueue, gfp);
1684 local_cork = 0;
1685 asoc->peer.retran_path = t;
1686 break;
1687 case SCTP_CMD_SET_SK_ERR:
1688 sctp_cmd_set_sk_err(asoc, cmd->obj.error);
1689 break;
1690 case SCTP_CMD_ASSOC_CHANGE:
1691 sctp_cmd_assoc_change(commands, asoc,
1692 cmd->obj.u8);
1693 break;
1694 case SCTP_CMD_ADAPTATION_IND:
1695 sctp_cmd_adaptation_ind(commands, asoc);
1696 break;
1697
1698 case SCTP_CMD_ASSOC_SHKEY:
1699 error = sctp_auth_asoc_init_active_key(asoc,
1700 GFP_ATOMIC);
1701 break;
1702 case SCTP_CMD_UPDATE_INITTAG:
1703 asoc->peer.i.init_tag = cmd->obj.u32;
1704 break;
1705 case SCTP_CMD_SEND_MSG:
1706 if (!asoc->outqueue.cork) {
1707 sctp_outq_cork(&asoc->outqueue);
1708 local_cork = 1;
1709 }
1710 error = sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp);
1711 break;
1712 case SCTP_CMD_SEND_NEXT_ASCONF:
1713 sctp_cmd_send_asconf(asoc);
1714 break;
1715 case SCTP_CMD_PURGE_ASCONF_QUEUE:
1716 sctp_asconf_queue_teardown(asoc);
1717 break;
1718
1719 case SCTP_CMD_SET_ASOC:
1720 asoc = cmd->obj.asoc;
1721 break;
1722
1723 default:
1724 pr_warn("Impossible command: %u\n",
1725 cmd->verb);
1726 break;
1727 }
1728
1729 if (error)
1730 break;
1731 }
1732
1733 out:
1734 /* If this is in response to a received chunk, wait until
1735 * we are done with the packet to open the queue so that we don't
1736 * send multiple packets in response to a single request.
1737 */
1738 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) {
1739 if (chunk->end_of_packet || chunk->singleton)
1740 error = sctp_outq_uncork(&asoc->outqueue, gfp);
1741 } else if (local_cork)
1742 error = sctp_outq_uncork(&asoc->outqueue, gfp);
1743
1744 if (sp->data_ready_signalled)
1745 sp->data_ready_signalled = 0;
1746
1747 return error;
1748 nomem:
1749 error = -ENOMEM;
1750 goto out;
1751 }
1752