]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sctp/socket.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[mirror_ubuntu-bionic-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69
70 #include <net/ip.h>
71 #include <net/icmp.h>
72 #include <net/route.h>
73 #include <net/ipv6.h>
74 #include <net/inet_common.h>
75 #include <net/busy_poll.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <linux/export.h>
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82
83 /* Forward declarations for internal helper functions. */
84 static int sctp_writeable(struct sock *sk);
85 static void sctp_wfree(struct sk_buff *skb);
86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
87 size_t msg_len);
88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
90 static int sctp_wait_for_accept(struct sock *sk, long timeo);
91 static void sctp_wait_for_close(struct sock *sk, long timeo);
92 static void sctp_destruct_sock(struct sock *sk);
93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
94 union sctp_addr *addr, int len);
95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf(struct sctp_association *asoc,
100 struct sctp_chunk *chunk);
101 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
102 static int sctp_autobind(struct sock *sk);
103 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
104 struct sctp_association *assoc,
105 enum sctp_socket_type type);
106
107 static unsigned long sctp_memory_pressure;
108 static atomic_long_t sctp_memory_allocated;
109 struct percpu_counter sctp_sockets_allocated;
110
111 static void sctp_enter_memory_pressure(struct sock *sk)
112 {
113 sctp_memory_pressure = 1;
114 }
115
116
117 /* Get the sndbuf space available at the time on the association. */
118 static inline int sctp_wspace(struct sctp_association *asoc)
119 {
120 int amt;
121
122 if (asoc->ep->sndbuf_policy)
123 amt = asoc->sndbuf_used;
124 else
125 amt = sk_wmem_alloc_get(asoc->base.sk);
126
127 if (amt >= asoc->base.sk->sk_sndbuf) {
128 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
129 amt = 0;
130 else {
131 amt = sk_stream_wspace(asoc->base.sk);
132 if (amt < 0)
133 amt = 0;
134 }
135 } else {
136 amt = asoc->base.sk->sk_sndbuf - amt;
137 }
138 return amt;
139 }
140
141 /* Increment the used sndbuf space count of the corresponding association by
142 * the size of the outgoing data chunk.
143 * Also, set the skb destructor for sndbuf accounting later.
144 *
145 * Since it is always 1-1 between chunk and skb, and also a new skb is always
146 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
147 * destructor in the data chunk skb for the purpose of the sndbuf space
148 * tracking.
149 */
150 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
151 {
152 struct sctp_association *asoc = chunk->asoc;
153 struct sock *sk = asoc->base.sk;
154
155 /* The sndbuf space is tracked per association. */
156 sctp_association_hold(asoc);
157
158 skb_set_owner_w(chunk->skb, sk);
159
160 chunk->skb->destructor = sctp_wfree;
161 /* Save the chunk pointer in skb for sctp_wfree to use later. */
162 skb_shinfo(chunk->skb)->destructor_arg = chunk;
163
164 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
165 sizeof(struct sk_buff) +
166 sizeof(struct sctp_chunk);
167
168 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
169 sk->sk_wmem_queued += chunk->skb->truesize;
170 sk_mem_charge(sk, chunk->skb->truesize);
171 }
172
173 /* Verify that this is a valid address. */
174 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
175 int len)
176 {
177 struct sctp_af *af;
178
179 /* Verify basic sockaddr. */
180 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
181 if (!af)
182 return -EINVAL;
183
184 /* Is this a valid SCTP address? */
185 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
186 return -EINVAL;
187
188 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
189 return -EINVAL;
190
191 return 0;
192 }
193
194 /* Look up the association by its id. If this is not a UDP-style
195 * socket, the ID field is always ignored.
196 */
197 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
198 {
199 struct sctp_association *asoc = NULL;
200
201 /* If this is not a UDP-style socket, assoc id should be ignored. */
202 if (!sctp_style(sk, UDP)) {
203 /* Return NULL if the socket state is not ESTABLISHED. It
204 * could be a TCP-style listening socket or a socket which
205 * hasn't yet called connect() to establish an association.
206 */
207 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
208 return NULL;
209
210 /* Get the first and the only association from the list. */
211 if (!list_empty(&sctp_sk(sk)->ep->asocs))
212 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
213 struct sctp_association, asocs);
214 return asoc;
215 }
216
217 /* Otherwise this is a UDP-style socket. */
218 if (!id || (id == (sctp_assoc_t)-1))
219 return NULL;
220
221 spin_lock_bh(&sctp_assocs_id_lock);
222 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
223 spin_unlock_bh(&sctp_assocs_id_lock);
224
225 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
226 return NULL;
227
228 return asoc;
229 }
230
231 /* Look up the transport from an address and an assoc id. If both address and
232 * id are specified, the associations matching the address and the id should be
233 * the same.
234 */
235 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
236 struct sockaddr_storage *addr,
237 sctp_assoc_t id)
238 {
239 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
240 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
241 union sctp_addr *laddr = (union sctp_addr *)addr;
242 struct sctp_transport *transport;
243
244 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
245 return NULL;
246
247 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
248 laddr,
249 &transport);
250
251 if (!addr_asoc)
252 return NULL;
253
254 id_asoc = sctp_id2assoc(sk, id);
255 if (id_asoc && (id_asoc != addr_asoc))
256 return NULL;
257
258 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
259 (union sctp_addr *)addr);
260
261 return transport;
262 }
263
264 /* API 3.1.2 bind() - UDP Style Syntax
265 * The syntax of bind() is,
266 *
267 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
268 *
269 * sd - the socket descriptor returned by socket().
270 * addr - the address structure (struct sockaddr_in or struct
271 * sockaddr_in6 [RFC 2553]),
272 * addr_len - the size of the address structure.
273 */
274 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
275 {
276 int retval = 0;
277
278 lock_sock(sk);
279
280 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
281 addr, addr_len);
282
283 /* Disallow binding twice. */
284 if (!sctp_sk(sk)->ep->base.bind_addr.port)
285 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
286 addr_len);
287 else
288 retval = -EINVAL;
289
290 release_sock(sk);
291
292 return retval;
293 }
294
295 static long sctp_get_port_local(struct sock *, union sctp_addr *);
296
297 /* Verify this is a valid sockaddr. */
298 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
299 union sctp_addr *addr, int len)
300 {
301 struct sctp_af *af;
302
303 /* Check minimum size. */
304 if (len < sizeof (struct sockaddr))
305 return NULL;
306
307 /* V4 mapped address are really of AF_INET family */
308 if (addr->sa.sa_family == AF_INET6 &&
309 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
310 if (!opt->pf->af_supported(AF_INET, opt))
311 return NULL;
312 } else {
313 /* Does this PF support this AF? */
314 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
315 return NULL;
316 }
317
318 /* If we get this far, af is valid. */
319 af = sctp_get_af_specific(addr->sa.sa_family);
320
321 if (len < af->sockaddr_len)
322 return NULL;
323
324 return af;
325 }
326
327 /* Bind a local address either to an endpoint or to an association. */
328 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
329 {
330 struct net *net = sock_net(sk);
331 struct sctp_sock *sp = sctp_sk(sk);
332 struct sctp_endpoint *ep = sp->ep;
333 struct sctp_bind_addr *bp = &ep->base.bind_addr;
334 struct sctp_af *af;
335 unsigned short snum;
336 int ret = 0;
337
338 /* Common sockaddr verification. */
339 af = sctp_sockaddr_af(sp, addr, len);
340 if (!af) {
341 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
342 __func__, sk, addr, len);
343 return -EINVAL;
344 }
345
346 snum = ntohs(addr->v4.sin_port);
347
348 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
349 __func__, sk, &addr->sa, bp->port, snum, len);
350
351 /* PF specific bind() address verification. */
352 if (!sp->pf->bind_verify(sp, addr))
353 return -EADDRNOTAVAIL;
354
355 /* We must either be unbound, or bind to the same port.
356 * It's OK to allow 0 ports if we are already bound.
357 * We'll just inhert an already bound port in this case
358 */
359 if (bp->port) {
360 if (!snum)
361 snum = bp->port;
362 else if (snum != bp->port) {
363 pr_debug("%s: new port %d doesn't match existing port "
364 "%d\n", __func__, snum, bp->port);
365 return -EINVAL;
366 }
367 }
368
369 if (snum && snum < inet_prot_sock(net) &&
370 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
371 return -EACCES;
372
373 /* See if the address matches any of the addresses we may have
374 * already bound before checking against other endpoints.
375 */
376 if (sctp_bind_addr_match(bp, addr, sp))
377 return -EINVAL;
378
379 /* Make sure we are allowed to bind here.
380 * The function sctp_get_port_local() does duplicate address
381 * detection.
382 */
383 addr->v4.sin_port = htons(snum);
384 if ((ret = sctp_get_port_local(sk, addr))) {
385 return -EADDRINUSE;
386 }
387
388 /* Refresh ephemeral port. */
389 if (!bp->port)
390 bp->port = inet_sk(sk)->inet_num;
391
392 /* Add the address to the bind address list.
393 * Use GFP_ATOMIC since BHs will be disabled.
394 */
395 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
396 SCTP_ADDR_SRC, GFP_ATOMIC);
397
398 /* Copy back into socket for getsockname() use. */
399 if (!ret) {
400 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
401 sp->pf->to_sk_saddr(addr, sk);
402 }
403
404 return ret;
405 }
406
407 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
408 *
409 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
410 * at any one time. If a sender, after sending an ASCONF chunk, decides
411 * it needs to transfer another ASCONF Chunk, it MUST wait until the
412 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
413 * subsequent ASCONF. Note this restriction binds each side, so at any
414 * time two ASCONF may be in-transit on any given association (one sent
415 * from each endpoint).
416 */
417 static int sctp_send_asconf(struct sctp_association *asoc,
418 struct sctp_chunk *chunk)
419 {
420 struct net *net = sock_net(asoc->base.sk);
421 int retval = 0;
422
423 /* If there is an outstanding ASCONF chunk, queue it for later
424 * transmission.
425 */
426 if (asoc->addip_last_asconf) {
427 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
428 goto out;
429 }
430
431 /* Hold the chunk until an ASCONF_ACK is received. */
432 sctp_chunk_hold(chunk);
433 retval = sctp_primitive_ASCONF(net, asoc, chunk);
434 if (retval)
435 sctp_chunk_free(chunk);
436 else
437 asoc->addip_last_asconf = chunk;
438
439 out:
440 return retval;
441 }
442
443 /* Add a list of addresses as bind addresses to local endpoint or
444 * association.
445 *
446 * Basically run through each address specified in the addrs/addrcnt
447 * array/length pair, determine if it is IPv6 or IPv4 and call
448 * sctp_do_bind() on it.
449 *
450 * If any of them fails, then the operation will be reversed and the
451 * ones that were added will be removed.
452 *
453 * Only sctp_setsockopt_bindx() is supposed to call this function.
454 */
455 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
456 {
457 int cnt;
458 int retval = 0;
459 void *addr_buf;
460 struct sockaddr *sa_addr;
461 struct sctp_af *af;
462
463 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
464 addrs, addrcnt);
465
466 addr_buf = addrs;
467 for (cnt = 0; cnt < addrcnt; cnt++) {
468 /* The list may contain either IPv4 or IPv6 address;
469 * determine the address length for walking thru the list.
470 */
471 sa_addr = addr_buf;
472 af = sctp_get_af_specific(sa_addr->sa_family);
473 if (!af) {
474 retval = -EINVAL;
475 goto err_bindx_add;
476 }
477
478 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
479 af->sockaddr_len);
480
481 addr_buf += af->sockaddr_len;
482
483 err_bindx_add:
484 if (retval < 0) {
485 /* Failed. Cleanup the ones that have been added */
486 if (cnt > 0)
487 sctp_bindx_rem(sk, addrs, cnt);
488 return retval;
489 }
490 }
491
492 return retval;
493 }
494
495 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
496 * associations that are part of the endpoint indicating that a list of local
497 * addresses are added to the endpoint.
498 *
499 * If any of the addresses is already in the bind address list of the
500 * association, we do not send the chunk for that association. But it will not
501 * affect other associations.
502 *
503 * Only sctp_setsockopt_bindx() is supposed to call this function.
504 */
505 static int sctp_send_asconf_add_ip(struct sock *sk,
506 struct sockaddr *addrs,
507 int addrcnt)
508 {
509 struct net *net = sock_net(sk);
510 struct sctp_sock *sp;
511 struct sctp_endpoint *ep;
512 struct sctp_association *asoc;
513 struct sctp_bind_addr *bp;
514 struct sctp_chunk *chunk;
515 struct sctp_sockaddr_entry *laddr;
516 union sctp_addr *addr;
517 union sctp_addr saveaddr;
518 void *addr_buf;
519 struct sctp_af *af;
520 struct list_head *p;
521 int i;
522 int retval = 0;
523
524 if (!net->sctp.addip_enable)
525 return retval;
526
527 sp = sctp_sk(sk);
528 ep = sp->ep;
529
530 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
531 __func__, sk, addrs, addrcnt);
532
533 list_for_each_entry(asoc, &ep->asocs, asocs) {
534 if (!asoc->peer.asconf_capable)
535 continue;
536
537 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
538 continue;
539
540 if (!sctp_state(asoc, ESTABLISHED))
541 continue;
542
543 /* Check if any address in the packed array of addresses is
544 * in the bind address list of the association. If so,
545 * do not send the asconf chunk to its peer, but continue with
546 * other associations.
547 */
548 addr_buf = addrs;
549 for (i = 0; i < addrcnt; i++) {
550 addr = addr_buf;
551 af = sctp_get_af_specific(addr->v4.sin_family);
552 if (!af) {
553 retval = -EINVAL;
554 goto out;
555 }
556
557 if (sctp_assoc_lookup_laddr(asoc, addr))
558 break;
559
560 addr_buf += af->sockaddr_len;
561 }
562 if (i < addrcnt)
563 continue;
564
565 /* Use the first valid address in bind addr list of
566 * association as Address Parameter of ASCONF CHUNK.
567 */
568 bp = &asoc->base.bind_addr;
569 p = bp->address_list.next;
570 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
571 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
572 addrcnt, SCTP_PARAM_ADD_IP);
573 if (!chunk) {
574 retval = -ENOMEM;
575 goto out;
576 }
577
578 /* Add the new addresses to the bind address list with
579 * use_as_src set to 0.
580 */
581 addr_buf = addrs;
582 for (i = 0; i < addrcnt; i++) {
583 addr = addr_buf;
584 af = sctp_get_af_specific(addr->v4.sin_family);
585 memcpy(&saveaddr, addr, af->sockaddr_len);
586 retval = sctp_add_bind_addr(bp, &saveaddr,
587 sizeof(saveaddr),
588 SCTP_ADDR_NEW, GFP_ATOMIC);
589 addr_buf += af->sockaddr_len;
590 }
591 if (asoc->src_out_of_asoc_ok) {
592 struct sctp_transport *trans;
593
594 list_for_each_entry(trans,
595 &asoc->peer.transport_addr_list, transports) {
596 /* Clear the source and route cache */
597 sctp_transport_dst_release(trans);
598 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
599 2*asoc->pathmtu, 4380));
600 trans->ssthresh = asoc->peer.i.a_rwnd;
601 trans->rto = asoc->rto_initial;
602 sctp_max_rto(asoc, trans);
603 trans->rtt = trans->srtt = trans->rttvar = 0;
604 sctp_transport_route(trans, NULL,
605 sctp_sk(asoc->base.sk));
606 }
607 }
608 retval = sctp_send_asconf(asoc, chunk);
609 }
610
611 out:
612 return retval;
613 }
614
615 /* Remove a list of addresses from bind addresses list. Do not remove the
616 * last address.
617 *
618 * Basically run through each address specified in the addrs/addrcnt
619 * array/length pair, determine if it is IPv6 or IPv4 and call
620 * sctp_del_bind() on it.
621 *
622 * If any of them fails, then the operation will be reversed and the
623 * ones that were removed will be added back.
624 *
625 * At least one address has to be left; if only one address is
626 * available, the operation will return -EBUSY.
627 *
628 * Only sctp_setsockopt_bindx() is supposed to call this function.
629 */
630 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
631 {
632 struct sctp_sock *sp = sctp_sk(sk);
633 struct sctp_endpoint *ep = sp->ep;
634 int cnt;
635 struct sctp_bind_addr *bp = &ep->base.bind_addr;
636 int retval = 0;
637 void *addr_buf;
638 union sctp_addr *sa_addr;
639 struct sctp_af *af;
640
641 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
642 __func__, sk, addrs, addrcnt);
643
644 addr_buf = addrs;
645 for (cnt = 0; cnt < addrcnt; cnt++) {
646 /* If the bind address list is empty or if there is only one
647 * bind address, there is nothing more to be removed (we need
648 * at least one address here).
649 */
650 if (list_empty(&bp->address_list) ||
651 (sctp_list_single_entry(&bp->address_list))) {
652 retval = -EBUSY;
653 goto err_bindx_rem;
654 }
655
656 sa_addr = addr_buf;
657 af = sctp_get_af_specific(sa_addr->sa.sa_family);
658 if (!af) {
659 retval = -EINVAL;
660 goto err_bindx_rem;
661 }
662
663 if (!af->addr_valid(sa_addr, sp, NULL)) {
664 retval = -EADDRNOTAVAIL;
665 goto err_bindx_rem;
666 }
667
668 if (sa_addr->v4.sin_port &&
669 sa_addr->v4.sin_port != htons(bp->port)) {
670 retval = -EINVAL;
671 goto err_bindx_rem;
672 }
673
674 if (!sa_addr->v4.sin_port)
675 sa_addr->v4.sin_port = htons(bp->port);
676
677 /* FIXME - There is probably a need to check if sk->sk_saddr and
678 * sk->sk_rcv_addr are currently set to one of the addresses to
679 * be removed. This is something which needs to be looked into
680 * when we are fixing the outstanding issues with multi-homing
681 * socket routing and failover schemes. Refer to comments in
682 * sctp_do_bind(). -daisy
683 */
684 retval = sctp_del_bind_addr(bp, sa_addr);
685
686 addr_buf += af->sockaddr_len;
687 err_bindx_rem:
688 if (retval < 0) {
689 /* Failed. Add the ones that has been removed back */
690 if (cnt > 0)
691 sctp_bindx_add(sk, addrs, cnt);
692 return retval;
693 }
694 }
695
696 return retval;
697 }
698
699 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
700 * the associations that are part of the endpoint indicating that a list of
701 * local addresses are removed from the endpoint.
702 *
703 * If any of the addresses is already in the bind address list of the
704 * association, we do not send the chunk for that association. But it will not
705 * affect other associations.
706 *
707 * Only sctp_setsockopt_bindx() is supposed to call this function.
708 */
709 static int sctp_send_asconf_del_ip(struct sock *sk,
710 struct sockaddr *addrs,
711 int addrcnt)
712 {
713 struct net *net = sock_net(sk);
714 struct sctp_sock *sp;
715 struct sctp_endpoint *ep;
716 struct sctp_association *asoc;
717 struct sctp_transport *transport;
718 struct sctp_bind_addr *bp;
719 struct sctp_chunk *chunk;
720 union sctp_addr *laddr;
721 void *addr_buf;
722 struct sctp_af *af;
723 struct sctp_sockaddr_entry *saddr;
724 int i;
725 int retval = 0;
726 int stored = 0;
727
728 chunk = NULL;
729 if (!net->sctp.addip_enable)
730 return retval;
731
732 sp = sctp_sk(sk);
733 ep = sp->ep;
734
735 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
736 __func__, sk, addrs, addrcnt);
737
738 list_for_each_entry(asoc, &ep->asocs, asocs) {
739
740 if (!asoc->peer.asconf_capable)
741 continue;
742
743 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
744 continue;
745
746 if (!sctp_state(asoc, ESTABLISHED))
747 continue;
748
749 /* Check if any address in the packed array of addresses is
750 * not present in the bind address list of the association.
751 * If so, do not send the asconf chunk to its peer, but
752 * continue with other associations.
753 */
754 addr_buf = addrs;
755 for (i = 0; i < addrcnt; i++) {
756 laddr = addr_buf;
757 af = sctp_get_af_specific(laddr->v4.sin_family);
758 if (!af) {
759 retval = -EINVAL;
760 goto out;
761 }
762
763 if (!sctp_assoc_lookup_laddr(asoc, laddr))
764 break;
765
766 addr_buf += af->sockaddr_len;
767 }
768 if (i < addrcnt)
769 continue;
770
771 /* Find one address in the association's bind address list
772 * that is not in the packed array of addresses. This is to
773 * make sure that we do not delete all the addresses in the
774 * association.
775 */
776 bp = &asoc->base.bind_addr;
777 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
778 addrcnt, sp);
779 if ((laddr == NULL) && (addrcnt == 1)) {
780 if (asoc->asconf_addr_del_pending)
781 continue;
782 asoc->asconf_addr_del_pending =
783 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
784 if (asoc->asconf_addr_del_pending == NULL) {
785 retval = -ENOMEM;
786 goto out;
787 }
788 asoc->asconf_addr_del_pending->sa.sa_family =
789 addrs->sa_family;
790 asoc->asconf_addr_del_pending->v4.sin_port =
791 htons(bp->port);
792 if (addrs->sa_family == AF_INET) {
793 struct sockaddr_in *sin;
794
795 sin = (struct sockaddr_in *)addrs;
796 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
797 } else if (addrs->sa_family == AF_INET6) {
798 struct sockaddr_in6 *sin6;
799
800 sin6 = (struct sockaddr_in6 *)addrs;
801 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
802 }
803
804 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
805 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
806 asoc->asconf_addr_del_pending);
807
808 asoc->src_out_of_asoc_ok = 1;
809 stored = 1;
810 goto skip_mkasconf;
811 }
812
813 if (laddr == NULL)
814 return -EINVAL;
815
816 /* We do not need RCU protection throughout this loop
817 * because this is done under a socket lock from the
818 * setsockopt call.
819 */
820 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
821 SCTP_PARAM_DEL_IP);
822 if (!chunk) {
823 retval = -ENOMEM;
824 goto out;
825 }
826
827 skip_mkasconf:
828 /* Reset use_as_src flag for the addresses in the bind address
829 * list that are to be deleted.
830 */
831 addr_buf = addrs;
832 for (i = 0; i < addrcnt; i++) {
833 laddr = addr_buf;
834 af = sctp_get_af_specific(laddr->v4.sin_family);
835 list_for_each_entry(saddr, &bp->address_list, list) {
836 if (sctp_cmp_addr_exact(&saddr->a, laddr))
837 saddr->state = SCTP_ADDR_DEL;
838 }
839 addr_buf += af->sockaddr_len;
840 }
841
842 /* Update the route and saddr entries for all the transports
843 * as some of the addresses in the bind address list are
844 * about to be deleted and cannot be used as source addresses.
845 */
846 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
847 transports) {
848 sctp_transport_dst_release(transport);
849 sctp_transport_route(transport, NULL,
850 sctp_sk(asoc->base.sk));
851 }
852
853 if (stored)
854 /* We don't need to transmit ASCONF */
855 continue;
856 retval = sctp_send_asconf(asoc, chunk);
857 }
858 out:
859 return retval;
860 }
861
862 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
863 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
864 {
865 struct sock *sk = sctp_opt2sk(sp);
866 union sctp_addr *addr;
867 struct sctp_af *af;
868
869 /* It is safe to write port space in caller. */
870 addr = &addrw->a;
871 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
872 af = sctp_get_af_specific(addr->sa.sa_family);
873 if (!af)
874 return -EINVAL;
875 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
876 return -EINVAL;
877
878 if (addrw->state == SCTP_ADDR_NEW)
879 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
880 else
881 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
882 }
883
884 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
885 *
886 * API 8.1
887 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
888 * int flags);
889 *
890 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
891 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
892 * or IPv6 addresses.
893 *
894 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
895 * Section 3.1.2 for this usage.
896 *
897 * addrs is a pointer to an array of one or more socket addresses. Each
898 * address is contained in its appropriate structure (i.e. struct
899 * sockaddr_in or struct sockaddr_in6) the family of the address type
900 * must be used to distinguish the address length (note that this
901 * representation is termed a "packed array" of addresses). The caller
902 * specifies the number of addresses in the array with addrcnt.
903 *
904 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
905 * -1, and sets errno to the appropriate error code.
906 *
907 * For SCTP, the port given in each socket address must be the same, or
908 * sctp_bindx() will fail, setting errno to EINVAL.
909 *
910 * The flags parameter is formed from the bitwise OR of zero or more of
911 * the following currently defined flags:
912 *
913 * SCTP_BINDX_ADD_ADDR
914 *
915 * SCTP_BINDX_REM_ADDR
916 *
917 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
918 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
919 * addresses from the association. The two flags are mutually exclusive;
920 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
921 * not remove all addresses from an association; sctp_bindx() will
922 * reject such an attempt with EINVAL.
923 *
924 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
925 * additional addresses with an endpoint after calling bind(). Or use
926 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
927 * socket is associated with so that no new association accepted will be
928 * associated with those addresses. If the endpoint supports dynamic
929 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
930 * endpoint to send the appropriate message to the peer to change the
931 * peers address lists.
932 *
933 * Adding and removing addresses from a connected association is
934 * optional functionality. Implementations that do not support this
935 * functionality should return EOPNOTSUPP.
936 *
937 * Basically do nothing but copying the addresses from user to kernel
938 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
939 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
940 * from userspace.
941 *
942 * We don't use copy_from_user() for optimization: we first do the
943 * sanity checks (buffer size -fast- and access check-healthy
944 * pointer); if all of those succeed, then we can alloc the memory
945 * (expensive operation) needed to copy the data to kernel. Then we do
946 * the copying without checking the user space area
947 * (__copy_from_user()).
948 *
949 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
950 * it.
951 *
952 * sk The sk of the socket
953 * addrs The pointer to the addresses in user land
954 * addrssize Size of the addrs buffer
955 * op Operation to perform (add or remove, see the flags of
956 * sctp_bindx)
957 *
958 * Returns 0 if ok, <0 errno code on error.
959 */
960 static int sctp_setsockopt_bindx(struct sock *sk,
961 struct sockaddr __user *addrs,
962 int addrs_size, int op)
963 {
964 struct sockaddr *kaddrs;
965 int err;
966 int addrcnt = 0;
967 int walk_size = 0;
968 struct sockaddr *sa_addr;
969 void *addr_buf;
970 struct sctp_af *af;
971
972 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
973 __func__, sk, addrs, addrs_size, op);
974
975 if (unlikely(addrs_size <= 0))
976 return -EINVAL;
977
978 /* Check the user passed a healthy pointer. */
979 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
980 return -EFAULT;
981
982 /* Alloc space for the address array in kernel memory. */
983 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
984 if (unlikely(!kaddrs))
985 return -ENOMEM;
986
987 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
988 kfree(kaddrs);
989 return -EFAULT;
990 }
991
992 /* Walk through the addrs buffer and count the number of addresses. */
993 addr_buf = kaddrs;
994 while (walk_size < addrs_size) {
995 if (walk_size + sizeof(sa_family_t) > addrs_size) {
996 kfree(kaddrs);
997 return -EINVAL;
998 }
999
1000 sa_addr = addr_buf;
1001 af = sctp_get_af_specific(sa_addr->sa_family);
1002
1003 /* If the address family is not supported or if this address
1004 * causes the address buffer to overflow return EINVAL.
1005 */
1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1007 kfree(kaddrs);
1008 return -EINVAL;
1009 }
1010 addrcnt++;
1011 addr_buf += af->sockaddr_len;
1012 walk_size += af->sockaddr_len;
1013 }
1014
1015 /* Do the work. */
1016 switch (op) {
1017 case SCTP_BINDX_ADD_ADDR:
1018 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1019 if (err)
1020 goto out;
1021 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1022 break;
1023
1024 case SCTP_BINDX_REM_ADDR:
1025 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1026 if (err)
1027 goto out;
1028 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1029 break;
1030
1031 default:
1032 err = -EINVAL;
1033 break;
1034 }
1035
1036 out:
1037 kfree(kaddrs);
1038
1039 return err;
1040 }
1041
1042 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1043 *
1044 * Common routine for handling connect() and sctp_connectx().
1045 * Connect will come in with just a single address.
1046 */
1047 static int __sctp_connect(struct sock *sk,
1048 struct sockaddr *kaddrs,
1049 int addrs_size,
1050 sctp_assoc_t *assoc_id)
1051 {
1052 struct net *net = sock_net(sk);
1053 struct sctp_sock *sp;
1054 struct sctp_endpoint *ep;
1055 struct sctp_association *asoc = NULL;
1056 struct sctp_association *asoc2;
1057 struct sctp_transport *transport;
1058 union sctp_addr to;
1059 enum sctp_scope scope;
1060 long timeo;
1061 int err = 0;
1062 int addrcnt = 0;
1063 int walk_size = 0;
1064 union sctp_addr *sa_addr = NULL;
1065 void *addr_buf;
1066 unsigned short port;
1067 unsigned int f_flags = 0;
1068
1069 sp = sctp_sk(sk);
1070 ep = sp->ep;
1071
1072 /* connect() cannot be done on a socket that is already in ESTABLISHED
1073 * state - UDP-style peeled off socket or a TCP-style socket that
1074 * is already connected.
1075 * It cannot be done even on a TCP-style listening socket.
1076 */
1077 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1078 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1079 err = -EISCONN;
1080 goto out_free;
1081 }
1082
1083 /* Walk through the addrs buffer and count the number of addresses. */
1084 addr_buf = kaddrs;
1085 while (walk_size < addrs_size) {
1086 struct sctp_af *af;
1087
1088 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1089 err = -EINVAL;
1090 goto out_free;
1091 }
1092
1093 sa_addr = addr_buf;
1094 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1095
1096 /* If the address family is not supported or if this address
1097 * causes the address buffer to overflow return EINVAL.
1098 */
1099 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1100 err = -EINVAL;
1101 goto out_free;
1102 }
1103
1104 port = ntohs(sa_addr->v4.sin_port);
1105
1106 /* Save current address so we can work with it */
1107 memcpy(&to, sa_addr, af->sockaddr_len);
1108
1109 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1110 if (err)
1111 goto out_free;
1112
1113 /* Make sure the destination port is correctly set
1114 * in all addresses.
1115 */
1116 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1117 err = -EINVAL;
1118 goto out_free;
1119 }
1120
1121 /* Check if there already is a matching association on the
1122 * endpoint (other than the one created here).
1123 */
1124 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1125 if (asoc2 && asoc2 != asoc) {
1126 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1127 err = -EISCONN;
1128 else
1129 err = -EALREADY;
1130 goto out_free;
1131 }
1132
1133 /* If we could not find a matching association on the endpoint,
1134 * make sure that there is no peeled-off association matching
1135 * the peer address even on another socket.
1136 */
1137 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1138 err = -EADDRNOTAVAIL;
1139 goto out_free;
1140 }
1141
1142 if (!asoc) {
1143 /* If a bind() or sctp_bindx() is not called prior to
1144 * an sctp_connectx() call, the system picks an
1145 * ephemeral port and will choose an address set
1146 * equivalent to binding with a wildcard address.
1147 */
1148 if (!ep->base.bind_addr.port) {
1149 if (sctp_autobind(sk)) {
1150 err = -EAGAIN;
1151 goto out_free;
1152 }
1153 } else {
1154 /*
1155 * If an unprivileged user inherits a 1-many
1156 * style socket with open associations on a
1157 * privileged port, it MAY be permitted to
1158 * accept new associations, but it SHOULD NOT
1159 * be permitted to open new associations.
1160 */
1161 if (ep->base.bind_addr.port <
1162 inet_prot_sock(net) &&
1163 !ns_capable(net->user_ns,
1164 CAP_NET_BIND_SERVICE)) {
1165 err = -EACCES;
1166 goto out_free;
1167 }
1168 }
1169
1170 scope = sctp_scope(&to);
1171 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1172 if (!asoc) {
1173 err = -ENOMEM;
1174 goto out_free;
1175 }
1176
1177 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1178 GFP_KERNEL);
1179 if (err < 0) {
1180 goto out_free;
1181 }
1182
1183 }
1184
1185 /* Prime the peer's transport structures. */
1186 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1187 SCTP_UNKNOWN);
1188 if (!transport) {
1189 err = -ENOMEM;
1190 goto out_free;
1191 }
1192
1193 addrcnt++;
1194 addr_buf += af->sockaddr_len;
1195 walk_size += af->sockaddr_len;
1196 }
1197
1198 /* In case the user of sctp_connectx() wants an association
1199 * id back, assign one now.
1200 */
1201 if (assoc_id) {
1202 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1203 if (err < 0)
1204 goto out_free;
1205 }
1206
1207 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1208 if (err < 0) {
1209 goto out_free;
1210 }
1211
1212 /* Initialize sk's dport and daddr for getpeername() */
1213 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1214 sp->pf->to_sk_daddr(sa_addr, sk);
1215 sk->sk_err = 0;
1216
1217 /* in-kernel sockets don't generally have a file allocated to them
1218 * if all they do is call sock_create_kern().
1219 */
1220 if (sk->sk_socket->file)
1221 f_flags = sk->sk_socket->file->f_flags;
1222
1223 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1224
1225 if (assoc_id)
1226 *assoc_id = asoc->assoc_id;
1227 err = sctp_wait_for_connect(asoc, &timeo);
1228 /* Note: the asoc may be freed after the return of
1229 * sctp_wait_for_connect.
1230 */
1231
1232 /* Don't free association on exit. */
1233 asoc = NULL;
1234
1235 out_free:
1236 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1237 __func__, asoc, kaddrs, err);
1238
1239 if (asoc) {
1240 /* sctp_primitive_ASSOCIATE may have added this association
1241 * To the hash table, try to unhash it, just in case, its a noop
1242 * if it wasn't hashed so we're safe
1243 */
1244 sctp_association_free(asoc);
1245 }
1246 return err;
1247 }
1248
1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1250 *
1251 * API 8.9
1252 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1253 * sctp_assoc_t *asoc);
1254 *
1255 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1256 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1257 * or IPv6 addresses.
1258 *
1259 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1260 * Section 3.1.2 for this usage.
1261 *
1262 * addrs is a pointer to an array of one or more socket addresses. Each
1263 * address is contained in its appropriate structure (i.e. struct
1264 * sockaddr_in or struct sockaddr_in6) the family of the address type
1265 * must be used to distengish the address length (note that this
1266 * representation is termed a "packed array" of addresses). The caller
1267 * specifies the number of addresses in the array with addrcnt.
1268 *
1269 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1270 * the association id of the new association. On failure, sctp_connectx()
1271 * returns -1, and sets errno to the appropriate error code. The assoc_id
1272 * is not touched by the kernel.
1273 *
1274 * For SCTP, the port given in each socket address must be the same, or
1275 * sctp_connectx() will fail, setting errno to EINVAL.
1276 *
1277 * An application can use sctp_connectx to initiate an association with
1278 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1279 * allows a caller to specify multiple addresses at which a peer can be
1280 * reached. The way the SCTP stack uses the list of addresses to set up
1281 * the association is implementation dependent. This function only
1282 * specifies that the stack will try to make use of all the addresses in
1283 * the list when needed.
1284 *
1285 * Note that the list of addresses passed in is only used for setting up
1286 * the association. It does not necessarily equal the set of addresses
1287 * the peer uses for the resulting association. If the caller wants to
1288 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1289 * retrieve them after the association has been set up.
1290 *
1291 * Basically do nothing but copying the addresses from user to kernel
1292 * land and invoking either sctp_connectx(). This is used for tunneling
1293 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1294 *
1295 * We don't use copy_from_user() for optimization: we first do the
1296 * sanity checks (buffer size -fast- and access check-healthy
1297 * pointer); if all of those succeed, then we can alloc the memory
1298 * (expensive operation) needed to copy the data to kernel. Then we do
1299 * the copying without checking the user space area
1300 * (__copy_from_user()).
1301 *
1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1303 * it.
1304 *
1305 * sk The sk of the socket
1306 * addrs The pointer to the addresses in user land
1307 * addrssize Size of the addrs buffer
1308 *
1309 * Returns >=0 if ok, <0 errno code on error.
1310 */
1311 static int __sctp_setsockopt_connectx(struct sock *sk,
1312 struct sockaddr __user *addrs,
1313 int addrs_size,
1314 sctp_assoc_t *assoc_id)
1315 {
1316 struct sockaddr *kaddrs;
1317 gfp_t gfp = GFP_KERNEL;
1318 int err = 0;
1319
1320 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1321 __func__, sk, addrs, addrs_size);
1322
1323 if (unlikely(addrs_size <= 0))
1324 return -EINVAL;
1325
1326 /* Check the user passed a healthy pointer. */
1327 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1328 return -EFAULT;
1329
1330 /* Alloc space for the address array in kernel memory. */
1331 if (sk->sk_socket->file)
1332 gfp = GFP_USER | __GFP_NOWARN;
1333 kaddrs = kmalloc(addrs_size, gfp);
1334 if (unlikely(!kaddrs))
1335 return -ENOMEM;
1336
1337 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1338 err = -EFAULT;
1339 } else {
1340 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1341 }
1342
1343 kfree(kaddrs);
1344
1345 return err;
1346 }
1347
1348 /*
1349 * This is an older interface. It's kept for backward compatibility
1350 * to the option that doesn't provide association id.
1351 */
1352 static int sctp_setsockopt_connectx_old(struct sock *sk,
1353 struct sockaddr __user *addrs,
1354 int addrs_size)
1355 {
1356 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1357 }
1358
1359 /*
1360 * New interface for the API. The since the API is done with a socket
1361 * option, to make it simple we feed back the association id is as a return
1362 * indication to the call. Error is always negative and association id is
1363 * always positive.
1364 */
1365 static int sctp_setsockopt_connectx(struct sock *sk,
1366 struct sockaddr __user *addrs,
1367 int addrs_size)
1368 {
1369 sctp_assoc_t assoc_id = 0;
1370 int err = 0;
1371
1372 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1373
1374 if (err)
1375 return err;
1376 else
1377 return assoc_id;
1378 }
1379
1380 /*
1381 * New (hopefully final) interface for the API.
1382 * We use the sctp_getaddrs_old structure so that use-space library
1383 * can avoid any unnecessary allocations. The only different part
1384 * is that we store the actual length of the address buffer into the
1385 * addrs_num structure member. That way we can re-use the existing
1386 * code.
1387 */
1388 #ifdef CONFIG_COMPAT
1389 struct compat_sctp_getaddrs_old {
1390 sctp_assoc_t assoc_id;
1391 s32 addr_num;
1392 compat_uptr_t addrs; /* struct sockaddr * */
1393 };
1394 #endif
1395
1396 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1397 char __user *optval,
1398 int __user *optlen)
1399 {
1400 struct sctp_getaddrs_old param;
1401 sctp_assoc_t assoc_id = 0;
1402 int err = 0;
1403
1404 #ifdef CONFIG_COMPAT
1405 if (in_compat_syscall()) {
1406 struct compat_sctp_getaddrs_old param32;
1407
1408 if (len < sizeof(param32))
1409 return -EINVAL;
1410 if (copy_from_user(&param32, optval, sizeof(param32)))
1411 return -EFAULT;
1412
1413 param.assoc_id = param32.assoc_id;
1414 param.addr_num = param32.addr_num;
1415 param.addrs = compat_ptr(param32.addrs);
1416 } else
1417 #endif
1418 {
1419 if (len < sizeof(param))
1420 return -EINVAL;
1421 if (copy_from_user(&param, optval, sizeof(param)))
1422 return -EFAULT;
1423 }
1424
1425 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1426 param.addrs, param.addr_num,
1427 &assoc_id);
1428 if (err == 0 || err == -EINPROGRESS) {
1429 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1430 return -EFAULT;
1431 if (put_user(sizeof(assoc_id), optlen))
1432 return -EFAULT;
1433 }
1434
1435 return err;
1436 }
1437
1438 /* API 3.1.4 close() - UDP Style Syntax
1439 * Applications use close() to perform graceful shutdown (as described in
1440 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1441 * by a UDP-style socket.
1442 *
1443 * The syntax is
1444 *
1445 * ret = close(int sd);
1446 *
1447 * sd - the socket descriptor of the associations to be closed.
1448 *
1449 * To gracefully shutdown a specific association represented by the
1450 * UDP-style socket, an application should use the sendmsg() call,
1451 * passing no user data, but including the appropriate flag in the
1452 * ancillary data (see Section xxxx).
1453 *
1454 * If sd in the close() call is a branched-off socket representing only
1455 * one association, the shutdown is performed on that association only.
1456 *
1457 * 4.1.6 close() - TCP Style Syntax
1458 *
1459 * Applications use close() to gracefully close down an association.
1460 *
1461 * The syntax is:
1462 *
1463 * int close(int sd);
1464 *
1465 * sd - the socket descriptor of the association to be closed.
1466 *
1467 * After an application calls close() on a socket descriptor, no further
1468 * socket operations will succeed on that descriptor.
1469 *
1470 * API 7.1.4 SO_LINGER
1471 *
1472 * An application using the TCP-style socket can use this option to
1473 * perform the SCTP ABORT primitive. The linger option structure is:
1474 *
1475 * struct linger {
1476 * int l_onoff; // option on/off
1477 * int l_linger; // linger time
1478 * };
1479 *
1480 * To enable the option, set l_onoff to 1. If the l_linger value is set
1481 * to 0, calling close() is the same as the ABORT primitive. If the
1482 * value is set to a negative value, the setsockopt() call will return
1483 * an error. If the value is set to a positive value linger_time, the
1484 * close() can be blocked for at most linger_time ms. If the graceful
1485 * shutdown phase does not finish during this period, close() will
1486 * return but the graceful shutdown phase continues in the system.
1487 */
1488 static void sctp_close(struct sock *sk, long timeout)
1489 {
1490 struct net *net = sock_net(sk);
1491 struct sctp_endpoint *ep;
1492 struct sctp_association *asoc;
1493 struct list_head *pos, *temp;
1494 unsigned int data_was_unread;
1495
1496 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1497
1498 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1499 sk->sk_shutdown = SHUTDOWN_MASK;
1500 sk->sk_state = SCTP_SS_CLOSING;
1501
1502 ep = sctp_sk(sk)->ep;
1503
1504 /* Clean up any skbs sitting on the receive queue. */
1505 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1506 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1507
1508 /* Walk all associations on an endpoint. */
1509 list_for_each_safe(pos, temp, &ep->asocs) {
1510 asoc = list_entry(pos, struct sctp_association, asocs);
1511
1512 if (sctp_style(sk, TCP)) {
1513 /* A closed association can still be in the list if
1514 * it belongs to a TCP-style listening socket that is
1515 * not yet accepted. If so, free it. If not, send an
1516 * ABORT or SHUTDOWN based on the linger options.
1517 */
1518 if (sctp_state(asoc, CLOSED)) {
1519 sctp_association_free(asoc);
1520 continue;
1521 }
1522 }
1523
1524 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1525 !skb_queue_empty(&asoc->ulpq.reasm) ||
1526 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1527 struct sctp_chunk *chunk;
1528
1529 chunk = sctp_make_abort_user(asoc, NULL, 0);
1530 sctp_primitive_ABORT(net, asoc, chunk);
1531 } else
1532 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1533 }
1534
1535 /* On a TCP-style socket, block for at most linger_time if set. */
1536 if (sctp_style(sk, TCP) && timeout)
1537 sctp_wait_for_close(sk, timeout);
1538
1539 /* This will run the backlog queue. */
1540 release_sock(sk);
1541
1542 /* Supposedly, no process has access to the socket, but
1543 * the net layers still may.
1544 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1545 * held and that should be grabbed before socket lock.
1546 */
1547 spin_lock_bh(&net->sctp.addr_wq_lock);
1548 bh_lock_sock_nested(sk);
1549
1550 /* Hold the sock, since sk_common_release() will put sock_put()
1551 * and we have just a little more cleanup.
1552 */
1553 sock_hold(sk);
1554 sk_common_release(sk);
1555
1556 bh_unlock_sock(sk);
1557 spin_unlock_bh(&net->sctp.addr_wq_lock);
1558
1559 sock_put(sk);
1560
1561 SCTP_DBG_OBJCNT_DEC(sock);
1562 }
1563
1564 /* Handle EPIPE error. */
1565 static int sctp_error(struct sock *sk, int flags, int err)
1566 {
1567 if (err == -EPIPE)
1568 err = sock_error(sk) ? : -EPIPE;
1569 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1570 send_sig(SIGPIPE, current, 0);
1571 return err;
1572 }
1573
1574 /* API 3.1.3 sendmsg() - UDP Style Syntax
1575 *
1576 * An application uses sendmsg() and recvmsg() calls to transmit data to
1577 * and receive data from its peer.
1578 *
1579 * ssize_t sendmsg(int socket, const struct msghdr *message,
1580 * int flags);
1581 *
1582 * socket - the socket descriptor of the endpoint.
1583 * message - pointer to the msghdr structure which contains a single
1584 * user message and possibly some ancillary data.
1585 *
1586 * See Section 5 for complete description of the data
1587 * structures.
1588 *
1589 * flags - flags sent or received with the user message, see Section
1590 * 5 for complete description of the flags.
1591 *
1592 * Note: This function could use a rewrite especially when explicit
1593 * connect support comes in.
1594 */
1595 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1596
1597 static int sctp_msghdr_parse(const struct msghdr *msg,
1598 struct sctp_cmsgs *cmsgs);
1599
1600 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1601 {
1602 struct net *net = sock_net(sk);
1603 struct sctp_sock *sp;
1604 struct sctp_endpoint *ep;
1605 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1606 struct sctp_transport *transport, *chunk_tp;
1607 struct sctp_chunk *chunk;
1608 union sctp_addr to;
1609 struct sockaddr *msg_name = NULL;
1610 struct sctp_sndrcvinfo default_sinfo;
1611 struct sctp_sndrcvinfo *sinfo;
1612 struct sctp_initmsg *sinit;
1613 sctp_assoc_t associd = 0;
1614 struct sctp_cmsgs cmsgs = { NULL };
1615 enum sctp_scope scope;
1616 bool fill_sinfo_ttl = false, wait_connect = false;
1617 struct sctp_datamsg *datamsg;
1618 int msg_flags = msg->msg_flags;
1619 __u16 sinfo_flags = 0;
1620 long timeo;
1621 int err;
1622
1623 err = 0;
1624 sp = sctp_sk(sk);
1625 ep = sp->ep;
1626
1627 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1628 msg, msg_len, ep);
1629
1630 /* We cannot send a message over a TCP-style listening socket. */
1631 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1632 err = -EPIPE;
1633 goto out_nounlock;
1634 }
1635
1636 /* Parse out the SCTP CMSGs. */
1637 err = sctp_msghdr_parse(msg, &cmsgs);
1638 if (err) {
1639 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1640 goto out_nounlock;
1641 }
1642
1643 /* Fetch the destination address for this packet. This
1644 * address only selects the association--it is not necessarily
1645 * the address we will send to.
1646 * For a peeled-off socket, msg_name is ignored.
1647 */
1648 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1649 int msg_namelen = msg->msg_namelen;
1650
1651 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1652 msg_namelen);
1653 if (err)
1654 return err;
1655
1656 if (msg_namelen > sizeof(to))
1657 msg_namelen = sizeof(to);
1658 memcpy(&to, msg->msg_name, msg_namelen);
1659 msg_name = msg->msg_name;
1660 }
1661
1662 sinit = cmsgs.init;
1663 if (cmsgs.sinfo != NULL) {
1664 memset(&default_sinfo, 0, sizeof(default_sinfo));
1665 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1666 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1667 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1668 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1669 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1670
1671 sinfo = &default_sinfo;
1672 fill_sinfo_ttl = true;
1673 } else {
1674 sinfo = cmsgs.srinfo;
1675 }
1676 /* Did the user specify SNDINFO/SNDRCVINFO? */
1677 if (sinfo) {
1678 sinfo_flags = sinfo->sinfo_flags;
1679 associd = sinfo->sinfo_assoc_id;
1680 }
1681
1682 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1683 msg_len, sinfo_flags);
1684
1685 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1686 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1687 err = -EINVAL;
1688 goto out_nounlock;
1689 }
1690
1691 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1692 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1693 * If SCTP_ABORT is set, the message length could be non zero with
1694 * the msg_iov set to the user abort reason.
1695 */
1696 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1697 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1698 err = -EINVAL;
1699 goto out_nounlock;
1700 }
1701
1702 /* If SCTP_ADDR_OVER is set, there must be an address
1703 * specified in msg_name.
1704 */
1705 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1706 err = -EINVAL;
1707 goto out_nounlock;
1708 }
1709
1710 transport = NULL;
1711
1712 pr_debug("%s: about to look up association\n", __func__);
1713
1714 lock_sock(sk);
1715
1716 /* If a msg_name has been specified, assume this is to be used. */
1717 if (msg_name) {
1718 /* Look for a matching association on the endpoint. */
1719 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1720
1721 /* If we could not find a matching association on the
1722 * endpoint, make sure that it is not a TCP-style
1723 * socket that already has an association or there is
1724 * no peeled-off association on another socket.
1725 */
1726 if (!asoc &&
1727 ((sctp_style(sk, TCP) &&
1728 (sctp_sstate(sk, ESTABLISHED) ||
1729 sctp_sstate(sk, CLOSING))) ||
1730 sctp_endpoint_is_peeled_off(ep, &to))) {
1731 err = -EADDRNOTAVAIL;
1732 goto out_unlock;
1733 }
1734 } else {
1735 asoc = sctp_id2assoc(sk, associd);
1736 if (!asoc) {
1737 err = -EPIPE;
1738 goto out_unlock;
1739 }
1740 }
1741
1742 if (asoc) {
1743 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1744
1745 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1746 * socket that has an association in CLOSED state. This can
1747 * happen when an accepted socket has an association that is
1748 * already CLOSED.
1749 */
1750 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1751 err = -EPIPE;
1752 goto out_unlock;
1753 }
1754
1755 if (sinfo_flags & SCTP_EOF) {
1756 pr_debug("%s: shutting down association:%p\n",
1757 __func__, asoc);
1758
1759 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1760 err = 0;
1761 goto out_unlock;
1762 }
1763 if (sinfo_flags & SCTP_ABORT) {
1764
1765 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1766 if (!chunk) {
1767 err = -ENOMEM;
1768 goto out_unlock;
1769 }
1770
1771 pr_debug("%s: aborting association:%p\n",
1772 __func__, asoc);
1773
1774 sctp_primitive_ABORT(net, asoc, chunk);
1775 err = 0;
1776 goto out_unlock;
1777 }
1778 }
1779
1780 /* Do we need to create the association? */
1781 if (!asoc) {
1782 pr_debug("%s: there is no association yet\n", __func__);
1783
1784 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1785 err = -EINVAL;
1786 goto out_unlock;
1787 }
1788
1789 /* Check for invalid stream against the stream counts,
1790 * either the default or the user specified stream counts.
1791 */
1792 if (sinfo) {
1793 if (!sinit || !sinit->sinit_num_ostreams) {
1794 /* Check against the defaults. */
1795 if (sinfo->sinfo_stream >=
1796 sp->initmsg.sinit_num_ostreams) {
1797 err = -EINVAL;
1798 goto out_unlock;
1799 }
1800 } else {
1801 /* Check against the requested. */
1802 if (sinfo->sinfo_stream >=
1803 sinit->sinit_num_ostreams) {
1804 err = -EINVAL;
1805 goto out_unlock;
1806 }
1807 }
1808 }
1809
1810 /*
1811 * API 3.1.2 bind() - UDP Style Syntax
1812 * If a bind() or sctp_bindx() is not called prior to a
1813 * sendmsg() call that initiates a new association, the
1814 * system picks an ephemeral port and will choose an address
1815 * set equivalent to binding with a wildcard address.
1816 */
1817 if (!ep->base.bind_addr.port) {
1818 if (sctp_autobind(sk)) {
1819 err = -EAGAIN;
1820 goto out_unlock;
1821 }
1822 } else {
1823 /*
1824 * If an unprivileged user inherits a one-to-many
1825 * style socket with open associations on a privileged
1826 * port, it MAY be permitted to accept new associations,
1827 * but it SHOULD NOT be permitted to open new
1828 * associations.
1829 */
1830 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1831 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1832 err = -EACCES;
1833 goto out_unlock;
1834 }
1835 }
1836
1837 scope = sctp_scope(&to);
1838 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1839 if (!new_asoc) {
1840 err = -ENOMEM;
1841 goto out_unlock;
1842 }
1843 asoc = new_asoc;
1844 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1845 if (err < 0) {
1846 err = -ENOMEM;
1847 goto out_free;
1848 }
1849
1850 /* If the SCTP_INIT ancillary data is specified, set all
1851 * the association init values accordingly.
1852 */
1853 if (sinit) {
1854 if (sinit->sinit_num_ostreams) {
1855 asoc->c.sinit_num_ostreams =
1856 sinit->sinit_num_ostreams;
1857 }
1858 if (sinit->sinit_max_instreams) {
1859 asoc->c.sinit_max_instreams =
1860 sinit->sinit_max_instreams;
1861 }
1862 if (sinit->sinit_max_attempts) {
1863 asoc->max_init_attempts
1864 = sinit->sinit_max_attempts;
1865 }
1866 if (sinit->sinit_max_init_timeo) {
1867 asoc->max_init_timeo =
1868 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1869 }
1870 }
1871
1872 /* Prime the peer's transport structures. */
1873 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1874 if (!transport) {
1875 err = -ENOMEM;
1876 goto out_free;
1877 }
1878 }
1879
1880 /* ASSERT: we have a valid association at this point. */
1881 pr_debug("%s: we have a valid association\n", __func__);
1882
1883 if (!sinfo) {
1884 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1885 * one with some defaults.
1886 */
1887 memset(&default_sinfo, 0, sizeof(default_sinfo));
1888 default_sinfo.sinfo_stream = asoc->default_stream;
1889 default_sinfo.sinfo_flags = asoc->default_flags;
1890 default_sinfo.sinfo_ppid = asoc->default_ppid;
1891 default_sinfo.sinfo_context = asoc->default_context;
1892 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1893 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1894
1895 sinfo = &default_sinfo;
1896 } else if (fill_sinfo_ttl) {
1897 /* In case SNDINFO was specified, we still need to fill
1898 * it with a default ttl from the assoc here.
1899 */
1900 sinfo->sinfo_timetolive = asoc->default_timetolive;
1901 }
1902
1903 /* API 7.1.7, the sndbuf size per association bounds the
1904 * maximum size of data that can be sent in a single send call.
1905 */
1906 if (msg_len > sk->sk_sndbuf) {
1907 err = -EMSGSIZE;
1908 goto out_free;
1909 }
1910
1911 if (asoc->pmtu_pending)
1912 sctp_assoc_pending_pmtu(asoc);
1913
1914 /* If fragmentation is disabled and the message length exceeds the
1915 * association fragmentation point, return EMSGSIZE. The I-D
1916 * does not specify what this error is, but this looks like
1917 * a great fit.
1918 */
1919 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1920 err = -EMSGSIZE;
1921 goto out_free;
1922 }
1923
1924 /* Check for invalid stream. */
1925 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1926 err = -EINVAL;
1927 goto out_free;
1928 }
1929
1930 if (sctp_wspace(asoc) < msg_len)
1931 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1932
1933 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1934 if (!sctp_wspace(asoc)) {
1935 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1936 if (err)
1937 goto out_free;
1938 }
1939
1940 /* If an address is passed with the sendto/sendmsg call, it is used
1941 * to override the primary destination address in the TCP model, or
1942 * when SCTP_ADDR_OVER flag is set in the UDP model.
1943 */
1944 if ((sctp_style(sk, TCP) && msg_name) ||
1945 (sinfo_flags & SCTP_ADDR_OVER)) {
1946 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1947 if (!chunk_tp) {
1948 err = -EINVAL;
1949 goto out_free;
1950 }
1951 } else
1952 chunk_tp = NULL;
1953
1954 /* Auto-connect, if we aren't connected already. */
1955 if (sctp_state(asoc, CLOSED)) {
1956 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1957 if (err < 0)
1958 goto out_free;
1959
1960 wait_connect = true;
1961 pr_debug("%s: we associated primitively\n", __func__);
1962 }
1963
1964 /* Break the message into multiple chunks of maximum size. */
1965 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1966 if (IS_ERR(datamsg)) {
1967 err = PTR_ERR(datamsg);
1968 goto out_free;
1969 }
1970 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1971
1972 /* Now send the (possibly) fragmented message. */
1973 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1974 sctp_chunk_hold(chunk);
1975
1976 /* Do accounting for the write space. */
1977 sctp_set_owner_w(chunk);
1978
1979 chunk->transport = chunk_tp;
1980 }
1981
1982 /* Send it to the lower layers. Note: all chunks
1983 * must either fail or succeed. The lower layer
1984 * works that way today. Keep it that way or this
1985 * breaks.
1986 */
1987 err = sctp_primitive_SEND(net, asoc, datamsg);
1988 /* Did the lower layer accept the chunk? */
1989 if (err) {
1990 sctp_datamsg_free(datamsg);
1991 goto out_free;
1992 }
1993
1994 pr_debug("%s: we sent primitively\n", __func__);
1995
1996 sctp_datamsg_put(datamsg);
1997 err = msg_len;
1998
1999 if (unlikely(wait_connect)) {
2000 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
2001 sctp_wait_for_connect(asoc, &timeo);
2002 }
2003
2004 /* If we are already past ASSOCIATE, the lower
2005 * layers are responsible for association cleanup.
2006 */
2007 goto out_unlock;
2008
2009 out_free:
2010 if (new_asoc)
2011 sctp_association_free(asoc);
2012 out_unlock:
2013 release_sock(sk);
2014
2015 out_nounlock:
2016 return sctp_error(sk, msg_flags, err);
2017
2018 #if 0
2019 do_sock_err:
2020 if (msg_len)
2021 err = msg_len;
2022 else
2023 err = sock_error(sk);
2024 goto out;
2025
2026 do_interrupted:
2027 if (msg_len)
2028 err = msg_len;
2029 goto out;
2030 #endif /* 0 */
2031 }
2032
2033 /* This is an extended version of skb_pull() that removes the data from the
2034 * start of a skb even when data is spread across the list of skb's in the
2035 * frag_list. len specifies the total amount of data that needs to be removed.
2036 * when 'len' bytes could be removed from the skb, it returns 0.
2037 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2038 * could not be removed.
2039 */
2040 static int sctp_skb_pull(struct sk_buff *skb, int len)
2041 {
2042 struct sk_buff *list;
2043 int skb_len = skb_headlen(skb);
2044 int rlen;
2045
2046 if (len <= skb_len) {
2047 __skb_pull(skb, len);
2048 return 0;
2049 }
2050 len -= skb_len;
2051 __skb_pull(skb, skb_len);
2052
2053 skb_walk_frags(skb, list) {
2054 rlen = sctp_skb_pull(list, len);
2055 skb->len -= (len-rlen);
2056 skb->data_len -= (len-rlen);
2057
2058 if (!rlen)
2059 return 0;
2060
2061 len = rlen;
2062 }
2063
2064 return len;
2065 }
2066
2067 /* API 3.1.3 recvmsg() - UDP Style Syntax
2068 *
2069 * ssize_t recvmsg(int socket, struct msghdr *message,
2070 * int flags);
2071 *
2072 * socket - the socket descriptor of the endpoint.
2073 * message - pointer to the msghdr structure which contains a single
2074 * user message and possibly some ancillary data.
2075 *
2076 * See Section 5 for complete description of the data
2077 * structures.
2078 *
2079 * flags - flags sent or received with the user message, see Section
2080 * 5 for complete description of the flags.
2081 */
2082 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2083 int noblock, int flags, int *addr_len)
2084 {
2085 struct sctp_ulpevent *event = NULL;
2086 struct sctp_sock *sp = sctp_sk(sk);
2087 struct sk_buff *skb, *head_skb;
2088 int copied;
2089 int err = 0;
2090 int skb_len;
2091
2092 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2093 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2094 addr_len);
2095
2096 lock_sock(sk);
2097
2098 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2099 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2100 err = -ENOTCONN;
2101 goto out;
2102 }
2103
2104 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2105 if (!skb)
2106 goto out;
2107
2108 /* Get the total length of the skb including any skb's in the
2109 * frag_list.
2110 */
2111 skb_len = skb->len;
2112
2113 copied = skb_len;
2114 if (copied > len)
2115 copied = len;
2116
2117 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2118
2119 event = sctp_skb2event(skb);
2120
2121 if (err)
2122 goto out_free;
2123
2124 if (event->chunk && event->chunk->head_skb)
2125 head_skb = event->chunk->head_skb;
2126 else
2127 head_skb = skb;
2128 sock_recv_ts_and_drops(msg, sk, head_skb);
2129 if (sctp_ulpevent_is_notification(event)) {
2130 msg->msg_flags |= MSG_NOTIFICATION;
2131 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2132 } else {
2133 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2134 }
2135
2136 /* Check if we allow SCTP_NXTINFO. */
2137 if (sp->recvnxtinfo)
2138 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2139 /* Check if we allow SCTP_RCVINFO. */
2140 if (sp->recvrcvinfo)
2141 sctp_ulpevent_read_rcvinfo(event, msg);
2142 /* Check if we allow SCTP_SNDRCVINFO. */
2143 if (sp->subscribe.sctp_data_io_event)
2144 sctp_ulpevent_read_sndrcvinfo(event, msg);
2145
2146 err = copied;
2147
2148 /* If skb's length exceeds the user's buffer, update the skb and
2149 * push it back to the receive_queue so that the next call to
2150 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2151 */
2152 if (skb_len > copied) {
2153 msg->msg_flags &= ~MSG_EOR;
2154 if (flags & MSG_PEEK)
2155 goto out_free;
2156 sctp_skb_pull(skb, copied);
2157 skb_queue_head(&sk->sk_receive_queue, skb);
2158
2159 /* When only partial message is copied to the user, increase
2160 * rwnd by that amount. If all the data in the skb is read,
2161 * rwnd is updated when the event is freed.
2162 */
2163 if (!sctp_ulpevent_is_notification(event))
2164 sctp_assoc_rwnd_increase(event->asoc, copied);
2165 goto out;
2166 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2167 (event->msg_flags & MSG_EOR))
2168 msg->msg_flags |= MSG_EOR;
2169 else
2170 msg->msg_flags &= ~MSG_EOR;
2171
2172 out_free:
2173 if (flags & MSG_PEEK) {
2174 /* Release the skb reference acquired after peeking the skb in
2175 * sctp_skb_recv_datagram().
2176 */
2177 kfree_skb(skb);
2178 } else {
2179 /* Free the event which includes releasing the reference to
2180 * the owner of the skb, freeing the skb and updating the
2181 * rwnd.
2182 */
2183 sctp_ulpevent_free(event);
2184 }
2185 out:
2186 release_sock(sk);
2187 return err;
2188 }
2189
2190 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2191 *
2192 * This option is a on/off flag. If enabled no SCTP message
2193 * fragmentation will be performed. Instead if a message being sent
2194 * exceeds the current PMTU size, the message will NOT be sent and
2195 * instead a error will be indicated to the user.
2196 */
2197 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2198 char __user *optval,
2199 unsigned int optlen)
2200 {
2201 int val;
2202
2203 if (optlen < sizeof(int))
2204 return -EINVAL;
2205
2206 if (get_user(val, (int __user *)optval))
2207 return -EFAULT;
2208
2209 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2210
2211 return 0;
2212 }
2213
2214 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2215 unsigned int optlen)
2216 {
2217 struct sctp_association *asoc;
2218 struct sctp_ulpevent *event;
2219
2220 if (optlen > sizeof(struct sctp_event_subscribe))
2221 return -EINVAL;
2222 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2223 return -EFAULT;
2224
2225 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2226 * if there is no data to be sent or retransmit, the stack will
2227 * immediately send up this notification.
2228 */
2229 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2230 &sctp_sk(sk)->subscribe)) {
2231 asoc = sctp_id2assoc(sk, 0);
2232
2233 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2234 event = sctp_ulpevent_make_sender_dry_event(asoc,
2235 GFP_ATOMIC);
2236 if (!event)
2237 return -ENOMEM;
2238
2239 sctp_ulpq_tail_event(&asoc->ulpq, event);
2240 }
2241 }
2242
2243 return 0;
2244 }
2245
2246 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2247 *
2248 * This socket option is applicable to the UDP-style socket only. When
2249 * set it will cause associations that are idle for more than the
2250 * specified number of seconds to automatically close. An association
2251 * being idle is defined an association that has NOT sent or received
2252 * user data. The special value of '0' indicates that no automatic
2253 * close of any associations should be performed. The option expects an
2254 * integer defining the number of seconds of idle time before an
2255 * association is closed.
2256 */
2257 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2258 unsigned int optlen)
2259 {
2260 struct sctp_sock *sp = sctp_sk(sk);
2261 struct net *net = sock_net(sk);
2262
2263 /* Applicable to UDP-style socket only */
2264 if (sctp_style(sk, TCP))
2265 return -EOPNOTSUPP;
2266 if (optlen != sizeof(int))
2267 return -EINVAL;
2268 if (copy_from_user(&sp->autoclose, optval, optlen))
2269 return -EFAULT;
2270
2271 if (sp->autoclose > net->sctp.max_autoclose)
2272 sp->autoclose = net->sctp.max_autoclose;
2273
2274 return 0;
2275 }
2276
2277 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2278 *
2279 * Applications can enable or disable heartbeats for any peer address of
2280 * an association, modify an address's heartbeat interval, force a
2281 * heartbeat to be sent immediately, and adjust the address's maximum
2282 * number of retransmissions sent before an address is considered
2283 * unreachable. The following structure is used to access and modify an
2284 * address's parameters:
2285 *
2286 * struct sctp_paddrparams {
2287 * sctp_assoc_t spp_assoc_id;
2288 * struct sockaddr_storage spp_address;
2289 * uint32_t spp_hbinterval;
2290 * uint16_t spp_pathmaxrxt;
2291 * uint32_t spp_pathmtu;
2292 * uint32_t spp_sackdelay;
2293 * uint32_t spp_flags;
2294 * };
2295 *
2296 * spp_assoc_id - (one-to-many style socket) This is filled in the
2297 * application, and identifies the association for
2298 * this query.
2299 * spp_address - This specifies which address is of interest.
2300 * spp_hbinterval - This contains the value of the heartbeat interval,
2301 * in milliseconds. If a value of zero
2302 * is present in this field then no changes are to
2303 * be made to this parameter.
2304 * spp_pathmaxrxt - This contains the maximum number of
2305 * retransmissions before this address shall be
2306 * considered unreachable. If a value of zero
2307 * is present in this field then no changes are to
2308 * be made to this parameter.
2309 * spp_pathmtu - When Path MTU discovery is disabled the value
2310 * specified here will be the "fixed" path mtu.
2311 * Note that if the spp_address field is empty
2312 * then all associations on this address will
2313 * have this fixed path mtu set upon them.
2314 *
2315 * spp_sackdelay - When delayed sack is enabled, this value specifies
2316 * the number of milliseconds that sacks will be delayed
2317 * for. This value will apply to all addresses of an
2318 * association if the spp_address field is empty. Note
2319 * also, that if delayed sack is enabled and this
2320 * value is set to 0, no change is made to the last
2321 * recorded delayed sack timer value.
2322 *
2323 * spp_flags - These flags are used to control various features
2324 * on an association. The flag field may contain
2325 * zero or more of the following options.
2326 *
2327 * SPP_HB_ENABLE - Enable heartbeats on the
2328 * specified address. Note that if the address
2329 * field is empty all addresses for the association
2330 * have heartbeats enabled upon them.
2331 *
2332 * SPP_HB_DISABLE - Disable heartbeats on the
2333 * speicifed address. Note that if the address
2334 * field is empty all addresses for the association
2335 * will have their heartbeats disabled. Note also
2336 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2337 * mutually exclusive, only one of these two should
2338 * be specified. Enabling both fields will have
2339 * undetermined results.
2340 *
2341 * SPP_HB_DEMAND - Request a user initiated heartbeat
2342 * to be made immediately.
2343 *
2344 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2345 * heartbeat delayis to be set to the value of 0
2346 * milliseconds.
2347 *
2348 * SPP_PMTUD_ENABLE - This field will enable PMTU
2349 * discovery upon the specified address. Note that
2350 * if the address feild is empty then all addresses
2351 * on the association are effected.
2352 *
2353 * SPP_PMTUD_DISABLE - This field will disable PMTU
2354 * discovery upon the specified address. Note that
2355 * if the address feild is empty then all addresses
2356 * on the association are effected. Not also that
2357 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2358 * exclusive. Enabling both will have undetermined
2359 * results.
2360 *
2361 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2362 * on delayed sack. The time specified in spp_sackdelay
2363 * is used to specify the sack delay for this address. Note
2364 * that if spp_address is empty then all addresses will
2365 * enable delayed sack and take on the sack delay
2366 * value specified in spp_sackdelay.
2367 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2368 * off delayed sack. If the spp_address field is blank then
2369 * delayed sack is disabled for the entire association. Note
2370 * also that this field is mutually exclusive to
2371 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2372 * results.
2373 */
2374 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2375 struct sctp_transport *trans,
2376 struct sctp_association *asoc,
2377 struct sctp_sock *sp,
2378 int hb_change,
2379 int pmtud_change,
2380 int sackdelay_change)
2381 {
2382 int error;
2383
2384 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2385 struct net *net = sock_net(trans->asoc->base.sk);
2386
2387 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2388 if (error)
2389 return error;
2390 }
2391
2392 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2393 * this field is ignored. Note also that a value of zero indicates
2394 * the current setting should be left unchanged.
2395 */
2396 if (params->spp_flags & SPP_HB_ENABLE) {
2397
2398 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2399 * set. This lets us use 0 value when this flag
2400 * is set.
2401 */
2402 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2403 params->spp_hbinterval = 0;
2404
2405 if (params->spp_hbinterval ||
2406 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2407 if (trans) {
2408 trans->hbinterval =
2409 msecs_to_jiffies(params->spp_hbinterval);
2410 } else if (asoc) {
2411 asoc->hbinterval =
2412 msecs_to_jiffies(params->spp_hbinterval);
2413 } else {
2414 sp->hbinterval = params->spp_hbinterval;
2415 }
2416 }
2417 }
2418
2419 if (hb_change) {
2420 if (trans) {
2421 trans->param_flags =
2422 (trans->param_flags & ~SPP_HB) | hb_change;
2423 } else if (asoc) {
2424 asoc->param_flags =
2425 (asoc->param_flags & ~SPP_HB) | hb_change;
2426 } else {
2427 sp->param_flags =
2428 (sp->param_flags & ~SPP_HB) | hb_change;
2429 }
2430 }
2431
2432 /* When Path MTU discovery is disabled the value specified here will
2433 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2434 * include the flag SPP_PMTUD_DISABLE for this field to have any
2435 * effect).
2436 */
2437 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2438 if (trans) {
2439 trans->pathmtu = params->spp_pathmtu;
2440 sctp_assoc_sync_pmtu(asoc);
2441 } else if (asoc) {
2442 asoc->pathmtu = params->spp_pathmtu;
2443 } else {
2444 sp->pathmtu = params->spp_pathmtu;
2445 }
2446 }
2447
2448 if (pmtud_change) {
2449 if (trans) {
2450 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2451 (params->spp_flags & SPP_PMTUD_ENABLE);
2452 trans->param_flags =
2453 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2454 if (update) {
2455 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2456 sctp_assoc_sync_pmtu(asoc);
2457 }
2458 } else if (asoc) {
2459 asoc->param_flags =
2460 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2461 } else {
2462 sp->param_flags =
2463 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2464 }
2465 }
2466
2467 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2468 * value of this field is ignored. Note also that a value of zero
2469 * indicates the current setting should be left unchanged.
2470 */
2471 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2472 if (trans) {
2473 trans->sackdelay =
2474 msecs_to_jiffies(params->spp_sackdelay);
2475 } else if (asoc) {
2476 asoc->sackdelay =
2477 msecs_to_jiffies(params->spp_sackdelay);
2478 } else {
2479 sp->sackdelay = params->spp_sackdelay;
2480 }
2481 }
2482
2483 if (sackdelay_change) {
2484 if (trans) {
2485 trans->param_flags =
2486 (trans->param_flags & ~SPP_SACKDELAY) |
2487 sackdelay_change;
2488 } else if (asoc) {
2489 asoc->param_flags =
2490 (asoc->param_flags & ~SPP_SACKDELAY) |
2491 sackdelay_change;
2492 } else {
2493 sp->param_flags =
2494 (sp->param_flags & ~SPP_SACKDELAY) |
2495 sackdelay_change;
2496 }
2497 }
2498
2499 /* Note that a value of zero indicates the current setting should be
2500 left unchanged.
2501 */
2502 if (params->spp_pathmaxrxt) {
2503 if (trans) {
2504 trans->pathmaxrxt = params->spp_pathmaxrxt;
2505 } else if (asoc) {
2506 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2507 } else {
2508 sp->pathmaxrxt = params->spp_pathmaxrxt;
2509 }
2510 }
2511
2512 return 0;
2513 }
2514
2515 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2516 char __user *optval,
2517 unsigned int optlen)
2518 {
2519 struct sctp_paddrparams params;
2520 struct sctp_transport *trans = NULL;
2521 struct sctp_association *asoc = NULL;
2522 struct sctp_sock *sp = sctp_sk(sk);
2523 int error;
2524 int hb_change, pmtud_change, sackdelay_change;
2525
2526 if (optlen != sizeof(struct sctp_paddrparams))
2527 return -EINVAL;
2528
2529 if (copy_from_user(&params, optval, optlen))
2530 return -EFAULT;
2531
2532 /* Validate flags and value parameters. */
2533 hb_change = params.spp_flags & SPP_HB;
2534 pmtud_change = params.spp_flags & SPP_PMTUD;
2535 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2536
2537 if (hb_change == SPP_HB ||
2538 pmtud_change == SPP_PMTUD ||
2539 sackdelay_change == SPP_SACKDELAY ||
2540 params.spp_sackdelay > 500 ||
2541 (params.spp_pathmtu &&
2542 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2543 return -EINVAL;
2544
2545 /* If an address other than INADDR_ANY is specified, and
2546 * no transport is found, then the request is invalid.
2547 */
2548 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2549 trans = sctp_addr_id2transport(sk, &params.spp_address,
2550 params.spp_assoc_id);
2551 if (!trans)
2552 return -EINVAL;
2553 }
2554
2555 /* Get association, if assoc_id != 0 and the socket is a one
2556 * to many style socket, and an association was not found, then
2557 * the id was invalid.
2558 */
2559 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2560 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2561 return -EINVAL;
2562
2563 /* Heartbeat demand can only be sent on a transport or
2564 * association, but not a socket.
2565 */
2566 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2567 return -EINVAL;
2568
2569 /* Process parameters. */
2570 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2571 hb_change, pmtud_change,
2572 sackdelay_change);
2573
2574 if (error)
2575 return error;
2576
2577 /* If changes are for association, also apply parameters to each
2578 * transport.
2579 */
2580 if (!trans && asoc) {
2581 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2582 transports) {
2583 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2584 hb_change, pmtud_change,
2585 sackdelay_change);
2586 }
2587 }
2588
2589 return 0;
2590 }
2591
2592 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2593 {
2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2595 }
2596
2597 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2598 {
2599 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2600 }
2601
2602 /*
2603 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2604 *
2605 * This option will effect the way delayed acks are performed. This
2606 * option allows you to get or set the delayed ack time, in
2607 * milliseconds. It also allows changing the delayed ack frequency.
2608 * Changing the frequency to 1 disables the delayed sack algorithm. If
2609 * the assoc_id is 0, then this sets or gets the endpoints default
2610 * values. If the assoc_id field is non-zero, then the set or get
2611 * effects the specified association for the one to many model (the
2612 * assoc_id field is ignored by the one to one model). Note that if
2613 * sack_delay or sack_freq are 0 when setting this option, then the
2614 * current values will remain unchanged.
2615 *
2616 * struct sctp_sack_info {
2617 * sctp_assoc_t sack_assoc_id;
2618 * uint32_t sack_delay;
2619 * uint32_t sack_freq;
2620 * };
2621 *
2622 * sack_assoc_id - This parameter, indicates which association the user
2623 * is performing an action upon. Note that if this field's value is
2624 * zero then the endpoints default value is changed (effecting future
2625 * associations only).
2626 *
2627 * sack_delay - This parameter contains the number of milliseconds that
2628 * the user is requesting the delayed ACK timer be set to. Note that
2629 * this value is defined in the standard to be between 200 and 500
2630 * milliseconds.
2631 *
2632 * sack_freq - This parameter contains the number of packets that must
2633 * be received before a sack is sent without waiting for the delay
2634 * timer to expire. The default value for this is 2, setting this
2635 * value to 1 will disable the delayed sack algorithm.
2636 */
2637
2638 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2639 char __user *optval, unsigned int optlen)
2640 {
2641 struct sctp_sack_info params;
2642 struct sctp_transport *trans = NULL;
2643 struct sctp_association *asoc = NULL;
2644 struct sctp_sock *sp = sctp_sk(sk);
2645
2646 if (optlen == sizeof(struct sctp_sack_info)) {
2647 if (copy_from_user(&params, optval, optlen))
2648 return -EFAULT;
2649
2650 if (params.sack_delay == 0 && params.sack_freq == 0)
2651 return 0;
2652 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2653 pr_warn_ratelimited(DEPRECATED
2654 "%s (pid %d) "
2655 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2656 "Use struct sctp_sack_info instead\n",
2657 current->comm, task_pid_nr(current));
2658 if (copy_from_user(&params, optval, optlen))
2659 return -EFAULT;
2660
2661 if (params.sack_delay == 0)
2662 params.sack_freq = 1;
2663 else
2664 params.sack_freq = 0;
2665 } else
2666 return -EINVAL;
2667
2668 /* Validate value parameter. */
2669 if (params.sack_delay > 500)
2670 return -EINVAL;
2671
2672 /* Get association, if sack_assoc_id != 0 and the socket is a one
2673 * to many style socket, and an association was not found, then
2674 * the id was invalid.
2675 */
2676 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2677 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2678 return -EINVAL;
2679
2680 if (params.sack_delay) {
2681 if (asoc) {
2682 asoc->sackdelay =
2683 msecs_to_jiffies(params.sack_delay);
2684 asoc->param_flags =
2685 sctp_spp_sackdelay_enable(asoc->param_flags);
2686 } else {
2687 sp->sackdelay = params.sack_delay;
2688 sp->param_flags =
2689 sctp_spp_sackdelay_enable(sp->param_flags);
2690 }
2691 }
2692
2693 if (params.sack_freq == 1) {
2694 if (asoc) {
2695 asoc->param_flags =
2696 sctp_spp_sackdelay_disable(asoc->param_flags);
2697 } else {
2698 sp->param_flags =
2699 sctp_spp_sackdelay_disable(sp->param_flags);
2700 }
2701 } else if (params.sack_freq > 1) {
2702 if (asoc) {
2703 asoc->sackfreq = params.sack_freq;
2704 asoc->param_flags =
2705 sctp_spp_sackdelay_enable(asoc->param_flags);
2706 } else {
2707 sp->sackfreq = params.sack_freq;
2708 sp->param_flags =
2709 sctp_spp_sackdelay_enable(sp->param_flags);
2710 }
2711 }
2712
2713 /* If change is for association, also apply to each transport. */
2714 if (asoc) {
2715 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2716 transports) {
2717 if (params.sack_delay) {
2718 trans->sackdelay =
2719 msecs_to_jiffies(params.sack_delay);
2720 trans->param_flags =
2721 sctp_spp_sackdelay_enable(trans->param_flags);
2722 }
2723 if (params.sack_freq == 1) {
2724 trans->param_flags =
2725 sctp_spp_sackdelay_disable(trans->param_flags);
2726 } else if (params.sack_freq > 1) {
2727 trans->sackfreq = params.sack_freq;
2728 trans->param_flags =
2729 sctp_spp_sackdelay_enable(trans->param_flags);
2730 }
2731 }
2732 }
2733
2734 return 0;
2735 }
2736
2737 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2738 *
2739 * Applications can specify protocol parameters for the default association
2740 * initialization. The option name argument to setsockopt() and getsockopt()
2741 * is SCTP_INITMSG.
2742 *
2743 * Setting initialization parameters is effective only on an unconnected
2744 * socket (for UDP-style sockets only future associations are effected
2745 * by the change). With TCP-style sockets, this option is inherited by
2746 * sockets derived from a listener socket.
2747 */
2748 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2749 {
2750 struct sctp_initmsg sinit;
2751 struct sctp_sock *sp = sctp_sk(sk);
2752
2753 if (optlen != sizeof(struct sctp_initmsg))
2754 return -EINVAL;
2755 if (copy_from_user(&sinit, optval, optlen))
2756 return -EFAULT;
2757
2758 if (sinit.sinit_num_ostreams)
2759 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2760 if (sinit.sinit_max_instreams)
2761 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2762 if (sinit.sinit_max_attempts)
2763 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2764 if (sinit.sinit_max_init_timeo)
2765 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2766
2767 return 0;
2768 }
2769
2770 /*
2771 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2772 *
2773 * Applications that wish to use the sendto() system call may wish to
2774 * specify a default set of parameters that would normally be supplied
2775 * through the inclusion of ancillary data. This socket option allows
2776 * such an application to set the default sctp_sndrcvinfo structure.
2777 * The application that wishes to use this socket option simply passes
2778 * in to this call the sctp_sndrcvinfo structure defined in Section
2779 * 5.2.2) The input parameters accepted by this call include
2780 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2781 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2782 * to this call if the caller is using the UDP model.
2783 */
2784 static int sctp_setsockopt_default_send_param(struct sock *sk,
2785 char __user *optval,
2786 unsigned int optlen)
2787 {
2788 struct sctp_sock *sp = sctp_sk(sk);
2789 struct sctp_association *asoc;
2790 struct sctp_sndrcvinfo info;
2791
2792 if (optlen != sizeof(info))
2793 return -EINVAL;
2794 if (copy_from_user(&info, optval, optlen))
2795 return -EFAULT;
2796 if (info.sinfo_flags &
2797 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2798 SCTP_ABORT | SCTP_EOF))
2799 return -EINVAL;
2800
2801 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2802 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2803 return -EINVAL;
2804 if (asoc) {
2805 asoc->default_stream = info.sinfo_stream;
2806 asoc->default_flags = info.sinfo_flags;
2807 asoc->default_ppid = info.sinfo_ppid;
2808 asoc->default_context = info.sinfo_context;
2809 asoc->default_timetolive = info.sinfo_timetolive;
2810 } else {
2811 sp->default_stream = info.sinfo_stream;
2812 sp->default_flags = info.sinfo_flags;
2813 sp->default_ppid = info.sinfo_ppid;
2814 sp->default_context = info.sinfo_context;
2815 sp->default_timetolive = info.sinfo_timetolive;
2816 }
2817
2818 return 0;
2819 }
2820
2821 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2822 * (SCTP_DEFAULT_SNDINFO)
2823 */
2824 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2825 char __user *optval,
2826 unsigned int optlen)
2827 {
2828 struct sctp_sock *sp = sctp_sk(sk);
2829 struct sctp_association *asoc;
2830 struct sctp_sndinfo info;
2831
2832 if (optlen != sizeof(info))
2833 return -EINVAL;
2834 if (copy_from_user(&info, optval, optlen))
2835 return -EFAULT;
2836 if (info.snd_flags &
2837 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2838 SCTP_ABORT | SCTP_EOF))
2839 return -EINVAL;
2840
2841 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2842 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2843 return -EINVAL;
2844 if (asoc) {
2845 asoc->default_stream = info.snd_sid;
2846 asoc->default_flags = info.snd_flags;
2847 asoc->default_ppid = info.snd_ppid;
2848 asoc->default_context = info.snd_context;
2849 } else {
2850 sp->default_stream = info.snd_sid;
2851 sp->default_flags = info.snd_flags;
2852 sp->default_ppid = info.snd_ppid;
2853 sp->default_context = info.snd_context;
2854 }
2855
2856 return 0;
2857 }
2858
2859 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2860 *
2861 * Requests that the local SCTP stack use the enclosed peer address as
2862 * the association primary. The enclosed address must be one of the
2863 * association peer's addresses.
2864 */
2865 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2866 unsigned int optlen)
2867 {
2868 struct sctp_prim prim;
2869 struct sctp_transport *trans;
2870
2871 if (optlen != sizeof(struct sctp_prim))
2872 return -EINVAL;
2873
2874 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2875 return -EFAULT;
2876
2877 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2878 if (!trans)
2879 return -EINVAL;
2880
2881 sctp_assoc_set_primary(trans->asoc, trans);
2882
2883 return 0;
2884 }
2885
2886 /*
2887 * 7.1.5 SCTP_NODELAY
2888 *
2889 * Turn on/off any Nagle-like algorithm. This means that packets are
2890 * generally sent as soon as possible and no unnecessary delays are
2891 * introduced, at the cost of more packets in the network. Expects an
2892 * integer boolean flag.
2893 */
2894 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2895 unsigned int optlen)
2896 {
2897 int val;
2898
2899 if (optlen < sizeof(int))
2900 return -EINVAL;
2901 if (get_user(val, (int __user *)optval))
2902 return -EFAULT;
2903
2904 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2905 return 0;
2906 }
2907
2908 /*
2909 *
2910 * 7.1.1 SCTP_RTOINFO
2911 *
2912 * The protocol parameters used to initialize and bound retransmission
2913 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2914 * and modify these parameters.
2915 * All parameters are time values, in milliseconds. A value of 0, when
2916 * modifying the parameters, indicates that the current value should not
2917 * be changed.
2918 *
2919 */
2920 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2921 {
2922 struct sctp_rtoinfo rtoinfo;
2923 struct sctp_association *asoc;
2924 unsigned long rto_min, rto_max;
2925 struct sctp_sock *sp = sctp_sk(sk);
2926
2927 if (optlen != sizeof (struct sctp_rtoinfo))
2928 return -EINVAL;
2929
2930 if (copy_from_user(&rtoinfo, optval, optlen))
2931 return -EFAULT;
2932
2933 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2934
2935 /* Set the values to the specific association */
2936 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2937 return -EINVAL;
2938
2939 rto_max = rtoinfo.srto_max;
2940 rto_min = rtoinfo.srto_min;
2941
2942 if (rto_max)
2943 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2944 else
2945 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2946
2947 if (rto_min)
2948 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2949 else
2950 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2951
2952 if (rto_min > rto_max)
2953 return -EINVAL;
2954
2955 if (asoc) {
2956 if (rtoinfo.srto_initial != 0)
2957 asoc->rto_initial =
2958 msecs_to_jiffies(rtoinfo.srto_initial);
2959 asoc->rto_max = rto_max;
2960 asoc->rto_min = rto_min;
2961 } else {
2962 /* If there is no association or the association-id = 0
2963 * set the values to the endpoint.
2964 */
2965 if (rtoinfo.srto_initial != 0)
2966 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2967 sp->rtoinfo.srto_max = rto_max;
2968 sp->rtoinfo.srto_min = rto_min;
2969 }
2970
2971 return 0;
2972 }
2973
2974 /*
2975 *
2976 * 7.1.2 SCTP_ASSOCINFO
2977 *
2978 * This option is used to tune the maximum retransmission attempts
2979 * of the association.
2980 * Returns an error if the new association retransmission value is
2981 * greater than the sum of the retransmission value of the peer.
2982 * See [SCTP] for more information.
2983 *
2984 */
2985 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2986 {
2987
2988 struct sctp_assocparams assocparams;
2989 struct sctp_association *asoc;
2990
2991 if (optlen != sizeof(struct sctp_assocparams))
2992 return -EINVAL;
2993 if (copy_from_user(&assocparams, optval, optlen))
2994 return -EFAULT;
2995
2996 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2997
2998 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2999 return -EINVAL;
3000
3001 /* Set the values to the specific association */
3002 if (asoc) {
3003 if (assocparams.sasoc_asocmaxrxt != 0) {
3004 __u32 path_sum = 0;
3005 int paths = 0;
3006 struct sctp_transport *peer_addr;
3007
3008 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3009 transports) {
3010 path_sum += peer_addr->pathmaxrxt;
3011 paths++;
3012 }
3013
3014 /* Only validate asocmaxrxt if we have more than
3015 * one path/transport. We do this because path
3016 * retransmissions are only counted when we have more
3017 * then one path.
3018 */
3019 if (paths > 1 &&
3020 assocparams.sasoc_asocmaxrxt > path_sum)
3021 return -EINVAL;
3022
3023 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3024 }
3025
3026 if (assocparams.sasoc_cookie_life != 0)
3027 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3028 } else {
3029 /* Set the values to the endpoint */
3030 struct sctp_sock *sp = sctp_sk(sk);
3031
3032 if (assocparams.sasoc_asocmaxrxt != 0)
3033 sp->assocparams.sasoc_asocmaxrxt =
3034 assocparams.sasoc_asocmaxrxt;
3035 if (assocparams.sasoc_cookie_life != 0)
3036 sp->assocparams.sasoc_cookie_life =
3037 assocparams.sasoc_cookie_life;
3038 }
3039 return 0;
3040 }
3041
3042 /*
3043 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3044 *
3045 * This socket option is a boolean flag which turns on or off mapped V4
3046 * addresses. If this option is turned on and the socket is type
3047 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3048 * If this option is turned off, then no mapping will be done of V4
3049 * addresses and a user will receive both PF_INET6 and PF_INET type
3050 * addresses on the socket.
3051 */
3052 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3053 {
3054 int val;
3055 struct sctp_sock *sp = sctp_sk(sk);
3056
3057 if (optlen < sizeof(int))
3058 return -EINVAL;
3059 if (get_user(val, (int __user *)optval))
3060 return -EFAULT;
3061 if (val)
3062 sp->v4mapped = 1;
3063 else
3064 sp->v4mapped = 0;
3065
3066 return 0;
3067 }
3068
3069 /*
3070 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3071 * This option will get or set the maximum size to put in any outgoing
3072 * SCTP DATA chunk. If a message is larger than this size it will be
3073 * fragmented by SCTP into the specified size. Note that the underlying
3074 * SCTP implementation may fragment into smaller sized chunks when the
3075 * PMTU of the underlying association is smaller than the value set by
3076 * the user. The default value for this option is '0' which indicates
3077 * the user is NOT limiting fragmentation and only the PMTU will effect
3078 * SCTP's choice of DATA chunk size. Note also that values set larger
3079 * than the maximum size of an IP datagram will effectively let SCTP
3080 * control fragmentation (i.e. the same as setting this option to 0).
3081 *
3082 * The following structure is used to access and modify this parameter:
3083 *
3084 * struct sctp_assoc_value {
3085 * sctp_assoc_t assoc_id;
3086 * uint32_t assoc_value;
3087 * };
3088 *
3089 * assoc_id: This parameter is ignored for one-to-one style sockets.
3090 * For one-to-many style sockets this parameter indicates which
3091 * association the user is performing an action upon. Note that if
3092 * this field's value is zero then the endpoints default value is
3093 * changed (effecting future associations only).
3094 * assoc_value: This parameter specifies the maximum size in bytes.
3095 */
3096 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3097 {
3098 struct sctp_assoc_value params;
3099 struct sctp_association *asoc;
3100 struct sctp_sock *sp = sctp_sk(sk);
3101 int val;
3102
3103 if (optlen == sizeof(int)) {
3104 pr_warn_ratelimited(DEPRECATED
3105 "%s (pid %d) "
3106 "Use of int in maxseg socket option.\n"
3107 "Use struct sctp_assoc_value instead\n",
3108 current->comm, task_pid_nr(current));
3109 if (copy_from_user(&val, optval, optlen))
3110 return -EFAULT;
3111 params.assoc_id = 0;
3112 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3113 if (copy_from_user(&params, optval, optlen))
3114 return -EFAULT;
3115 val = params.assoc_value;
3116 } else
3117 return -EINVAL;
3118
3119 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3120 return -EINVAL;
3121
3122 asoc = sctp_id2assoc(sk, params.assoc_id);
3123 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3124 return -EINVAL;
3125
3126 if (asoc) {
3127 if (val == 0) {
3128 val = asoc->pathmtu;
3129 val -= sp->pf->af->net_header_len;
3130 val -= sizeof(struct sctphdr) +
3131 sizeof(struct sctp_data_chunk);
3132 }
3133 asoc->user_frag = val;
3134 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3135 } else {
3136 sp->user_frag = val;
3137 }
3138
3139 return 0;
3140 }
3141
3142
3143 /*
3144 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3145 *
3146 * Requests that the peer mark the enclosed address as the association
3147 * primary. The enclosed address must be one of the association's
3148 * locally bound addresses. The following structure is used to make a
3149 * set primary request:
3150 */
3151 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3152 unsigned int optlen)
3153 {
3154 struct net *net = sock_net(sk);
3155 struct sctp_sock *sp;
3156 struct sctp_association *asoc = NULL;
3157 struct sctp_setpeerprim prim;
3158 struct sctp_chunk *chunk;
3159 struct sctp_af *af;
3160 int err;
3161
3162 sp = sctp_sk(sk);
3163
3164 if (!net->sctp.addip_enable)
3165 return -EPERM;
3166
3167 if (optlen != sizeof(struct sctp_setpeerprim))
3168 return -EINVAL;
3169
3170 if (copy_from_user(&prim, optval, optlen))
3171 return -EFAULT;
3172
3173 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3174 if (!asoc)
3175 return -EINVAL;
3176
3177 if (!asoc->peer.asconf_capable)
3178 return -EPERM;
3179
3180 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3181 return -EPERM;
3182
3183 if (!sctp_state(asoc, ESTABLISHED))
3184 return -ENOTCONN;
3185
3186 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3187 if (!af)
3188 return -EINVAL;
3189
3190 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3191 return -EADDRNOTAVAIL;
3192
3193 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3194 return -EADDRNOTAVAIL;
3195
3196 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3197 chunk = sctp_make_asconf_set_prim(asoc,
3198 (union sctp_addr *)&prim.sspp_addr);
3199 if (!chunk)
3200 return -ENOMEM;
3201
3202 err = sctp_send_asconf(asoc, chunk);
3203
3204 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3205
3206 return err;
3207 }
3208
3209 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3210 unsigned int optlen)
3211 {
3212 struct sctp_setadaptation adaptation;
3213
3214 if (optlen != sizeof(struct sctp_setadaptation))
3215 return -EINVAL;
3216 if (copy_from_user(&adaptation, optval, optlen))
3217 return -EFAULT;
3218
3219 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3220
3221 return 0;
3222 }
3223
3224 /*
3225 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3226 *
3227 * The context field in the sctp_sndrcvinfo structure is normally only
3228 * used when a failed message is retrieved holding the value that was
3229 * sent down on the actual send call. This option allows the setting of
3230 * a default context on an association basis that will be received on
3231 * reading messages from the peer. This is especially helpful in the
3232 * one-2-many model for an application to keep some reference to an
3233 * internal state machine that is processing messages on the
3234 * association. Note that the setting of this value only effects
3235 * received messages from the peer and does not effect the value that is
3236 * saved with outbound messages.
3237 */
3238 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3239 unsigned int optlen)
3240 {
3241 struct sctp_assoc_value params;
3242 struct sctp_sock *sp;
3243 struct sctp_association *asoc;
3244
3245 if (optlen != sizeof(struct sctp_assoc_value))
3246 return -EINVAL;
3247 if (copy_from_user(&params, optval, optlen))
3248 return -EFAULT;
3249
3250 sp = sctp_sk(sk);
3251
3252 if (params.assoc_id != 0) {
3253 asoc = sctp_id2assoc(sk, params.assoc_id);
3254 if (!asoc)
3255 return -EINVAL;
3256 asoc->default_rcv_context = params.assoc_value;
3257 } else {
3258 sp->default_rcv_context = params.assoc_value;
3259 }
3260
3261 return 0;
3262 }
3263
3264 /*
3265 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3266 *
3267 * This options will at a minimum specify if the implementation is doing
3268 * fragmented interleave. Fragmented interleave, for a one to many
3269 * socket, is when subsequent calls to receive a message may return
3270 * parts of messages from different associations. Some implementations
3271 * may allow you to turn this value on or off. If so, when turned off,
3272 * no fragment interleave will occur (which will cause a head of line
3273 * blocking amongst multiple associations sharing the same one to many
3274 * socket). When this option is turned on, then each receive call may
3275 * come from a different association (thus the user must receive data
3276 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3277 * association each receive belongs to.
3278 *
3279 * This option takes a boolean value. A non-zero value indicates that
3280 * fragmented interleave is on. A value of zero indicates that
3281 * fragmented interleave is off.
3282 *
3283 * Note that it is important that an implementation that allows this
3284 * option to be turned on, have it off by default. Otherwise an unaware
3285 * application using the one to many model may become confused and act
3286 * incorrectly.
3287 */
3288 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3289 char __user *optval,
3290 unsigned int optlen)
3291 {
3292 int val;
3293
3294 if (optlen != sizeof(int))
3295 return -EINVAL;
3296 if (get_user(val, (int __user *)optval))
3297 return -EFAULT;
3298
3299 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3300
3301 return 0;
3302 }
3303
3304 /*
3305 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3306 * (SCTP_PARTIAL_DELIVERY_POINT)
3307 *
3308 * This option will set or get the SCTP partial delivery point. This
3309 * point is the size of a message where the partial delivery API will be
3310 * invoked to help free up rwnd space for the peer. Setting this to a
3311 * lower value will cause partial deliveries to happen more often. The
3312 * calls argument is an integer that sets or gets the partial delivery
3313 * point. Note also that the call will fail if the user attempts to set
3314 * this value larger than the socket receive buffer size.
3315 *
3316 * Note that any single message having a length smaller than or equal to
3317 * the SCTP partial delivery point will be delivered in one single read
3318 * call as long as the user provided buffer is large enough to hold the
3319 * message.
3320 */
3321 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3322 char __user *optval,
3323 unsigned int optlen)
3324 {
3325 u32 val;
3326
3327 if (optlen != sizeof(u32))
3328 return -EINVAL;
3329 if (get_user(val, (int __user *)optval))
3330 return -EFAULT;
3331
3332 /* Note: We double the receive buffer from what the user sets
3333 * it to be, also initial rwnd is based on rcvbuf/2.
3334 */
3335 if (val > (sk->sk_rcvbuf >> 1))
3336 return -EINVAL;
3337
3338 sctp_sk(sk)->pd_point = val;
3339
3340 return 0; /* is this the right error code? */
3341 }
3342
3343 /*
3344 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3345 *
3346 * This option will allow a user to change the maximum burst of packets
3347 * that can be emitted by this association. Note that the default value
3348 * is 4, and some implementations may restrict this setting so that it
3349 * can only be lowered.
3350 *
3351 * NOTE: This text doesn't seem right. Do this on a socket basis with
3352 * future associations inheriting the socket value.
3353 */
3354 static int sctp_setsockopt_maxburst(struct sock *sk,
3355 char __user *optval,
3356 unsigned int optlen)
3357 {
3358 struct sctp_assoc_value params;
3359 struct sctp_sock *sp;
3360 struct sctp_association *asoc;
3361 int val;
3362 int assoc_id = 0;
3363
3364 if (optlen == sizeof(int)) {
3365 pr_warn_ratelimited(DEPRECATED
3366 "%s (pid %d) "
3367 "Use of int in max_burst socket option deprecated.\n"
3368 "Use struct sctp_assoc_value instead\n",
3369 current->comm, task_pid_nr(current));
3370 if (copy_from_user(&val, optval, optlen))
3371 return -EFAULT;
3372 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3373 if (copy_from_user(&params, optval, optlen))
3374 return -EFAULT;
3375 val = params.assoc_value;
3376 assoc_id = params.assoc_id;
3377 } else
3378 return -EINVAL;
3379
3380 sp = sctp_sk(sk);
3381
3382 if (assoc_id != 0) {
3383 asoc = sctp_id2assoc(sk, assoc_id);
3384 if (!asoc)
3385 return -EINVAL;
3386 asoc->max_burst = val;
3387 } else
3388 sp->max_burst = val;
3389
3390 return 0;
3391 }
3392
3393 /*
3394 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3395 *
3396 * This set option adds a chunk type that the user is requesting to be
3397 * received only in an authenticated way. Changes to the list of chunks
3398 * will only effect future associations on the socket.
3399 */
3400 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3401 char __user *optval,
3402 unsigned int optlen)
3403 {
3404 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3405 struct sctp_authchunk val;
3406
3407 if (!ep->auth_enable)
3408 return -EACCES;
3409
3410 if (optlen != sizeof(struct sctp_authchunk))
3411 return -EINVAL;
3412 if (copy_from_user(&val, optval, optlen))
3413 return -EFAULT;
3414
3415 switch (val.sauth_chunk) {
3416 case SCTP_CID_INIT:
3417 case SCTP_CID_INIT_ACK:
3418 case SCTP_CID_SHUTDOWN_COMPLETE:
3419 case SCTP_CID_AUTH:
3420 return -EINVAL;
3421 }
3422
3423 /* add this chunk id to the endpoint */
3424 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3425 }
3426
3427 /*
3428 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3429 *
3430 * This option gets or sets the list of HMAC algorithms that the local
3431 * endpoint requires the peer to use.
3432 */
3433 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3434 char __user *optval,
3435 unsigned int optlen)
3436 {
3437 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3438 struct sctp_hmacalgo *hmacs;
3439 u32 idents;
3440 int err;
3441
3442 if (!ep->auth_enable)
3443 return -EACCES;
3444
3445 if (optlen < sizeof(struct sctp_hmacalgo))
3446 return -EINVAL;
3447
3448 hmacs = memdup_user(optval, optlen);
3449 if (IS_ERR(hmacs))
3450 return PTR_ERR(hmacs);
3451
3452 idents = hmacs->shmac_num_idents;
3453 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3454 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3455 err = -EINVAL;
3456 goto out;
3457 }
3458
3459 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3460 out:
3461 kfree(hmacs);
3462 return err;
3463 }
3464
3465 /*
3466 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3467 *
3468 * This option will set a shared secret key which is used to build an
3469 * association shared key.
3470 */
3471 static int sctp_setsockopt_auth_key(struct sock *sk,
3472 char __user *optval,
3473 unsigned int optlen)
3474 {
3475 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3476 struct sctp_authkey *authkey;
3477 struct sctp_association *asoc;
3478 int ret;
3479
3480 if (!ep->auth_enable)
3481 return -EACCES;
3482
3483 if (optlen <= sizeof(struct sctp_authkey))
3484 return -EINVAL;
3485
3486 authkey = memdup_user(optval, optlen);
3487 if (IS_ERR(authkey))
3488 return PTR_ERR(authkey);
3489
3490 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3491 ret = -EINVAL;
3492 goto out;
3493 }
3494
3495 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3496 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3497 ret = -EINVAL;
3498 goto out;
3499 }
3500
3501 ret = sctp_auth_set_key(ep, asoc, authkey);
3502 out:
3503 kzfree(authkey);
3504 return ret;
3505 }
3506
3507 /*
3508 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3509 *
3510 * This option will get or set the active shared key to be used to build
3511 * the association shared key.
3512 */
3513 static int sctp_setsockopt_active_key(struct sock *sk,
3514 char __user *optval,
3515 unsigned int optlen)
3516 {
3517 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3518 struct sctp_authkeyid val;
3519 struct sctp_association *asoc;
3520
3521 if (!ep->auth_enable)
3522 return -EACCES;
3523
3524 if (optlen != sizeof(struct sctp_authkeyid))
3525 return -EINVAL;
3526 if (copy_from_user(&val, optval, optlen))
3527 return -EFAULT;
3528
3529 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3530 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3531 return -EINVAL;
3532
3533 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3534 }
3535
3536 /*
3537 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3538 *
3539 * This set option will delete a shared secret key from use.
3540 */
3541 static int sctp_setsockopt_del_key(struct sock *sk,
3542 char __user *optval,
3543 unsigned int optlen)
3544 {
3545 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3546 struct sctp_authkeyid val;
3547 struct sctp_association *asoc;
3548
3549 if (!ep->auth_enable)
3550 return -EACCES;
3551
3552 if (optlen != sizeof(struct sctp_authkeyid))
3553 return -EINVAL;
3554 if (copy_from_user(&val, optval, optlen))
3555 return -EFAULT;
3556
3557 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3558 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3559 return -EINVAL;
3560
3561 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3562
3563 }
3564
3565 /*
3566 * 8.1.23 SCTP_AUTO_ASCONF
3567 *
3568 * This option will enable or disable the use of the automatic generation of
3569 * ASCONF chunks to add and delete addresses to an existing association. Note
3570 * that this option has two caveats namely: a) it only affects sockets that
3571 * are bound to all addresses available to the SCTP stack, and b) the system
3572 * administrator may have an overriding control that turns the ASCONF feature
3573 * off no matter what setting the socket option may have.
3574 * This option expects an integer boolean flag, where a non-zero value turns on
3575 * the option, and a zero value turns off the option.
3576 * Note. In this implementation, socket operation overrides default parameter
3577 * being set by sysctl as well as FreeBSD implementation
3578 */
3579 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3580 unsigned int optlen)
3581 {
3582 int val;
3583 struct sctp_sock *sp = sctp_sk(sk);
3584
3585 if (optlen < sizeof(int))
3586 return -EINVAL;
3587 if (get_user(val, (int __user *)optval))
3588 return -EFAULT;
3589 if (!sctp_is_ep_boundall(sk) && val)
3590 return -EINVAL;
3591 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3592 return 0;
3593
3594 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3595 if (val == 0 && sp->do_auto_asconf) {
3596 list_del(&sp->auto_asconf_list);
3597 sp->do_auto_asconf = 0;
3598 } else if (val && !sp->do_auto_asconf) {
3599 list_add_tail(&sp->auto_asconf_list,
3600 &sock_net(sk)->sctp.auto_asconf_splist);
3601 sp->do_auto_asconf = 1;
3602 }
3603 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3604 return 0;
3605 }
3606
3607 /*
3608 * SCTP_PEER_ADDR_THLDS
3609 *
3610 * This option allows us to alter the partially failed threshold for one or all
3611 * transports in an association. See Section 6.1 of:
3612 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3613 */
3614 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3615 char __user *optval,
3616 unsigned int optlen)
3617 {
3618 struct sctp_paddrthlds val;
3619 struct sctp_transport *trans;
3620 struct sctp_association *asoc;
3621
3622 if (optlen < sizeof(struct sctp_paddrthlds))
3623 return -EINVAL;
3624 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3625 sizeof(struct sctp_paddrthlds)))
3626 return -EFAULT;
3627
3628
3629 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3630 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3631 if (!asoc)
3632 return -ENOENT;
3633 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3634 transports) {
3635 if (val.spt_pathmaxrxt)
3636 trans->pathmaxrxt = val.spt_pathmaxrxt;
3637 trans->pf_retrans = val.spt_pathpfthld;
3638 }
3639
3640 if (val.spt_pathmaxrxt)
3641 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3642 asoc->pf_retrans = val.spt_pathpfthld;
3643 } else {
3644 trans = sctp_addr_id2transport(sk, &val.spt_address,
3645 val.spt_assoc_id);
3646 if (!trans)
3647 return -ENOENT;
3648
3649 if (val.spt_pathmaxrxt)
3650 trans->pathmaxrxt = val.spt_pathmaxrxt;
3651 trans->pf_retrans = val.spt_pathpfthld;
3652 }
3653
3654 return 0;
3655 }
3656
3657 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3658 char __user *optval,
3659 unsigned int optlen)
3660 {
3661 int val;
3662
3663 if (optlen < sizeof(int))
3664 return -EINVAL;
3665 if (get_user(val, (int __user *) optval))
3666 return -EFAULT;
3667
3668 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3669
3670 return 0;
3671 }
3672
3673 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3674 char __user *optval,
3675 unsigned int optlen)
3676 {
3677 int val;
3678
3679 if (optlen < sizeof(int))
3680 return -EINVAL;
3681 if (get_user(val, (int __user *) optval))
3682 return -EFAULT;
3683
3684 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3685
3686 return 0;
3687 }
3688
3689 static int sctp_setsockopt_pr_supported(struct sock *sk,
3690 char __user *optval,
3691 unsigned int optlen)
3692 {
3693 struct sctp_assoc_value params;
3694 struct sctp_association *asoc;
3695 int retval = -EINVAL;
3696
3697 if (optlen != sizeof(params))
3698 goto out;
3699
3700 if (copy_from_user(&params, optval, optlen)) {
3701 retval = -EFAULT;
3702 goto out;
3703 }
3704
3705 asoc = sctp_id2assoc(sk, params.assoc_id);
3706 if (asoc) {
3707 asoc->prsctp_enable = !!params.assoc_value;
3708 } else if (!params.assoc_id) {
3709 struct sctp_sock *sp = sctp_sk(sk);
3710
3711 sp->ep->prsctp_enable = !!params.assoc_value;
3712 } else {
3713 goto out;
3714 }
3715
3716 retval = 0;
3717
3718 out:
3719 return retval;
3720 }
3721
3722 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3723 char __user *optval,
3724 unsigned int optlen)
3725 {
3726 struct sctp_default_prinfo info;
3727 struct sctp_association *asoc;
3728 int retval = -EINVAL;
3729
3730 if (optlen != sizeof(info))
3731 goto out;
3732
3733 if (copy_from_user(&info, optval, sizeof(info))) {
3734 retval = -EFAULT;
3735 goto out;
3736 }
3737
3738 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3739 goto out;
3740
3741 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3742 info.pr_value = 0;
3743
3744 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3745 if (asoc) {
3746 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3747 asoc->default_timetolive = info.pr_value;
3748 } else if (!info.pr_assoc_id) {
3749 struct sctp_sock *sp = sctp_sk(sk);
3750
3751 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3752 sp->default_timetolive = info.pr_value;
3753 } else {
3754 goto out;
3755 }
3756
3757 retval = 0;
3758
3759 out:
3760 return retval;
3761 }
3762
3763 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3764 char __user *optval,
3765 unsigned int optlen)
3766 {
3767 struct sctp_assoc_value params;
3768 struct sctp_association *asoc;
3769 int retval = -EINVAL;
3770
3771 if (optlen != sizeof(params))
3772 goto out;
3773
3774 if (copy_from_user(&params, optval, optlen)) {
3775 retval = -EFAULT;
3776 goto out;
3777 }
3778
3779 asoc = sctp_id2assoc(sk, params.assoc_id);
3780 if (asoc) {
3781 asoc->reconf_enable = !!params.assoc_value;
3782 } else if (!params.assoc_id) {
3783 struct sctp_sock *sp = sctp_sk(sk);
3784
3785 sp->ep->reconf_enable = !!params.assoc_value;
3786 } else {
3787 goto out;
3788 }
3789
3790 retval = 0;
3791
3792 out:
3793 return retval;
3794 }
3795
3796 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3797 char __user *optval,
3798 unsigned int optlen)
3799 {
3800 struct sctp_assoc_value params;
3801 struct sctp_association *asoc;
3802 int retval = -EINVAL;
3803
3804 if (optlen != sizeof(params))
3805 goto out;
3806
3807 if (copy_from_user(&params, optval, optlen)) {
3808 retval = -EFAULT;
3809 goto out;
3810 }
3811
3812 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3813 goto out;
3814
3815 asoc = sctp_id2assoc(sk, params.assoc_id);
3816 if (asoc) {
3817 asoc->strreset_enable = params.assoc_value;
3818 } else if (!params.assoc_id) {
3819 struct sctp_sock *sp = sctp_sk(sk);
3820
3821 sp->ep->strreset_enable = params.assoc_value;
3822 } else {
3823 goto out;
3824 }
3825
3826 retval = 0;
3827
3828 out:
3829 return retval;
3830 }
3831
3832 static int sctp_setsockopt_reset_streams(struct sock *sk,
3833 char __user *optval,
3834 unsigned int optlen)
3835 {
3836 struct sctp_reset_streams *params;
3837 struct sctp_association *asoc;
3838 int retval = -EINVAL;
3839
3840 if (optlen < sizeof(struct sctp_reset_streams))
3841 return -EINVAL;
3842
3843 params = memdup_user(optval, optlen);
3844 if (IS_ERR(params))
3845 return PTR_ERR(params);
3846
3847 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3848 if (!asoc)
3849 goto out;
3850
3851 retval = sctp_send_reset_streams(asoc, params);
3852
3853 out:
3854 kfree(params);
3855 return retval;
3856 }
3857
3858 static int sctp_setsockopt_reset_assoc(struct sock *sk,
3859 char __user *optval,
3860 unsigned int optlen)
3861 {
3862 struct sctp_association *asoc;
3863 sctp_assoc_t associd;
3864 int retval = -EINVAL;
3865
3866 if (optlen != sizeof(associd))
3867 goto out;
3868
3869 if (copy_from_user(&associd, optval, optlen)) {
3870 retval = -EFAULT;
3871 goto out;
3872 }
3873
3874 asoc = sctp_id2assoc(sk, associd);
3875 if (!asoc)
3876 goto out;
3877
3878 retval = sctp_send_reset_assoc(asoc);
3879
3880 out:
3881 return retval;
3882 }
3883
3884 static int sctp_setsockopt_add_streams(struct sock *sk,
3885 char __user *optval,
3886 unsigned int optlen)
3887 {
3888 struct sctp_association *asoc;
3889 struct sctp_add_streams params;
3890 int retval = -EINVAL;
3891
3892 if (optlen != sizeof(params))
3893 goto out;
3894
3895 if (copy_from_user(&params, optval, optlen)) {
3896 retval = -EFAULT;
3897 goto out;
3898 }
3899
3900 asoc = sctp_id2assoc(sk, params.sas_assoc_id);
3901 if (!asoc)
3902 goto out;
3903
3904 retval = sctp_send_add_streams(asoc, &params);
3905
3906 out:
3907 return retval;
3908 }
3909
3910 /* API 6.2 setsockopt(), getsockopt()
3911 *
3912 * Applications use setsockopt() and getsockopt() to set or retrieve
3913 * socket options. Socket options are used to change the default
3914 * behavior of sockets calls. They are described in Section 7.
3915 *
3916 * The syntax is:
3917 *
3918 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3919 * int __user *optlen);
3920 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3921 * int optlen);
3922 *
3923 * sd - the socket descript.
3924 * level - set to IPPROTO_SCTP for all SCTP options.
3925 * optname - the option name.
3926 * optval - the buffer to store the value of the option.
3927 * optlen - the size of the buffer.
3928 */
3929 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3930 char __user *optval, unsigned int optlen)
3931 {
3932 int retval = 0;
3933
3934 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3935
3936 /* I can hardly begin to describe how wrong this is. This is
3937 * so broken as to be worse than useless. The API draft
3938 * REALLY is NOT helpful here... I am not convinced that the
3939 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3940 * are at all well-founded.
3941 */
3942 if (level != SOL_SCTP) {
3943 struct sctp_af *af = sctp_sk(sk)->pf->af;
3944 retval = af->setsockopt(sk, level, optname, optval, optlen);
3945 goto out_nounlock;
3946 }
3947
3948 lock_sock(sk);
3949
3950 switch (optname) {
3951 case SCTP_SOCKOPT_BINDX_ADD:
3952 /* 'optlen' is the size of the addresses buffer. */
3953 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3954 optlen, SCTP_BINDX_ADD_ADDR);
3955 break;
3956
3957 case SCTP_SOCKOPT_BINDX_REM:
3958 /* 'optlen' is the size of the addresses buffer. */
3959 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3960 optlen, SCTP_BINDX_REM_ADDR);
3961 break;
3962
3963 case SCTP_SOCKOPT_CONNECTX_OLD:
3964 /* 'optlen' is the size of the addresses buffer. */
3965 retval = sctp_setsockopt_connectx_old(sk,
3966 (struct sockaddr __user *)optval,
3967 optlen);
3968 break;
3969
3970 case SCTP_SOCKOPT_CONNECTX:
3971 /* 'optlen' is the size of the addresses buffer. */
3972 retval = sctp_setsockopt_connectx(sk,
3973 (struct sockaddr __user *)optval,
3974 optlen);
3975 break;
3976
3977 case SCTP_DISABLE_FRAGMENTS:
3978 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3979 break;
3980
3981 case SCTP_EVENTS:
3982 retval = sctp_setsockopt_events(sk, optval, optlen);
3983 break;
3984
3985 case SCTP_AUTOCLOSE:
3986 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3987 break;
3988
3989 case SCTP_PEER_ADDR_PARAMS:
3990 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3991 break;
3992
3993 case SCTP_DELAYED_SACK:
3994 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3995 break;
3996 case SCTP_PARTIAL_DELIVERY_POINT:
3997 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3998 break;
3999
4000 case SCTP_INITMSG:
4001 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4002 break;
4003 case SCTP_DEFAULT_SEND_PARAM:
4004 retval = sctp_setsockopt_default_send_param(sk, optval,
4005 optlen);
4006 break;
4007 case SCTP_DEFAULT_SNDINFO:
4008 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4009 break;
4010 case SCTP_PRIMARY_ADDR:
4011 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4012 break;
4013 case SCTP_SET_PEER_PRIMARY_ADDR:
4014 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4015 break;
4016 case SCTP_NODELAY:
4017 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4018 break;
4019 case SCTP_RTOINFO:
4020 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4021 break;
4022 case SCTP_ASSOCINFO:
4023 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4024 break;
4025 case SCTP_I_WANT_MAPPED_V4_ADDR:
4026 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4027 break;
4028 case SCTP_MAXSEG:
4029 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4030 break;
4031 case SCTP_ADAPTATION_LAYER:
4032 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4033 break;
4034 case SCTP_CONTEXT:
4035 retval = sctp_setsockopt_context(sk, optval, optlen);
4036 break;
4037 case SCTP_FRAGMENT_INTERLEAVE:
4038 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4039 break;
4040 case SCTP_MAX_BURST:
4041 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4042 break;
4043 case SCTP_AUTH_CHUNK:
4044 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4045 break;
4046 case SCTP_HMAC_IDENT:
4047 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4048 break;
4049 case SCTP_AUTH_KEY:
4050 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4051 break;
4052 case SCTP_AUTH_ACTIVE_KEY:
4053 retval = sctp_setsockopt_active_key(sk, optval, optlen);
4054 break;
4055 case SCTP_AUTH_DELETE_KEY:
4056 retval = sctp_setsockopt_del_key(sk, optval, optlen);
4057 break;
4058 case SCTP_AUTO_ASCONF:
4059 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4060 break;
4061 case SCTP_PEER_ADDR_THLDS:
4062 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4063 break;
4064 case SCTP_RECVRCVINFO:
4065 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4066 break;
4067 case SCTP_RECVNXTINFO:
4068 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4069 break;
4070 case SCTP_PR_SUPPORTED:
4071 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4072 break;
4073 case SCTP_DEFAULT_PRINFO:
4074 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4075 break;
4076 case SCTP_RECONFIG_SUPPORTED:
4077 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4078 break;
4079 case SCTP_ENABLE_STREAM_RESET:
4080 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4081 break;
4082 case SCTP_RESET_STREAMS:
4083 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4084 break;
4085 case SCTP_RESET_ASSOC:
4086 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4087 break;
4088 case SCTP_ADD_STREAMS:
4089 retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4090 break;
4091 default:
4092 retval = -ENOPROTOOPT;
4093 break;
4094 }
4095
4096 release_sock(sk);
4097
4098 out_nounlock:
4099 return retval;
4100 }
4101
4102 /* API 3.1.6 connect() - UDP Style Syntax
4103 *
4104 * An application may use the connect() call in the UDP model to initiate an
4105 * association without sending data.
4106 *
4107 * The syntax is:
4108 *
4109 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4110 *
4111 * sd: the socket descriptor to have a new association added to.
4112 *
4113 * nam: the address structure (either struct sockaddr_in or struct
4114 * sockaddr_in6 defined in RFC2553 [7]).
4115 *
4116 * len: the size of the address.
4117 */
4118 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4119 int addr_len)
4120 {
4121 int err = 0;
4122 struct sctp_af *af;
4123
4124 lock_sock(sk);
4125
4126 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4127 addr, addr_len);
4128
4129 /* Validate addr_len before calling common connect/connectx routine. */
4130 af = sctp_get_af_specific(addr->sa_family);
4131 if (!af || addr_len < af->sockaddr_len) {
4132 err = -EINVAL;
4133 } else {
4134 /* Pass correct addr len to common routine (so it knows there
4135 * is only one address being passed.
4136 */
4137 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4138 }
4139
4140 release_sock(sk);
4141 return err;
4142 }
4143
4144 /* FIXME: Write comments. */
4145 static int sctp_disconnect(struct sock *sk, int flags)
4146 {
4147 return -EOPNOTSUPP; /* STUB */
4148 }
4149
4150 /* 4.1.4 accept() - TCP Style Syntax
4151 *
4152 * Applications use accept() call to remove an established SCTP
4153 * association from the accept queue of the endpoint. A new socket
4154 * descriptor will be returned from accept() to represent the newly
4155 * formed association.
4156 */
4157 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4158 {
4159 struct sctp_sock *sp;
4160 struct sctp_endpoint *ep;
4161 struct sock *newsk = NULL;
4162 struct sctp_association *asoc;
4163 long timeo;
4164 int error = 0;
4165
4166 lock_sock(sk);
4167
4168 sp = sctp_sk(sk);
4169 ep = sp->ep;
4170
4171 if (!sctp_style(sk, TCP)) {
4172 error = -EOPNOTSUPP;
4173 goto out;
4174 }
4175
4176 if (!sctp_sstate(sk, LISTENING)) {
4177 error = -EINVAL;
4178 goto out;
4179 }
4180
4181 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4182
4183 error = sctp_wait_for_accept(sk, timeo);
4184 if (error)
4185 goto out;
4186
4187 /* We treat the list of associations on the endpoint as the accept
4188 * queue and pick the first association on the list.
4189 */
4190 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4191
4192 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4193 if (!newsk) {
4194 error = -ENOMEM;
4195 goto out;
4196 }
4197
4198 /* Populate the fields of the newsk from the oldsk and migrate the
4199 * asoc to the newsk.
4200 */
4201 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4202
4203 out:
4204 release_sock(sk);
4205 *err = error;
4206 return newsk;
4207 }
4208
4209 /* The SCTP ioctl handler. */
4210 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4211 {
4212 int rc = -ENOTCONN;
4213
4214 lock_sock(sk);
4215
4216 /*
4217 * SEQPACKET-style sockets in LISTENING state are valid, for
4218 * SCTP, so only discard TCP-style sockets in LISTENING state.
4219 */
4220 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4221 goto out;
4222
4223 switch (cmd) {
4224 case SIOCINQ: {
4225 struct sk_buff *skb;
4226 unsigned int amount = 0;
4227
4228 skb = skb_peek(&sk->sk_receive_queue);
4229 if (skb != NULL) {
4230 /*
4231 * We will only return the amount of this packet since
4232 * that is all that will be read.
4233 */
4234 amount = skb->len;
4235 }
4236 rc = put_user(amount, (int __user *)arg);
4237 break;
4238 }
4239 default:
4240 rc = -ENOIOCTLCMD;
4241 break;
4242 }
4243 out:
4244 release_sock(sk);
4245 return rc;
4246 }
4247
4248 /* This is the function which gets called during socket creation to
4249 * initialized the SCTP-specific portion of the sock.
4250 * The sock structure should already be zero-filled memory.
4251 */
4252 static int sctp_init_sock(struct sock *sk)
4253 {
4254 struct net *net = sock_net(sk);
4255 struct sctp_sock *sp;
4256
4257 pr_debug("%s: sk:%p\n", __func__, sk);
4258
4259 sp = sctp_sk(sk);
4260
4261 /* Initialize the SCTP per socket area. */
4262 switch (sk->sk_type) {
4263 case SOCK_SEQPACKET:
4264 sp->type = SCTP_SOCKET_UDP;
4265 break;
4266 case SOCK_STREAM:
4267 sp->type = SCTP_SOCKET_TCP;
4268 break;
4269 default:
4270 return -ESOCKTNOSUPPORT;
4271 }
4272
4273 sk->sk_gso_type = SKB_GSO_SCTP;
4274
4275 /* Initialize default send parameters. These parameters can be
4276 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4277 */
4278 sp->default_stream = 0;
4279 sp->default_ppid = 0;
4280 sp->default_flags = 0;
4281 sp->default_context = 0;
4282 sp->default_timetolive = 0;
4283
4284 sp->default_rcv_context = 0;
4285 sp->max_burst = net->sctp.max_burst;
4286
4287 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4288
4289 /* Initialize default setup parameters. These parameters
4290 * can be modified with the SCTP_INITMSG socket option or
4291 * overridden by the SCTP_INIT CMSG.
4292 */
4293 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4294 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4295 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4296 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4297
4298 /* Initialize default RTO related parameters. These parameters can
4299 * be modified for with the SCTP_RTOINFO socket option.
4300 */
4301 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4302 sp->rtoinfo.srto_max = net->sctp.rto_max;
4303 sp->rtoinfo.srto_min = net->sctp.rto_min;
4304
4305 /* Initialize default association related parameters. These parameters
4306 * can be modified with the SCTP_ASSOCINFO socket option.
4307 */
4308 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4309 sp->assocparams.sasoc_number_peer_destinations = 0;
4310 sp->assocparams.sasoc_peer_rwnd = 0;
4311 sp->assocparams.sasoc_local_rwnd = 0;
4312 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4313
4314 /* Initialize default event subscriptions. By default, all the
4315 * options are off.
4316 */
4317 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4318
4319 /* Default Peer Address Parameters. These defaults can
4320 * be modified via SCTP_PEER_ADDR_PARAMS
4321 */
4322 sp->hbinterval = net->sctp.hb_interval;
4323 sp->pathmaxrxt = net->sctp.max_retrans_path;
4324 sp->pathmtu = 0; /* allow default discovery */
4325 sp->sackdelay = net->sctp.sack_timeout;
4326 sp->sackfreq = 2;
4327 sp->param_flags = SPP_HB_ENABLE |
4328 SPP_PMTUD_ENABLE |
4329 SPP_SACKDELAY_ENABLE;
4330
4331 /* If enabled no SCTP message fragmentation will be performed.
4332 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4333 */
4334 sp->disable_fragments = 0;
4335
4336 /* Enable Nagle algorithm by default. */
4337 sp->nodelay = 0;
4338
4339 sp->recvrcvinfo = 0;
4340 sp->recvnxtinfo = 0;
4341
4342 /* Enable by default. */
4343 sp->v4mapped = 1;
4344
4345 /* Auto-close idle associations after the configured
4346 * number of seconds. A value of 0 disables this
4347 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4348 * for UDP-style sockets only.
4349 */
4350 sp->autoclose = 0;
4351
4352 /* User specified fragmentation limit. */
4353 sp->user_frag = 0;
4354
4355 sp->adaptation_ind = 0;
4356
4357 sp->pf = sctp_get_pf_specific(sk->sk_family);
4358
4359 /* Control variables for partial data delivery. */
4360 atomic_set(&sp->pd_mode, 0);
4361 skb_queue_head_init(&sp->pd_lobby);
4362 sp->frag_interleave = 0;
4363
4364 /* Create a per socket endpoint structure. Even if we
4365 * change the data structure relationships, this may still
4366 * be useful for storing pre-connect address information.
4367 */
4368 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4369 if (!sp->ep)
4370 return -ENOMEM;
4371
4372 sp->hmac = NULL;
4373
4374 sk->sk_destruct = sctp_destruct_sock;
4375
4376 SCTP_DBG_OBJCNT_INC(sock);
4377
4378 local_bh_disable();
4379 percpu_counter_inc(&sctp_sockets_allocated);
4380 sock_prot_inuse_add(net, sk->sk_prot, 1);
4381
4382 /* Nothing can fail after this block, otherwise
4383 * sctp_destroy_sock() will be called without addr_wq_lock held
4384 */
4385 if (net->sctp.default_auto_asconf) {
4386 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4387 list_add_tail(&sp->auto_asconf_list,
4388 &net->sctp.auto_asconf_splist);
4389 sp->do_auto_asconf = 1;
4390 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4391 } else {
4392 sp->do_auto_asconf = 0;
4393 }
4394
4395 local_bh_enable();
4396
4397 return 0;
4398 }
4399
4400 /* Cleanup any SCTP per socket resources. Must be called with
4401 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4402 */
4403 static void sctp_destroy_sock(struct sock *sk)
4404 {
4405 struct sctp_sock *sp;
4406
4407 pr_debug("%s: sk:%p\n", __func__, sk);
4408
4409 /* Release our hold on the endpoint. */
4410 sp = sctp_sk(sk);
4411 /* This could happen during socket init, thus we bail out
4412 * early, since the rest of the below is not setup either.
4413 */
4414 if (sp->ep == NULL)
4415 return;
4416
4417 if (sp->do_auto_asconf) {
4418 sp->do_auto_asconf = 0;
4419 list_del(&sp->auto_asconf_list);
4420 }
4421 sctp_endpoint_free(sp->ep);
4422 local_bh_disable();
4423 percpu_counter_dec(&sctp_sockets_allocated);
4424 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4425 local_bh_enable();
4426 }
4427
4428 /* Triggered when there are no references on the socket anymore */
4429 static void sctp_destruct_sock(struct sock *sk)
4430 {
4431 struct sctp_sock *sp = sctp_sk(sk);
4432
4433 /* Free up the HMAC transform. */
4434 crypto_free_shash(sp->hmac);
4435
4436 inet_sock_destruct(sk);
4437 }
4438
4439 /* API 4.1.7 shutdown() - TCP Style Syntax
4440 * int shutdown(int socket, int how);
4441 *
4442 * sd - the socket descriptor of the association to be closed.
4443 * how - Specifies the type of shutdown. The values are
4444 * as follows:
4445 * SHUT_RD
4446 * Disables further receive operations. No SCTP
4447 * protocol action is taken.
4448 * SHUT_WR
4449 * Disables further send operations, and initiates
4450 * the SCTP shutdown sequence.
4451 * SHUT_RDWR
4452 * Disables further send and receive operations
4453 * and initiates the SCTP shutdown sequence.
4454 */
4455 static void sctp_shutdown(struct sock *sk, int how)
4456 {
4457 struct net *net = sock_net(sk);
4458 struct sctp_endpoint *ep;
4459
4460 if (!sctp_style(sk, TCP))
4461 return;
4462
4463 ep = sctp_sk(sk)->ep;
4464 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4465 struct sctp_association *asoc;
4466
4467 sk->sk_state = SCTP_SS_CLOSING;
4468 asoc = list_entry(ep->asocs.next,
4469 struct sctp_association, asocs);
4470 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4471 }
4472 }
4473
4474 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4475 struct sctp_info *info)
4476 {
4477 struct sctp_transport *prim;
4478 struct list_head *pos;
4479 int mask;
4480
4481 memset(info, 0, sizeof(*info));
4482 if (!asoc) {
4483 struct sctp_sock *sp = sctp_sk(sk);
4484
4485 info->sctpi_s_autoclose = sp->autoclose;
4486 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4487 info->sctpi_s_pd_point = sp->pd_point;
4488 info->sctpi_s_nodelay = sp->nodelay;
4489 info->sctpi_s_disable_fragments = sp->disable_fragments;
4490 info->sctpi_s_v4mapped = sp->v4mapped;
4491 info->sctpi_s_frag_interleave = sp->frag_interleave;
4492 info->sctpi_s_type = sp->type;
4493
4494 return 0;
4495 }
4496
4497 info->sctpi_tag = asoc->c.my_vtag;
4498 info->sctpi_state = asoc->state;
4499 info->sctpi_rwnd = asoc->a_rwnd;
4500 info->sctpi_unackdata = asoc->unack_data;
4501 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4502 info->sctpi_instrms = asoc->stream.incnt;
4503 info->sctpi_outstrms = asoc->stream.outcnt;
4504 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4505 info->sctpi_inqueue++;
4506 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4507 info->sctpi_outqueue++;
4508 info->sctpi_overall_error = asoc->overall_error_count;
4509 info->sctpi_max_burst = asoc->max_burst;
4510 info->sctpi_maxseg = asoc->frag_point;
4511 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4512 info->sctpi_peer_tag = asoc->c.peer_vtag;
4513
4514 mask = asoc->peer.ecn_capable << 1;
4515 mask = (mask | asoc->peer.ipv4_address) << 1;
4516 mask = (mask | asoc->peer.ipv6_address) << 1;
4517 mask = (mask | asoc->peer.hostname_address) << 1;
4518 mask = (mask | asoc->peer.asconf_capable) << 1;
4519 mask = (mask | asoc->peer.prsctp_capable) << 1;
4520 mask = (mask | asoc->peer.auth_capable);
4521 info->sctpi_peer_capable = mask;
4522 mask = asoc->peer.sack_needed << 1;
4523 mask = (mask | asoc->peer.sack_generation) << 1;
4524 mask = (mask | asoc->peer.zero_window_announced);
4525 info->sctpi_peer_sack = mask;
4526
4527 info->sctpi_isacks = asoc->stats.isacks;
4528 info->sctpi_osacks = asoc->stats.osacks;
4529 info->sctpi_opackets = asoc->stats.opackets;
4530 info->sctpi_ipackets = asoc->stats.ipackets;
4531 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4532 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4533 info->sctpi_idupchunks = asoc->stats.idupchunks;
4534 info->sctpi_gapcnt = asoc->stats.gapcnt;
4535 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4536 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4537 info->sctpi_oodchunks = asoc->stats.oodchunks;
4538 info->sctpi_iodchunks = asoc->stats.iodchunks;
4539 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4540 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4541
4542 prim = asoc->peer.primary_path;
4543 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4544 info->sctpi_p_state = prim->state;
4545 info->sctpi_p_cwnd = prim->cwnd;
4546 info->sctpi_p_srtt = prim->srtt;
4547 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4548 info->sctpi_p_hbinterval = prim->hbinterval;
4549 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4550 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4551 info->sctpi_p_ssthresh = prim->ssthresh;
4552 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4553 info->sctpi_p_flight_size = prim->flight_size;
4554 info->sctpi_p_error = prim->error_count;
4555
4556 return 0;
4557 }
4558 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4559
4560 /* use callback to avoid exporting the core structure */
4561 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4562 {
4563 int err;
4564
4565 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4566
4567 err = rhashtable_walk_start(iter);
4568 if (err && err != -EAGAIN) {
4569 rhashtable_walk_stop(iter);
4570 rhashtable_walk_exit(iter);
4571 return err;
4572 }
4573
4574 return 0;
4575 }
4576
4577 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4578 {
4579 rhashtable_walk_stop(iter);
4580 rhashtable_walk_exit(iter);
4581 }
4582
4583 struct sctp_transport *sctp_transport_get_next(struct net *net,
4584 struct rhashtable_iter *iter)
4585 {
4586 struct sctp_transport *t;
4587
4588 t = rhashtable_walk_next(iter);
4589 for (; t; t = rhashtable_walk_next(iter)) {
4590 if (IS_ERR(t)) {
4591 if (PTR_ERR(t) == -EAGAIN)
4592 continue;
4593 break;
4594 }
4595
4596 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4597 t->asoc->peer.primary_path == t)
4598 break;
4599 }
4600
4601 return t;
4602 }
4603
4604 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4605 struct rhashtable_iter *iter,
4606 int pos)
4607 {
4608 void *obj = SEQ_START_TOKEN;
4609
4610 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4611 !IS_ERR(obj))
4612 pos--;
4613
4614 return obj;
4615 }
4616
4617 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4618 void *p) {
4619 int err = 0;
4620 int hash = 0;
4621 struct sctp_ep_common *epb;
4622 struct sctp_hashbucket *head;
4623
4624 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4625 hash++, head++) {
4626 read_lock_bh(&head->lock);
4627 sctp_for_each_hentry(epb, &head->chain) {
4628 err = cb(sctp_ep(epb), p);
4629 if (err)
4630 break;
4631 }
4632 read_unlock_bh(&head->lock);
4633 }
4634
4635 return err;
4636 }
4637 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4638
4639 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4640 struct net *net,
4641 const union sctp_addr *laddr,
4642 const union sctp_addr *paddr, void *p)
4643 {
4644 struct sctp_transport *transport;
4645 int err;
4646
4647 rcu_read_lock();
4648 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4649 rcu_read_unlock();
4650 if (!transport)
4651 return -ENOENT;
4652
4653 err = cb(transport, p);
4654 sctp_transport_put(transport);
4655
4656 return err;
4657 }
4658 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4659
4660 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4661 struct net *net, int pos, void *p) {
4662 struct rhashtable_iter hti;
4663 void *obj;
4664 int err;
4665
4666 err = sctp_transport_walk_start(&hti);
4667 if (err)
4668 return err;
4669
4670 obj = sctp_transport_get_idx(net, &hti, pos + 1);
4671 for (; !IS_ERR_OR_NULL(obj); obj = sctp_transport_get_next(net, &hti)) {
4672 struct sctp_transport *transport = obj;
4673
4674 if (!sctp_transport_hold(transport))
4675 continue;
4676 err = cb(transport, p);
4677 sctp_transport_put(transport);
4678 if (err)
4679 break;
4680 }
4681 sctp_transport_walk_stop(&hti);
4682
4683 return err;
4684 }
4685 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4686
4687 /* 7.2.1 Association Status (SCTP_STATUS)
4688
4689 * Applications can retrieve current status information about an
4690 * association, including association state, peer receiver window size,
4691 * number of unacked data chunks, and number of data chunks pending
4692 * receipt. This information is read-only.
4693 */
4694 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4695 char __user *optval,
4696 int __user *optlen)
4697 {
4698 struct sctp_status status;
4699 struct sctp_association *asoc = NULL;
4700 struct sctp_transport *transport;
4701 sctp_assoc_t associd;
4702 int retval = 0;
4703
4704 if (len < sizeof(status)) {
4705 retval = -EINVAL;
4706 goto out;
4707 }
4708
4709 len = sizeof(status);
4710 if (copy_from_user(&status, optval, len)) {
4711 retval = -EFAULT;
4712 goto out;
4713 }
4714
4715 associd = status.sstat_assoc_id;
4716 asoc = sctp_id2assoc(sk, associd);
4717 if (!asoc) {
4718 retval = -EINVAL;
4719 goto out;
4720 }
4721
4722 transport = asoc->peer.primary_path;
4723
4724 status.sstat_assoc_id = sctp_assoc2id(asoc);
4725 status.sstat_state = sctp_assoc_to_state(asoc);
4726 status.sstat_rwnd = asoc->peer.rwnd;
4727 status.sstat_unackdata = asoc->unack_data;
4728
4729 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4730 status.sstat_instrms = asoc->stream.incnt;
4731 status.sstat_outstrms = asoc->stream.outcnt;
4732 status.sstat_fragmentation_point = asoc->frag_point;
4733 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4734 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4735 transport->af_specific->sockaddr_len);
4736 /* Map ipv4 address into v4-mapped-on-v6 address. */
4737 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4738 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4739 status.sstat_primary.spinfo_state = transport->state;
4740 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4741 status.sstat_primary.spinfo_srtt = transport->srtt;
4742 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4743 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4744
4745 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4746 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4747
4748 if (put_user(len, optlen)) {
4749 retval = -EFAULT;
4750 goto out;
4751 }
4752
4753 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4754 __func__, len, status.sstat_state, status.sstat_rwnd,
4755 status.sstat_assoc_id);
4756
4757 if (copy_to_user(optval, &status, len)) {
4758 retval = -EFAULT;
4759 goto out;
4760 }
4761
4762 out:
4763 return retval;
4764 }
4765
4766
4767 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4768 *
4769 * Applications can retrieve information about a specific peer address
4770 * of an association, including its reachability state, congestion
4771 * window, and retransmission timer values. This information is
4772 * read-only.
4773 */
4774 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4775 char __user *optval,
4776 int __user *optlen)
4777 {
4778 struct sctp_paddrinfo pinfo;
4779 struct sctp_transport *transport;
4780 int retval = 0;
4781
4782 if (len < sizeof(pinfo)) {
4783 retval = -EINVAL;
4784 goto out;
4785 }
4786
4787 len = sizeof(pinfo);
4788 if (copy_from_user(&pinfo, optval, len)) {
4789 retval = -EFAULT;
4790 goto out;
4791 }
4792
4793 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4794 pinfo.spinfo_assoc_id);
4795 if (!transport)
4796 return -EINVAL;
4797
4798 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4799 pinfo.spinfo_state = transport->state;
4800 pinfo.spinfo_cwnd = transport->cwnd;
4801 pinfo.spinfo_srtt = transport->srtt;
4802 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4803 pinfo.spinfo_mtu = transport->pathmtu;
4804
4805 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4806 pinfo.spinfo_state = SCTP_ACTIVE;
4807
4808 if (put_user(len, optlen)) {
4809 retval = -EFAULT;
4810 goto out;
4811 }
4812
4813 if (copy_to_user(optval, &pinfo, len)) {
4814 retval = -EFAULT;
4815 goto out;
4816 }
4817
4818 out:
4819 return retval;
4820 }
4821
4822 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4823 *
4824 * This option is a on/off flag. If enabled no SCTP message
4825 * fragmentation will be performed. Instead if a message being sent
4826 * exceeds the current PMTU size, the message will NOT be sent and
4827 * instead a error will be indicated to the user.
4828 */
4829 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4830 char __user *optval, int __user *optlen)
4831 {
4832 int val;
4833
4834 if (len < sizeof(int))
4835 return -EINVAL;
4836
4837 len = sizeof(int);
4838 val = (sctp_sk(sk)->disable_fragments == 1);
4839 if (put_user(len, optlen))
4840 return -EFAULT;
4841 if (copy_to_user(optval, &val, len))
4842 return -EFAULT;
4843 return 0;
4844 }
4845
4846 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4847 *
4848 * This socket option is used to specify various notifications and
4849 * ancillary data the user wishes to receive.
4850 */
4851 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4852 int __user *optlen)
4853 {
4854 if (len == 0)
4855 return -EINVAL;
4856 if (len > sizeof(struct sctp_event_subscribe))
4857 len = sizeof(struct sctp_event_subscribe);
4858 if (put_user(len, optlen))
4859 return -EFAULT;
4860 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4861 return -EFAULT;
4862 return 0;
4863 }
4864
4865 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4866 *
4867 * This socket option is applicable to the UDP-style socket only. When
4868 * set it will cause associations that are idle for more than the
4869 * specified number of seconds to automatically close. An association
4870 * being idle is defined an association that has NOT sent or received
4871 * user data. The special value of '0' indicates that no automatic
4872 * close of any associations should be performed. The option expects an
4873 * integer defining the number of seconds of idle time before an
4874 * association is closed.
4875 */
4876 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4877 {
4878 /* Applicable to UDP-style socket only */
4879 if (sctp_style(sk, TCP))
4880 return -EOPNOTSUPP;
4881 if (len < sizeof(int))
4882 return -EINVAL;
4883 len = sizeof(int);
4884 if (put_user(len, optlen))
4885 return -EFAULT;
4886 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4887 return -EFAULT;
4888 return 0;
4889 }
4890
4891 /* Helper routine to branch off an association to a new socket. */
4892 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4893 {
4894 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4895 struct sctp_sock *sp = sctp_sk(sk);
4896 struct socket *sock;
4897 int err = 0;
4898
4899 if (!asoc)
4900 return -EINVAL;
4901
4902 /* If there is a thread waiting on more sndbuf space for
4903 * sending on this asoc, it cannot be peeled.
4904 */
4905 if (waitqueue_active(&asoc->wait))
4906 return -EBUSY;
4907
4908 /* An association cannot be branched off from an already peeled-off
4909 * socket, nor is this supported for tcp style sockets.
4910 */
4911 if (!sctp_style(sk, UDP))
4912 return -EINVAL;
4913
4914 /* Create a new socket. */
4915 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4916 if (err < 0)
4917 return err;
4918
4919 sctp_copy_sock(sock->sk, sk, asoc);
4920
4921 /* Make peeled-off sockets more like 1-1 accepted sockets.
4922 * Set the daddr and initialize id to something more random
4923 */
4924 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4925
4926 /* Populate the fields of the newsk from the oldsk and migrate the
4927 * asoc to the newsk.
4928 */
4929 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4930
4931 *sockp = sock;
4932
4933 return err;
4934 }
4935 EXPORT_SYMBOL(sctp_do_peeloff);
4936
4937 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
4938 struct file **newfile, unsigned flags)
4939 {
4940 struct socket *newsock;
4941 int retval;
4942
4943 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
4944 if (retval < 0)
4945 goto out;
4946
4947 /* Map the socket to an unused fd that can be returned to the user. */
4948 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
4949 if (retval < 0) {
4950 sock_release(newsock);
4951 goto out;
4952 }
4953
4954 *newfile = sock_alloc_file(newsock, 0, NULL);
4955 if (IS_ERR(*newfile)) {
4956 put_unused_fd(retval);
4957 sock_release(newsock);
4958 retval = PTR_ERR(*newfile);
4959 *newfile = NULL;
4960 return retval;
4961 }
4962
4963 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4964 retval);
4965
4966 peeloff->sd = retval;
4967
4968 if (flags & SOCK_NONBLOCK)
4969 (*newfile)->f_flags |= O_NONBLOCK;
4970 out:
4971 return retval;
4972 }
4973
4974 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4975 {
4976 sctp_peeloff_arg_t peeloff;
4977 struct file *newfile = NULL;
4978 int retval = 0;
4979
4980 if (len < sizeof(sctp_peeloff_arg_t))
4981 return -EINVAL;
4982 len = sizeof(sctp_peeloff_arg_t);
4983 if (copy_from_user(&peeloff, optval, len))
4984 return -EFAULT;
4985
4986 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
4987 if (retval < 0)
4988 goto out;
4989
4990 /* Return the fd mapped to the new socket. */
4991 if (put_user(len, optlen)) {
4992 fput(newfile);
4993 put_unused_fd(retval);
4994 return -EFAULT;
4995 }
4996
4997 if (copy_to_user(optval, &peeloff, len)) {
4998 fput(newfile);
4999 put_unused_fd(retval);
5000 return -EFAULT;
5001 }
5002 fd_install(retval, newfile);
5003 out:
5004 return retval;
5005 }
5006
5007 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5008 char __user *optval, int __user *optlen)
5009 {
5010 sctp_peeloff_flags_arg_t peeloff;
5011 struct file *newfile = NULL;
5012 int retval = 0;
5013
5014 if (len < sizeof(sctp_peeloff_flags_arg_t))
5015 return -EINVAL;
5016 len = sizeof(sctp_peeloff_flags_arg_t);
5017 if (copy_from_user(&peeloff, optval, len))
5018 return -EFAULT;
5019
5020 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5021 &newfile, peeloff.flags);
5022 if (retval < 0)
5023 goto out;
5024
5025 /* Return the fd mapped to the new socket. */
5026 if (put_user(len, optlen)) {
5027 fput(newfile);
5028 put_unused_fd(retval);
5029 return -EFAULT;
5030 }
5031
5032 if (copy_to_user(optval, &peeloff, len)) {
5033 fput(newfile);
5034 put_unused_fd(retval);
5035 return -EFAULT;
5036 }
5037 fd_install(retval, newfile);
5038 out:
5039 return retval;
5040 }
5041
5042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5043 *
5044 * Applications can enable or disable heartbeats for any peer address of
5045 * an association, modify an address's heartbeat interval, force a
5046 * heartbeat to be sent immediately, and adjust the address's maximum
5047 * number of retransmissions sent before an address is considered
5048 * unreachable. The following structure is used to access and modify an
5049 * address's parameters:
5050 *
5051 * struct sctp_paddrparams {
5052 * sctp_assoc_t spp_assoc_id;
5053 * struct sockaddr_storage spp_address;
5054 * uint32_t spp_hbinterval;
5055 * uint16_t spp_pathmaxrxt;
5056 * uint32_t spp_pathmtu;
5057 * uint32_t spp_sackdelay;
5058 * uint32_t spp_flags;
5059 * };
5060 *
5061 * spp_assoc_id - (one-to-many style socket) This is filled in the
5062 * application, and identifies the association for
5063 * this query.
5064 * spp_address - This specifies which address is of interest.
5065 * spp_hbinterval - This contains the value of the heartbeat interval,
5066 * in milliseconds. If a value of zero
5067 * is present in this field then no changes are to
5068 * be made to this parameter.
5069 * spp_pathmaxrxt - This contains the maximum number of
5070 * retransmissions before this address shall be
5071 * considered unreachable. If a value of zero
5072 * is present in this field then no changes are to
5073 * be made to this parameter.
5074 * spp_pathmtu - When Path MTU discovery is disabled the value
5075 * specified here will be the "fixed" path mtu.
5076 * Note that if the spp_address field is empty
5077 * then all associations on this address will
5078 * have this fixed path mtu set upon them.
5079 *
5080 * spp_sackdelay - When delayed sack is enabled, this value specifies
5081 * the number of milliseconds that sacks will be delayed
5082 * for. This value will apply to all addresses of an
5083 * association if the spp_address field is empty. Note
5084 * also, that if delayed sack is enabled and this
5085 * value is set to 0, no change is made to the last
5086 * recorded delayed sack timer value.
5087 *
5088 * spp_flags - These flags are used to control various features
5089 * on an association. The flag field may contain
5090 * zero or more of the following options.
5091 *
5092 * SPP_HB_ENABLE - Enable heartbeats on the
5093 * specified address. Note that if the address
5094 * field is empty all addresses for the association
5095 * have heartbeats enabled upon them.
5096 *
5097 * SPP_HB_DISABLE - Disable heartbeats on the
5098 * speicifed address. Note that if the address
5099 * field is empty all addresses for the association
5100 * will have their heartbeats disabled. Note also
5101 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5102 * mutually exclusive, only one of these two should
5103 * be specified. Enabling both fields will have
5104 * undetermined results.
5105 *
5106 * SPP_HB_DEMAND - Request a user initiated heartbeat
5107 * to be made immediately.
5108 *
5109 * SPP_PMTUD_ENABLE - This field will enable PMTU
5110 * discovery upon the specified address. Note that
5111 * if the address feild is empty then all addresses
5112 * on the association are effected.
5113 *
5114 * SPP_PMTUD_DISABLE - This field will disable PMTU
5115 * discovery upon the specified address. Note that
5116 * if the address feild is empty then all addresses
5117 * on the association are effected. Not also that
5118 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5119 * exclusive. Enabling both will have undetermined
5120 * results.
5121 *
5122 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5123 * on delayed sack. The time specified in spp_sackdelay
5124 * is used to specify the sack delay for this address. Note
5125 * that if spp_address is empty then all addresses will
5126 * enable delayed sack and take on the sack delay
5127 * value specified in spp_sackdelay.
5128 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5129 * off delayed sack. If the spp_address field is blank then
5130 * delayed sack is disabled for the entire association. Note
5131 * also that this field is mutually exclusive to
5132 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5133 * results.
5134 */
5135 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5136 char __user *optval, int __user *optlen)
5137 {
5138 struct sctp_paddrparams params;
5139 struct sctp_transport *trans = NULL;
5140 struct sctp_association *asoc = NULL;
5141 struct sctp_sock *sp = sctp_sk(sk);
5142
5143 if (len < sizeof(struct sctp_paddrparams))
5144 return -EINVAL;
5145 len = sizeof(struct sctp_paddrparams);
5146 if (copy_from_user(&params, optval, len))
5147 return -EFAULT;
5148
5149 /* If an address other than INADDR_ANY is specified, and
5150 * no transport is found, then the request is invalid.
5151 */
5152 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5153 trans = sctp_addr_id2transport(sk, &params.spp_address,
5154 params.spp_assoc_id);
5155 if (!trans) {
5156 pr_debug("%s: failed no transport\n", __func__);
5157 return -EINVAL;
5158 }
5159 }
5160
5161 /* Get association, if assoc_id != 0 and the socket is a one
5162 * to many style socket, and an association was not found, then
5163 * the id was invalid.
5164 */
5165 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5166 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5167 pr_debug("%s: failed no association\n", __func__);
5168 return -EINVAL;
5169 }
5170
5171 if (trans) {
5172 /* Fetch transport values. */
5173 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5174 params.spp_pathmtu = trans->pathmtu;
5175 params.spp_pathmaxrxt = trans->pathmaxrxt;
5176 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5177
5178 /*draft-11 doesn't say what to return in spp_flags*/
5179 params.spp_flags = trans->param_flags;
5180 } else if (asoc) {
5181 /* Fetch association values. */
5182 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5183 params.spp_pathmtu = asoc->pathmtu;
5184 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5185 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5186
5187 /*draft-11 doesn't say what to return in spp_flags*/
5188 params.spp_flags = asoc->param_flags;
5189 } else {
5190 /* Fetch socket values. */
5191 params.spp_hbinterval = sp->hbinterval;
5192 params.spp_pathmtu = sp->pathmtu;
5193 params.spp_sackdelay = sp->sackdelay;
5194 params.spp_pathmaxrxt = sp->pathmaxrxt;
5195
5196 /*draft-11 doesn't say what to return in spp_flags*/
5197 params.spp_flags = sp->param_flags;
5198 }
5199
5200 if (copy_to_user(optval, &params, len))
5201 return -EFAULT;
5202
5203 if (put_user(len, optlen))
5204 return -EFAULT;
5205
5206 return 0;
5207 }
5208
5209 /*
5210 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5211 *
5212 * This option will effect the way delayed acks are performed. This
5213 * option allows you to get or set the delayed ack time, in
5214 * milliseconds. It also allows changing the delayed ack frequency.
5215 * Changing the frequency to 1 disables the delayed sack algorithm. If
5216 * the assoc_id is 0, then this sets or gets the endpoints default
5217 * values. If the assoc_id field is non-zero, then the set or get
5218 * effects the specified association for the one to many model (the
5219 * assoc_id field is ignored by the one to one model). Note that if
5220 * sack_delay or sack_freq are 0 when setting this option, then the
5221 * current values will remain unchanged.
5222 *
5223 * struct sctp_sack_info {
5224 * sctp_assoc_t sack_assoc_id;
5225 * uint32_t sack_delay;
5226 * uint32_t sack_freq;
5227 * };
5228 *
5229 * sack_assoc_id - This parameter, indicates which association the user
5230 * is performing an action upon. Note that if this field's value is
5231 * zero then the endpoints default value is changed (effecting future
5232 * associations only).
5233 *
5234 * sack_delay - This parameter contains the number of milliseconds that
5235 * the user is requesting the delayed ACK timer be set to. Note that
5236 * this value is defined in the standard to be between 200 and 500
5237 * milliseconds.
5238 *
5239 * sack_freq - This parameter contains the number of packets that must
5240 * be received before a sack is sent without waiting for the delay
5241 * timer to expire. The default value for this is 2, setting this
5242 * value to 1 will disable the delayed sack algorithm.
5243 */
5244 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5245 char __user *optval,
5246 int __user *optlen)
5247 {
5248 struct sctp_sack_info params;
5249 struct sctp_association *asoc = NULL;
5250 struct sctp_sock *sp = sctp_sk(sk);
5251
5252 if (len >= sizeof(struct sctp_sack_info)) {
5253 len = sizeof(struct sctp_sack_info);
5254
5255 if (copy_from_user(&params, optval, len))
5256 return -EFAULT;
5257 } else if (len == sizeof(struct sctp_assoc_value)) {
5258 pr_warn_ratelimited(DEPRECATED
5259 "%s (pid %d) "
5260 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5261 "Use struct sctp_sack_info instead\n",
5262 current->comm, task_pid_nr(current));
5263 if (copy_from_user(&params, optval, len))
5264 return -EFAULT;
5265 } else
5266 return -EINVAL;
5267
5268 /* Get association, if sack_assoc_id != 0 and the socket is a one
5269 * to many style socket, and an association was not found, then
5270 * the id was invalid.
5271 */
5272 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5273 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5274 return -EINVAL;
5275
5276 if (asoc) {
5277 /* Fetch association values. */
5278 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5279 params.sack_delay = jiffies_to_msecs(
5280 asoc->sackdelay);
5281 params.sack_freq = asoc->sackfreq;
5282
5283 } else {
5284 params.sack_delay = 0;
5285 params.sack_freq = 1;
5286 }
5287 } else {
5288 /* Fetch socket values. */
5289 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5290 params.sack_delay = sp->sackdelay;
5291 params.sack_freq = sp->sackfreq;
5292 } else {
5293 params.sack_delay = 0;
5294 params.sack_freq = 1;
5295 }
5296 }
5297
5298 if (copy_to_user(optval, &params, len))
5299 return -EFAULT;
5300
5301 if (put_user(len, optlen))
5302 return -EFAULT;
5303
5304 return 0;
5305 }
5306
5307 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5308 *
5309 * Applications can specify protocol parameters for the default association
5310 * initialization. The option name argument to setsockopt() and getsockopt()
5311 * is SCTP_INITMSG.
5312 *
5313 * Setting initialization parameters is effective only on an unconnected
5314 * socket (for UDP-style sockets only future associations are effected
5315 * by the change). With TCP-style sockets, this option is inherited by
5316 * sockets derived from a listener socket.
5317 */
5318 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5319 {
5320 if (len < sizeof(struct sctp_initmsg))
5321 return -EINVAL;
5322 len = sizeof(struct sctp_initmsg);
5323 if (put_user(len, optlen))
5324 return -EFAULT;
5325 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5326 return -EFAULT;
5327 return 0;
5328 }
5329
5330
5331 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5332 char __user *optval, int __user *optlen)
5333 {
5334 struct sctp_association *asoc;
5335 int cnt = 0;
5336 struct sctp_getaddrs getaddrs;
5337 struct sctp_transport *from;
5338 void __user *to;
5339 union sctp_addr temp;
5340 struct sctp_sock *sp = sctp_sk(sk);
5341 int addrlen;
5342 size_t space_left;
5343 int bytes_copied;
5344
5345 if (len < sizeof(struct sctp_getaddrs))
5346 return -EINVAL;
5347
5348 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5349 return -EFAULT;
5350
5351 /* For UDP-style sockets, id specifies the association to query. */
5352 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5353 if (!asoc)
5354 return -EINVAL;
5355
5356 to = optval + offsetof(struct sctp_getaddrs, addrs);
5357 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5358
5359 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5360 transports) {
5361 memcpy(&temp, &from->ipaddr, sizeof(temp));
5362 addrlen = sctp_get_pf_specific(sk->sk_family)
5363 ->addr_to_user(sp, &temp);
5364 if (space_left < addrlen)
5365 return -ENOMEM;
5366 if (copy_to_user(to, &temp, addrlen))
5367 return -EFAULT;
5368 to += addrlen;
5369 cnt++;
5370 space_left -= addrlen;
5371 }
5372
5373 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5374 return -EFAULT;
5375 bytes_copied = ((char __user *)to) - optval;
5376 if (put_user(bytes_copied, optlen))
5377 return -EFAULT;
5378
5379 return 0;
5380 }
5381
5382 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5383 size_t space_left, int *bytes_copied)
5384 {
5385 struct sctp_sockaddr_entry *addr;
5386 union sctp_addr temp;
5387 int cnt = 0;
5388 int addrlen;
5389 struct net *net = sock_net(sk);
5390
5391 rcu_read_lock();
5392 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5393 if (!addr->valid)
5394 continue;
5395
5396 if ((PF_INET == sk->sk_family) &&
5397 (AF_INET6 == addr->a.sa.sa_family))
5398 continue;
5399 if ((PF_INET6 == sk->sk_family) &&
5400 inet_v6_ipv6only(sk) &&
5401 (AF_INET == addr->a.sa.sa_family))
5402 continue;
5403 memcpy(&temp, &addr->a, sizeof(temp));
5404 if (!temp.v4.sin_port)
5405 temp.v4.sin_port = htons(port);
5406
5407 addrlen = sctp_get_pf_specific(sk->sk_family)
5408 ->addr_to_user(sctp_sk(sk), &temp);
5409
5410 if (space_left < addrlen) {
5411 cnt = -ENOMEM;
5412 break;
5413 }
5414 memcpy(to, &temp, addrlen);
5415
5416 to += addrlen;
5417 cnt++;
5418 space_left -= addrlen;
5419 *bytes_copied += addrlen;
5420 }
5421 rcu_read_unlock();
5422
5423 return cnt;
5424 }
5425
5426
5427 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5428 char __user *optval, int __user *optlen)
5429 {
5430 struct sctp_bind_addr *bp;
5431 struct sctp_association *asoc;
5432 int cnt = 0;
5433 struct sctp_getaddrs getaddrs;
5434 struct sctp_sockaddr_entry *addr;
5435 void __user *to;
5436 union sctp_addr temp;
5437 struct sctp_sock *sp = sctp_sk(sk);
5438 int addrlen;
5439 int err = 0;
5440 size_t space_left;
5441 int bytes_copied = 0;
5442 void *addrs;
5443 void *buf;
5444
5445 if (len < sizeof(struct sctp_getaddrs))
5446 return -EINVAL;
5447
5448 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5449 return -EFAULT;
5450
5451 /*
5452 * For UDP-style sockets, id specifies the association to query.
5453 * If the id field is set to the value '0' then the locally bound
5454 * addresses are returned without regard to any particular
5455 * association.
5456 */
5457 if (0 == getaddrs.assoc_id) {
5458 bp = &sctp_sk(sk)->ep->base.bind_addr;
5459 } else {
5460 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5461 if (!asoc)
5462 return -EINVAL;
5463 bp = &asoc->base.bind_addr;
5464 }
5465
5466 to = optval + offsetof(struct sctp_getaddrs, addrs);
5467 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5468
5469 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5470 if (!addrs)
5471 return -ENOMEM;
5472
5473 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5474 * addresses from the global local address list.
5475 */
5476 if (sctp_list_single_entry(&bp->address_list)) {
5477 addr = list_entry(bp->address_list.next,
5478 struct sctp_sockaddr_entry, list);
5479 if (sctp_is_any(sk, &addr->a)) {
5480 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5481 space_left, &bytes_copied);
5482 if (cnt < 0) {
5483 err = cnt;
5484 goto out;
5485 }
5486 goto copy_getaddrs;
5487 }
5488 }
5489
5490 buf = addrs;
5491 /* Protection on the bound address list is not needed since
5492 * in the socket option context we hold a socket lock and
5493 * thus the bound address list can't change.
5494 */
5495 list_for_each_entry(addr, &bp->address_list, list) {
5496 memcpy(&temp, &addr->a, sizeof(temp));
5497 addrlen = sctp_get_pf_specific(sk->sk_family)
5498 ->addr_to_user(sp, &temp);
5499 if (space_left < addrlen) {
5500 err = -ENOMEM; /*fixme: right error?*/
5501 goto out;
5502 }
5503 memcpy(buf, &temp, addrlen);
5504 buf += addrlen;
5505 bytes_copied += addrlen;
5506 cnt++;
5507 space_left -= addrlen;
5508 }
5509
5510 copy_getaddrs:
5511 if (copy_to_user(to, addrs, bytes_copied)) {
5512 err = -EFAULT;
5513 goto out;
5514 }
5515 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5516 err = -EFAULT;
5517 goto out;
5518 }
5519 if (put_user(bytes_copied, optlen))
5520 err = -EFAULT;
5521 out:
5522 kfree(addrs);
5523 return err;
5524 }
5525
5526 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5527 *
5528 * Requests that the local SCTP stack use the enclosed peer address as
5529 * the association primary. The enclosed address must be one of the
5530 * association peer's addresses.
5531 */
5532 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5533 char __user *optval, int __user *optlen)
5534 {
5535 struct sctp_prim prim;
5536 struct sctp_association *asoc;
5537 struct sctp_sock *sp = sctp_sk(sk);
5538
5539 if (len < sizeof(struct sctp_prim))
5540 return -EINVAL;
5541
5542 len = sizeof(struct sctp_prim);
5543
5544 if (copy_from_user(&prim, optval, len))
5545 return -EFAULT;
5546
5547 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5548 if (!asoc)
5549 return -EINVAL;
5550
5551 if (!asoc->peer.primary_path)
5552 return -ENOTCONN;
5553
5554 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5555 asoc->peer.primary_path->af_specific->sockaddr_len);
5556
5557 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5558 (union sctp_addr *)&prim.ssp_addr);
5559
5560 if (put_user(len, optlen))
5561 return -EFAULT;
5562 if (copy_to_user(optval, &prim, len))
5563 return -EFAULT;
5564
5565 return 0;
5566 }
5567
5568 /*
5569 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5570 *
5571 * Requests that the local endpoint set the specified Adaptation Layer
5572 * Indication parameter for all future INIT and INIT-ACK exchanges.
5573 */
5574 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5575 char __user *optval, int __user *optlen)
5576 {
5577 struct sctp_setadaptation adaptation;
5578
5579 if (len < sizeof(struct sctp_setadaptation))
5580 return -EINVAL;
5581
5582 len = sizeof(struct sctp_setadaptation);
5583
5584 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5585
5586 if (put_user(len, optlen))
5587 return -EFAULT;
5588 if (copy_to_user(optval, &adaptation, len))
5589 return -EFAULT;
5590
5591 return 0;
5592 }
5593
5594 /*
5595 *
5596 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5597 *
5598 * Applications that wish to use the sendto() system call may wish to
5599 * specify a default set of parameters that would normally be supplied
5600 * through the inclusion of ancillary data. This socket option allows
5601 * such an application to set the default sctp_sndrcvinfo structure.
5602
5603
5604 * The application that wishes to use this socket option simply passes
5605 * in to this call the sctp_sndrcvinfo structure defined in Section
5606 * 5.2.2) The input parameters accepted by this call include
5607 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5608 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5609 * to this call if the caller is using the UDP model.
5610 *
5611 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5612 */
5613 static int sctp_getsockopt_default_send_param(struct sock *sk,
5614 int len, char __user *optval,
5615 int __user *optlen)
5616 {
5617 struct sctp_sock *sp = sctp_sk(sk);
5618 struct sctp_association *asoc;
5619 struct sctp_sndrcvinfo info;
5620
5621 if (len < sizeof(info))
5622 return -EINVAL;
5623
5624 len = sizeof(info);
5625
5626 if (copy_from_user(&info, optval, len))
5627 return -EFAULT;
5628
5629 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5630 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5631 return -EINVAL;
5632 if (asoc) {
5633 info.sinfo_stream = asoc->default_stream;
5634 info.sinfo_flags = asoc->default_flags;
5635 info.sinfo_ppid = asoc->default_ppid;
5636 info.sinfo_context = asoc->default_context;
5637 info.sinfo_timetolive = asoc->default_timetolive;
5638 } else {
5639 info.sinfo_stream = sp->default_stream;
5640 info.sinfo_flags = sp->default_flags;
5641 info.sinfo_ppid = sp->default_ppid;
5642 info.sinfo_context = sp->default_context;
5643 info.sinfo_timetolive = sp->default_timetolive;
5644 }
5645
5646 if (put_user(len, optlen))
5647 return -EFAULT;
5648 if (copy_to_user(optval, &info, len))
5649 return -EFAULT;
5650
5651 return 0;
5652 }
5653
5654 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5655 * (SCTP_DEFAULT_SNDINFO)
5656 */
5657 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5658 char __user *optval,
5659 int __user *optlen)
5660 {
5661 struct sctp_sock *sp = sctp_sk(sk);
5662 struct sctp_association *asoc;
5663 struct sctp_sndinfo info;
5664
5665 if (len < sizeof(info))
5666 return -EINVAL;
5667
5668 len = sizeof(info);
5669
5670 if (copy_from_user(&info, optval, len))
5671 return -EFAULT;
5672
5673 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5674 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5675 return -EINVAL;
5676 if (asoc) {
5677 info.snd_sid = asoc->default_stream;
5678 info.snd_flags = asoc->default_flags;
5679 info.snd_ppid = asoc->default_ppid;
5680 info.snd_context = asoc->default_context;
5681 } else {
5682 info.snd_sid = sp->default_stream;
5683 info.snd_flags = sp->default_flags;
5684 info.snd_ppid = sp->default_ppid;
5685 info.snd_context = sp->default_context;
5686 }
5687
5688 if (put_user(len, optlen))
5689 return -EFAULT;
5690 if (copy_to_user(optval, &info, len))
5691 return -EFAULT;
5692
5693 return 0;
5694 }
5695
5696 /*
5697 *
5698 * 7.1.5 SCTP_NODELAY
5699 *
5700 * Turn on/off any Nagle-like algorithm. This means that packets are
5701 * generally sent as soon as possible and no unnecessary delays are
5702 * introduced, at the cost of more packets in the network. Expects an
5703 * integer boolean flag.
5704 */
5705
5706 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5707 char __user *optval, int __user *optlen)
5708 {
5709 int val;
5710
5711 if (len < sizeof(int))
5712 return -EINVAL;
5713
5714 len = sizeof(int);
5715 val = (sctp_sk(sk)->nodelay == 1);
5716 if (put_user(len, optlen))
5717 return -EFAULT;
5718 if (copy_to_user(optval, &val, len))
5719 return -EFAULT;
5720 return 0;
5721 }
5722
5723 /*
5724 *
5725 * 7.1.1 SCTP_RTOINFO
5726 *
5727 * The protocol parameters used to initialize and bound retransmission
5728 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5729 * and modify these parameters.
5730 * All parameters are time values, in milliseconds. A value of 0, when
5731 * modifying the parameters, indicates that the current value should not
5732 * be changed.
5733 *
5734 */
5735 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5736 char __user *optval,
5737 int __user *optlen) {
5738 struct sctp_rtoinfo rtoinfo;
5739 struct sctp_association *asoc;
5740
5741 if (len < sizeof (struct sctp_rtoinfo))
5742 return -EINVAL;
5743
5744 len = sizeof(struct sctp_rtoinfo);
5745
5746 if (copy_from_user(&rtoinfo, optval, len))
5747 return -EFAULT;
5748
5749 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5750
5751 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5752 return -EINVAL;
5753
5754 /* Values corresponding to the specific association. */
5755 if (asoc) {
5756 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5757 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5758 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5759 } else {
5760 /* Values corresponding to the endpoint. */
5761 struct sctp_sock *sp = sctp_sk(sk);
5762
5763 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5764 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5765 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5766 }
5767
5768 if (put_user(len, optlen))
5769 return -EFAULT;
5770
5771 if (copy_to_user(optval, &rtoinfo, len))
5772 return -EFAULT;
5773
5774 return 0;
5775 }
5776
5777 /*
5778 *
5779 * 7.1.2 SCTP_ASSOCINFO
5780 *
5781 * This option is used to tune the maximum retransmission attempts
5782 * of the association.
5783 * Returns an error if the new association retransmission value is
5784 * greater than the sum of the retransmission value of the peer.
5785 * See [SCTP] for more information.
5786 *
5787 */
5788 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5789 char __user *optval,
5790 int __user *optlen)
5791 {
5792
5793 struct sctp_assocparams assocparams;
5794 struct sctp_association *asoc;
5795 struct list_head *pos;
5796 int cnt = 0;
5797
5798 if (len < sizeof (struct sctp_assocparams))
5799 return -EINVAL;
5800
5801 len = sizeof(struct sctp_assocparams);
5802
5803 if (copy_from_user(&assocparams, optval, len))
5804 return -EFAULT;
5805
5806 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5807
5808 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5809 return -EINVAL;
5810
5811 /* Values correspoinding to the specific association */
5812 if (asoc) {
5813 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5814 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5815 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5816 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5817
5818 list_for_each(pos, &asoc->peer.transport_addr_list) {
5819 cnt++;
5820 }
5821
5822 assocparams.sasoc_number_peer_destinations = cnt;
5823 } else {
5824 /* Values corresponding to the endpoint */
5825 struct sctp_sock *sp = sctp_sk(sk);
5826
5827 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5828 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5829 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5830 assocparams.sasoc_cookie_life =
5831 sp->assocparams.sasoc_cookie_life;
5832 assocparams.sasoc_number_peer_destinations =
5833 sp->assocparams.
5834 sasoc_number_peer_destinations;
5835 }
5836
5837 if (put_user(len, optlen))
5838 return -EFAULT;
5839
5840 if (copy_to_user(optval, &assocparams, len))
5841 return -EFAULT;
5842
5843 return 0;
5844 }
5845
5846 /*
5847 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5848 *
5849 * This socket option is a boolean flag which turns on or off mapped V4
5850 * addresses. If this option is turned on and the socket is type
5851 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5852 * If this option is turned off, then no mapping will be done of V4
5853 * addresses and a user will receive both PF_INET6 and PF_INET type
5854 * addresses on the socket.
5855 */
5856 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5857 char __user *optval, int __user *optlen)
5858 {
5859 int val;
5860 struct sctp_sock *sp = sctp_sk(sk);
5861
5862 if (len < sizeof(int))
5863 return -EINVAL;
5864
5865 len = sizeof(int);
5866 val = sp->v4mapped;
5867 if (put_user(len, optlen))
5868 return -EFAULT;
5869 if (copy_to_user(optval, &val, len))
5870 return -EFAULT;
5871
5872 return 0;
5873 }
5874
5875 /*
5876 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5877 * (chapter and verse is quoted at sctp_setsockopt_context())
5878 */
5879 static int sctp_getsockopt_context(struct sock *sk, int len,
5880 char __user *optval, int __user *optlen)
5881 {
5882 struct sctp_assoc_value params;
5883 struct sctp_sock *sp;
5884 struct sctp_association *asoc;
5885
5886 if (len < sizeof(struct sctp_assoc_value))
5887 return -EINVAL;
5888
5889 len = sizeof(struct sctp_assoc_value);
5890
5891 if (copy_from_user(&params, optval, len))
5892 return -EFAULT;
5893
5894 sp = sctp_sk(sk);
5895
5896 if (params.assoc_id != 0) {
5897 asoc = sctp_id2assoc(sk, params.assoc_id);
5898 if (!asoc)
5899 return -EINVAL;
5900 params.assoc_value = asoc->default_rcv_context;
5901 } else {
5902 params.assoc_value = sp->default_rcv_context;
5903 }
5904
5905 if (put_user(len, optlen))
5906 return -EFAULT;
5907 if (copy_to_user(optval, &params, len))
5908 return -EFAULT;
5909
5910 return 0;
5911 }
5912
5913 /*
5914 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5915 * This option will get or set the maximum size to put in any outgoing
5916 * SCTP DATA chunk. If a message is larger than this size it will be
5917 * fragmented by SCTP into the specified size. Note that the underlying
5918 * SCTP implementation may fragment into smaller sized chunks when the
5919 * PMTU of the underlying association is smaller than the value set by
5920 * the user. The default value for this option is '0' which indicates
5921 * the user is NOT limiting fragmentation and only the PMTU will effect
5922 * SCTP's choice of DATA chunk size. Note also that values set larger
5923 * than the maximum size of an IP datagram will effectively let SCTP
5924 * control fragmentation (i.e. the same as setting this option to 0).
5925 *
5926 * The following structure is used to access and modify this parameter:
5927 *
5928 * struct sctp_assoc_value {
5929 * sctp_assoc_t assoc_id;
5930 * uint32_t assoc_value;
5931 * };
5932 *
5933 * assoc_id: This parameter is ignored for one-to-one style sockets.
5934 * For one-to-many style sockets this parameter indicates which
5935 * association the user is performing an action upon. Note that if
5936 * this field's value is zero then the endpoints default value is
5937 * changed (effecting future associations only).
5938 * assoc_value: This parameter specifies the maximum size in bytes.
5939 */
5940 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5941 char __user *optval, int __user *optlen)
5942 {
5943 struct sctp_assoc_value params;
5944 struct sctp_association *asoc;
5945
5946 if (len == sizeof(int)) {
5947 pr_warn_ratelimited(DEPRECATED
5948 "%s (pid %d) "
5949 "Use of int in maxseg socket option.\n"
5950 "Use struct sctp_assoc_value instead\n",
5951 current->comm, task_pid_nr(current));
5952 params.assoc_id = 0;
5953 } else if (len >= sizeof(struct sctp_assoc_value)) {
5954 len = sizeof(struct sctp_assoc_value);
5955 if (copy_from_user(&params, optval, sizeof(params)))
5956 return -EFAULT;
5957 } else
5958 return -EINVAL;
5959
5960 asoc = sctp_id2assoc(sk, params.assoc_id);
5961 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5962 return -EINVAL;
5963
5964 if (asoc)
5965 params.assoc_value = asoc->frag_point;
5966 else
5967 params.assoc_value = sctp_sk(sk)->user_frag;
5968
5969 if (put_user(len, optlen))
5970 return -EFAULT;
5971 if (len == sizeof(int)) {
5972 if (copy_to_user(optval, &params.assoc_value, len))
5973 return -EFAULT;
5974 } else {
5975 if (copy_to_user(optval, &params, len))
5976 return -EFAULT;
5977 }
5978
5979 return 0;
5980 }
5981
5982 /*
5983 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5984 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5985 */
5986 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5987 char __user *optval, int __user *optlen)
5988 {
5989 int val;
5990
5991 if (len < sizeof(int))
5992 return -EINVAL;
5993
5994 len = sizeof(int);
5995
5996 val = sctp_sk(sk)->frag_interleave;
5997 if (put_user(len, optlen))
5998 return -EFAULT;
5999 if (copy_to_user(optval, &val, len))
6000 return -EFAULT;
6001
6002 return 0;
6003 }
6004
6005 /*
6006 * 7.1.25. Set or Get the sctp partial delivery point
6007 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6008 */
6009 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6010 char __user *optval,
6011 int __user *optlen)
6012 {
6013 u32 val;
6014
6015 if (len < sizeof(u32))
6016 return -EINVAL;
6017
6018 len = sizeof(u32);
6019
6020 val = sctp_sk(sk)->pd_point;
6021 if (put_user(len, optlen))
6022 return -EFAULT;
6023 if (copy_to_user(optval, &val, len))
6024 return -EFAULT;
6025
6026 return 0;
6027 }
6028
6029 /*
6030 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6031 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6032 */
6033 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6034 char __user *optval,
6035 int __user *optlen)
6036 {
6037 struct sctp_assoc_value params;
6038 struct sctp_sock *sp;
6039 struct sctp_association *asoc;
6040
6041 if (len == sizeof(int)) {
6042 pr_warn_ratelimited(DEPRECATED
6043 "%s (pid %d) "
6044 "Use of int in max_burst socket option.\n"
6045 "Use struct sctp_assoc_value instead\n",
6046 current->comm, task_pid_nr(current));
6047 params.assoc_id = 0;
6048 } else if (len >= sizeof(struct sctp_assoc_value)) {
6049 len = sizeof(struct sctp_assoc_value);
6050 if (copy_from_user(&params, optval, len))
6051 return -EFAULT;
6052 } else
6053 return -EINVAL;
6054
6055 sp = sctp_sk(sk);
6056
6057 if (params.assoc_id != 0) {
6058 asoc = sctp_id2assoc(sk, params.assoc_id);
6059 if (!asoc)
6060 return -EINVAL;
6061 params.assoc_value = asoc->max_burst;
6062 } else
6063 params.assoc_value = sp->max_burst;
6064
6065 if (len == sizeof(int)) {
6066 if (copy_to_user(optval, &params.assoc_value, len))
6067 return -EFAULT;
6068 } else {
6069 if (copy_to_user(optval, &params, len))
6070 return -EFAULT;
6071 }
6072
6073 return 0;
6074
6075 }
6076
6077 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6078 char __user *optval, int __user *optlen)
6079 {
6080 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6081 struct sctp_hmacalgo __user *p = (void __user *)optval;
6082 struct sctp_hmac_algo_param *hmacs;
6083 __u16 data_len = 0;
6084 u32 num_idents;
6085 int i;
6086
6087 if (!ep->auth_enable)
6088 return -EACCES;
6089
6090 hmacs = ep->auth_hmacs_list;
6091 data_len = ntohs(hmacs->param_hdr.length) -
6092 sizeof(struct sctp_paramhdr);
6093
6094 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6095 return -EINVAL;
6096
6097 len = sizeof(struct sctp_hmacalgo) + data_len;
6098 num_idents = data_len / sizeof(u16);
6099
6100 if (put_user(len, optlen))
6101 return -EFAULT;
6102 if (put_user(num_idents, &p->shmac_num_idents))
6103 return -EFAULT;
6104 for (i = 0; i < num_idents; i++) {
6105 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6106
6107 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6108 return -EFAULT;
6109 }
6110 return 0;
6111 }
6112
6113 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6114 char __user *optval, int __user *optlen)
6115 {
6116 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6117 struct sctp_authkeyid val;
6118 struct sctp_association *asoc;
6119
6120 if (!ep->auth_enable)
6121 return -EACCES;
6122
6123 if (len < sizeof(struct sctp_authkeyid))
6124 return -EINVAL;
6125 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
6126 return -EFAULT;
6127
6128 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6129 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6130 return -EINVAL;
6131
6132 if (asoc)
6133 val.scact_keynumber = asoc->active_key_id;
6134 else
6135 val.scact_keynumber = ep->active_key_id;
6136
6137 len = sizeof(struct sctp_authkeyid);
6138 if (put_user(len, optlen))
6139 return -EFAULT;
6140 if (copy_to_user(optval, &val, len))
6141 return -EFAULT;
6142
6143 return 0;
6144 }
6145
6146 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6147 char __user *optval, int __user *optlen)
6148 {
6149 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6150 struct sctp_authchunks __user *p = (void __user *)optval;
6151 struct sctp_authchunks val;
6152 struct sctp_association *asoc;
6153 struct sctp_chunks_param *ch;
6154 u32 num_chunks = 0;
6155 char __user *to;
6156
6157 if (!ep->auth_enable)
6158 return -EACCES;
6159
6160 if (len < sizeof(struct sctp_authchunks))
6161 return -EINVAL;
6162
6163 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6164 return -EFAULT;
6165
6166 to = p->gauth_chunks;
6167 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6168 if (!asoc)
6169 return -EINVAL;
6170
6171 ch = asoc->peer.peer_chunks;
6172 if (!ch)
6173 goto num;
6174
6175 /* See if the user provided enough room for all the data */
6176 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6177 if (len < num_chunks)
6178 return -EINVAL;
6179
6180 if (copy_to_user(to, ch->chunks, num_chunks))
6181 return -EFAULT;
6182 num:
6183 len = sizeof(struct sctp_authchunks) + num_chunks;
6184 if (put_user(len, optlen))
6185 return -EFAULT;
6186 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6187 return -EFAULT;
6188 return 0;
6189 }
6190
6191 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6192 char __user *optval, int __user *optlen)
6193 {
6194 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6195 struct sctp_authchunks __user *p = (void __user *)optval;
6196 struct sctp_authchunks val;
6197 struct sctp_association *asoc;
6198 struct sctp_chunks_param *ch;
6199 u32 num_chunks = 0;
6200 char __user *to;
6201
6202 if (!ep->auth_enable)
6203 return -EACCES;
6204
6205 if (len < sizeof(struct sctp_authchunks))
6206 return -EINVAL;
6207
6208 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6209 return -EFAULT;
6210
6211 to = p->gauth_chunks;
6212 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6213 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6214 return -EINVAL;
6215
6216 if (asoc)
6217 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6218 else
6219 ch = ep->auth_chunk_list;
6220
6221 if (!ch)
6222 goto num;
6223
6224 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6225 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6226 return -EINVAL;
6227
6228 if (copy_to_user(to, ch->chunks, num_chunks))
6229 return -EFAULT;
6230 num:
6231 len = sizeof(struct sctp_authchunks) + num_chunks;
6232 if (put_user(len, optlen))
6233 return -EFAULT;
6234 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6235 return -EFAULT;
6236
6237 return 0;
6238 }
6239
6240 /*
6241 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6242 * This option gets the current number of associations that are attached
6243 * to a one-to-many style socket. The option value is an uint32_t.
6244 */
6245 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6246 char __user *optval, int __user *optlen)
6247 {
6248 struct sctp_sock *sp = sctp_sk(sk);
6249 struct sctp_association *asoc;
6250 u32 val = 0;
6251
6252 if (sctp_style(sk, TCP))
6253 return -EOPNOTSUPP;
6254
6255 if (len < sizeof(u32))
6256 return -EINVAL;
6257
6258 len = sizeof(u32);
6259
6260 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6261 val++;
6262 }
6263
6264 if (put_user(len, optlen))
6265 return -EFAULT;
6266 if (copy_to_user(optval, &val, len))
6267 return -EFAULT;
6268
6269 return 0;
6270 }
6271
6272 /*
6273 * 8.1.23 SCTP_AUTO_ASCONF
6274 * See the corresponding setsockopt entry as description
6275 */
6276 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6277 char __user *optval, int __user *optlen)
6278 {
6279 int val = 0;
6280
6281 if (len < sizeof(int))
6282 return -EINVAL;
6283
6284 len = sizeof(int);
6285 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6286 val = 1;
6287 if (put_user(len, optlen))
6288 return -EFAULT;
6289 if (copy_to_user(optval, &val, len))
6290 return -EFAULT;
6291 return 0;
6292 }
6293
6294 /*
6295 * 8.2.6. Get the Current Identifiers of Associations
6296 * (SCTP_GET_ASSOC_ID_LIST)
6297 *
6298 * This option gets the current list of SCTP association identifiers of
6299 * the SCTP associations handled by a one-to-many style socket.
6300 */
6301 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6302 char __user *optval, int __user *optlen)
6303 {
6304 struct sctp_sock *sp = sctp_sk(sk);
6305 struct sctp_association *asoc;
6306 struct sctp_assoc_ids *ids;
6307 u32 num = 0;
6308
6309 if (sctp_style(sk, TCP))
6310 return -EOPNOTSUPP;
6311
6312 if (len < sizeof(struct sctp_assoc_ids))
6313 return -EINVAL;
6314
6315 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6316 num++;
6317 }
6318
6319 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6320 return -EINVAL;
6321
6322 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6323
6324 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6325 if (unlikely(!ids))
6326 return -ENOMEM;
6327
6328 ids->gaids_number_of_ids = num;
6329 num = 0;
6330 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6331 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6332 }
6333
6334 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6335 kfree(ids);
6336 return -EFAULT;
6337 }
6338
6339 kfree(ids);
6340 return 0;
6341 }
6342
6343 /*
6344 * SCTP_PEER_ADDR_THLDS
6345 *
6346 * This option allows us to fetch the partially failed threshold for one or all
6347 * transports in an association. See Section 6.1 of:
6348 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6349 */
6350 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6351 char __user *optval,
6352 int len,
6353 int __user *optlen)
6354 {
6355 struct sctp_paddrthlds val;
6356 struct sctp_transport *trans;
6357 struct sctp_association *asoc;
6358
6359 if (len < sizeof(struct sctp_paddrthlds))
6360 return -EINVAL;
6361 len = sizeof(struct sctp_paddrthlds);
6362 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6363 return -EFAULT;
6364
6365 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6366 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6367 if (!asoc)
6368 return -ENOENT;
6369
6370 val.spt_pathpfthld = asoc->pf_retrans;
6371 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6372 } else {
6373 trans = sctp_addr_id2transport(sk, &val.spt_address,
6374 val.spt_assoc_id);
6375 if (!trans)
6376 return -ENOENT;
6377
6378 val.spt_pathmaxrxt = trans->pathmaxrxt;
6379 val.spt_pathpfthld = trans->pf_retrans;
6380 }
6381
6382 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6383 return -EFAULT;
6384
6385 return 0;
6386 }
6387
6388 /*
6389 * SCTP_GET_ASSOC_STATS
6390 *
6391 * This option retrieves local per endpoint statistics. It is modeled
6392 * after OpenSolaris' implementation
6393 */
6394 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6395 char __user *optval,
6396 int __user *optlen)
6397 {
6398 struct sctp_assoc_stats sas;
6399 struct sctp_association *asoc = NULL;
6400
6401 /* User must provide at least the assoc id */
6402 if (len < sizeof(sctp_assoc_t))
6403 return -EINVAL;
6404
6405 /* Allow the struct to grow and fill in as much as possible */
6406 len = min_t(size_t, len, sizeof(sas));
6407
6408 if (copy_from_user(&sas, optval, len))
6409 return -EFAULT;
6410
6411 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6412 if (!asoc)
6413 return -EINVAL;
6414
6415 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6416 sas.sas_gapcnt = asoc->stats.gapcnt;
6417 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6418 sas.sas_osacks = asoc->stats.osacks;
6419 sas.sas_isacks = asoc->stats.isacks;
6420 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6421 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6422 sas.sas_oodchunks = asoc->stats.oodchunks;
6423 sas.sas_iodchunks = asoc->stats.iodchunks;
6424 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6425 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6426 sas.sas_idupchunks = asoc->stats.idupchunks;
6427 sas.sas_opackets = asoc->stats.opackets;
6428 sas.sas_ipackets = asoc->stats.ipackets;
6429
6430 /* New high max rto observed, will return 0 if not a single
6431 * RTO update took place. obs_rto_ipaddr will be bogus
6432 * in such a case
6433 */
6434 sas.sas_maxrto = asoc->stats.max_obs_rto;
6435 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6436 sizeof(struct sockaddr_storage));
6437
6438 /* Mark beginning of a new observation period */
6439 asoc->stats.max_obs_rto = asoc->rto_min;
6440
6441 if (put_user(len, optlen))
6442 return -EFAULT;
6443
6444 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6445
6446 if (copy_to_user(optval, &sas, len))
6447 return -EFAULT;
6448
6449 return 0;
6450 }
6451
6452 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6453 char __user *optval,
6454 int __user *optlen)
6455 {
6456 int val = 0;
6457
6458 if (len < sizeof(int))
6459 return -EINVAL;
6460
6461 len = sizeof(int);
6462 if (sctp_sk(sk)->recvrcvinfo)
6463 val = 1;
6464 if (put_user(len, optlen))
6465 return -EFAULT;
6466 if (copy_to_user(optval, &val, len))
6467 return -EFAULT;
6468
6469 return 0;
6470 }
6471
6472 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6473 char __user *optval,
6474 int __user *optlen)
6475 {
6476 int val = 0;
6477
6478 if (len < sizeof(int))
6479 return -EINVAL;
6480
6481 len = sizeof(int);
6482 if (sctp_sk(sk)->recvnxtinfo)
6483 val = 1;
6484 if (put_user(len, optlen))
6485 return -EFAULT;
6486 if (copy_to_user(optval, &val, len))
6487 return -EFAULT;
6488
6489 return 0;
6490 }
6491
6492 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6493 char __user *optval,
6494 int __user *optlen)
6495 {
6496 struct sctp_assoc_value params;
6497 struct sctp_association *asoc;
6498 int retval = -EFAULT;
6499
6500 if (len < sizeof(params)) {
6501 retval = -EINVAL;
6502 goto out;
6503 }
6504
6505 len = sizeof(params);
6506 if (copy_from_user(&params, optval, len))
6507 goto out;
6508
6509 asoc = sctp_id2assoc(sk, params.assoc_id);
6510 if (asoc) {
6511 params.assoc_value = asoc->prsctp_enable;
6512 } else if (!params.assoc_id) {
6513 struct sctp_sock *sp = sctp_sk(sk);
6514
6515 params.assoc_value = sp->ep->prsctp_enable;
6516 } else {
6517 retval = -EINVAL;
6518 goto out;
6519 }
6520
6521 if (put_user(len, optlen))
6522 goto out;
6523
6524 if (copy_to_user(optval, &params, len))
6525 goto out;
6526
6527 retval = 0;
6528
6529 out:
6530 return retval;
6531 }
6532
6533 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6534 char __user *optval,
6535 int __user *optlen)
6536 {
6537 struct sctp_default_prinfo info;
6538 struct sctp_association *asoc;
6539 int retval = -EFAULT;
6540
6541 if (len < sizeof(info)) {
6542 retval = -EINVAL;
6543 goto out;
6544 }
6545
6546 len = sizeof(info);
6547 if (copy_from_user(&info, optval, len))
6548 goto out;
6549
6550 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6551 if (asoc) {
6552 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6553 info.pr_value = asoc->default_timetolive;
6554 } else if (!info.pr_assoc_id) {
6555 struct sctp_sock *sp = sctp_sk(sk);
6556
6557 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6558 info.pr_value = sp->default_timetolive;
6559 } else {
6560 retval = -EINVAL;
6561 goto out;
6562 }
6563
6564 if (put_user(len, optlen))
6565 goto out;
6566
6567 if (copy_to_user(optval, &info, len))
6568 goto out;
6569
6570 retval = 0;
6571
6572 out:
6573 return retval;
6574 }
6575
6576 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6577 char __user *optval,
6578 int __user *optlen)
6579 {
6580 struct sctp_prstatus params;
6581 struct sctp_association *asoc;
6582 int policy;
6583 int retval = -EINVAL;
6584
6585 if (len < sizeof(params))
6586 goto out;
6587
6588 len = sizeof(params);
6589 if (copy_from_user(&params, optval, len)) {
6590 retval = -EFAULT;
6591 goto out;
6592 }
6593
6594 policy = params.sprstat_policy;
6595 if (policy & ~SCTP_PR_SCTP_MASK)
6596 goto out;
6597
6598 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6599 if (!asoc)
6600 goto out;
6601
6602 if (policy == SCTP_PR_SCTP_NONE) {
6603 params.sprstat_abandoned_unsent = 0;
6604 params.sprstat_abandoned_sent = 0;
6605 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6606 params.sprstat_abandoned_unsent +=
6607 asoc->abandoned_unsent[policy];
6608 params.sprstat_abandoned_sent +=
6609 asoc->abandoned_sent[policy];
6610 }
6611 } else {
6612 params.sprstat_abandoned_unsent =
6613 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6614 params.sprstat_abandoned_sent =
6615 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6616 }
6617
6618 if (put_user(len, optlen)) {
6619 retval = -EFAULT;
6620 goto out;
6621 }
6622
6623 if (copy_to_user(optval, &params, len)) {
6624 retval = -EFAULT;
6625 goto out;
6626 }
6627
6628 retval = 0;
6629
6630 out:
6631 return retval;
6632 }
6633
6634 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
6635 char __user *optval,
6636 int __user *optlen)
6637 {
6638 struct sctp_stream_out *streamout;
6639 struct sctp_association *asoc;
6640 struct sctp_prstatus params;
6641 int retval = -EINVAL;
6642 int policy;
6643
6644 if (len < sizeof(params))
6645 goto out;
6646
6647 len = sizeof(params);
6648 if (copy_from_user(&params, optval, len)) {
6649 retval = -EFAULT;
6650 goto out;
6651 }
6652
6653 policy = params.sprstat_policy;
6654 if (policy & ~SCTP_PR_SCTP_MASK)
6655 goto out;
6656
6657 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6658 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
6659 goto out;
6660
6661 streamout = &asoc->stream.out[params.sprstat_sid];
6662 if (policy == SCTP_PR_SCTP_NONE) {
6663 params.sprstat_abandoned_unsent = 0;
6664 params.sprstat_abandoned_sent = 0;
6665 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6666 params.sprstat_abandoned_unsent +=
6667 streamout->abandoned_unsent[policy];
6668 params.sprstat_abandoned_sent +=
6669 streamout->abandoned_sent[policy];
6670 }
6671 } else {
6672 params.sprstat_abandoned_unsent =
6673 streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6674 params.sprstat_abandoned_sent =
6675 streamout->abandoned_sent[__SCTP_PR_INDEX(policy)];
6676 }
6677
6678 if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
6679 retval = -EFAULT;
6680 goto out;
6681 }
6682
6683 retval = 0;
6684
6685 out:
6686 return retval;
6687 }
6688
6689 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
6690 char __user *optval,
6691 int __user *optlen)
6692 {
6693 struct sctp_assoc_value params;
6694 struct sctp_association *asoc;
6695 int retval = -EFAULT;
6696
6697 if (len < sizeof(params)) {
6698 retval = -EINVAL;
6699 goto out;
6700 }
6701
6702 len = sizeof(params);
6703 if (copy_from_user(&params, optval, len))
6704 goto out;
6705
6706 asoc = sctp_id2assoc(sk, params.assoc_id);
6707 if (asoc) {
6708 params.assoc_value = asoc->reconf_enable;
6709 } else if (!params.assoc_id) {
6710 struct sctp_sock *sp = sctp_sk(sk);
6711
6712 params.assoc_value = sp->ep->reconf_enable;
6713 } else {
6714 retval = -EINVAL;
6715 goto out;
6716 }
6717
6718 if (put_user(len, optlen))
6719 goto out;
6720
6721 if (copy_to_user(optval, &params, len))
6722 goto out;
6723
6724 retval = 0;
6725
6726 out:
6727 return retval;
6728 }
6729
6730 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6731 char __user *optval,
6732 int __user *optlen)
6733 {
6734 struct sctp_assoc_value params;
6735 struct sctp_association *asoc;
6736 int retval = -EFAULT;
6737
6738 if (len < sizeof(params)) {
6739 retval = -EINVAL;
6740 goto out;
6741 }
6742
6743 len = sizeof(params);
6744 if (copy_from_user(&params, optval, len))
6745 goto out;
6746
6747 asoc = sctp_id2assoc(sk, params.assoc_id);
6748 if (asoc) {
6749 params.assoc_value = asoc->strreset_enable;
6750 } else if (!params.assoc_id) {
6751 struct sctp_sock *sp = sctp_sk(sk);
6752
6753 params.assoc_value = sp->ep->strreset_enable;
6754 } else {
6755 retval = -EINVAL;
6756 goto out;
6757 }
6758
6759 if (put_user(len, optlen))
6760 goto out;
6761
6762 if (copy_to_user(optval, &params, len))
6763 goto out;
6764
6765 retval = 0;
6766
6767 out:
6768 return retval;
6769 }
6770
6771 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6772 char __user *optval, int __user *optlen)
6773 {
6774 int retval = 0;
6775 int len;
6776
6777 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6778
6779 /* I can hardly begin to describe how wrong this is. This is
6780 * so broken as to be worse than useless. The API draft
6781 * REALLY is NOT helpful here... I am not convinced that the
6782 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6783 * are at all well-founded.
6784 */
6785 if (level != SOL_SCTP) {
6786 struct sctp_af *af = sctp_sk(sk)->pf->af;
6787
6788 retval = af->getsockopt(sk, level, optname, optval, optlen);
6789 return retval;
6790 }
6791
6792 if (get_user(len, optlen))
6793 return -EFAULT;
6794
6795 if (len < 0)
6796 return -EINVAL;
6797
6798 lock_sock(sk);
6799
6800 switch (optname) {
6801 case SCTP_STATUS:
6802 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6803 break;
6804 case SCTP_DISABLE_FRAGMENTS:
6805 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6806 optlen);
6807 break;
6808 case SCTP_EVENTS:
6809 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6810 break;
6811 case SCTP_AUTOCLOSE:
6812 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6813 break;
6814 case SCTP_SOCKOPT_PEELOFF:
6815 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6816 break;
6817 case SCTP_SOCKOPT_PEELOFF_FLAGS:
6818 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
6819 break;
6820 case SCTP_PEER_ADDR_PARAMS:
6821 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6822 optlen);
6823 break;
6824 case SCTP_DELAYED_SACK:
6825 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6826 optlen);
6827 break;
6828 case SCTP_INITMSG:
6829 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6830 break;
6831 case SCTP_GET_PEER_ADDRS:
6832 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6833 optlen);
6834 break;
6835 case SCTP_GET_LOCAL_ADDRS:
6836 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6837 optlen);
6838 break;
6839 case SCTP_SOCKOPT_CONNECTX3:
6840 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6841 break;
6842 case SCTP_DEFAULT_SEND_PARAM:
6843 retval = sctp_getsockopt_default_send_param(sk, len,
6844 optval, optlen);
6845 break;
6846 case SCTP_DEFAULT_SNDINFO:
6847 retval = sctp_getsockopt_default_sndinfo(sk, len,
6848 optval, optlen);
6849 break;
6850 case SCTP_PRIMARY_ADDR:
6851 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6852 break;
6853 case SCTP_NODELAY:
6854 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6855 break;
6856 case SCTP_RTOINFO:
6857 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6858 break;
6859 case SCTP_ASSOCINFO:
6860 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6861 break;
6862 case SCTP_I_WANT_MAPPED_V4_ADDR:
6863 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6864 break;
6865 case SCTP_MAXSEG:
6866 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6867 break;
6868 case SCTP_GET_PEER_ADDR_INFO:
6869 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6870 optlen);
6871 break;
6872 case SCTP_ADAPTATION_LAYER:
6873 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6874 optlen);
6875 break;
6876 case SCTP_CONTEXT:
6877 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6878 break;
6879 case SCTP_FRAGMENT_INTERLEAVE:
6880 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6881 optlen);
6882 break;
6883 case SCTP_PARTIAL_DELIVERY_POINT:
6884 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6885 optlen);
6886 break;
6887 case SCTP_MAX_BURST:
6888 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6889 break;
6890 case SCTP_AUTH_KEY:
6891 case SCTP_AUTH_CHUNK:
6892 case SCTP_AUTH_DELETE_KEY:
6893 retval = -EOPNOTSUPP;
6894 break;
6895 case SCTP_HMAC_IDENT:
6896 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6897 break;
6898 case SCTP_AUTH_ACTIVE_KEY:
6899 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6900 break;
6901 case SCTP_PEER_AUTH_CHUNKS:
6902 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6903 optlen);
6904 break;
6905 case SCTP_LOCAL_AUTH_CHUNKS:
6906 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6907 optlen);
6908 break;
6909 case SCTP_GET_ASSOC_NUMBER:
6910 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6911 break;
6912 case SCTP_GET_ASSOC_ID_LIST:
6913 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6914 break;
6915 case SCTP_AUTO_ASCONF:
6916 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6917 break;
6918 case SCTP_PEER_ADDR_THLDS:
6919 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6920 break;
6921 case SCTP_GET_ASSOC_STATS:
6922 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6923 break;
6924 case SCTP_RECVRCVINFO:
6925 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6926 break;
6927 case SCTP_RECVNXTINFO:
6928 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6929 break;
6930 case SCTP_PR_SUPPORTED:
6931 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6932 break;
6933 case SCTP_DEFAULT_PRINFO:
6934 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6935 optlen);
6936 break;
6937 case SCTP_PR_ASSOC_STATUS:
6938 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6939 optlen);
6940 break;
6941 case SCTP_PR_STREAM_STATUS:
6942 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
6943 optlen);
6944 break;
6945 case SCTP_RECONFIG_SUPPORTED:
6946 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
6947 optlen);
6948 break;
6949 case SCTP_ENABLE_STREAM_RESET:
6950 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
6951 optlen);
6952 break;
6953 default:
6954 retval = -ENOPROTOOPT;
6955 break;
6956 }
6957
6958 release_sock(sk);
6959 return retval;
6960 }
6961
6962 static int sctp_hash(struct sock *sk)
6963 {
6964 /* STUB */
6965 return 0;
6966 }
6967
6968 static void sctp_unhash(struct sock *sk)
6969 {
6970 /* STUB */
6971 }
6972
6973 /* Check if port is acceptable. Possibly find first available port.
6974 *
6975 * The port hash table (contained in the 'global' SCTP protocol storage
6976 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6977 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6978 * list (the list number is the port number hashed out, so as you
6979 * would expect from a hash function, all the ports in a given list have
6980 * such a number that hashes out to the same list number; you were
6981 * expecting that, right?); so each list has a set of ports, with a
6982 * link to the socket (struct sock) that uses it, the port number and
6983 * a fastreuse flag (FIXME: NPI ipg).
6984 */
6985 static struct sctp_bind_bucket *sctp_bucket_create(
6986 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6987
6988 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6989 {
6990 struct sctp_bind_hashbucket *head; /* hash list */
6991 struct sctp_bind_bucket *pp;
6992 unsigned short snum;
6993 int ret;
6994
6995 snum = ntohs(addr->v4.sin_port);
6996
6997 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6998
6999 local_bh_disable();
7000
7001 if (snum == 0) {
7002 /* Search for an available port. */
7003 int low, high, remaining, index;
7004 unsigned int rover;
7005 struct net *net = sock_net(sk);
7006
7007 inet_get_local_port_range(net, &low, &high);
7008 remaining = (high - low) + 1;
7009 rover = prandom_u32() % remaining + low;
7010
7011 do {
7012 rover++;
7013 if ((rover < low) || (rover > high))
7014 rover = low;
7015 if (inet_is_local_reserved_port(net, rover))
7016 continue;
7017 index = sctp_phashfn(sock_net(sk), rover);
7018 head = &sctp_port_hashtable[index];
7019 spin_lock(&head->lock);
7020 sctp_for_each_hentry(pp, &head->chain)
7021 if ((pp->port == rover) &&
7022 net_eq(sock_net(sk), pp->net))
7023 goto next;
7024 break;
7025 next:
7026 spin_unlock(&head->lock);
7027 } while (--remaining > 0);
7028
7029 /* Exhausted local port range during search? */
7030 ret = 1;
7031 if (remaining <= 0)
7032 goto fail;
7033
7034 /* OK, here is the one we will use. HEAD (the port
7035 * hash table list entry) is non-NULL and we hold it's
7036 * mutex.
7037 */
7038 snum = rover;
7039 } else {
7040 /* We are given an specific port number; we verify
7041 * that it is not being used. If it is used, we will
7042 * exahust the search in the hash list corresponding
7043 * to the port number (snum) - we detect that with the
7044 * port iterator, pp being NULL.
7045 */
7046 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7047 spin_lock(&head->lock);
7048 sctp_for_each_hentry(pp, &head->chain) {
7049 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7050 goto pp_found;
7051 }
7052 }
7053 pp = NULL;
7054 goto pp_not_found;
7055 pp_found:
7056 if (!hlist_empty(&pp->owner)) {
7057 /* We had a port hash table hit - there is an
7058 * available port (pp != NULL) and it is being
7059 * used by other socket (pp->owner not empty); that other
7060 * socket is going to be sk2.
7061 */
7062 int reuse = sk->sk_reuse;
7063 struct sock *sk2;
7064
7065 pr_debug("%s: found a possible match\n", __func__);
7066
7067 if (pp->fastreuse && sk->sk_reuse &&
7068 sk->sk_state != SCTP_SS_LISTENING)
7069 goto success;
7070
7071 /* Run through the list of sockets bound to the port
7072 * (pp->port) [via the pointers bind_next and
7073 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7074 * we get the endpoint they describe and run through
7075 * the endpoint's list of IP (v4 or v6) addresses,
7076 * comparing each of the addresses with the address of
7077 * the socket sk. If we find a match, then that means
7078 * that this port/socket (sk) combination are already
7079 * in an endpoint.
7080 */
7081 sk_for_each_bound(sk2, &pp->owner) {
7082 struct sctp_endpoint *ep2;
7083 ep2 = sctp_sk(sk2)->ep;
7084
7085 if (sk == sk2 ||
7086 (reuse && sk2->sk_reuse &&
7087 sk2->sk_state != SCTP_SS_LISTENING))
7088 continue;
7089
7090 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7091 sctp_sk(sk2), sctp_sk(sk))) {
7092 ret = (long)sk2;
7093 goto fail_unlock;
7094 }
7095 }
7096
7097 pr_debug("%s: found a match\n", __func__);
7098 }
7099 pp_not_found:
7100 /* If there was a hash table miss, create a new port. */
7101 ret = 1;
7102 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7103 goto fail_unlock;
7104
7105 /* In either case (hit or miss), make sure fastreuse is 1 only
7106 * if sk->sk_reuse is too (that is, if the caller requested
7107 * SO_REUSEADDR on this socket -sk-).
7108 */
7109 if (hlist_empty(&pp->owner)) {
7110 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
7111 pp->fastreuse = 1;
7112 else
7113 pp->fastreuse = 0;
7114 } else if (pp->fastreuse &&
7115 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
7116 pp->fastreuse = 0;
7117
7118 /* We are set, so fill up all the data in the hash table
7119 * entry, tie the socket list information with the rest of the
7120 * sockets FIXME: Blurry, NPI (ipg).
7121 */
7122 success:
7123 if (!sctp_sk(sk)->bind_hash) {
7124 inet_sk(sk)->inet_num = snum;
7125 sk_add_bind_node(sk, &pp->owner);
7126 sctp_sk(sk)->bind_hash = pp;
7127 }
7128 ret = 0;
7129
7130 fail_unlock:
7131 spin_unlock(&head->lock);
7132
7133 fail:
7134 local_bh_enable();
7135 return ret;
7136 }
7137
7138 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
7139 * port is requested.
7140 */
7141 static int sctp_get_port(struct sock *sk, unsigned short snum)
7142 {
7143 union sctp_addr addr;
7144 struct sctp_af *af = sctp_sk(sk)->pf->af;
7145
7146 /* Set up a dummy address struct from the sk. */
7147 af->from_sk(&addr, sk);
7148 addr.v4.sin_port = htons(snum);
7149
7150 /* Note: sk->sk_num gets filled in if ephemeral port request. */
7151 return !!sctp_get_port_local(sk, &addr);
7152 }
7153
7154 /*
7155 * Move a socket to LISTENING state.
7156 */
7157 static int sctp_listen_start(struct sock *sk, int backlog)
7158 {
7159 struct sctp_sock *sp = sctp_sk(sk);
7160 struct sctp_endpoint *ep = sp->ep;
7161 struct crypto_shash *tfm = NULL;
7162 char alg[32];
7163
7164 /* Allocate HMAC for generating cookie. */
7165 if (!sp->hmac && sp->sctp_hmac_alg) {
7166 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7167 tfm = crypto_alloc_shash(alg, 0, 0);
7168 if (IS_ERR(tfm)) {
7169 net_info_ratelimited("failed to load transform for %s: %ld\n",
7170 sp->sctp_hmac_alg, PTR_ERR(tfm));
7171 return -ENOSYS;
7172 }
7173 sctp_sk(sk)->hmac = tfm;
7174 }
7175
7176 /*
7177 * If a bind() or sctp_bindx() is not called prior to a listen()
7178 * call that allows new associations to be accepted, the system
7179 * picks an ephemeral port and will choose an address set equivalent
7180 * to binding with a wildcard address.
7181 *
7182 * This is not currently spelled out in the SCTP sockets
7183 * extensions draft, but follows the practice as seen in TCP
7184 * sockets.
7185 *
7186 */
7187 sk->sk_state = SCTP_SS_LISTENING;
7188 if (!ep->base.bind_addr.port) {
7189 if (sctp_autobind(sk))
7190 return -EAGAIN;
7191 } else {
7192 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7193 sk->sk_state = SCTP_SS_CLOSED;
7194 return -EADDRINUSE;
7195 }
7196 }
7197
7198 sk->sk_max_ack_backlog = backlog;
7199 sctp_hash_endpoint(ep);
7200 return 0;
7201 }
7202
7203 /*
7204 * 4.1.3 / 5.1.3 listen()
7205 *
7206 * By default, new associations are not accepted for UDP style sockets.
7207 * An application uses listen() to mark a socket as being able to
7208 * accept new associations.
7209 *
7210 * On TCP style sockets, applications use listen() to ready the SCTP
7211 * endpoint for accepting inbound associations.
7212 *
7213 * On both types of endpoints a backlog of '0' disables listening.
7214 *
7215 * Move a socket to LISTENING state.
7216 */
7217 int sctp_inet_listen(struct socket *sock, int backlog)
7218 {
7219 struct sock *sk = sock->sk;
7220 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7221 int err = -EINVAL;
7222
7223 if (unlikely(backlog < 0))
7224 return err;
7225
7226 lock_sock(sk);
7227
7228 /* Peeled-off sockets are not allowed to listen(). */
7229 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7230 goto out;
7231
7232 if (sock->state != SS_UNCONNECTED)
7233 goto out;
7234
7235 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7236 goto out;
7237
7238 /* If backlog is zero, disable listening. */
7239 if (!backlog) {
7240 if (sctp_sstate(sk, CLOSED))
7241 goto out;
7242
7243 err = 0;
7244 sctp_unhash_endpoint(ep);
7245 sk->sk_state = SCTP_SS_CLOSED;
7246 if (sk->sk_reuse)
7247 sctp_sk(sk)->bind_hash->fastreuse = 1;
7248 goto out;
7249 }
7250
7251 /* If we are already listening, just update the backlog */
7252 if (sctp_sstate(sk, LISTENING))
7253 sk->sk_max_ack_backlog = backlog;
7254 else {
7255 err = sctp_listen_start(sk, backlog);
7256 if (err)
7257 goto out;
7258 }
7259
7260 err = 0;
7261 out:
7262 release_sock(sk);
7263 return err;
7264 }
7265
7266 /*
7267 * This function is done by modeling the current datagram_poll() and the
7268 * tcp_poll(). Note that, based on these implementations, we don't
7269 * lock the socket in this function, even though it seems that,
7270 * ideally, locking or some other mechanisms can be used to ensure
7271 * the integrity of the counters (sndbuf and wmem_alloc) used
7272 * in this place. We assume that we don't need locks either until proven
7273 * otherwise.
7274 *
7275 * Another thing to note is that we include the Async I/O support
7276 * here, again, by modeling the current TCP/UDP code. We don't have
7277 * a good way to test with it yet.
7278 */
7279 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7280 {
7281 struct sock *sk = sock->sk;
7282 struct sctp_sock *sp = sctp_sk(sk);
7283 unsigned int mask;
7284
7285 poll_wait(file, sk_sleep(sk), wait);
7286
7287 sock_rps_record_flow(sk);
7288
7289 /* A TCP-style listening socket becomes readable when the accept queue
7290 * is not empty.
7291 */
7292 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7293 return (!list_empty(&sp->ep->asocs)) ?
7294 (POLLIN | POLLRDNORM) : 0;
7295
7296 mask = 0;
7297
7298 /* Is there any exceptional events? */
7299 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7300 mask |= POLLERR |
7301 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7302 if (sk->sk_shutdown & RCV_SHUTDOWN)
7303 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7304 if (sk->sk_shutdown == SHUTDOWN_MASK)
7305 mask |= POLLHUP;
7306
7307 /* Is it readable? Reconsider this code with TCP-style support. */
7308 if (!skb_queue_empty(&sk->sk_receive_queue))
7309 mask |= POLLIN | POLLRDNORM;
7310
7311 /* The association is either gone or not ready. */
7312 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7313 return mask;
7314
7315 /* Is it writable? */
7316 if (sctp_writeable(sk)) {
7317 mask |= POLLOUT | POLLWRNORM;
7318 } else {
7319 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7320 /*
7321 * Since the socket is not locked, the buffer
7322 * might be made available after the writeable check and
7323 * before the bit is set. This could cause a lost I/O
7324 * signal. tcp_poll() has a race breaker for this race
7325 * condition. Based on their implementation, we put
7326 * in the following code to cover it as well.
7327 */
7328 if (sctp_writeable(sk))
7329 mask |= POLLOUT | POLLWRNORM;
7330 }
7331 return mask;
7332 }
7333
7334 /********************************************************************
7335 * 2nd Level Abstractions
7336 ********************************************************************/
7337
7338 static struct sctp_bind_bucket *sctp_bucket_create(
7339 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7340 {
7341 struct sctp_bind_bucket *pp;
7342
7343 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7344 if (pp) {
7345 SCTP_DBG_OBJCNT_INC(bind_bucket);
7346 pp->port = snum;
7347 pp->fastreuse = 0;
7348 INIT_HLIST_HEAD(&pp->owner);
7349 pp->net = net;
7350 hlist_add_head(&pp->node, &head->chain);
7351 }
7352 return pp;
7353 }
7354
7355 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7356 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7357 {
7358 if (pp && hlist_empty(&pp->owner)) {
7359 __hlist_del(&pp->node);
7360 kmem_cache_free(sctp_bucket_cachep, pp);
7361 SCTP_DBG_OBJCNT_DEC(bind_bucket);
7362 }
7363 }
7364
7365 /* Release this socket's reference to a local port. */
7366 static inline void __sctp_put_port(struct sock *sk)
7367 {
7368 struct sctp_bind_hashbucket *head =
7369 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7370 inet_sk(sk)->inet_num)];
7371 struct sctp_bind_bucket *pp;
7372
7373 spin_lock(&head->lock);
7374 pp = sctp_sk(sk)->bind_hash;
7375 __sk_del_bind_node(sk);
7376 sctp_sk(sk)->bind_hash = NULL;
7377 inet_sk(sk)->inet_num = 0;
7378 sctp_bucket_destroy(pp);
7379 spin_unlock(&head->lock);
7380 }
7381
7382 void sctp_put_port(struct sock *sk)
7383 {
7384 local_bh_disable();
7385 __sctp_put_port(sk);
7386 local_bh_enable();
7387 }
7388
7389 /*
7390 * The system picks an ephemeral port and choose an address set equivalent
7391 * to binding with a wildcard address.
7392 * One of those addresses will be the primary address for the association.
7393 * This automatically enables the multihoming capability of SCTP.
7394 */
7395 static int sctp_autobind(struct sock *sk)
7396 {
7397 union sctp_addr autoaddr;
7398 struct sctp_af *af;
7399 __be16 port;
7400
7401 /* Initialize a local sockaddr structure to INADDR_ANY. */
7402 af = sctp_sk(sk)->pf->af;
7403
7404 port = htons(inet_sk(sk)->inet_num);
7405 af->inaddr_any(&autoaddr, port);
7406
7407 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7408 }
7409
7410 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7411 *
7412 * From RFC 2292
7413 * 4.2 The cmsghdr Structure *
7414 *
7415 * When ancillary data is sent or received, any number of ancillary data
7416 * objects can be specified by the msg_control and msg_controllen members of
7417 * the msghdr structure, because each object is preceded by
7418 * a cmsghdr structure defining the object's length (the cmsg_len member).
7419 * Historically Berkeley-derived implementations have passed only one object
7420 * at a time, but this API allows multiple objects to be
7421 * passed in a single call to sendmsg() or recvmsg(). The following example
7422 * shows two ancillary data objects in a control buffer.
7423 *
7424 * |<--------------------------- msg_controllen -------------------------->|
7425 * | |
7426 *
7427 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7428 *
7429 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7430 * | | |
7431 *
7432 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7433 *
7434 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7435 * | | | | |
7436 *
7437 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7438 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7439 *
7440 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7441 *
7442 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7443 * ^
7444 * |
7445 *
7446 * msg_control
7447 * points here
7448 */
7449 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
7450 {
7451 struct msghdr *my_msg = (struct msghdr *)msg;
7452 struct cmsghdr *cmsg;
7453
7454 for_each_cmsghdr(cmsg, my_msg) {
7455 if (!CMSG_OK(my_msg, cmsg))
7456 return -EINVAL;
7457
7458 /* Should we parse this header or ignore? */
7459 if (cmsg->cmsg_level != IPPROTO_SCTP)
7460 continue;
7461
7462 /* Strictly check lengths following example in SCM code. */
7463 switch (cmsg->cmsg_type) {
7464 case SCTP_INIT:
7465 /* SCTP Socket API Extension
7466 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7467 *
7468 * This cmsghdr structure provides information for
7469 * initializing new SCTP associations with sendmsg().
7470 * The SCTP_INITMSG socket option uses this same data
7471 * structure. This structure is not used for
7472 * recvmsg().
7473 *
7474 * cmsg_level cmsg_type cmsg_data[]
7475 * ------------ ------------ ----------------------
7476 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7477 */
7478 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7479 return -EINVAL;
7480
7481 cmsgs->init = CMSG_DATA(cmsg);
7482 break;
7483
7484 case SCTP_SNDRCV:
7485 /* SCTP Socket API Extension
7486 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7487 *
7488 * This cmsghdr structure specifies SCTP options for
7489 * sendmsg() and describes SCTP header information
7490 * about a received message through recvmsg().
7491 *
7492 * cmsg_level cmsg_type cmsg_data[]
7493 * ------------ ------------ ----------------------
7494 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7495 */
7496 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7497 return -EINVAL;
7498
7499 cmsgs->srinfo = CMSG_DATA(cmsg);
7500
7501 if (cmsgs->srinfo->sinfo_flags &
7502 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7503 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7504 SCTP_ABORT | SCTP_EOF))
7505 return -EINVAL;
7506 break;
7507
7508 case SCTP_SNDINFO:
7509 /* SCTP Socket API Extension
7510 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7511 *
7512 * This cmsghdr structure specifies SCTP options for
7513 * sendmsg(). This structure and SCTP_RCVINFO replaces
7514 * SCTP_SNDRCV which has been deprecated.
7515 *
7516 * cmsg_level cmsg_type cmsg_data[]
7517 * ------------ ------------ ---------------------
7518 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7519 */
7520 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7521 return -EINVAL;
7522
7523 cmsgs->sinfo = CMSG_DATA(cmsg);
7524
7525 if (cmsgs->sinfo->snd_flags &
7526 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7527 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7528 SCTP_ABORT | SCTP_EOF))
7529 return -EINVAL;
7530 break;
7531 default:
7532 return -EINVAL;
7533 }
7534 }
7535
7536 return 0;
7537 }
7538
7539 /*
7540 * Wait for a packet..
7541 * Note: This function is the same function as in core/datagram.c
7542 * with a few modifications to make lksctp work.
7543 */
7544 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7545 {
7546 int error;
7547 DEFINE_WAIT(wait);
7548
7549 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7550
7551 /* Socket errors? */
7552 error = sock_error(sk);
7553 if (error)
7554 goto out;
7555
7556 if (!skb_queue_empty(&sk->sk_receive_queue))
7557 goto ready;
7558
7559 /* Socket shut down? */
7560 if (sk->sk_shutdown & RCV_SHUTDOWN)
7561 goto out;
7562
7563 /* Sequenced packets can come disconnected. If so we report the
7564 * problem.
7565 */
7566 error = -ENOTCONN;
7567
7568 /* Is there a good reason to think that we may receive some data? */
7569 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7570 goto out;
7571
7572 /* Handle signals. */
7573 if (signal_pending(current))
7574 goto interrupted;
7575
7576 /* Let another process have a go. Since we are going to sleep
7577 * anyway. Note: This may cause odd behaviors if the message
7578 * does not fit in the user's buffer, but this seems to be the
7579 * only way to honor MSG_DONTWAIT realistically.
7580 */
7581 release_sock(sk);
7582 *timeo_p = schedule_timeout(*timeo_p);
7583 lock_sock(sk);
7584
7585 ready:
7586 finish_wait(sk_sleep(sk), &wait);
7587 return 0;
7588
7589 interrupted:
7590 error = sock_intr_errno(*timeo_p);
7591
7592 out:
7593 finish_wait(sk_sleep(sk), &wait);
7594 *err = error;
7595 return error;
7596 }
7597
7598 /* Receive a datagram.
7599 * Note: This is pretty much the same routine as in core/datagram.c
7600 * with a few changes to make lksctp work.
7601 */
7602 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7603 int noblock, int *err)
7604 {
7605 int error;
7606 struct sk_buff *skb;
7607 long timeo;
7608
7609 timeo = sock_rcvtimeo(sk, noblock);
7610
7611 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7612 MAX_SCHEDULE_TIMEOUT);
7613
7614 do {
7615 /* Again only user level code calls this function,
7616 * so nothing interrupt level
7617 * will suddenly eat the receive_queue.
7618 *
7619 * Look at current nfs client by the way...
7620 * However, this function was correct in any case. 8)
7621 */
7622 if (flags & MSG_PEEK) {
7623 skb = skb_peek(&sk->sk_receive_queue);
7624 if (skb)
7625 refcount_inc(&skb->users);
7626 } else {
7627 skb = __skb_dequeue(&sk->sk_receive_queue);
7628 }
7629
7630 if (skb)
7631 return skb;
7632
7633 /* Caller is allowed not to check sk->sk_err before calling. */
7634 error = sock_error(sk);
7635 if (error)
7636 goto no_packet;
7637
7638 if (sk->sk_shutdown & RCV_SHUTDOWN)
7639 break;
7640
7641 if (sk_can_busy_loop(sk)) {
7642 sk_busy_loop(sk, noblock);
7643
7644 if (!skb_queue_empty(&sk->sk_receive_queue))
7645 continue;
7646 }
7647
7648 /* User doesn't want to wait. */
7649 error = -EAGAIN;
7650 if (!timeo)
7651 goto no_packet;
7652 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7653
7654 return NULL;
7655
7656 no_packet:
7657 *err = error;
7658 return NULL;
7659 }
7660
7661 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7662 static void __sctp_write_space(struct sctp_association *asoc)
7663 {
7664 struct sock *sk = asoc->base.sk;
7665
7666 if (sctp_wspace(asoc) <= 0)
7667 return;
7668
7669 if (waitqueue_active(&asoc->wait))
7670 wake_up_interruptible(&asoc->wait);
7671
7672 if (sctp_writeable(sk)) {
7673 struct socket_wq *wq;
7674
7675 rcu_read_lock();
7676 wq = rcu_dereference(sk->sk_wq);
7677 if (wq) {
7678 if (waitqueue_active(&wq->wait))
7679 wake_up_interruptible(&wq->wait);
7680
7681 /* Note that we try to include the Async I/O support
7682 * here by modeling from the current TCP/UDP code.
7683 * We have not tested with it yet.
7684 */
7685 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7686 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7687 }
7688 rcu_read_unlock();
7689 }
7690 }
7691
7692 static void sctp_wake_up_waiters(struct sock *sk,
7693 struct sctp_association *asoc)
7694 {
7695 struct sctp_association *tmp = asoc;
7696
7697 /* We do accounting for the sndbuf space per association,
7698 * so we only need to wake our own association.
7699 */
7700 if (asoc->ep->sndbuf_policy)
7701 return __sctp_write_space(asoc);
7702
7703 /* If association goes down and is just flushing its
7704 * outq, then just normally notify others.
7705 */
7706 if (asoc->base.dead)
7707 return sctp_write_space(sk);
7708
7709 /* Accounting for the sndbuf space is per socket, so we
7710 * need to wake up others, try to be fair and in case of
7711 * other associations, let them have a go first instead
7712 * of just doing a sctp_write_space() call.
7713 *
7714 * Note that we reach sctp_wake_up_waiters() only when
7715 * associations free up queued chunks, thus we are under
7716 * lock and the list of associations on a socket is
7717 * guaranteed not to change.
7718 */
7719 for (tmp = list_next_entry(tmp, asocs); 1;
7720 tmp = list_next_entry(tmp, asocs)) {
7721 /* Manually skip the head element. */
7722 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7723 continue;
7724 /* Wake up association. */
7725 __sctp_write_space(tmp);
7726 /* We've reached the end. */
7727 if (tmp == asoc)
7728 break;
7729 }
7730 }
7731
7732 /* Do accounting for the sndbuf space.
7733 * Decrement the used sndbuf space of the corresponding association by the
7734 * data size which was just transmitted(freed).
7735 */
7736 static void sctp_wfree(struct sk_buff *skb)
7737 {
7738 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7739 struct sctp_association *asoc = chunk->asoc;
7740 struct sock *sk = asoc->base.sk;
7741
7742 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7743 sizeof(struct sk_buff) +
7744 sizeof(struct sctp_chunk);
7745
7746 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc));
7747
7748 /*
7749 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7750 */
7751 sk->sk_wmem_queued -= skb->truesize;
7752 sk_mem_uncharge(sk, skb->truesize);
7753
7754 sock_wfree(skb);
7755 sctp_wake_up_waiters(sk, asoc);
7756
7757 sctp_association_put(asoc);
7758 }
7759
7760 /* Do accounting for the receive space on the socket.
7761 * Accounting for the association is done in ulpevent.c
7762 * We set this as a destructor for the cloned data skbs so that
7763 * accounting is done at the correct time.
7764 */
7765 void sctp_sock_rfree(struct sk_buff *skb)
7766 {
7767 struct sock *sk = skb->sk;
7768 struct sctp_ulpevent *event = sctp_skb2event(skb);
7769
7770 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7771
7772 /*
7773 * Mimic the behavior of sock_rfree
7774 */
7775 sk_mem_uncharge(sk, event->rmem_len);
7776 }
7777
7778
7779 /* Helper function to wait for space in the sndbuf. */
7780 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7781 size_t msg_len)
7782 {
7783 struct sock *sk = asoc->base.sk;
7784 int err = 0;
7785 long current_timeo = *timeo_p;
7786 DEFINE_WAIT(wait);
7787
7788 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7789 *timeo_p, msg_len);
7790
7791 /* Increment the association's refcnt. */
7792 sctp_association_hold(asoc);
7793
7794 /* Wait on the association specific sndbuf space. */
7795 for (;;) {
7796 prepare_to_wait_exclusive(&asoc->wait, &wait,
7797 TASK_INTERRUPTIBLE);
7798 if (!*timeo_p)
7799 goto do_nonblock;
7800 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7801 asoc->base.dead)
7802 goto do_error;
7803 if (signal_pending(current))
7804 goto do_interrupted;
7805 if (msg_len <= sctp_wspace(asoc))
7806 break;
7807
7808 /* Let another process have a go. Since we are going
7809 * to sleep anyway.
7810 */
7811 release_sock(sk);
7812 current_timeo = schedule_timeout(current_timeo);
7813 lock_sock(sk);
7814
7815 *timeo_p = current_timeo;
7816 }
7817
7818 out:
7819 finish_wait(&asoc->wait, &wait);
7820
7821 /* Release the association's refcnt. */
7822 sctp_association_put(asoc);
7823
7824 return err;
7825
7826 do_error:
7827 err = -EPIPE;
7828 goto out;
7829
7830 do_interrupted:
7831 err = sock_intr_errno(*timeo_p);
7832 goto out;
7833
7834 do_nonblock:
7835 err = -EAGAIN;
7836 goto out;
7837 }
7838
7839 void sctp_data_ready(struct sock *sk)
7840 {
7841 struct socket_wq *wq;
7842
7843 rcu_read_lock();
7844 wq = rcu_dereference(sk->sk_wq);
7845 if (skwq_has_sleeper(wq))
7846 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7847 POLLRDNORM | POLLRDBAND);
7848 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7849 rcu_read_unlock();
7850 }
7851
7852 /* If socket sndbuf has changed, wake up all per association waiters. */
7853 void sctp_write_space(struct sock *sk)
7854 {
7855 struct sctp_association *asoc;
7856
7857 /* Wake up the tasks in each wait queue. */
7858 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7859 __sctp_write_space(asoc);
7860 }
7861 }
7862
7863 /* Is there any sndbuf space available on the socket?
7864 *
7865 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7866 * associations on the same socket. For a UDP-style socket with
7867 * multiple associations, it is possible for it to be "unwriteable"
7868 * prematurely. I assume that this is acceptable because
7869 * a premature "unwriteable" is better than an accidental "writeable" which
7870 * would cause an unwanted block under certain circumstances. For the 1-1
7871 * UDP-style sockets or TCP-style sockets, this code should work.
7872 * - Daisy
7873 */
7874 static int sctp_writeable(struct sock *sk)
7875 {
7876 int amt = 0;
7877
7878 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7879 if (amt < 0)
7880 amt = 0;
7881 return amt;
7882 }
7883
7884 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7885 * returns immediately with EINPROGRESS.
7886 */
7887 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7888 {
7889 struct sock *sk = asoc->base.sk;
7890 int err = 0;
7891 long current_timeo = *timeo_p;
7892 DEFINE_WAIT(wait);
7893
7894 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7895
7896 /* Increment the association's refcnt. */
7897 sctp_association_hold(asoc);
7898
7899 for (;;) {
7900 prepare_to_wait_exclusive(&asoc->wait, &wait,
7901 TASK_INTERRUPTIBLE);
7902 if (!*timeo_p)
7903 goto do_nonblock;
7904 if (sk->sk_shutdown & RCV_SHUTDOWN)
7905 break;
7906 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7907 asoc->base.dead)
7908 goto do_error;
7909 if (signal_pending(current))
7910 goto do_interrupted;
7911
7912 if (sctp_state(asoc, ESTABLISHED))
7913 break;
7914
7915 /* Let another process have a go. Since we are going
7916 * to sleep anyway.
7917 */
7918 release_sock(sk);
7919 current_timeo = schedule_timeout(current_timeo);
7920 lock_sock(sk);
7921
7922 *timeo_p = current_timeo;
7923 }
7924
7925 out:
7926 finish_wait(&asoc->wait, &wait);
7927
7928 /* Release the association's refcnt. */
7929 sctp_association_put(asoc);
7930
7931 return err;
7932
7933 do_error:
7934 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7935 err = -ETIMEDOUT;
7936 else
7937 err = -ECONNREFUSED;
7938 goto out;
7939
7940 do_interrupted:
7941 err = sock_intr_errno(*timeo_p);
7942 goto out;
7943
7944 do_nonblock:
7945 err = -EINPROGRESS;
7946 goto out;
7947 }
7948
7949 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7950 {
7951 struct sctp_endpoint *ep;
7952 int err = 0;
7953 DEFINE_WAIT(wait);
7954
7955 ep = sctp_sk(sk)->ep;
7956
7957
7958 for (;;) {
7959 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7960 TASK_INTERRUPTIBLE);
7961
7962 if (list_empty(&ep->asocs)) {
7963 release_sock(sk);
7964 timeo = schedule_timeout(timeo);
7965 lock_sock(sk);
7966 }
7967
7968 err = -EINVAL;
7969 if (!sctp_sstate(sk, LISTENING))
7970 break;
7971
7972 err = 0;
7973 if (!list_empty(&ep->asocs))
7974 break;
7975
7976 err = sock_intr_errno(timeo);
7977 if (signal_pending(current))
7978 break;
7979
7980 err = -EAGAIN;
7981 if (!timeo)
7982 break;
7983 }
7984
7985 finish_wait(sk_sleep(sk), &wait);
7986
7987 return err;
7988 }
7989
7990 static void sctp_wait_for_close(struct sock *sk, long timeout)
7991 {
7992 DEFINE_WAIT(wait);
7993
7994 do {
7995 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7996 if (list_empty(&sctp_sk(sk)->ep->asocs))
7997 break;
7998 release_sock(sk);
7999 timeout = schedule_timeout(timeout);
8000 lock_sock(sk);
8001 } while (!signal_pending(current) && timeout);
8002
8003 finish_wait(sk_sleep(sk), &wait);
8004 }
8005
8006 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8007 {
8008 struct sk_buff *frag;
8009
8010 if (!skb->data_len)
8011 goto done;
8012
8013 /* Don't forget the fragments. */
8014 skb_walk_frags(skb, frag)
8015 sctp_skb_set_owner_r_frag(frag, sk);
8016
8017 done:
8018 sctp_skb_set_owner_r(skb, sk);
8019 }
8020
8021 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8022 struct sctp_association *asoc)
8023 {
8024 struct inet_sock *inet = inet_sk(sk);
8025 struct inet_sock *newinet;
8026
8027 newsk->sk_type = sk->sk_type;
8028 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8029 newsk->sk_flags = sk->sk_flags;
8030 newsk->sk_tsflags = sk->sk_tsflags;
8031 newsk->sk_no_check_tx = sk->sk_no_check_tx;
8032 newsk->sk_no_check_rx = sk->sk_no_check_rx;
8033 newsk->sk_reuse = sk->sk_reuse;
8034
8035 newsk->sk_shutdown = sk->sk_shutdown;
8036 newsk->sk_destruct = sctp_destruct_sock;
8037 newsk->sk_family = sk->sk_family;
8038 newsk->sk_protocol = IPPROTO_SCTP;
8039 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8040 newsk->sk_sndbuf = sk->sk_sndbuf;
8041 newsk->sk_rcvbuf = sk->sk_rcvbuf;
8042 newsk->sk_lingertime = sk->sk_lingertime;
8043 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8044 newsk->sk_sndtimeo = sk->sk_sndtimeo;
8045 newsk->sk_rxhash = sk->sk_rxhash;
8046
8047 newinet = inet_sk(newsk);
8048
8049 /* Initialize sk's sport, dport, rcv_saddr and daddr for
8050 * getsockname() and getpeername()
8051 */
8052 newinet->inet_sport = inet->inet_sport;
8053 newinet->inet_saddr = inet->inet_saddr;
8054 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8055 newinet->inet_dport = htons(asoc->peer.port);
8056 newinet->pmtudisc = inet->pmtudisc;
8057 newinet->inet_id = asoc->next_tsn ^ jiffies;
8058
8059 newinet->uc_ttl = inet->uc_ttl;
8060 newinet->mc_loop = 1;
8061 newinet->mc_ttl = 1;
8062 newinet->mc_index = 0;
8063 newinet->mc_list = NULL;
8064
8065 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8066 net_enable_timestamp();
8067
8068 security_sk_clone(sk, newsk);
8069 }
8070
8071 static inline void sctp_copy_descendant(struct sock *sk_to,
8072 const struct sock *sk_from)
8073 {
8074 int ancestor_size = sizeof(struct inet_sock) +
8075 sizeof(struct sctp_sock) -
8076 offsetof(struct sctp_sock, auto_asconf_list);
8077
8078 if (sk_from->sk_family == PF_INET6)
8079 ancestor_size += sizeof(struct ipv6_pinfo);
8080
8081 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8082 }
8083
8084 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8085 * and its messages to the newsk.
8086 */
8087 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8088 struct sctp_association *assoc,
8089 enum sctp_socket_type type)
8090 {
8091 struct sctp_sock *oldsp = sctp_sk(oldsk);
8092 struct sctp_sock *newsp = sctp_sk(newsk);
8093 struct sctp_bind_bucket *pp; /* hash list port iterator */
8094 struct sctp_endpoint *newep = newsp->ep;
8095 struct sk_buff *skb, *tmp;
8096 struct sctp_ulpevent *event;
8097 struct sctp_bind_hashbucket *head;
8098
8099 /* Migrate socket buffer sizes and all the socket level options to the
8100 * new socket.
8101 */
8102 newsk->sk_sndbuf = oldsk->sk_sndbuf;
8103 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8104 /* Brute force copy old sctp opt. */
8105 sctp_copy_descendant(newsk, oldsk);
8106
8107 /* Restore the ep value that was overwritten with the above structure
8108 * copy.
8109 */
8110 newsp->ep = newep;
8111 newsp->hmac = NULL;
8112
8113 /* Hook this new socket in to the bind_hash list. */
8114 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8115 inet_sk(oldsk)->inet_num)];
8116 spin_lock_bh(&head->lock);
8117 pp = sctp_sk(oldsk)->bind_hash;
8118 sk_add_bind_node(newsk, &pp->owner);
8119 sctp_sk(newsk)->bind_hash = pp;
8120 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8121 spin_unlock_bh(&head->lock);
8122
8123 /* Copy the bind_addr list from the original endpoint to the new
8124 * endpoint so that we can handle restarts properly
8125 */
8126 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8127 &oldsp->ep->base.bind_addr, GFP_KERNEL);
8128
8129 /* Move any messages in the old socket's receive queue that are for the
8130 * peeled off association to the new socket's receive queue.
8131 */
8132 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8133 event = sctp_skb2event(skb);
8134 if (event->asoc == assoc) {
8135 __skb_unlink(skb, &oldsk->sk_receive_queue);
8136 __skb_queue_tail(&newsk->sk_receive_queue, skb);
8137 sctp_skb_set_owner_r_frag(skb, newsk);
8138 }
8139 }
8140
8141 /* Clean up any messages pending delivery due to partial
8142 * delivery. Three cases:
8143 * 1) No partial deliver; no work.
8144 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8145 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8146 */
8147 skb_queue_head_init(&newsp->pd_lobby);
8148 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8149
8150 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8151 struct sk_buff_head *queue;
8152
8153 /* Decide which queue to move pd_lobby skbs to. */
8154 if (assoc->ulpq.pd_mode) {
8155 queue = &newsp->pd_lobby;
8156 } else
8157 queue = &newsk->sk_receive_queue;
8158
8159 /* Walk through the pd_lobby, looking for skbs that
8160 * need moved to the new socket.
8161 */
8162 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8163 event = sctp_skb2event(skb);
8164 if (event->asoc == assoc) {
8165 __skb_unlink(skb, &oldsp->pd_lobby);
8166 __skb_queue_tail(queue, skb);
8167 sctp_skb_set_owner_r_frag(skb, newsk);
8168 }
8169 }
8170
8171 /* Clear up any skbs waiting for the partial
8172 * delivery to finish.
8173 */
8174 if (assoc->ulpq.pd_mode)
8175 sctp_clear_pd(oldsk, NULL);
8176
8177 }
8178
8179 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
8180 sctp_skb_set_owner_r_frag(skb, newsk);
8181
8182 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
8183 sctp_skb_set_owner_r_frag(skb, newsk);
8184
8185 /* Set the type of socket to indicate that it is peeled off from the
8186 * original UDP-style socket or created with the accept() call on a
8187 * TCP-style socket..
8188 */
8189 newsp->type = type;
8190
8191 /* Mark the new socket "in-use" by the user so that any packets
8192 * that may arrive on the association after we've moved it are
8193 * queued to the backlog. This prevents a potential race between
8194 * backlog processing on the old socket and new-packet processing
8195 * on the new socket.
8196 *
8197 * The caller has just allocated newsk so we can guarantee that other
8198 * paths won't try to lock it and then oldsk.
8199 */
8200 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8201 sctp_assoc_migrate(assoc, newsk);
8202
8203 /* If the association on the newsk is already closed before accept()
8204 * is called, set RCV_SHUTDOWN flag.
8205 */
8206 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8207 newsk->sk_state = SCTP_SS_CLOSED;
8208 newsk->sk_shutdown |= RCV_SHUTDOWN;
8209 } else {
8210 newsk->sk_state = SCTP_SS_ESTABLISHED;
8211 }
8212
8213 release_sock(newsk);
8214 }
8215
8216
8217 /* This proto struct describes the ULP interface for SCTP. */
8218 struct proto sctp_prot = {
8219 .name = "SCTP",
8220 .owner = THIS_MODULE,
8221 .close = sctp_close,
8222 .connect = sctp_connect,
8223 .disconnect = sctp_disconnect,
8224 .accept = sctp_accept,
8225 .ioctl = sctp_ioctl,
8226 .init = sctp_init_sock,
8227 .destroy = sctp_destroy_sock,
8228 .shutdown = sctp_shutdown,
8229 .setsockopt = sctp_setsockopt,
8230 .getsockopt = sctp_getsockopt,
8231 .sendmsg = sctp_sendmsg,
8232 .recvmsg = sctp_recvmsg,
8233 .bind = sctp_bind,
8234 .backlog_rcv = sctp_backlog_rcv,
8235 .hash = sctp_hash,
8236 .unhash = sctp_unhash,
8237 .get_port = sctp_get_port,
8238 .obj_size = sizeof(struct sctp_sock),
8239 .sysctl_mem = sysctl_sctp_mem,
8240 .sysctl_rmem = sysctl_sctp_rmem,
8241 .sysctl_wmem = sysctl_sctp_wmem,
8242 .memory_pressure = &sctp_memory_pressure,
8243 .enter_memory_pressure = sctp_enter_memory_pressure,
8244 .memory_allocated = &sctp_memory_allocated,
8245 .sockets_allocated = &sctp_sockets_allocated,
8246 };
8247
8248 #if IS_ENABLED(CONFIG_IPV6)
8249
8250 #include <net/transp_v6.h>
8251 static void sctp_v6_destroy_sock(struct sock *sk)
8252 {
8253 sctp_destroy_sock(sk);
8254 inet6_destroy_sock(sk);
8255 }
8256
8257 struct proto sctpv6_prot = {
8258 .name = "SCTPv6",
8259 .owner = THIS_MODULE,
8260 .close = sctp_close,
8261 .connect = sctp_connect,
8262 .disconnect = sctp_disconnect,
8263 .accept = sctp_accept,
8264 .ioctl = sctp_ioctl,
8265 .init = sctp_init_sock,
8266 .destroy = sctp_v6_destroy_sock,
8267 .shutdown = sctp_shutdown,
8268 .setsockopt = sctp_setsockopt,
8269 .getsockopt = sctp_getsockopt,
8270 .sendmsg = sctp_sendmsg,
8271 .recvmsg = sctp_recvmsg,
8272 .bind = sctp_bind,
8273 .backlog_rcv = sctp_backlog_rcv,
8274 .hash = sctp_hash,
8275 .unhash = sctp_unhash,
8276 .get_port = sctp_get_port,
8277 .obj_size = sizeof(struct sctp6_sock),
8278 .sysctl_mem = sysctl_sctp_mem,
8279 .sysctl_rmem = sysctl_sctp_rmem,
8280 .sysctl_wmem = sysctl_sctp_wmem,
8281 .memory_pressure = &sctp_memory_pressure,
8282 .enter_memory_pressure = sctp_enter_memory_pressure,
8283 .memory_allocated = &sctp_memory_allocated,
8284 .sockets_allocated = &sctp_sockets_allocated,
8285 };
8286 #endif /* IS_ENABLED(CONFIG_IPV6) */