]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/socket.c
75f35cea43713856a613e04a933696fb870ba171
[mirror_ubuntu-artful-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240 struct sctp_transport *transport;
241
242 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
243 return NULL;
244
245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 laddr,
247 &transport);
248
249 if (!addr_asoc)
250 return NULL;
251
252 id_asoc = sctp_id2assoc(sk, id);
253 if (id_asoc && (id_asoc != addr_asoc))
254 return NULL;
255
256 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
257 (union sctp_addr *)addr);
258
259 return transport;
260 }
261
262 /* API 3.1.2 bind() - UDP Style Syntax
263 * The syntax of bind() is,
264 *
265 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
266 *
267 * sd - the socket descriptor returned by socket().
268 * addr - the address structure (struct sockaddr_in or struct
269 * sockaddr_in6 [RFC 2553]),
270 * addr_len - the size of the address structure.
271 */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 int retval = 0;
275
276 lock_sock(sk);
277
278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 addr, addr_len);
280
281 /* Disallow binding twice. */
282 if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 addr_len);
285 else
286 retval = -EINVAL;
287
288 release_sock(sk);
289
290 return retval;
291 }
292
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 union sctp_addr *addr, int len)
298 {
299 struct sctp_af *af;
300
301 /* Check minimum size. */
302 if (len < sizeof (struct sockaddr))
303 return NULL;
304
305 /* V4 mapped address are really of AF_INET family */
306 if (addr->sa.sa_family == AF_INET6 &&
307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 if (!opt->pf->af_supported(AF_INET, opt))
309 return NULL;
310 } else {
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314 }
315
316 /* If we get this far, af is valid. */
317 af = sctp_get_af_specific(addr->sa.sa_family);
318
319 if (len < af->sockaddr_len)
320 return NULL;
321
322 return af;
323 }
324
325 /* Bind a local address either to an endpoint or to an association. */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 struct net *net = sock_net(sk);
329 struct sctp_sock *sp = sctp_sk(sk);
330 struct sctp_endpoint *ep = sp->ep;
331 struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 struct sctp_af *af;
333 unsigned short snum;
334 int ret = 0;
335
336 /* Common sockaddr verification. */
337 af = sctp_sockaddr_af(sp, addr, len);
338 if (!af) {
339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 __func__, sk, addr, len);
341 return -EINVAL;
342 }
343
344 snum = ntohs(addr->v4.sin_port);
345
346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 __func__, sk, &addr->sa, bp->port, snum, len);
348
349 /* PF specific bind() address verification. */
350 if (!sp->pf->bind_verify(sp, addr))
351 return -EADDRNOTAVAIL;
352
353 /* We must either be unbound, or bind to the same port.
354 * It's OK to allow 0 ports if we are already bound.
355 * We'll just inhert an already bound port in this case
356 */
357 if (bp->port) {
358 if (!snum)
359 snum = bp->port;
360 else if (snum != bp->port) {
361 pr_debug("%s: new port %d doesn't match existing port "
362 "%d\n", __func__, snum, bp->port);
363 return -EINVAL;
364 }
365 }
366
367 if (snum && snum < inet_prot_sock(net) &&
368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 return -EACCES;
370
371 /* See if the address matches any of the addresses we may have
372 * already bound before checking against other endpoints.
373 */
374 if (sctp_bind_addr_match(bp, addr, sp))
375 return -EINVAL;
376
377 /* Make sure we are allowed to bind here.
378 * The function sctp_get_port_local() does duplicate address
379 * detection.
380 */
381 addr->v4.sin_port = htons(snum);
382 if ((ret = sctp_get_port_local(sk, addr))) {
383 return -EADDRINUSE;
384 }
385
386 /* Refresh ephemeral port. */
387 if (!bp->port)
388 bp->port = inet_sk(sk)->inet_num;
389
390 /* Add the address to the bind address list.
391 * Use GFP_ATOMIC since BHs will be disabled.
392 */
393 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
394 SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 sp->pf->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403 }
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417 {
418 struct net *net = sock_net(asoc->base.sk);
419 int retval = 0;
420
421 /* If there is an outstanding ASCONF chunk, queue it for later
422 * transmission.
423 */
424 if (asoc->addip_last_asconf) {
425 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 goto out;
427 }
428
429 /* Hold the chunk until an ASCONF_ACK is received. */
430 sctp_chunk_hold(chunk);
431 retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 if (retval)
433 sctp_chunk_free(chunk);
434 else
435 asoc->addip_last_asconf = chunk;
436
437 out:
438 return retval;
439 }
440
441 /* Add a list of addresses as bind addresses to local endpoint or
442 * association.
443 *
444 * Basically run through each address specified in the addrs/addrcnt
445 * array/length pair, determine if it is IPv6 or IPv4 and call
446 * sctp_do_bind() on it.
447 *
448 * If any of them fails, then the operation will be reversed and the
449 * ones that were added will be removed.
450 *
451 * Only sctp_setsockopt_bindx() is supposed to call this function.
452 */
453 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454 {
455 int cnt;
456 int retval = 0;
457 void *addr_buf;
458 struct sockaddr *sa_addr;
459 struct sctp_af *af;
460
461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 addrs, addrcnt);
463
464 addr_buf = addrs;
465 for (cnt = 0; cnt < addrcnt; cnt++) {
466 /* The list may contain either IPv4 or IPv6 address;
467 * determine the address length for walking thru the list.
468 */
469 sa_addr = addr_buf;
470 af = sctp_get_af_specific(sa_addr->sa_family);
471 if (!af) {
472 retval = -EINVAL;
473 goto err_bindx_add;
474 }
475
476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 af->sockaddr_len);
478
479 addr_buf += af->sockaddr_len;
480
481 err_bindx_add:
482 if (retval < 0) {
483 /* Failed. Cleanup the ones that have been added */
484 if (cnt > 0)
485 sctp_bindx_rem(sk, addrs, cnt);
486 return retval;
487 }
488 }
489
490 return retval;
491 }
492
493 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494 * associations that are part of the endpoint indicating that a list of local
495 * addresses are added to the endpoint.
496 *
497 * If any of the addresses is already in the bind address list of the
498 * association, we do not send the chunk for that association. But it will not
499 * affect other associations.
500 *
501 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 */
503 static int sctp_send_asconf_add_ip(struct sock *sk,
504 struct sockaddr *addrs,
505 int addrcnt)
506 {
507 struct net *net = sock_net(sk);
508 struct sctp_sock *sp;
509 struct sctp_endpoint *ep;
510 struct sctp_association *asoc;
511 struct sctp_bind_addr *bp;
512 struct sctp_chunk *chunk;
513 struct sctp_sockaddr_entry *laddr;
514 union sctp_addr *addr;
515 union sctp_addr saveaddr;
516 void *addr_buf;
517 struct sctp_af *af;
518 struct list_head *p;
519 int i;
520 int retval = 0;
521
522 if (!net->sctp.addip_enable)
523 return retval;
524
525 sp = sctp_sk(sk);
526 ep = sp->ep;
527
528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 __func__, sk, addrs, addrcnt);
530
531 list_for_each_entry(asoc, &ep->asocs, asocs) {
532 if (!asoc->peer.asconf_capable)
533 continue;
534
535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 continue;
537
538 if (!sctp_state(asoc, ESTABLISHED))
539 continue;
540
541 /* Check if any address in the packed array of addresses is
542 * in the bind address list of the association. If so,
543 * do not send the asconf chunk to its peer, but continue with
544 * other associations.
545 */
546 addr_buf = addrs;
547 for (i = 0; i < addrcnt; i++) {
548 addr = addr_buf;
549 af = sctp_get_af_specific(addr->v4.sin_family);
550 if (!af) {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 if (sctp_assoc_lookup_laddr(asoc, addr))
556 break;
557
558 addr_buf += af->sockaddr_len;
559 }
560 if (i < addrcnt)
561 continue;
562
563 /* Use the first valid address in bind addr list of
564 * association as Address Parameter of ASCONF CHUNK.
565 */
566 bp = &asoc->base.bind_addr;
567 p = bp->address_list.next;
568 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 addrcnt, SCTP_PARAM_ADD_IP);
571 if (!chunk) {
572 retval = -ENOMEM;
573 goto out;
574 }
575
576 /* Add the new addresses to the bind address list with
577 * use_as_src set to 0.
578 */
579 addr_buf = addrs;
580 for (i = 0; i < addrcnt; i++) {
581 addr = addr_buf;
582 af = sctp_get_af_specific(addr->v4.sin_family);
583 memcpy(&saveaddr, addr, af->sockaddr_len);
584 retval = sctp_add_bind_addr(bp, &saveaddr,
585 sizeof(saveaddr),
586 SCTP_ADDR_NEW, GFP_ATOMIC);
587 addr_buf += af->sockaddr_len;
588 }
589 if (asoc->src_out_of_asoc_ok) {
590 struct sctp_transport *trans;
591
592 list_for_each_entry(trans,
593 &asoc->peer.transport_addr_list, transports) {
594 /* Clear the source and route cache */
595 sctp_transport_dst_release(trans);
596 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
597 2*asoc->pathmtu, 4380));
598 trans->ssthresh = asoc->peer.i.a_rwnd;
599 trans->rto = asoc->rto_initial;
600 sctp_max_rto(asoc, trans);
601 trans->rtt = trans->srtt = trans->rttvar = 0;
602 sctp_transport_route(trans, NULL,
603 sctp_sk(asoc->base.sk));
604 }
605 }
606 retval = sctp_send_asconf(asoc, chunk);
607 }
608
609 out:
610 return retval;
611 }
612
613 /* Remove a list of addresses from bind addresses list. Do not remove the
614 * last address.
615 *
616 * Basically run through each address specified in the addrs/addrcnt
617 * array/length pair, determine if it is IPv6 or IPv4 and call
618 * sctp_del_bind() on it.
619 *
620 * If any of them fails, then the operation will be reversed and the
621 * ones that were removed will be added back.
622 *
623 * At least one address has to be left; if only one address is
624 * available, the operation will return -EBUSY.
625 *
626 * Only sctp_setsockopt_bindx() is supposed to call this function.
627 */
628 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
629 {
630 struct sctp_sock *sp = sctp_sk(sk);
631 struct sctp_endpoint *ep = sp->ep;
632 int cnt;
633 struct sctp_bind_addr *bp = &ep->base.bind_addr;
634 int retval = 0;
635 void *addr_buf;
636 union sctp_addr *sa_addr;
637 struct sctp_af *af;
638
639 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
640 __func__, sk, addrs, addrcnt);
641
642 addr_buf = addrs;
643 for (cnt = 0; cnt < addrcnt; cnt++) {
644 /* If the bind address list is empty or if there is only one
645 * bind address, there is nothing more to be removed (we need
646 * at least one address here).
647 */
648 if (list_empty(&bp->address_list) ||
649 (sctp_list_single_entry(&bp->address_list))) {
650 retval = -EBUSY;
651 goto err_bindx_rem;
652 }
653
654 sa_addr = addr_buf;
655 af = sctp_get_af_specific(sa_addr->sa.sa_family);
656 if (!af) {
657 retval = -EINVAL;
658 goto err_bindx_rem;
659 }
660
661 if (!af->addr_valid(sa_addr, sp, NULL)) {
662 retval = -EADDRNOTAVAIL;
663 goto err_bindx_rem;
664 }
665
666 if (sa_addr->v4.sin_port &&
667 sa_addr->v4.sin_port != htons(bp->port)) {
668 retval = -EINVAL;
669 goto err_bindx_rem;
670 }
671
672 if (!sa_addr->v4.sin_port)
673 sa_addr->v4.sin_port = htons(bp->port);
674
675 /* FIXME - There is probably a need to check if sk->sk_saddr and
676 * sk->sk_rcv_addr are currently set to one of the addresses to
677 * be removed. This is something which needs to be looked into
678 * when we are fixing the outstanding issues with multi-homing
679 * socket routing and failover schemes. Refer to comments in
680 * sctp_do_bind(). -daisy
681 */
682 retval = sctp_del_bind_addr(bp, sa_addr);
683
684 addr_buf += af->sockaddr_len;
685 err_bindx_rem:
686 if (retval < 0) {
687 /* Failed. Add the ones that has been removed back */
688 if (cnt > 0)
689 sctp_bindx_add(sk, addrs, cnt);
690 return retval;
691 }
692 }
693
694 return retval;
695 }
696
697 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
698 * the associations that are part of the endpoint indicating that a list of
699 * local addresses are removed from the endpoint.
700 *
701 * If any of the addresses is already in the bind address list of the
702 * association, we do not send the chunk for that association. But it will not
703 * affect other associations.
704 *
705 * Only sctp_setsockopt_bindx() is supposed to call this function.
706 */
707 static int sctp_send_asconf_del_ip(struct sock *sk,
708 struct sockaddr *addrs,
709 int addrcnt)
710 {
711 struct net *net = sock_net(sk);
712 struct sctp_sock *sp;
713 struct sctp_endpoint *ep;
714 struct sctp_association *asoc;
715 struct sctp_transport *transport;
716 struct sctp_bind_addr *bp;
717 struct sctp_chunk *chunk;
718 union sctp_addr *laddr;
719 void *addr_buf;
720 struct sctp_af *af;
721 struct sctp_sockaddr_entry *saddr;
722 int i;
723 int retval = 0;
724 int stored = 0;
725
726 chunk = NULL;
727 if (!net->sctp.addip_enable)
728 return retval;
729
730 sp = sctp_sk(sk);
731 ep = sp->ep;
732
733 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
734 __func__, sk, addrs, addrcnt);
735
736 list_for_each_entry(asoc, &ep->asocs, asocs) {
737
738 if (!asoc->peer.asconf_capable)
739 continue;
740
741 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
742 continue;
743
744 if (!sctp_state(asoc, ESTABLISHED))
745 continue;
746
747 /* Check if any address in the packed array of addresses is
748 * not present in the bind address list of the association.
749 * If so, do not send the asconf chunk to its peer, but
750 * continue with other associations.
751 */
752 addr_buf = addrs;
753 for (i = 0; i < addrcnt; i++) {
754 laddr = addr_buf;
755 af = sctp_get_af_specific(laddr->v4.sin_family);
756 if (!af) {
757 retval = -EINVAL;
758 goto out;
759 }
760
761 if (!sctp_assoc_lookup_laddr(asoc, laddr))
762 break;
763
764 addr_buf += af->sockaddr_len;
765 }
766 if (i < addrcnt)
767 continue;
768
769 /* Find one address in the association's bind address list
770 * that is not in the packed array of addresses. This is to
771 * make sure that we do not delete all the addresses in the
772 * association.
773 */
774 bp = &asoc->base.bind_addr;
775 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
776 addrcnt, sp);
777 if ((laddr == NULL) && (addrcnt == 1)) {
778 if (asoc->asconf_addr_del_pending)
779 continue;
780 asoc->asconf_addr_del_pending =
781 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
782 if (asoc->asconf_addr_del_pending == NULL) {
783 retval = -ENOMEM;
784 goto out;
785 }
786 asoc->asconf_addr_del_pending->sa.sa_family =
787 addrs->sa_family;
788 asoc->asconf_addr_del_pending->v4.sin_port =
789 htons(bp->port);
790 if (addrs->sa_family == AF_INET) {
791 struct sockaddr_in *sin;
792
793 sin = (struct sockaddr_in *)addrs;
794 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
795 } else if (addrs->sa_family == AF_INET6) {
796 struct sockaddr_in6 *sin6;
797
798 sin6 = (struct sockaddr_in6 *)addrs;
799 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
800 }
801
802 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
803 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
804 asoc->asconf_addr_del_pending);
805
806 asoc->src_out_of_asoc_ok = 1;
807 stored = 1;
808 goto skip_mkasconf;
809 }
810
811 if (laddr == NULL)
812 return -EINVAL;
813
814 /* We do not need RCU protection throughout this loop
815 * because this is done under a socket lock from the
816 * setsockopt call.
817 */
818 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
819 SCTP_PARAM_DEL_IP);
820 if (!chunk) {
821 retval = -ENOMEM;
822 goto out;
823 }
824
825 skip_mkasconf:
826 /* Reset use_as_src flag for the addresses in the bind address
827 * list that are to be deleted.
828 */
829 addr_buf = addrs;
830 for (i = 0; i < addrcnt; i++) {
831 laddr = addr_buf;
832 af = sctp_get_af_specific(laddr->v4.sin_family);
833 list_for_each_entry(saddr, &bp->address_list, list) {
834 if (sctp_cmp_addr_exact(&saddr->a, laddr))
835 saddr->state = SCTP_ADDR_DEL;
836 }
837 addr_buf += af->sockaddr_len;
838 }
839
840 /* Update the route and saddr entries for all the transports
841 * as some of the addresses in the bind address list are
842 * about to be deleted and cannot be used as source addresses.
843 */
844 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
845 transports) {
846 sctp_transport_dst_release(transport);
847 sctp_transport_route(transport, NULL,
848 sctp_sk(asoc->base.sk));
849 }
850
851 if (stored)
852 /* We don't need to transmit ASCONF */
853 continue;
854 retval = sctp_send_asconf(asoc, chunk);
855 }
856 out:
857 return retval;
858 }
859
860 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
861 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
862 {
863 struct sock *sk = sctp_opt2sk(sp);
864 union sctp_addr *addr;
865 struct sctp_af *af;
866
867 /* It is safe to write port space in caller. */
868 addr = &addrw->a;
869 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
870 af = sctp_get_af_specific(addr->sa.sa_family);
871 if (!af)
872 return -EINVAL;
873 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
874 return -EINVAL;
875
876 if (addrw->state == SCTP_ADDR_NEW)
877 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
878 else
879 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
880 }
881
882 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
883 *
884 * API 8.1
885 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
886 * int flags);
887 *
888 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
889 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
890 * or IPv6 addresses.
891 *
892 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
893 * Section 3.1.2 for this usage.
894 *
895 * addrs is a pointer to an array of one or more socket addresses. Each
896 * address is contained in its appropriate structure (i.e. struct
897 * sockaddr_in or struct sockaddr_in6) the family of the address type
898 * must be used to distinguish the address length (note that this
899 * representation is termed a "packed array" of addresses). The caller
900 * specifies the number of addresses in the array with addrcnt.
901 *
902 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
903 * -1, and sets errno to the appropriate error code.
904 *
905 * For SCTP, the port given in each socket address must be the same, or
906 * sctp_bindx() will fail, setting errno to EINVAL.
907 *
908 * The flags parameter is formed from the bitwise OR of zero or more of
909 * the following currently defined flags:
910 *
911 * SCTP_BINDX_ADD_ADDR
912 *
913 * SCTP_BINDX_REM_ADDR
914 *
915 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
916 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
917 * addresses from the association. The two flags are mutually exclusive;
918 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
919 * not remove all addresses from an association; sctp_bindx() will
920 * reject such an attempt with EINVAL.
921 *
922 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
923 * additional addresses with an endpoint after calling bind(). Or use
924 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
925 * socket is associated with so that no new association accepted will be
926 * associated with those addresses. If the endpoint supports dynamic
927 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
928 * endpoint to send the appropriate message to the peer to change the
929 * peers address lists.
930 *
931 * Adding and removing addresses from a connected association is
932 * optional functionality. Implementations that do not support this
933 * functionality should return EOPNOTSUPP.
934 *
935 * Basically do nothing but copying the addresses from user to kernel
936 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
937 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
938 * from userspace.
939 *
940 * We don't use copy_from_user() for optimization: we first do the
941 * sanity checks (buffer size -fast- and access check-healthy
942 * pointer); if all of those succeed, then we can alloc the memory
943 * (expensive operation) needed to copy the data to kernel. Then we do
944 * the copying without checking the user space area
945 * (__copy_from_user()).
946 *
947 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
948 * it.
949 *
950 * sk The sk of the socket
951 * addrs The pointer to the addresses in user land
952 * addrssize Size of the addrs buffer
953 * op Operation to perform (add or remove, see the flags of
954 * sctp_bindx)
955 *
956 * Returns 0 if ok, <0 errno code on error.
957 */
958 static int sctp_setsockopt_bindx(struct sock *sk,
959 struct sockaddr __user *addrs,
960 int addrs_size, int op)
961 {
962 struct sockaddr *kaddrs;
963 int err;
964 int addrcnt = 0;
965 int walk_size = 0;
966 struct sockaddr *sa_addr;
967 void *addr_buf;
968 struct sctp_af *af;
969
970 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
971 __func__, sk, addrs, addrs_size, op);
972
973 if (unlikely(addrs_size <= 0))
974 return -EINVAL;
975
976 /* Check the user passed a healthy pointer. */
977 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
978 return -EFAULT;
979
980 /* Alloc space for the address array in kernel memory. */
981 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
982 if (unlikely(!kaddrs))
983 return -ENOMEM;
984
985 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
986 kfree(kaddrs);
987 return -EFAULT;
988 }
989
990 /* Walk through the addrs buffer and count the number of addresses. */
991 addr_buf = kaddrs;
992 while (walk_size < addrs_size) {
993 if (walk_size + sizeof(sa_family_t) > addrs_size) {
994 kfree(kaddrs);
995 return -EINVAL;
996 }
997
998 sa_addr = addr_buf;
999 af = sctp_get_af_specific(sa_addr->sa_family);
1000
1001 /* If the address family is not supported or if this address
1002 * causes the address buffer to overflow return EINVAL.
1003 */
1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1005 kfree(kaddrs);
1006 return -EINVAL;
1007 }
1008 addrcnt++;
1009 addr_buf += af->sockaddr_len;
1010 walk_size += af->sockaddr_len;
1011 }
1012
1013 /* Do the work. */
1014 switch (op) {
1015 case SCTP_BINDX_ADD_ADDR:
1016 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1017 if (err)
1018 goto out;
1019 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1020 break;
1021
1022 case SCTP_BINDX_REM_ADDR:
1023 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1024 if (err)
1025 goto out;
1026 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1027 break;
1028
1029 default:
1030 err = -EINVAL;
1031 break;
1032 }
1033
1034 out:
1035 kfree(kaddrs);
1036
1037 return err;
1038 }
1039
1040 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1041 *
1042 * Common routine for handling connect() and sctp_connectx().
1043 * Connect will come in with just a single address.
1044 */
1045 static int __sctp_connect(struct sock *sk,
1046 struct sockaddr *kaddrs,
1047 int addrs_size,
1048 sctp_assoc_t *assoc_id)
1049 {
1050 struct net *net = sock_net(sk);
1051 struct sctp_sock *sp;
1052 struct sctp_endpoint *ep;
1053 struct sctp_association *asoc = NULL;
1054 struct sctp_association *asoc2;
1055 struct sctp_transport *transport;
1056 union sctp_addr to;
1057 sctp_scope_t scope;
1058 long timeo;
1059 int err = 0;
1060 int addrcnt = 0;
1061 int walk_size = 0;
1062 union sctp_addr *sa_addr = NULL;
1063 void *addr_buf;
1064 unsigned short port;
1065 unsigned int f_flags = 0;
1066
1067 sp = sctp_sk(sk);
1068 ep = sp->ep;
1069
1070 /* connect() cannot be done on a socket that is already in ESTABLISHED
1071 * state - UDP-style peeled off socket or a TCP-style socket that
1072 * is already connected.
1073 * It cannot be done even on a TCP-style listening socket.
1074 */
1075 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1077 err = -EISCONN;
1078 goto out_free;
1079 }
1080
1081 /* Walk through the addrs buffer and count the number of addresses. */
1082 addr_buf = kaddrs;
1083 while (walk_size < addrs_size) {
1084 struct sctp_af *af;
1085
1086 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 err = -EINVAL;
1088 goto out_free;
1089 }
1090
1091 sa_addr = addr_buf;
1092 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093
1094 /* If the address family is not supported or if this address
1095 * causes the address buffer to overflow return EINVAL.
1096 */
1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 err = -EINVAL;
1099 goto out_free;
1100 }
1101
1102 port = ntohs(sa_addr->v4.sin_port);
1103
1104 /* Save current address so we can work with it */
1105 memcpy(&to, sa_addr, af->sockaddr_len);
1106
1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 if (err)
1109 goto out_free;
1110
1111 /* Make sure the destination port is correctly set
1112 * in all addresses.
1113 */
1114 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1115 err = -EINVAL;
1116 goto out_free;
1117 }
1118
1119 /* Check if there already is a matching association on the
1120 * endpoint (other than the one created here).
1121 */
1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 if (asoc2 && asoc2 != asoc) {
1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 err = -EISCONN;
1126 else
1127 err = -EALREADY;
1128 goto out_free;
1129 }
1130
1131 /* If we could not find a matching association on the endpoint,
1132 * make sure that there is no peeled-off association matching
1133 * the peer address even on another socket.
1134 */
1135 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 err = -EADDRNOTAVAIL;
1137 goto out_free;
1138 }
1139
1140 if (!asoc) {
1141 /* If a bind() or sctp_bindx() is not called prior to
1142 * an sctp_connectx() call, the system picks an
1143 * ephemeral port and will choose an address set
1144 * equivalent to binding with a wildcard address.
1145 */
1146 if (!ep->base.bind_addr.port) {
1147 if (sctp_autobind(sk)) {
1148 err = -EAGAIN;
1149 goto out_free;
1150 }
1151 } else {
1152 /*
1153 * If an unprivileged user inherits a 1-many
1154 * style socket with open associations on a
1155 * privileged port, it MAY be permitted to
1156 * accept new associations, but it SHOULD NOT
1157 * be permitted to open new associations.
1158 */
1159 if (ep->base.bind_addr.port <
1160 inet_prot_sock(net) &&
1161 !ns_capable(net->user_ns,
1162 CAP_NET_BIND_SERVICE)) {
1163 err = -EACCES;
1164 goto out_free;
1165 }
1166 }
1167
1168 scope = sctp_scope(&to);
1169 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1170 if (!asoc) {
1171 err = -ENOMEM;
1172 goto out_free;
1173 }
1174
1175 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1176 GFP_KERNEL);
1177 if (err < 0) {
1178 goto out_free;
1179 }
1180
1181 }
1182
1183 /* Prime the peer's transport structures. */
1184 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1185 SCTP_UNKNOWN);
1186 if (!transport) {
1187 err = -ENOMEM;
1188 goto out_free;
1189 }
1190
1191 addrcnt++;
1192 addr_buf += af->sockaddr_len;
1193 walk_size += af->sockaddr_len;
1194 }
1195
1196 /* In case the user of sctp_connectx() wants an association
1197 * id back, assign one now.
1198 */
1199 if (assoc_id) {
1200 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1201 if (err < 0)
1202 goto out_free;
1203 }
1204
1205 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1206 if (err < 0) {
1207 goto out_free;
1208 }
1209
1210 /* Initialize sk's dport and daddr for getpeername() */
1211 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1212 sp->pf->to_sk_daddr(sa_addr, sk);
1213 sk->sk_err = 0;
1214
1215 /* in-kernel sockets don't generally have a file allocated to them
1216 * if all they do is call sock_create_kern().
1217 */
1218 if (sk->sk_socket->file)
1219 f_flags = sk->sk_socket->file->f_flags;
1220
1221 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1222
1223 if (assoc_id)
1224 *assoc_id = asoc->assoc_id;
1225 err = sctp_wait_for_connect(asoc, &timeo);
1226 /* Note: the asoc may be freed after the return of
1227 * sctp_wait_for_connect.
1228 */
1229
1230 /* Don't free association on exit. */
1231 asoc = NULL;
1232
1233 out_free:
1234 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1235 __func__, asoc, kaddrs, err);
1236
1237 if (asoc) {
1238 /* sctp_primitive_ASSOCIATE may have added this association
1239 * To the hash table, try to unhash it, just in case, its a noop
1240 * if it wasn't hashed so we're safe
1241 */
1242 sctp_association_free(asoc);
1243 }
1244 return err;
1245 }
1246
1247 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1248 *
1249 * API 8.9
1250 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1251 * sctp_assoc_t *asoc);
1252 *
1253 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1254 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1255 * or IPv6 addresses.
1256 *
1257 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1258 * Section 3.1.2 for this usage.
1259 *
1260 * addrs is a pointer to an array of one or more socket addresses. Each
1261 * address is contained in its appropriate structure (i.e. struct
1262 * sockaddr_in or struct sockaddr_in6) the family of the address type
1263 * must be used to distengish the address length (note that this
1264 * representation is termed a "packed array" of addresses). The caller
1265 * specifies the number of addresses in the array with addrcnt.
1266 *
1267 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1268 * the association id of the new association. On failure, sctp_connectx()
1269 * returns -1, and sets errno to the appropriate error code. The assoc_id
1270 * is not touched by the kernel.
1271 *
1272 * For SCTP, the port given in each socket address must be the same, or
1273 * sctp_connectx() will fail, setting errno to EINVAL.
1274 *
1275 * An application can use sctp_connectx to initiate an association with
1276 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1277 * allows a caller to specify multiple addresses at which a peer can be
1278 * reached. The way the SCTP stack uses the list of addresses to set up
1279 * the association is implementation dependent. This function only
1280 * specifies that the stack will try to make use of all the addresses in
1281 * the list when needed.
1282 *
1283 * Note that the list of addresses passed in is only used for setting up
1284 * the association. It does not necessarily equal the set of addresses
1285 * the peer uses for the resulting association. If the caller wants to
1286 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1287 * retrieve them after the association has been set up.
1288 *
1289 * Basically do nothing but copying the addresses from user to kernel
1290 * land and invoking either sctp_connectx(). This is used for tunneling
1291 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1292 *
1293 * We don't use copy_from_user() for optimization: we first do the
1294 * sanity checks (buffer size -fast- and access check-healthy
1295 * pointer); if all of those succeed, then we can alloc the memory
1296 * (expensive operation) needed to copy the data to kernel. Then we do
1297 * the copying without checking the user space area
1298 * (__copy_from_user()).
1299 *
1300 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1301 * it.
1302 *
1303 * sk The sk of the socket
1304 * addrs The pointer to the addresses in user land
1305 * addrssize Size of the addrs buffer
1306 *
1307 * Returns >=0 if ok, <0 errno code on error.
1308 */
1309 static int __sctp_setsockopt_connectx(struct sock *sk,
1310 struct sockaddr __user *addrs,
1311 int addrs_size,
1312 sctp_assoc_t *assoc_id)
1313 {
1314 struct sockaddr *kaddrs;
1315 gfp_t gfp = GFP_KERNEL;
1316 int err = 0;
1317
1318 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1319 __func__, sk, addrs, addrs_size);
1320
1321 if (unlikely(addrs_size <= 0))
1322 return -EINVAL;
1323
1324 /* Check the user passed a healthy pointer. */
1325 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1326 return -EFAULT;
1327
1328 /* Alloc space for the address array in kernel memory. */
1329 if (sk->sk_socket->file)
1330 gfp = GFP_USER | __GFP_NOWARN;
1331 kaddrs = kmalloc(addrs_size, gfp);
1332 if (unlikely(!kaddrs))
1333 return -ENOMEM;
1334
1335 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1336 err = -EFAULT;
1337 } else {
1338 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1339 }
1340
1341 kfree(kaddrs);
1342
1343 return err;
1344 }
1345
1346 /*
1347 * This is an older interface. It's kept for backward compatibility
1348 * to the option that doesn't provide association id.
1349 */
1350 static int sctp_setsockopt_connectx_old(struct sock *sk,
1351 struct sockaddr __user *addrs,
1352 int addrs_size)
1353 {
1354 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1355 }
1356
1357 /*
1358 * New interface for the API. The since the API is done with a socket
1359 * option, to make it simple we feed back the association id is as a return
1360 * indication to the call. Error is always negative and association id is
1361 * always positive.
1362 */
1363 static int sctp_setsockopt_connectx(struct sock *sk,
1364 struct sockaddr __user *addrs,
1365 int addrs_size)
1366 {
1367 sctp_assoc_t assoc_id = 0;
1368 int err = 0;
1369
1370 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1371
1372 if (err)
1373 return err;
1374 else
1375 return assoc_id;
1376 }
1377
1378 /*
1379 * New (hopefully final) interface for the API.
1380 * We use the sctp_getaddrs_old structure so that use-space library
1381 * can avoid any unnecessary allocations. The only different part
1382 * is that we store the actual length of the address buffer into the
1383 * addrs_num structure member. That way we can re-use the existing
1384 * code.
1385 */
1386 #ifdef CONFIG_COMPAT
1387 struct compat_sctp_getaddrs_old {
1388 sctp_assoc_t assoc_id;
1389 s32 addr_num;
1390 compat_uptr_t addrs; /* struct sockaddr * */
1391 };
1392 #endif
1393
1394 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1395 char __user *optval,
1396 int __user *optlen)
1397 {
1398 struct sctp_getaddrs_old param;
1399 sctp_assoc_t assoc_id = 0;
1400 int err = 0;
1401
1402 #ifdef CONFIG_COMPAT
1403 if (in_compat_syscall()) {
1404 struct compat_sctp_getaddrs_old param32;
1405
1406 if (len < sizeof(param32))
1407 return -EINVAL;
1408 if (copy_from_user(&param32, optval, sizeof(param32)))
1409 return -EFAULT;
1410
1411 param.assoc_id = param32.assoc_id;
1412 param.addr_num = param32.addr_num;
1413 param.addrs = compat_ptr(param32.addrs);
1414 } else
1415 #endif
1416 {
1417 if (len < sizeof(param))
1418 return -EINVAL;
1419 if (copy_from_user(&param, optval, sizeof(param)))
1420 return -EFAULT;
1421 }
1422
1423 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1424 param.addrs, param.addr_num,
1425 &assoc_id);
1426 if (err == 0 || err == -EINPROGRESS) {
1427 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1428 return -EFAULT;
1429 if (put_user(sizeof(assoc_id), optlen))
1430 return -EFAULT;
1431 }
1432
1433 return err;
1434 }
1435
1436 /* API 3.1.4 close() - UDP Style Syntax
1437 * Applications use close() to perform graceful shutdown (as described in
1438 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1439 * by a UDP-style socket.
1440 *
1441 * The syntax is
1442 *
1443 * ret = close(int sd);
1444 *
1445 * sd - the socket descriptor of the associations to be closed.
1446 *
1447 * To gracefully shutdown a specific association represented by the
1448 * UDP-style socket, an application should use the sendmsg() call,
1449 * passing no user data, but including the appropriate flag in the
1450 * ancillary data (see Section xxxx).
1451 *
1452 * If sd in the close() call is a branched-off socket representing only
1453 * one association, the shutdown is performed on that association only.
1454 *
1455 * 4.1.6 close() - TCP Style Syntax
1456 *
1457 * Applications use close() to gracefully close down an association.
1458 *
1459 * The syntax is:
1460 *
1461 * int close(int sd);
1462 *
1463 * sd - the socket descriptor of the association to be closed.
1464 *
1465 * After an application calls close() on a socket descriptor, no further
1466 * socket operations will succeed on that descriptor.
1467 *
1468 * API 7.1.4 SO_LINGER
1469 *
1470 * An application using the TCP-style socket can use this option to
1471 * perform the SCTP ABORT primitive. The linger option structure is:
1472 *
1473 * struct linger {
1474 * int l_onoff; // option on/off
1475 * int l_linger; // linger time
1476 * };
1477 *
1478 * To enable the option, set l_onoff to 1. If the l_linger value is set
1479 * to 0, calling close() is the same as the ABORT primitive. If the
1480 * value is set to a negative value, the setsockopt() call will return
1481 * an error. If the value is set to a positive value linger_time, the
1482 * close() can be blocked for at most linger_time ms. If the graceful
1483 * shutdown phase does not finish during this period, close() will
1484 * return but the graceful shutdown phase continues in the system.
1485 */
1486 static void sctp_close(struct sock *sk, long timeout)
1487 {
1488 struct net *net = sock_net(sk);
1489 struct sctp_endpoint *ep;
1490 struct sctp_association *asoc;
1491 struct list_head *pos, *temp;
1492 unsigned int data_was_unread;
1493
1494 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1495
1496 lock_sock(sk);
1497 sk->sk_shutdown = SHUTDOWN_MASK;
1498 sk->sk_state = SCTP_SS_CLOSING;
1499
1500 ep = sctp_sk(sk)->ep;
1501
1502 /* Clean up any skbs sitting on the receive queue. */
1503 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1504 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1505
1506 /* Walk all associations on an endpoint. */
1507 list_for_each_safe(pos, temp, &ep->asocs) {
1508 asoc = list_entry(pos, struct sctp_association, asocs);
1509
1510 if (sctp_style(sk, TCP)) {
1511 /* A closed association can still be in the list if
1512 * it belongs to a TCP-style listening socket that is
1513 * not yet accepted. If so, free it. If not, send an
1514 * ABORT or SHUTDOWN based on the linger options.
1515 */
1516 if (sctp_state(asoc, CLOSED)) {
1517 sctp_association_free(asoc);
1518 continue;
1519 }
1520 }
1521
1522 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1523 !skb_queue_empty(&asoc->ulpq.reasm) ||
1524 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1525 struct sctp_chunk *chunk;
1526
1527 chunk = sctp_make_abort_user(asoc, NULL, 0);
1528 sctp_primitive_ABORT(net, asoc, chunk);
1529 } else
1530 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1531 }
1532
1533 /* On a TCP-style socket, block for at most linger_time if set. */
1534 if (sctp_style(sk, TCP) && timeout)
1535 sctp_wait_for_close(sk, timeout);
1536
1537 /* This will run the backlog queue. */
1538 release_sock(sk);
1539
1540 /* Supposedly, no process has access to the socket, but
1541 * the net layers still may.
1542 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1543 * held and that should be grabbed before socket lock.
1544 */
1545 spin_lock_bh(&net->sctp.addr_wq_lock);
1546 bh_lock_sock(sk);
1547
1548 /* Hold the sock, since sk_common_release() will put sock_put()
1549 * and we have just a little more cleanup.
1550 */
1551 sock_hold(sk);
1552 sk_common_release(sk);
1553
1554 bh_unlock_sock(sk);
1555 spin_unlock_bh(&net->sctp.addr_wq_lock);
1556
1557 sock_put(sk);
1558
1559 SCTP_DBG_OBJCNT_DEC(sock);
1560 }
1561
1562 /* Handle EPIPE error. */
1563 static int sctp_error(struct sock *sk, int flags, int err)
1564 {
1565 if (err == -EPIPE)
1566 err = sock_error(sk) ? : -EPIPE;
1567 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1568 send_sig(SIGPIPE, current, 0);
1569 return err;
1570 }
1571
1572 /* API 3.1.3 sendmsg() - UDP Style Syntax
1573 *
1574 * An application uses sendmsg() and recvmsg() calls to transmit data to
1575 * and receive data from its peer.
1576 *
1577 * ssize_t sendmsg(int socket, const struct msghdr *message,
1578 * int flags);
1579 *
1580 * socket - the socket descriptor of the endpoint.
1581 * message - pointer to the msghdr structure which contains a single
1582 * user message and possibly some ancillary data.
1583 *
1584 * See Section 5 for complete description of the data
1585 * structures.
1586 *
1587 * flags - flags sent or received with the user message, see Section
1588 * 5 for complete description of the flags.
1589 *
1590 * Note: This function could use a rewrite especially when explicit
1591 * connect support comes in.
1592 */
1593 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1594
1595 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1596
1597 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1598 {
1599 struct net *net = sock_net(sk);
1600 struct sctp_sock *sp;
1601 struct sctp_endpoint *ep;
1602 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1603 struct sctp_transport *transport, *chunk_tp;
1604 struct sctp_chunk *chunk;
1605 union sctp_addr to;
1606 struct sockaddr *msg_name = NULL;
1607 struct sctp_sndrcvinfo default_sinfo;
1608 struct sctp_sndrcvinfo *sinfo;
1609 struct sctp_initmsg *sinit;
1610 sctp_assoc_t associd = 0;
1611 sctp_cmsgs_t cmsgs = { NULL };
1612 sctp_scope_t scope;
1613 bool fill_sinfo_ttl = false, wait_connect = false;
1614 struct sctp_datamsg *datamsg;
1615 int msg_flags = msg->msg_flags;
1616 __u16 sinfo_flags = 0;
1617 long timeo;
1618 int err;
1619
1620 err = 0;
1621 sp = sctp_sk(sk);
1622 ep = sp->ep;
1623
1624 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1625 msg, msg_len, ep);
1626
1627 /* We cannot send a message over a TCP-style listening socket. */
1628 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1629 err = -EPIPE;
1630 goto out_nounlock;
1631 }
1632
1633 /* Parse out the SCTP CMSGs. */
1634 err = sctp_msghdr_parse(msg, &cmsgs);
1635 if (err) {
1636 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1637 goto out_nounlock;
1638 }
1639
1640 /* Fetch the destination address for this packet. This
1641 * address only selects the association--it is not necessarily
1642 * the address we will send to.
1643 * For a peeled-off socket, msg_name is ignored.
1644 */
1645 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1646 int msg_namelen = msg->msg_namelen;
1647
1648 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1649 msg_namelen);
1650 if (err)
1651 return err;
1652
1653 if (msg_namelen > sizeof(to))
1654 msg_namelen = sizeof(to);
1655 memcpy(&to, msg->msg_name, msg_namelen);
1656 msg_name = msg->msg_name;
1657 }
1658
1659 sinit = cmsgs.init;
1660 if (cmsgs.sinfo != NULL) {
1661 memset(&default_sinfo, 0, sizeof(default_sinfo));
1662 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1663 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1664 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1665 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1666 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1667
1668 sinfo = &default_sinfo;
1669 fill_sinfo_ttl = true;
1670 } else {
1671 sinfo = cmsgs.srinfo;
1672 }
1673 /* Did the user specify SNDINFO/SNDRCVINFO? */
1674 if (sinfo) {
1675 sinfo_flags = sinfo->sinfo_flags;
1676 associd = sinfo->sinfo_assoc_id;
1677 }
1678
1679 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1680 msg_len, sinfo_flags);
1681
1682 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1683 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1684 err = -EINVAL;
1685 goto out_nounlock;
1686 }
1687
1688 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1689 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1690 * If SCTP_ABORT is set, the message length could be non zero with
1691 * the msg_iov set to the user abort reason.
1692 */
1693 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1694 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1695 err = -EINVAL;
1696 goto out_nounlock;
1697 }
1698
1699 /* If SCTP_ADDR_OVER is set, there must be an address
1700 * specified in msg_name.
1701 */
1702 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1703 err = -EINVAL;
1704 goto out_nounlock;
1705 }
1706
1707 transport = NULL;
1708
1709 pr_debug("%s: about to look up association\n", __func__);
1710
1711 lock_sock(sk);
1712
1713 /* If a msg_name has been specified, assume this is to be used. */
1714 if (msg_name) {
1715 /* Look for a matching association on the endpoint. */
1716 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1717
1718 /* If we could not find a matching association on the
1719 * endpoint, make sure that it is not a TCP-style
1720 * socket that already has an association or there is
1721 * no peeled-off association on another socket.
1722 */
1723 if (!asoc &&
1724 ((sctp_style(sk, TCP) &&
1725 (sctp_sstate(sk, ESTABLISHED) ||
1726 sctp_sstate(sk, CLOSING))) ||
1727 sctp_endpoint_is_peeled_off(ep, &to))) {
1728 err = -EADDRNOTAVAIL;
1729 goto out_unlock;
1730 }
1731 } else {
1732 asoc = sctp_id2assoc(sk, associd);
1733 if (!asoc) {
1734 err = -EPIPE;
1735 goto out_unlock;
1736 }
1737 }
1738
1739 if (asoc) {
1740 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1741
1742 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1743 * socket that has an association in CLOSED state. This can
1744 * happen when an accepted socket has an association that is
1745 * already CLOSED.
1746 */
1747 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1748 err = -EPIPE;
1749 goto out_unlock;
1750 }
1751
1752 if (sinfo_flags & SCTP_EOF) {
1753 pr_debug("%s: shutting down association:%p\n",
1754 __func__, asoc);
1755
1756 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1757 err = 0;
1758 goto out_unlock;
1759 }
1760 if (sinfo_flags & SCTP_ABORT) {
1761
1762 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1763 if (!chunk) {
1764 err = -ENOMEM;
1765 goto out_unlock;
1766 }
1767
1768 pr_debug("%s: aborting association:%p\n",
1769 __func__, asoc);
1770
1771 sctp_primitive_ABORT(net, asoc, chunk);
1772 err = 0;
1773 goto out_unlock;
1774 }
1775 }
1776
1777 /* Do we need to create the association? */
1778 if (!asoc) {
1779 pr_debug("%s: there is no association yet\n", __func__);
1780
1781 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1782 err = -EINVAL;
1783 goto out_unlock;
1784 }
1785
1786 /* Check for invalid stream against the stream counts,
1787 * either the default or the user specified stream counts.
1788 */
1789 if (sinfo) {
1790 if (!sinit || !sinit->sinit_num_ostreams) {
1791 /* Check against the defaults. */
1792 if (sinfo->sinfo_stream >=
1793 sp->initmsg.sinit_num_ostreams) {
1794 err = -EINVAL;
1795 goto out_unlock;
1796 }
1797 } else {
1798 /* Check against the requested. */
1799 if (sinfo->sinfo_stream >=
1800 sinit->sinit_num_ostreams) {
1801 err = -EINVAL;
1802 goto out_unlock;
1803 }
1804 }
1805 }
1806
1807 /*
1808 * API 3.1.2 bind() - UDP Style Syntax
1809 * If a bind() or sctp_bindx() is not called prior to a
1810 * sendmsg() call that initiates a new association, the
1811 * system picks an ephemeral port and will choose an address
1812 * set equivalent to binding with a wildcard address.
1813 */
1814 if (!ep->base.bind_addr.port) {
1815 if (sctp_autobind(sk)) {
1816 err = -EAGAIN;
1817 goto out_unlock;
1818 }
1819 } else {
1820 /*
1821 * If an unprivileged user inherits a one-to-many
1822 * style socket with open associations on a privileged
1823 * port, it MAY be permitted to accept new associations,
1824 * but it SHOULD NOT be permitted to open new
1825 * associations.
1826 */
1827 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1828 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1829 err = -EACCES;
1830 goto out_unlock;
1831 }
1832 }
1833
1834 scope = sctp_scope(&to);
1835 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1836 if (!new_asoc) {
1837 err = -ENOMEM;
1838 goto out_unlock;
1839 }
1840 asoc = new_asoc;
1841 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1842 if (err < 0) {
1843 err = -ENOMEM;
1844 goto out_free;
1845 }
1846
1847 /* If the SCTP_INIT ancillary data is specified, set all
1848 * the association init values accordingly.
1849 */
1850 if (sinit) {
1851 if (sinit->sinit_num_ostreams) {
1852 asoc->c.sinit_num_ostreams =
1853 sinit->sinit_num_ostreams;
1854 }
1855 if (sinit->sinit_max_instreams) {
1856 asoc->c.sinit_max_instreams =
1857 sinit->sinit_max_instreams;
1858 }
1859 if (sinit->sinit_max_attempts) {
1860 asoc->max_init_attempts
1861 = sinit->sinit_max_attempts;
1862 }
1863 if (sinit->sinit_max_init_timeo) {
1864 asoc->max_init_timeo =
1865 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1866 }
1867 }
1868
1869 /* Prime the peer's transport structures. */
1870 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1871 if (!transport) {
1872 err = -ENOMEM;
1873 goto out_free;
1874 }
1875 }
1876
1877 /* ASSERT: we have a valid association at this point. */
1878 pr_debug("%s: we have a valid association\n", __func__);
1879
1880 if (!sinfo) {
1881 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1882 * one with some defaults.
1883 */
1884 memset(&default_sinfo, 0, sizeof(default_sinfo));
1885 default_sinfo.sinfo_stream = asoc->default_stream;
1886 default_sinfo.sinfo_flags = asoc->default_flags;
1887 default_sinfo.sinfo_ppid = asoc->default_ppid;
1888 default_sinfo.sinfo_context = asoc->default_context;
1889 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1890 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1891
1892 sinfo = &default_sinfo;
1893 } else if (fill_sinfo_ttl) {
1894 /* In case SNDINFO was specified, we still need to fill
1895 * it with a default ttl from the assoc here.
1896 */
1897 sinfo->sinfo_timetolive = asoc->default_timetolive;
1898 }
1899
1900 /* API 7.1.7, the sndbuf size per association bounds the
1901 * maximum size of data that can be sent in a single send call.
1902 */
1903 if (msg_len > sk->sk_sndbuf) {
1904 err = -EMSGSIZE;
1905 goto out_free;
1906 }
1907
1908 if (asoc->pmtu_pending)
1909 sctp_assoc_pending_pmtu(sk, asoc);
1910
1911 /* If fragmentation is disabled and the message length exceeds the
1912 * association fragmentation point, return EMSGSIZE. The I-D
1913 * does not specify what this error is, but this looks like
1914 * a great fit.
1915 */
1916 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1917 err = -EMSGSIZE;
1918 goto out_free;
1919 }
1920
1921 /* Check for invalid stream. */
1922 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1923 err = -EINVAL;
1924 goto out_free;
1925 }
1926
1927 if (sctp_wspace(asoc) < msg_len)
1928 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1929
1930 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1931 if (!sctp_wspace(asoc)) {
1932 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1933 if (err)
1934 goto out_free;
1935 }
1936
1937 /* If an address is passed with the sendto/sendmsg call, it is used
1938 * to override the primary destination address in the TCP model, or
1939 * when SCTP_ADDR_OVER flag is set in the UDP model.
1940 */
1941 if ((sctp_style(sk, TCP) && msg_name) ||
1942 (sinfo_flags & SCTP_ADDR_OVER)) {
1943 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1944 if (!chunk_tp) {
1945 err = -EINVAL;
1946 goto out_free;
1947 }
1948 } else
1949 chunk_tp = NULL;
1950
1951 /* Auto-connect, if we aren't connected already. */
1952 if (sctp_state(asoc, CLOSED)) {
1953 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1954 if (err < 0)
1955 goto out_free;
1956
1957 wait_connect = true;
1958 pr_debug("%s: we associated primitively\n", __func__);
1959 }
1960
1961 /* Break the message into multiple chunks of maximum size. */
1962 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1963 if (IS_ERR(datamsg)) {
1964 err = PTR_ERR(datamsg);
1965 goto out_free;
1966 }
1967
1968 /* Now send the (possibly) fragmented message. */
1969 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1970 sctp_chunk_hold(chunk);
1971
1972 /* Do accounting for the write space. */
1973 sctp_set_owner_w(chunk);
1974
1975 chunk->transport = chunk_tp;
1976 }
1977
1978 /* Send it to the lower layers. Note: all chunks
1979 * must either fail or succeed. The lower layer
1980 * works that way today. Keep it that way or this
1981 * breaks.
1982 */
1983 err = sctp_primitive_SEND(net, asoc, datamsg);
1984 /* Did the lower layer accept the chunk? */
1985 if (err) {
1986 sctp_datamsg_free(datamsg);
1987 goto out_free;
1988 }
1989
1990 pr_debug("%s: we sent primitively\n", __func__);
1991
1992 sctp_datamsg_put(datamsg);
1993 err = msg_len;
1994
1995 if (unlikely(wait_connect)) {
1996 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1997 sctp_wait_for_connect(asoc, &timeo);
1998 }
1999
2000 /* If we are already past ASSOCIATE, the lower
2001 * layers are responsible for association cleanup.
2002 */
2003 goto out_unlock;
2004
2005 out_free:
2006 if (new_asoc)
2007 sctp_association_free(asoc);
2008 out_unlock:
2009 release_sock(sk);
2010
2011 out_nounlock:
2012 return sctp_error(sk, msg_flags, err);
2013
2014 #if 0
2015 do_sock_err:
2016 if (msg_len)
2017 err = msg_len;
2018 else
2019 err = sock_error(sk);
2020 goto out;
2021
2022 do_interrupted:
2023 if (msg_len)
2024 err = msg_len;
2025 goto out;
2026 #endif /* 0 */
2027 }
2028
2029 /* This is an extended version of skb_pull() that removes the data from the
2030 * start of a skb even when data is spread across the list of skb's in the
2031 * frag_list. len specifies the total amount of data that needs to be removed.
2032 * when 'len' bytes could be removed from the skb, it returns 0.
2033 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2034 * could not be removed.
2035 */
2036 static int sctp_skb_pull(struct sk_buff *skb, int len)
2037 {
2038 struct sk_buff *list;
2039 int skb_len = skb_headlen(skb);
2040 int rlen;
2041
2042 if (len <= skb_len) {
2043 __skb_pull(skb, len);
2044 return 0;
2045 }
2046 len -= skb_len;
2047 __skb_pull(skb, skb_len);
2048
2049 skb_walk_frags(skb, list) {
2050 rlen = sctp_skb_pull(list, len);
2051 skb->len -= (len-rlen);
2052 skb->data_len -= (len-rlen);
2053
2054 if (!rlen)
2055 return 0;
2056
2057 len = rlen;
2058 }
2059
2060 return len;
2061 }
2062
2063 /* API 3.1.3 recvmsg() - UDP Style Syntax
2064 *
2065 * ssize_t recvmsg(int socket, struct msghdr *message,
2066 * int flags);
2067 *
2068 * socket - the socket descriptor of the endpoint.
2069 * message - pointer to the msghdr structure which contains a single
2070 * user message and possibly some ancillary data.
2071 *
2072 * See Section 5 for complete description of the data
2073 * structures.
2074 *
2075 * flags - flags sent or received with the user message, see Section
2076 * 5 for complete description of the flags.
2077 */
2078 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2079 int noblock, int flags, int *addr_len)
2080 {
2081 struct sctp_ulpevent *event = NULL;
2082 struct sctp_sock *sp = sctp_sk(sk);
2083 struct sk_buff *skb, *head_skb;
2084 int copied;
2085 int err = 0;
2086 int skb_len;
2087
2088 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2089 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2090 addr_len);
2091
2092 lock_sock(sk);
2093
2094 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2095 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2096 err = -ENOTCONN;
2097 goto out;
2098 }
2099
2100 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2101 if (!skb)
2102 goto out;
2103
2104 /* Get the total length of the skb including any skb's in the
2105 * frag_list.
2106 */
2107 skb_len = skb->len;
2108
2109 copied = skb_len;
2110 if (copied > len)
2111 copied = len;
2112
2113 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2114
2115 event = sctp_skb2event(skb);
2116
2117 if (err)
2118 goto out_free;
2119
2120 if (event->chunk && event->chunk->head_skb)
2121 head_skb = event->chunk->head_skb;
2122 else
2123 head_skb = skb;
2124 sock_recv_ts_and_drops(msg, sk, head_skb);
2125 if (sctp_ulpevent_is_notification(event)) {
2126 msg->msg_flags |= MSG_NOTIFICATION;
2127 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2128 } else {
2129 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2130 }
2131
2132 /* Check if we allow SCTP_NXTINFO. */
2133 if (sp->recvnxtinfo)
2134 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2135 /* Check if we allow SCTP_RCVINFO. */
2136 if (sp->recvrcvinfo)
2137 sctp_ulpevent_read_rcvinfo(event, msg);
2138 /* Check if we allow SCTP_SNDRCVINFO. */
2139 if (sp->subscribe.sctp_data_io_event)
2140 sctp_ulpevent_read_sndrcvinfo(event, msg);
2141
2142 err = copied;
2143
2144 /* If skb's length exceeds the user's buffer, update the skb and
2145 * push it back to the receive_queue so that the next call to
2146 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2147 */
2148 if (skb_len > copied) {
2149 msg->msg_flags &= ~MSG_EOR;
2150 if (flags & MSG_PEEK)
2151 goto out_free;
2152 sctp_skb_pull(skb, copied);
2153 skb_queue_head(&sk->sk_receive_queue, skb);
2154
2155 /* When only partial message is copied to the user, increase
2156 * rwnd by that amount. If all the data in the skb is read,
2157 * rwnd is updated when the event is freed.
2158 */
2159 if (!sctp_ulpevent_is_notification(event))
2160 sctp_assoc_rwnd_increase(event->asoc, copied);
2161 goto out;
2162 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2163 (event->msg_flags & MSG_EOR))
2164 msg->msg_flags |= MSG_EOR;
2165 else
2166 msg->msg_flags &= ~MSG_EOR;
2167
2168 out_free:
2169 if (flags & MSG_PEEK) {
2170 /* Release the skb reference acquired after peeking the skb in
2171 * sctp_skb_recv_datagram().
2172 */
2173 kfree_skb(skb);
2174 } else {
2175 /* Free the event which includes releasing the reference to
2176 * the owner of the skb, freeing the skb and updating the
2177 * rwnd.
2178 */
2179 sctp_ulpevent_free(event);
2180 }
2181 out:
2182 release_sock(sk);
2183 return err;
2184 }
2185
2186 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2187 *
2188 * This option is a on/off flag. If enabled no SCTP message
2189 * fragmentation will be performed. Instead if a message being sent
2190 * exceeds the current PMTU size, the message will NOT be sent and
2191 * instead a error will be indicated to the user.
2192 */
2193 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2194 char __user *optval,
2195 unsigned int optlen)
2196 {
2197 int val;
2198
2199 if (optlen < sizeof(int))
2200 return -EINVAL;
2201
2202 if (get_user(val, (int __user *)optval))
2203 return -EFAULT;
2204
2205 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2206
2207 return 0;
2208 }
2209
2210 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2211 unsigned int optlen)
2212 {
2213 struct sctp_association *asoc;
2214 struct sctp_ulpevent *event;
2215
2216 if (optlen > sizeof(struct sctp_event_subscribe))
2217 return -EINVAL;
2218 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2219 return -EFAULT;
2220
2221 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2222 * if there is no data to be sent or retransmit, the stack will
2223 * immediately send up this notification.
2224 */
2225 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2226 &sctp_sk(sk)->subscribe)) {
2227 asoc = sctp_id2assoc(sk, 0);
2228
2229 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2230 event = sctp_ulpevent_make_sender_dry_event(asoc,
2231 GFP_ATOMIC);
2232 if (!event)
2233 return -ENOMEM;
2234
2235 sctp_ulpq_tail_event(&asoc->ulpq, event);
2236 }
2237 }
2238
2239 return 0;
2240 }
2241
2242 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2243 *
2244 * This socket option is applicable to the UDP-style socket only. When
2245 * set it will cause associations that are idle for more than the
2246 * specified number of seconds to automatically close. An association
2247 * being idle is defined an association that has NOT sent or received
2248 * user data. The special value of '0' indicates that no automatic
2249 * close of any associations should be performed. The option expects an
2250 * integer defining the number of seconds of idle time before an
2251 * association is closed.
2252 */
2253 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2254 unsigned int optlen)
2255 {
2256 struct sctp_sock *sp = sctp_sk(sk);
2257 struct net *net = sock_net(sk);
2258
2259 /* Applicable to UDP-style socket only */
2260 if (sctp_style(sk, TCP))
2261 return -EOPNOTSUPP;
2262 if (optlen != sizeof(int))
2263 return -EINVAL;
2264 if (copy_from_user(&sp->autoclose, optval, optlen))
2265 return -EFAULT;
2266
2267 if (sp->autoclose > net->sctp.max_autoclose)
2268 sp->autoclose = net->sctp.max_autoclose;
2269
2270 return 0;
2271 }
2272
2273 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2274 *
2275 * Applications can enable or disable heartbeats for any peer address of
2276 * an association, modify an address's heartbeat interval, force a
2277 * heartbeat to be sent immediately, and adjust the address's maximum
2278 * number of retransmissions sent before an address is considered
2279 * unreachable. The following structure is used to access and modify an
2280 * address's parameters:
2281 *
2282 * struct sctp_paddrparams {
2283 * sctp_assoc_t spp_assoc_id;
2284 * struct sockaddr_storage spp_address;
2285 * uint32_t spp_hbinterval;
2286 * uint16_t spp_pathmaxrxt;
2287 * uint32_t spp_pathmtu;
2288 * uint32_t spp_sackdelay;
2289 * uint32_t spp_flags;
2290 * };
2291 *
2292 * spp_assoc_id - (one-to-many style socket) This is filled in the
2293 * application, and identifies the association for
2294 * this query.
2295 * spp_address - This specifies which address is of interest.
2296 * spp_hbinterval - This contains the value of the heartbeat interval,
2297 * in milliseconds. If a value of zero
2298 * is present in this field then no changes are to
2299 * be made to this parameter.
2300 * spp_pathmaxrxt - This contains the maximum number of
2301 * retransmissions before this address shall be
2302 * considered unreachable. If a value of zero
2303 * is present in this field then no changes are to
2304 * be made to this parameter.
2305 * spp_pathmtu - When Path MTU discovery is disabled the value
2306 * specified here will be the "fixed" path mtu.
2307 * Note that if the spp_address field is empty
2308 * then all associations on this address will
2309 * have this fixed path mtu set upon them.
2310 *
2311 * spp_sackdelay - When delayed sack is enabled, this value specifies
2312 * the number of milliseconds that sacks will be delayed
2313 * for. This value will apply to all addresses of an
2314 * association if the spp_address field is empty. Note
2315 * also, that if delayed sack is enabled and this
2316 * value is set to 0, no change is made to the last
2317 * recorded delayed sack timer value.
2318 *
2319 * spp_flags - These flags are used to control various features
2320 * on an association. The flag field may contain
2321 * zero or more of the following options.
2322 *
2323 * SPP_HB_ENABLE - Enable heartbeats on the
2324 * specified address. Note that if the address
2325 * field is empty all addresses for the association
2326 * have heartbeats enabled upon them.
2327 *
2328 * SPP_HB_DISABLE - Disable heartbeats on the
2329 * speicifed address. Note that if the address
2330 * field is empty all addresses for the association
2331 * will have their heartbeats disabled. Note also
2332 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2333 * mutually exclusive, only one of these two should
2334 * be specified. Enabling both fields will have
2335 * undetermined results.
2336 *
2337 * SPP_HB_DEMAND - Request a user initiated heartbeat
2338 * to be made immediately.
2339 *
2340 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2341 * heartbeat delayis to be set to the value of 0
2342 * milliseconds.
2343 *
2344 * SPP_PMTUD_ENABLE - This field will enable PMTU
2345 * discovery upon the specified address. Note that
2346 * if the address feild is empty then all addresses
2347 * on the association are effected.
2348 *
2349 * SPP_PMTUD_DISABLE - This field will disable PMTU
2350 * discovery upon the specified address. Note that
2351 * if the address feild is empty then all addresses
2352 * on the association are effected. Not also that
2353 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2354 * exclusive. Enabling both will have undetermined
2355 * results.
2356 *
2357 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2358 * on delayed sack. The time specified in spp_sackdelay
2359 * is used to specify the sack delay for this address. Note
2360 * that if spp_address is empty then all addresses will
2361 * enable delayed sack and take on the sack delay
2362 * value specified in spp_sackdelay.
2363 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2364 * off delayed sack. If the spp_address field is blank then
2365 * delayed sack is disabled for the entire association. Note
2366 * also that this field is mutually exclusive to
2367 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2368 * results.
2369 */
2370 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2371 struct sctp_transport *trans,
2372 struct sctp_association *asoc,
2373 struct sctp_sock *sp,
2374 int hb_change,
2375 int pmtud_change,
2376 int sackdelay_change)
2377 {
2378 int error;
2379
2380 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2381 struct net *net = sock_net(trans->asoc->base.sk);
2382
2383 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2384 if (error)
2385 return error;
2386 }
2387
2388 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2389 * this field is ignored. Note also that a value of zero indicates
2390 * the current setting should be left unchanged.
2391 */
2392 if (params->spp_flags & SPP_HB_ENABLE) {
2393
2394 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2395 * set. This lets us use 0 value when this flag
2396 * is set.
2397 */
2398 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2399 params->spp_hbinterval = 0;
2400
2401 if (params->spp_hbinterval ||
2402 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2403 if (trans) {
2404 trans->hbinterval =
2405 msecs_to_jiffies(params->spp_hbinterval);
2406 } else if (asoc) {
2407 asoc->hbinterval =
2408 msecs_to_jiffies(params->spp_hbinterval);
2409 } else {
2410 sp->hbinterval = params->spp_hbinterval;
2411 }
2412 }
2413 }
2414
2415 if (hb_change) {
2416 if (trans) {
2417 trans->param_flags =
2418 (trans->param_flags & ~SPP_HB) | hb_change;
2419 } else if (asoc) {
2420 asoc->param_flags =
2421 (asoc->param_flags & ~SPP_HB) | hb_change;
2422 } else {
2423 sp->param_flags =
2424 (sp->param_flags & ~SPP_HB) | hb_change;
2425 }
2426 }
2427
2428 /* When Path MTU discovery is disabled the value specified here will
2429 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2430 * include the flag SPP_PMTUD_DISABLE for this field to have any
2431 * effect).
2432 */
2433 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2434 if (trans) {
2435 trans->pathmtu = params->spp_pathmtu;
2436 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2437 } else if (asoc) {
2438 asoc->pathmtu = params->spp_pathmtu;
2439 } else {
2440 sp->pathmtu = params->spp_pathmtu;
2441 }
2442 }
2443
2444 if (pmtud_change) {
2445 if (trans) {
2446 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2447 (params->spp_flags & SPP_PMTUD_ENABLE);
2448 trans->param_flags =
2449 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2450 if (update) {
2451 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2452 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2453 }
2454 } else if (asoc) {
2455 asoc->param_flags =
2456 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2457 } else {
2458 sp->param_flags =
2459 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2460 }
2461 }
2462
2463 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2464 * value of this field is ignored. Note also that a value of zero
2465 * indicates the current setting should be left unchanged.
2466 */
2467 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2468 if (trans) {
2469 trans->sackdelay =
2470 msecs_to_jiffies(params->spp_sackdelay);
2471 } else if (asoc) {
2472 asoc->sackdelay =
2473 msecs_to_jiffies(params->spp_sackdelay);
2474 } else {
2475 sp->sackdelay = params->spp_sackdelay;
2476 }
2477 }
2478
2479 if (sackdelay_change) {
2480 if (trans) {
2481 trans->param_flags =
2482 (trans->param_flags & ~SPP_SACKDELAY) |
2483 sackdelay_change;
2484 } else if (asoc) {
2485 asoc->param_flags =
2486 (asoc->param_flags & ~SPP_SACKDELAY) |
2487 sackdelay_change;
2488 } else {
2489 sp->param_flags =
2490 (sp->param_flags & ~SPP_SACKDELAY) |
2491 sackdelay_change;
2492 }
2493 }
2494
2495 /* Note that a value of zero indicates the current setting should be
2496 left unchanged.
2497 */
2498 if (params->spp_pathmaxrxt) {
2499 if (trans) {
2500 trans->pathmaxrxt = params->spp_pathmaxrxt;
2501 } else if (asoc) {
2502 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2503 } else {
2504 sp->pathmaxrxt = params->spp_pathmaxrxt;
2505 }
2506 }
2507
2508 return 0;
2509 }
2510
2511 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2512 char __user *optval,
2513 unsigned int optlen)
2514 {
2515 struct sctp_paddrparams params;
2516 struct sctp_transport *trans = NULL;
2517 struct sctp_association *asoc = NULL;
2518 struct sctp_sock *sp = sctp_sk(sk);
2519 int error;
2520 int hb_change, pmtud_change, sackdelay_change;
2521
2522 if (optlen != sizeof(struct sctp_paddrparams))
2523 return -EINVAL;
2524
2525 if (copy_from_user(&params, optval, optlen))
2526 return -EFAULT;
2527
2528 /* Validate flags and value parameters. */
2529 hb_change = params.spp_flags & SPP_HB;
2530 pmtud_change = params.spp_flags & SPP_PMTUD;
2531 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2532
2533 if (hb_change == SPP_HB ||
2534 pmtud_change == SPP_PMTUD ||
2535 sackdelay_change == SPP_SACKDELAY ||
2536 params.spp_sackdelay > 500 ||
2537 (params.spp_pathmtu &&
2538 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2539 return -EINVAL;
2540
2541 /* If an address other than INADDR_ANY is specified, and
2542 * no transport is found, then the request is invalid.
2543 */
2544 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2545 trans = sctp_addr_id2transport(sk, &params.spp_address,
2546 params.spp_assoc_id);
2547 if (!trans)
2548 return -EINVAL;
2549 }
2550
2551 /* Get association, if assoc_id != 0 and the socket is a one
2552 * to many style socket, and an association was not found, then
2553 * the id was invalid.
2554 */
2555 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2556 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2557 return -EINVAL;
2558
2559 /* Heartbeat demand can only be sent on a transport or
2560 * association, but not a socket.
2561 */
2562 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2563 return -EINVAL;
2564
2565 /* Process parameters. */
2566 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2567 hb_change, pmtud_change,
2568 sackdelay_change);
2569
2570 if (error)
2571 return error;
2572
2573 /* If changes are for association, also apply parameters to each
2574 * transport.
2575 */
2576 if (!trans && asoc) {
2577 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2578 transports) {
2579 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2580 hb_change, pmtud_change,
2581 sackdelay_change);
2582 }
2583 }
2584
2585 return 0;
2586 }
2587
2588 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2589 {
2590 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2591 }
2592
2593 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2594 {
2595 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2596 }
2597
2598 /*
2599 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2600 *
2601 * This option will effect the way delayed acks are performed. This
2602 * option allows you to get or set the delayed ack time, in
2603 * milliseconds. It also allows changing the delayed ack frequency.
2604 * Changing the frequency to 1 disables the delayed sack algorithm. If
2605 * the assoc_id is 0, then this sets or gets the endpoints default
2606 * values. If the assoc_id field is non-zero, then the set or get
2607 * effects the specified association for the one to many model (the
2608 * assoc_id field is ignored by the one to one model). Note that if
2609 * sack_delay or sack_freq are 0 when setting this option, then the
2610 * current values will remain unchanged.
2611 *
2612 * struct sctp_sack_info {
2613 * sctp_assoc_t sack_assoc_id;
2614 * uint32_t sack_delay;
2615 * uint32_t sack_freq;
2616 * };
2617 *
2618 * sack_assoc_id - This parameter, indicates which association the user
2619 * is performing an action upon. Note that if this field's value is
2620 * zero then the endpoints default value is changed (effecting future
2621 * associations only).
2622 *
2623 * sack_delay - This parameter contains the number of milliseconds that
2624 * the user is requesting the delayed ACK timer be set to. Note that
2625 * this value is defined in the standard to be between 200 and 500
2626 * milliseconds.
2627 *
2628 * sack_freq - This parameter contains the number of packets that must
2629 * be received before a sack is sent without waiting for the delay
2630 * timer to expire. The default value for this is 2, setting this
2631 * value to 1 will disable the delayed sack algorithm.
2632 */
2633
2634 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2635 char __user *optval, unsigned int optlen)
2636 {
2637 struct sctp_sack_info params;
2638 struct sctp_transport *trans = NULL;
2639 struct sctp_association *asoc = NULL;
2640 struct sctp_sock *sp = sctp_sk(sk);
2641
2642 if (optlen == sizeof(struct sctp_sack_info)) {
2643 if (copy_from_user(&params, optval, optlen))
2644 return -EFAULT;
2645
2646 if (params.sack_delay == 0 && params.sack_freq == 0)
2647 return 0;
2648 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2649 pr_warn_ratelimited(DEPRECATED
2650 "%s (pid %d) "
2651 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2652 "Use struct sctp_sack_info instead\n",
2653 current->comm, task_pid_nr(current));
2654 if (copy_from_user(&params, optval, optlen))
2655 return -EFAULT;
2656
2657 if (params.sack_delay == 0)
2658 params.sack_freq = 1;
2659 else
2660 params.sack_freq = 0;
2661 } else
2662 return -EINVAL;
2663
2664 /* Validate value parameter. */
2665 if (params.sack_delay > 500)
2666 return -EINVAL;
2667
2668 /* Get association, if sack_assoc_id != 0 and the socket is a one
2669 * to many style socket, and an association was not found, then
2670 * the id was invalid.
2671 */
2672 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2673 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2674 return -EINVAL;
2675
2676 if (params.sack_delay) {
2677 if (asoc) {
2678 asoc->sackdelay =
2679 msecs_to_jiffies(params.sack_delay);
2680 asoc->param_flags =
2681 sctp_spp_sackdelay_enable(asoc->param_flags);
2682 } else {
2683 sp->sackdelay = params.sack_delay;
2684 sp->param_flags =
2685 sctp_spp_sackdelay_enable(sp->param_flags);
2686 }
2687 }
2688
2689 if (params.sack_freq == 1) {
2690 if (asoc) {
2691 asoc->param_flags =
2692 sctp_spp_sackdelay_disable(asoc->param_flags);
2693 } else {
2694 sp->param_flags =
2695 sctp_spp_sackdelay_disable(sp->param_flags);
2696 }
2697 } else if (params.sack_freq > 1) {
2698 if (asoc) {
2699 asoc->sackfreq = params.sack_freq;
2700 asoc->param_flags =
2701 sctp_spp_sackdelay_enable(asoc->param_flags);
2702 } else {
2703 sp->sackfreq = params.sack_freq;
2704 sp->param_flags =
2705 sctp_spp_sackdelay_enable(sp->param_flags);
2706 }
2707 }
2708
2709 /* If change is for association, also apply to each transport. */
2710 if (asoc) {
2711 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2712 transports) {
2713 if (params.sack_delay) {
2714 trans->sackdelay =
2715 msecs_to_jiffies(params.sack_delay);
2716 trans->param_flags =
2717 sctp_spp_sackdelay_enable(trans->param_flags);
2718 }
2719 if (params.sack_freq == 1) {
2720 trans->param_flags =
2721 sctp_spp_sackdelay_disable(trans->param_flags);
2722 } else if (params.sack_freq > 1) {
2723 trans->sackfreq = params.sack_freq;
2724 trans->param_flags =
2725 sctp_spp_sackdelay_enable(trans->param_flags);
2726 }
2727 }
2728 }
2729
2730 return 0;
2731 }
2732
2733 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2734 *
2735 * Applications can specify protocol parameters for the default association
2736 * initialization. The option name argument to setsockopt() and getsockopt()
2737 * is SCTP_INITMSG.
2738 *
2739 * Setting initialization parameters is effective only on an unconnected
2740 * socket (for UDP-style sockets only future associations are effected
2741 * by the change). With TCP-style sockets, this option is inherited by
2742 * sockets derived from a listener socket.
2743 */
2744 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2745 {
2746 struct sctp_initmsg sinit;
2747 struct sctp_sock *sp = sctp_sk(sk);
2748
2749 if (optlen != sizeof(struct sctp_initmsg))
2750 return -EINVAL;
2751 if (copy_from_user(&sinit, optval, optlen))
2752 return -EFAULT;
2753
2754 if (sinit.sinit_num_ostreams)
2755 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2756 if (sinit.sinit_max_instreams)
2757 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2758 if (sinit.sinit_max_attempts)
2759 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2760 if (sinit.sinit_max_init_timeo)
2761 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2762
2763 return 0;
2764 }
2765
2766 /*
2767 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2768 *
2769 * Applications that wish to use the sendto() system call may wish to
2770 * specify a default set of parameters that would normally be supplied
2771 * through the inclusion of ancillary data. This socket option allows
2772 * such an application to set the default sctp_sndrcvinfo structure.
2773 * The application that wishes to use this socket option simply passes
2774 * in to this call the sctp_sndrcvinfo structure defined in Section
2775 * 5.2.2) The input parameters accepted by this call include
2776 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2777 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2778 * to this call if the caller is using the UDP model.
2779 */
2780 static int sctp_setsockopt_default_send_param(struct sock *sk,
2781 char __user *optval,
2782 unsigned int optlen)
2783 {
2784 struct sctp_sock *sp = sctp_sk(sk);
2785 struct sctp_association *asoc;
2786 struct sctp_sndrcvinfo info;
2787
2788 if (optlen != sizeof(info))
2789 return -EINVAL;
2790 if (copy_from_user(&info, optval, optlen))
2791 return -EFAULT;
2792 if (info.sinfo_flags &
2793 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2794 SCTP_ABORT | SCTP_EOF))
2795 return -EINVAL;
2796
2797 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2798 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2799 return -EINVAL;
2800 if (asoc) {
2801 asoc->default_stream = info.sinfo_stream;
2802 asoc->default_flags = info.sinfo_flags;
2803 asoc->default_ppid = info.sinfo_ppid;
2804 asoc->default_context = info.sinfo_context;
2805 asoc->default_timetolive = info.sinfo_timetolive;
2806 } else {
2807 sp->default_stream = info.sinfo_stream;
2808 sp->default_flags = info.sinfo_flags;
2809 sp->default_ppid = info.sinfo_ppid;
2810 sp->default_context = info.sinfo_context;
2811 sp->default_timetolive = info.sinfo_timetolive;
2812 }
2813
2814 return 0;
2815 }
2816
2817 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2818 * (SCTP_DEFAULT_SNDINFO)
2819 */
2820 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2821 char __user *optval,
2822 unsigned int optlen)
2823 {
2824 struct sctp_sock *sp = sctp_sk(sk);
2825 struct sctp_association *asoc;
2826 struct sctp_sndinfo info;
2827
2828 if (optlen != sizeof(info))
2829 return -EINVAL;
2830 if (copy_from_user(&info, optval, optlen))
2831 return -EFAULT;
2832 if (info.snd_flags &
2833 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2834 SCTP_ABORT | SCTP_EOF))
2835 return -EINVAL;
2836
2837 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2838 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2839 return -EINVAL;
2840 if (asoc) {
2841 asoc->default_stream = info.snd_sid;
2842 asoc->default_flags = info.snd_flags;
2843 asoc->default_ppid = info.snd_ppid;
2844 asoc->default_context = info.snd_context;
2845 } else {
2846 sp->default_stream = info.snd_sid;
2847 sp->default_flags = info.snd_flags;
2848 sp->default_ppid = info.snd_ppid;
2849 sp->default_context = info.snd_context;
2850 }
2851
2852 return 0;
2853 }
2854
2855 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2856 *
2857 * Requests that the local SCTP stack use the enclosed peer address as
2858 * the association primary. The enclosed address must be one of the
2859 * association peer's addresses.
2860 */
2861 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2862 unsigned int optlen)
2863 {
2864 struct sctp_prim prim;
2865 struct sctp_transport *trans;
2866
2867 if (optlen != sizeof(struct sctp_prim))
2868 return -EINVAL;
2869
2870 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2871 return -EFAULT;
2872
2873 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2874 if (!trans)
2875 return -EINVAL;
2876
2877 sctp_assoc_set_primary(trans->asoc, trans);
2878
2879 return 0;
2880 }
2881
2882 /*
2883 * 7.1.5 SCTP_NODELAY
2884 *
2885 * Turn on/off any Nagle-like algorithm. This means that packets are
2886 * generally sent as soon as possible and no unnecessary delays are
2887 * introduced, at the cost of more packets in the network. Expects an
2888 * integer boolean flag.
2889 */
2890 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2891 unsigned int optlen)
2892 {
2893 int val;
2894
2895 if (optlen < sizeof(int))
2896 return -EINVAL;
2897 if (get_user(val, (int __user *)optval))
2898 return -EFAULT;
2899
2900 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2901 return 0;
2902 }
2903
2904 /*
2905 *
2906 * 7.1.1 SCTP_RTOINFO
2907 *
2908 * The protocol parameters used to initialize and bound retransmission
2909 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2910 * and modify these parameters.
2911 * All parameters are time values, in milliseconds. A value of 0, when
2912 * modifying the parameters, indicates that the current value should not
2913 * be changed.
2914 *
2915 */
2916 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2917 {
2918 struct sctp_rtoinfo rtoinfo;
2919 struct sctp_association *asoc;
2920 unsigned long rto_min, rto_max;
2921 struct sctp_sock *sp = sctp_sk(sk);
2922
2923 if (optlen != sizeof (struct sctp_rtoinfo))
2924 return -EINVAL;
2925
2926 if (copy_from_user(&rtoinfo, optval, optlen))
2927 return -EFAULT;
2928
2929 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2930
2931 /* Set the values to the specific association */
2932 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2933 return -EINVAL;
2934
2935 rto_max = rtoinfo.srto_max;
2936 rto_min = rtoinfo.srto_min;
2937
2938 if (rto_max)
2939 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2940 else
2941 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2942
2943 if (rto_min)
2944 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2945 else
2946 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2947
2948 if (rto_min > rto_max)
2949 return -EINVAL;
2950
2951 if (asoc) {
2952 if (rtoinfo.srto_initial != 0)
2953 asoc->rto_initial =
2954 msecs_to_jiffies(rtoinfo.srto_initial);
2955 asoc->rto_max = rto_max;
2956 asoc->rto_min = rto_min;
2957 } else {
2958 /* If there is no association or the association-id = 0
2959 * set the values to the endpoint.
2960 */
2961 if (rtoinfo.srto_initial != 0)
2962 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2963 sp->rtoinfo.srto_max = rto_max;
2964 sp->rtoinfo.srto_min = rto_min;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /*
2971 *
2972 * 7.1.2 SCTP_ASSOCINFO
2973 *
2974 * This option is used to tune the maximum retransmission attempts
2975 * of the association.
2976 * Returns an error if the new association retransmission value is
2977 * greater than the sum of the retransmission value of the peer.
2978 * See [SCTP] for more information.
2979 *
2980 */
2981 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2982 {
2983
2984 struct sctp_assocparams assocparams;
2985 struct sctp_association *asoc;
2986
2987 if (optlen != sizeof(struct sctp_assocparams))
2988 return -EINVAL;
2989 if (copy_from_user(&assocparams, optval, optlen))
2990 return -EFAULT;
2991
2992 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2993
2994 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2995 return -EINVAL;
2996
2997 /* Set the values to the specific association */
2998 if (asoc) {
2999 if (assocparams.sasoc_asocmaxrxt != 0) {
3000 __u32 path_sum = 0;
3001 int paths = 0;
3002 struct sctp_transport *peer_addr;
3003
3004 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3005 transports) {
3006 path_sum += peer_addr->pathmaxrxt;
3007 paths++;
3008 }
3009
3010 /* Only validate asocmaxrxt if we have more than
3011 * one path/transport. We do this because path
3012 * retransmissions are only counted when we have more
3013 * then one path.
3014 */
3015 if (paths > 1 &&
3016 assocparams.sasoc_asocmaxrxt > path_sum)
3017 return -EINVAL;
3018
3019 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3020 }
3021
3022 if (assocparams.sasoc_cookie_life != 0)
3023 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3024 } else {
3025 /* Set the values to the endpoint */
3026 struct sctp_sock *sp = sctp_sk(sk);
3027
3028 if (assocparams.sasoc_asocmaxrxt != 0)
3029 sp->assocparams.sasoc_asocmaxrxt =
3030 assocparams.sasoc_asocmaxrxt;
3031 if (assocparams.sasoc_cookie_life != 0)
3032 sp->assocparams.sasoc_cookie_life =
3033 assocparams.sasoc_cookie_life;
3034 }
3035 return 0;
3036 }
3037
3038 /*
3039 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3040 *
3041 * This socket option is a boolean flag which turns on or off mapped V4
3042 * addresses. If this option is turned on and the socket is type
3043 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3044 * If this option is turned off, then no mapping will be done of V4
3045 * addresses and a user will receive both PF_INET6 and PF_INET type
3046 * addresses on the socket.
3047 */
3048 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3049 {
3050 int val;
3051 struct sctp_sock *sp = sctp_sk(sk);
3052
3053 if (optlen < sizeof(int))
3054 return -EINVAL;
3055 if (get_user(val, (int __user *)optval))
3056 return -EFAULT;
3057 if (val)
3058 sp->v4mapped = 1;
3059 else
3060 sp->v4mapped = 0;
3061
3062 return 0;
3063 }
3064
3065 /*
3066 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3067 * This option will get or set the maximum size to put in any outgoing
3068 * SCTP DATA chunk. If a message is larger than this size it will be
3069 * fragmented by SCTP into the specified size. Note that the underlying
3070 * SCTP implementation may fragment into smaller sized chunks when the
3071 * PMTU of the underlying association is smaller than the value set by
3072 * the user. The default value for this option is '0' which indicates
3073 * the user is NOT limiting fragmentation and only the PMTU will effect
3074 * SCTP's choice of DATA chunk size. Note also that values set larger
3075 * than the maximum size of an IP datagram will effectively let SCTP
3076 * control fragmentation (i.e. the same as setting this option to 0).
3077 *
3078 * The following structure is used to access and modify this parameter:
3079 *
3080 * struct sctp_assoc_value {
3081 * sctp_assoc_t assoc_id;
3082 * uint32_t assoc_value;
3083 * };
3084 *
3085 * assoc_id: This parameter is ignored for one-to-one style sockets.
3086 * For one-to-many style sockets this parameter indicates which
3087 * association the user is performing an action upon. Note that if
3088 * this field's value is zero then the endpoints default value is
3089 * changed (effecting future associations only).
3090 * assoc_value: This parameter specifies the maximum size in bytes.
3091 */
3092 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3093 {
3094 struct sctp_assoc_value params;
3095 struct sctp_association *asoc;
3096 struct sctp_sock *sp = sctp_sk(sk);
3097 int val;
3098
3099 if (optlen == sizeof(int)) {
3100 pr_warn_ratelimited(DEPRECATED
3101 "%s (pid %d) "
3102 "Use of int in maxseg socket option.\n"
3103 "Use struct sctp_assoc_value instead\n",
3104 current->comm, task_pid_nr(current));
3105 if (copy_from_user(&val, optval, optlen))
3106 return -EFAULT;
3107 params.assoc_id = 0;
3108 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3109 if (copy_from_user(&params, optval, optlen))
3110 return -EFAULT;
3111 val = params.assoc_value;
3112 } else
3113 return -EINVAL;
3114
3115 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3116 return -EINVAL;
3117
3118 asoc = sctp_id2assoc(sk, params.assoc_id);
3119 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3120 return -EINVAL;
3121
3122 if (asoc) {
3123 if (val == 0) {
3124 val = asoc->pathmtu;
3125 val -= sp->pf->af->net_header_len;
3126 val -= sizeof(struct sctphdr) +
3127 sizeof(struct sctp_data_chunk);
3128 }
3129 asoc->user_frag = val;
3130 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3131 } else {
3132 sp->user_frag = val;
3133 }
3134
3135 return 0;
3136 }
3137
3138
3139 /*
3140 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3141 *
3142 * Requests that the peer mark the enclosed address as the association
3143 * primary. The enclosed address must be one of the association's
3144 * locally bound addresses. The following structure is used to make a
3145 * set primary request:
3146 */
3147 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3148 unsigned int optlen)
3149 {
3150 struct net *net = sock_net(sk);
3151 struct sctp_sock *sp;
3152 struct sctp_association *asoc = NULL;
3153 struct sctp_setpeerprim prim;
3154 struct sctp_chunk *chunk;
3155 struct sctp_af *af;
3156 int err;
3157
3158 sp = sctp_sk(sk);
3159
3160 if (!net->sctp.addip_enable)
3161 return -EPERM;
3162
3163 if (optlen != sizeof(struct sctp_setpeerprim))
3164 return -EINVAL;
3165
3166 if (copy_from_user(&prim, optval, optlen))
3167 return -EFAULT;
3168
3169 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3170 if (!asoc)
3171 return -EINVAL;
3172
3173 if (!asoc->peer.asconf_capable)
3174 return -EPERM;
3175
3176 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3177 return -EPERM;
3178
3179 if (!sctp_state(asoc, ESTABLISHED))
3180 return -ENOTCONN;
3181
3182 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3183 if (!af)
3184 return -EINVAL;
3185
3186 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3187 return -EADDRNOTAVAIL;
3188
3189 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3190 return -EADDRNOTAVAIL;
3191
3192 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3193 chunk = sctp_make_asconf_set_prim(asoc,
3194 (union sctp_addr *)&prim.sspp_addr);
3195 if (!chunk)
3196 return -ENOMEM;
3197
3198 err = sctp_send_asconf(asoc, chunk);
3199
3200 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3201
3202 return err;
3203 }
3204
3205 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3206 unsigned int optlen)
3207 {
3208 struct sctp_setadaptation adaptation;
3209
3210 if (optlen != sizeof(struct sctp_setadaptation))
3211 return -EINVAL;
3212 if (copy_from_user(&adaptation, optval, optlen))
3213 return -EFAULT;
3214
3215 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3216
3217 return 0;
3218 }
3219
3220 /*
3221 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3222 *
3223 * The context field in the sctp_sndrcvinfo structure is normally only
3224 * used when a failed message is retrieved holding the value that was
3225 * sent down on the actual send call. This option allows the setting of
3226 * a default context on an association basis that will be received on
3227 * reading messages from the peer. This is especially helpful in the
3228 * one-2-many model for an application to keep some reference to an
3229 * internal state machine that is processing messages on the
3230 * association. Note that the setting of this value only effects
3231 * received messages from the peer and does not effect the value that is
3232 * saved with outbound messages.
3233 */
3234 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3235 unsigned int optlen)
3236 {
3237 struct sctp_assoc_value params;
3238 struct sctp_sock *sp;
3239 struct sctp_association *asoc;
3240
3241 if (optlen != sizeof(struct sctp_assoc_value))
3242 return -EINVAL;
3243 if (copy_from_user(&params, optval, optlen))
3244 return -EFAULT;
3245
3246 sp = sctp_sk(sk);
3247
3248 if (params.assoc_id != 0) {
3249 asoc = sctp_id2assoc(sk, params.assoc_id);
3250 if (!asoc)
3251 return -EINVAL;
3252 asoc->default_rcv_context = params.assoc_value;
3253 } else {
3254 sp->default_rcv_context = params.assoc_value;
3255 }
3256
3257 return 0;
3258 }
3259
3260 /*
3261 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3262 *
3263 * This options will at a minimum specify if the implementation is doing
3264 * fragmented interleave. Fragmented interleave, for a one to many
3265 * socket, is when subsequent calls to receive a message may return
3266 * parts of messages from different associations. Some implementations
3267 * may allow you to turn this value on or off. If so, when turned off,
3268 * no fragment interleave will occur (which will cause a head of line
3269 * blocking amongst multiple associations sharing the same one to many
3270 * socket). When this option is turned on, then each receive call may
3271 * come from a different association (thus the user must receive data
3272 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3273 * association each receive belongs to.
3274 *
3275 * This option takes a boolean value. A non-zero value indicates that
3276 * fragmented interleave is on. A value of zero indicates that
3277 * fragmented interleave is off.
3278 *
3279 * Note that it is important that an implementation that allows this
3280 * option to be turned on, have it off by default. Otherwise an unaware
3281 * application using the one to many model may become confused and act
3282 * incorrectly.
3283 */
3284 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3285 char __user *optval,
3286 unsigned int optlen)
3287 {
3288 int val;
3289
3290 if (optlen != sizeof(int))
3291 return -EINVAL;
3292 if (get_user(val, (int __user *)optval))
3293 return -EFAULT;
3294
3295 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3296
3297 return 0;
3298 }
3299
3300 /*
3301 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3302 * (SCTP_PARTIAL_DELIVERY_POINT)
3303 *
3304 * This option will set or get the SCTP partial delivery point. This
3305 * point is the size of a message where the partial delivery API will be
3306 * invoked to help free up rwnd space for the peer. Setting this to a
3307 * lower value will cause partial deliveries to happen more often. The
3308 * calls argument is an integer that sets or gets the partial delivery
3309 * point. Note also that the call will fail if the user attempts to set
3310 * this value larger than the socket receive buffer size.
3311 *
3312 * Note that any single message having a length smaller than or equal to
3313 * the SCTP partial delivery point will be delivered in one single read
3314 * call as long as the user provided buffer is large enough to hold the
3315 * message.
3316 */
3317 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3318 char __user *optval,
3319 unsigned int optlen)
3320 {
3321 u32 val;
3322
3323 if (optlen != sizeof(u32))
3324 return -EINVAL;
3325 if (get_user(val, (int __user *)optval))
3326 return -EFAULT;
3327
3328 /* Note: We double the receive buffer from what the user sets
3329 * it to be, also initial rwnd is based on rcvbuf/2.
3330 */
3331 if (val > (sk->sk_rcvbuf >> 1))
3332 return -EINVAL;
3333
3334 sctp_sk(sk)->pd_point = val;
3335
3336 return 0; /* is this the right error code? */
3337 }
3338
3339 /*
3340 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3341 *
3342 * This option will allow a user to change the maximum burst of packets
3343 * that can be emitted by this association. Note that the default value
3344 * is 4, and some implementations may restrict this setting so that it
3345 * can only be lowered.
3346 *
3347 * NOTE: This text doesn't seem right. Do this on a socket basis with
3348 * future associations inheriting the socket value.
3349 */
3350 static int sctp_setsockopt_maxburst(struct sock *sk,
3351 char __user *optval,
3352 unsigned int optlen)
3353 {
3354 struct sctp_assoc_value params;
3355 struct sctp_sock *sp;
3356 struct sctp_association *asoc;
3357 int val;
3358 int assoc_id = 0;
3359
3360 if (optlen == sizeof(int)) {
3361 pr_warn_ratelimited(DEPRECATED
3362 "%s (pid %d) "
3363 "Use of int in max_burst socket option deprecated.\n"
3364 "Use struct sctp_assoc_value instead\n",
3365 current->comm, task_pid_nr(current));
3366 if (copy_from_user(&val, optval, optlen))
3367 return -EFAULT;
3368 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3369 if (copy_from_user(&params, optval, optlen))
3370 return -EFAULT;
3371 val = params.assoc_value;
3372 assoc_id = params.assoc_id;
3373 } else
3374 return -EINVAL;
3375
3376 sp = sctp_sk(sk);
3377
3378 if (assoc_id != 0) {
3379 asoc = sctp_id2assoc(sk, assoc_id);
3380 if (!asoc)
3381 return -EINVAL;
3382 asoc->max_burst = val;
3383 } else
3384 sp->max_burst = val;
3385
3386 return 0;
3387 }
3388
3389 /*
3390 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3391 *
3392 * This set option adds a chunk type that the user is requesting to be
3393 * received only in an authenticated way. Changes to the list of chunks
3394 * will only effect future associations on the socket.
3395 */
3396 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3397 char __user *optval,
3398 unsigned int optlen)
3399 {
3400 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3401 struct sctp_authchunk val;
3402
3403 if (!ep->auth_enable)
3404 return -EACCES;
3405
3406 if (optlen != sizeof(struct sctp_authchunk))
3407 return -EINVAL;
3408 if (copy_from_user(&val, optval, optlen))
3409 return -EFAULT;
3410
3411 switch (val.sauth_chunk) {
3412 case SCTP_CID_INIT:
3413 case SCTP_CID_INIT_ACK:
3414 case SCTP_CID_SHUTDOWN_COMPLETE:
3415 case SCTP_CID_AUTH:
3416 return -EINVAL;
3417 }
3418
3419 /* add this chunk id to the endpoint */
3420 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3421 }
3422
3423 /*
3424 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3425 *
3426 * This option gets or sets the list of HMAC algorithms that the local
3427 * endpoint requires the peer to use.
3428 */
3429 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3430 char __user *optval,
3431 unsigned int optlen)
3432 {
3433 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3434 struct sctp_hmacalgo *hmacs;
3435 u32 idents;
3436 int err;
3437
3438 if (!ep->auth_enable)
3439 return -EACCES;
3440
3441 if (optlen < sizeof(struct sctp_hmacalgo))
3442 return -EINVAL;
3443
3444 hmacs = memdup_user(optval, optlen);
3445 if (IS_ERR(hmacs))
3446 return PTR_ERR(hmacs);
3447
3448 idents = hmacs->shmac_num_idents;
3449 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3450 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3451 err = -EINVAL;
3452 goto out;
3453 }
3454
3455 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3456 out:
3457 kfree(hmacs);
3458 return err;
3459 }
3460
3461 /*
3462 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3463 *
3464 * This option will set a shared secret key which is used to build an
3465 * association shared key.
3466 */
3467 static int sctp_setsockopt_auth_key(struct sock *sk,
3468 char __user *optval,
3469 unsigned int optlen)
3470 {
3471 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3472 struct sctp_authkey *authkey;
3473 struct sctp_association *asoc;
3474 int ret;
3475
3476 if (!ep->auth_enable)
3477 return -EACCES;
3478
3479 if (optlen <= sizeof(struct sctp_authkey))
3480 return -EINVAL;
3481
3482 authkey = memdup_user(optval, optlen);
3483 if (IS_ERR(authkey))
3484 return PTR_ERR(authkey);
3485
3486 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3487 ret = -EINVAL;
3488 goto out;
3489 }
3490
3491 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3492 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3493 ret = -EINVAL;
3494 goto out;
3495 }
3496
3497 ret = sctp_auth_set_key(ep, asoc, authkey);
3498 out:
3499 kzfree(authkey);
3500 return ret;
3501 }
3502
3503 /*
3504 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3505 *
3506 * This option will get or set the active shared key to be used to build
3507 * the association shared key.
3508 */
3509 static int sctp_setsockopt_active_key(struct sock *sk,
3510 char __user *optval,
3511 unsigned int optlen)
3512 {
3513 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3514 struct sctp_authkeyid val;
3515 struct sctp_association *asoc;
3516
3517 if (!ep->auth_enable)
3518 return -EACCES;
3519
3520 if (optlen != sizeof(struct sctp_authkeyid))
3521 return -EINVAL;
3522 if (copy_from_user(&val, optval, optlen))
3523 return -EFAULT;
3524
3525 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3526 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3527 return -EINVAL;
3528
3529 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3530 }
3531
3532 /*
3533 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3534 *
3535 * This set option will delete a shared secret key from use.
3536 */
3537 static int sctp_setsockopt_del_key(struct sock *sk,
3538 char __user *optval,
3539 unsigned int optlen)
3540 {
3541 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3542 struct sctp_authkeyid val;
3543 struct sctp_association *asoc;
3544
3545 if (!ep->auth_enable)
3546 return -EACCES;
3547
3548 if (optlen != sizeof(struct sctp_authkeyid))
3549 return -EINVAL;
3550 if (copy_from_user(&val, optval, optlen))
3551 return -EFAULT;
3552
3553 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3554 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3555 return -EINVAL;
3556
3557 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3558
3559 }
3560
3561 /*
3562 * 8.1.23 SCTP_AUTO_ASCONF
3563 *
3564 * This option will enable or disable the use of the automatic generation of
3565 * ASCONF chunks to add and delete addresses to an existing association. Note
3566 * that this option has two caveats namely: a) it only affects sockets that
3567 * are bound to all addresses available to the SCTP stack, and b) the system
3568 * administrator may have an overriding control that turns the ASCONF feature
3569 * off no matter what setting the socket option may have.
3570 * This option expects an integer boolean flag, where a non-zero value turns on
3571 * the option, and a zero value turns off the option.
3572 * Note. In this implementation, socket operation overrides default parameter
3573 * being set by sysctl as well as FreeBSD implementation
3574 */
3575 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3576 unsigned int optlen)
3577 {
3578 int val;
3579 struct sctp_sock *sp = sctp_sk(sk);
3580
3581 if (optlen < sizeof(int))
3582 return -EINVAL;
3583 if (get_user(val, (int __user *)optval))
3584 return -EFAULT;
3585 if (!sctp_is_ep_boundall(sk) && val)
3586 return -EINVAL;
3587 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3588 return 0;
3589
3590 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3591 if (val == 0 && sp->do_auto_asconf) {
3592 list_del(&sp->auto_asconf_list);
3593 sp->do_auto_asconf = 0;
3594 } else if (val && !sp->do_auto_asconf) {
3595 list_add_tail(&sp->auto_asconf_list,
3596 &sock_net(sk)->sctp.auto_asconf_splist);
3597 sp->do_auto_asconf = 1;
3598 }
3599 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3600 return 0;
3601 }
3602
3603 /*
3604 * SCTP_PEER_ADDR_THLDS
3605 *
3606 * This option allows us to alter the partially failed threshold for one or all
3607 * transports in an association. See Section 6.1 of:
3608 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3609 */
3610 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3611 char __user *optval,
3612 unsigned int optlen)
3613 {
3614 struct sctp_paddrthlds val;
3615 struct sctp_transport *trans;
3616 struct sctp_association *asoc;
3617
3618 if (optlen < sizeof(struct sctp_paddrthlds))
3619 return -EINVAL;
3620 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3621 sizeof(struct sctp_paddrthlds)))
3622 return -EFAULT;
3623
3624
3625 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3626 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3627 if (!asoc)
3628 return -ENOENT;
3629 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3630 transports) {
3631 if (val.spt_pathmaxrxt)
3632 trans->pathmaxrxt = val.spt_pathmaxrxt;
3633 trans->pf_retrans = val.spt_pathpfthld;
3634 }
3635
3636 if (val.spt_pathmaxrxt)
3637 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3638 asoc->pf_retrans = val.spt_pathpfthld;
3639 } else {
3640 trans = sctp_addr_id2transport(sk, &val.spt_address,
3641 val.spt_assoc_id);
3642 if (!trans)
3643 return -ENOENT;
3644
3645 if (val.spt_pathmaxrxt)
3646 trans->pathmaxrxt = val.spt_pathmaxrxt;
3647 trans->pf_retrans = val.spt_pathpfthld;
3648 }
3649
3650 return 0;
3651 }
3652
3653 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3654 char __user *optval,
3655 unsigned int optlen)
3656 {
3657 int val;
3658
3659 if (optlen < sizeof(int))
3660 return -EINVAL;
3661 if (get_user(val, (int __user *) optval))
3662 return -EFAULT;
3663
3664 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3665
3666 return 0;
3667 }
3668
3669 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3670 char __user *optval,
3671 unsigned int optlen)
3672 {
3673 int val;
3674
3675 if (optlen < sizeof(int))
3676 return -EINVAL;
3677 if (get_user(val, (int __user *) optval))
3678 return -EFAULT;
3679
3680 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3681
3682 return 0;
3683 }
3684
3685 static int sctp_setsockopt_pr_supported(struct sock *sk,
3686 char __user *optval,
3687 unsigned int optlen)
3688 {
3689 struct sctp_assoc_value params;
3690 struct sctp_association *asoc;
3691 int retval = -EINVAL;
3692
3693 if (optlen != sizeof(params))
3694 goto out;
3695
3696 if (copy_from_user(&params, optval, optlen)) {
3697 retval = -EFAULT;
3698 goto out;
3699 }
3700
3701 asoc = sctp_id2assoc(sk, params.assoc_id);
3702 if (asoc) {
3703 asoc->prsctp_enable = !!params.assoc_value;
3704 } else if (!params.assoc_id) {
3705 struct sctp_sock *sp = sctp_sk(sk);
3706
3707 sp->ep->prsctp_enable = !!params.assoc_value;
3708 } else {
3709 goto out;
3710 }
3711
3712 retval = 0;
3713
3714 out:
3715 return retval;
3716 }
3717
3718 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3719 char __user *optval,
3720 unsigned int optlen)
3721 {
3722 struct sctp_default_prinfo info;
3723 struct sctp_association *asoc;
3724 int retval = -EINVAL;
3725
3726 if (optlen != sizeof(info))
3727 goto out;
3728
3729 if (copy_from_user(&info, optval, sizeof(info))) {
3730 retval = -EFAULT;
3731 goto out;
3732 }
3733
3734 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3735 goto out;
3736
3737 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3738 info.pr_value = 0;
3739
3740 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3741 if (asoc) {
3742 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3743 asoc->default_timetolive = info.pr_value;
3744 } else if (!info.pr_assoc_id) {
3745 struct sctp_sock *sp = sctp_sk(sk);
3746
3747 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3748 sp->default_timetolive = info.pr_value;
3749 } else {
3750 goto out;
3751 }
3752
3753 retval = 0;
3754
3755 out:
3756 return retval;
3757 }
3758
3759 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3760 char __user *optval,
3761 unsigned int optlen)
3762 {
3763 struct sctp_assoc_value params;
3764 struct sctp_association *asoc;
3765 int retval = -EINVAL;
3766
3767 if (optlen != sizeof(params))
3768 goto out;
3769
3770 if (copy_from_user(&params, optval, optlen)) {
3771 retval = -EFAULT;
3772 goto out;
3773 }
3774
3775 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3776 goto out;
3777
3778 asoc = sctp_id2assoc(sk, params.assoc_id);
3779 if (asoc) {
3780 asoc->strreset_enable = params.assoc_value;
3781 } else if (!params.assoc_id) {
3782 struct sctp_sock *sp = sctp_sk(sk);
3783
3784 sp->ep->strreset_enable = params.assoc_value;
3785 } else {
3786 goto out;
3787 }
3788
3789 retval = 0;
3790
3791 out:
3792 return retval;
3793 }
3794
3795 static int sctp_setsockopt_reset_streams(struct sock *sk,
3796 char __user *optval,
3797 unsigned int optlen)
3798 {
3799 struct sctp_reset_streams *params;
3800 struct sctp_association *asoc;
3801 int retval = -EINVAL;
3802
3803 if (optlen < sizeof(struct sctp_reset_streams))
3804 return -EINVAL;
3805
3806 params = memdup_user(optval, optlen);
3807 if (IS_ERR(params))
3808 return PTR_ERR(params);
3809
3810 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3811 if (!asoc)
3812 goto out;
3813
3814 retval = sctp_send_reset_streams(asoc, params);
3815
3816 out:
3817 kfree(params);
3818 return retval;
3819 }
3820
3821 static int sctp_setsockopt_reset_assoc(struct sock *sk,
3822 char __user *optval,
3823 unsigned int optlen)
3824 {
3825 struct sctp_association *asoc;
3826 sctp_assoc_t associd;
3827 int retval = -EINVAL;
3828
3829 if (optlen != sizeof(associd))
3830 goto out;
3831
3832 if (copy_from_user(&associd, optval, optlen)) {
3833 retval = -EFAULT;
3834 goto out;
3835 }
3836
3837 asoc = sctp_id2assoc(sk, associd);
3838 if (!asoc)
3839 goto out;
3840
3841 retval = sctp_send_reset_assoc(asoc);
3842
3843 out:
3844 return retval;
3845 }
3846
3847 static int sctp_setsockopt_add_streams(struct sock *sk,
3848 char __user *optval,
3849 unsigned int optlen)
3850 {
3851 struct sctp_association *asoc;
3852 struct sctp_add_streams params;
3853 int retval = -EINVAL;
3854
3855 if (optlen != sizeof(params))
3856 goto out;
3857
3858 if (copy_from_user(&params, optval, optlen)) {
3859 retval = -EFAULT;
3860 goto out;
3861 }
3862
3863 asoc = sctp_id2assoc(sk, params.sas_assoc_id);
3864 if (!asoc)
3865 goto out;
3866
3867 retval = sctp_send_add_streams(asoc, &params);
3868
3869 out:
3870 return retval;
3871 }
3872
3873 /* API 6.2 setsockopt(), getsockopt()
3874 *
3875 * Applications use setsockopt() and getsockopt() to set or retrieve
3876 * socket options. Socket options are used to change the default
3877 * behavior of sockets calls. They are described in Section 7.
3878 *
3879 * The syntax is:
3880 *
3881 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3882 * int __user *optlen);
3883 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3884 * int optlen);
3885 *
3886 * sd - the socket descript.
3887 * level - set to IPPROTO_SCTP for all SCTP options.
3888 * optname - the option name.
3889 * optval - the buffer to store the value of the option.
3890 * optlen - the size of the buffer.
3891 */
3892 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3893 char __user *optval, unsigned int optlen)
3894 {
3895 int retval = 0;
3896
3897 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3898
3899 /* I can hardly begin to describe how wrong this is. This is
3900 * so broken as to be worse than useless. The API draft
3901 * REALLY is NOT helpful here... I am not convinced that the
3902 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3903 * are at all well-founded.
3904 */
3905 if (level != SOL_SCTP) {
3906 struct sctp_af *af = sctp_sk(sk)->pf->af;
3907 retval = af->setsockopt(sk, level, optname, optval, optlen);
3908 goto out_nounlock;
3909 }
3910
3911 lock_sock(sk);
3912
3913 switch (optname) {
3914 case SCTP_SOCKOPT_BINDX_ADD:
3915 /* 'optlen' is the size of the addresses buffer. */
3916 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3917 optlen, SCTP_BINDX_ADD_ADDR);
3918 break;
3919
3920 case SCTP_SOCKOPT_BINDX_REM:
3921 /* 'optlen' is the size of the addresses buffer. */
3922 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3923 optlen, SCTP_BINDX_REM_ADDR);
3924 break;
3925
3926 case SCTP_SOCKOPT_CONNECTX_OLD:
3927 /* 'optlen' is the size of the addresses buffer. */
3928 retval = sctp_setsockopt_connectx_old(sk,
3929 (struct sockaddr __user *)optval,
3930 optlen);
3931 break;
3932
3933 case SCTP_SOCKOPT_CONNECTX:
3934 /* 'optlen' is the size of the addresses buffer. */
3935 retval = sctp_setsockopt_connectx(sk,
3936 (struct sockaddr __user *)optval,
3937 optlen);
3938 break;
3939
3940 case SCTP_DISABLE_FRAGMENTS:
3941 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3942 break;
3943
3944 case SCTP_EVENTS:
3945 retval = sctp_setsockopt_events(sk, optval, optlen);
3946 break;
3947
3948 case SCTP_AUTOCLOSE:
3949 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3950 break;
3951
3952 case SCTP_PEER_ADDR_PARAMS:
3953 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3954 break;
3955
3956 case SCTP_DELAYED_SACK:
3957 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3958 break;
3959 case SCTP_PARTIAL_DELIVERY_POINT:
3960 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3961 break;
3962
3963 case SCTP_INITMSG:
3964 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3965 break;
3966 case SCTP_DEFAULT_SEND_PARAM:
3967 retval = sctp_setsockopt_default_send_param(sk, optval,
3968 optlen);
3969 break;
3970 case SCTP_DEFAULT_SNDINFO:
3971 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3972 break;
3973 case SCTP_PRIMARY_ADDR:
3974 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3975 break;
3976 case SCTP_SET_PEER_PRIMARY_ADDR:
3977 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3978 break;
3979 case SCTP_NODELAY:
3980 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3981 break;
3982 case SCTP_RTOINFO:
3983 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3984 break;
3985 case SCTP_ASSOCINFO:
3986 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3987 break;
3988 case SCTP_I_WANT_MAPPED_V4_ADDR:
3989 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3990 break;
3991 case SCTP_MAXSEG:
3992 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3993 break;
3994 case SCTP_ADAPTATION_LAYER:
3995 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3996 break;
3997 case SCTP_CONTEXT:
3998 retval = sctp_setsockopt_context(sk, optval, optlen);
3999 break;
4000 case SCTP_FRAGMENT_INTERLEAVE:
4001 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4002 break;
4003 case SCTP_MAX_BURST:
4004 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4005 break;
4006 case SCTP_AUTH_CHUNK:
4007 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4008 break;
4009 case SCTP_HMAC_IDENT:
4010 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4011 break;
4012 case SCTP_AUTH_KEY:
4013 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4014 break;
4015 case SCTP_AUTH_ACTIVE_KEY:
4016 retval = sctp_setsockopt_active_key(sk, optval, optlen);
4017 break;
4018 case SCTP_AUTH_DELETE_KEY:
4019 retval = sctp_setsockopt_del_key(sk, optval, optlen);
4020 break;
4021 case SCTP_AUTO_ASCONF:
4022 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4023 break;
4024 case SCTP_PEER_ADDR_THLDS:
4025 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4026 break;
4027 case SCTP_RECVRCVINFO:
4028 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4029 break;
4030 case SCTP_RECVNXTINFO:
4031 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4032 break;
4033 case SCTP_PR_SUPPORTED:
4034 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4035 break;
4036 case SCTP_DEFAULT_PRINFO:
4037 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4038 break;
4039 case SCTP_ENABLE_STREAM_RESET:
4040 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4041 break;
4042 case SCTP_RESET_STREAMS:
4043 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4044 break;
4045 case SCTP_RESET_ASSOC:
4046 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4047 break;
4048 case SCTP_ADD_STREAMS:
4049 retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4050 break;
4051 default:
4052 retval = -ENOPROTOOPT;
4053 break;
4054 }
4055
4056 release_sock(sk);
4057
4058 out_nounlock:
4059 return retval;
4060 }
4061
4062 /* API 3.1.6 connect() - UDP Style Syntax
4063 *
4064 * An application may use the connect() call in the UDP model to initiate an
4065 * association without sending data.
4066 *
4067 * The syntax is:
4068 *
4069 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4070 *
4071 * sd: the socket descriptor to have a new association added to.
4072 *
4073 * nam: the address structure (either struct sockaddr_in or struct
4074 * sockaddr_in6 defined in RFC2553 [7]).
4075 *
4076 * len: the size of the address.
4077 */
4078 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4079 int addr_len)
4080 {
4081 int err = 0;
4082 struct sctp_af *af;
4083
4084 lock_sock(sk);
4085
4086 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4087 addr, addr_len);
4088
4089 /* Validate addr_len before calling common connect/connectx routine. */
4090 af = sctp_get_af_specific(addr->sa_family);
4091 if (!af || addr_len < af->sockaddr_len) {
4092 err = -EINVAL;
4093 } else {
4094 /* Pass correct addr len to common routine (so it knows there
4095 * is only one address being passed.
4096 */
4097 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4098 }
4099
4100 release_sock(sk);
4101 return err;
4102 }
4103
4104 /* FIXME: Write comments. */
4105 static int sctp_disconnect(struct sock *sk, int flags)
4106 {
4107 return -EOPNOTSUPP; /* STUB */
4108 }
4109
4110 /* 4.1.4 accept() - TCP Style Syntax
4111 *
4112 * Applications use accept() call to remove an established SCTP
4113 * association from the accept queue of the endpoint. A new socket
4114 * descriptor will be returned from accept() to represent the newly
4115 * formed association.
4116 */
4117 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
4118 {
4119 struct sctp_sock *sp;
4120 struct sctp_endpoint *ep;
4121 struct sock *newsk = NULL;
4122 struct sctp_association *asoc;
4123 long timeo;
4124 int error = 0;
4125
4126 lock_sock(sk);
4127
4128 sp = sctp_sk(sk);
4129 ep = sp->ep;
4130
4131 if (!sctp_style(sk, TCP)) {
4132 error = -EOPNOTSUPP;
4133 goto out;
4134 }
4135
4136 if (!sctp_sstate(sk, LISTENING)) {
4137 error = -EINVAL;
4138 goto out;
4139 }
4140
4141 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4142
4143 error = sctp_wait_for_accept(sk, timeo);
4144 if (error)
4145 goto out;
4146
4147 /* We treat the list of associations on the endpoint as the accept
4148 * queue and pick the first association on the list.
4149 */
4150 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4151
4152 newsk = sp->pf->create_accept_sk(sk, asoc);
4153 if (!newsk) {
4154 error = -ENOMEM;
4155 goto out;
4156 }
4157
4158 /* Populate the fields of the newsk from the oldsk and migrate the
4159 * asoc to the newsk.
4160 */
4161 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4162
4163 out:
4164 release_sock(sk);
4165 *err = error;
4166 return newsk;
4167 }
4168
4169 /* The SCTP ioctl handler. */
4170 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4171 {
4172 int rc = -ENOTCONN;
4173
4174 lock_sock(sk);
4175
4176 /*
4177 * SEQPACKET-style sockets in LISTENING state are valid, for
4178 * SCTP, so only discard TCP-style sockets in LISTENING state.
4179 */
4180 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4181 goto out;
4182
4183 switch (cmd) {
4184 case SIOCINQ: {
4185 struct sk_buff *skb;
4186 unsigned int amount = 0;
4187
4188 skb = skb_peek(&sk->sk_receive_queue);
4189 if (skb != NULL) {
4190 /*
4191 * We will only return the amount of this packet since
4192 * that is all that will be read.
4193 */
4194 amount = skb->len;
4195 }
4196 rc = put_user(amount, (int __user *)arg);
4197 break;
4198 }
4199 default:
4200 rc = -ENOIOCTLCMD;
4201 break;
4202 }
4203 out:
4204 release_sock(sk);
4205 return rc;
4206 }
4207
4208 /* This is the function which gets called during socket creation to
4209 * initialized the SCTP-specific portion of the sock.
4210 * The sock structure should already be zero-filled memory.
4211 */
4212 static int sctp_init_sock(struct sock *sk)
4213 {
4214 struct net *net = sock_net(sk);
4215 struct sctp_sock *sp;
4216
4217 pr_debug("%s: sk:%p\n", __func__, sk);
4218
4219 sp = sctp_sk(sk);
4220
4221 /* Initialize the SCTP per socket area. */
4222 switch (sk->sk_type) {
4223 case SOCK_SEQPACKET:
4224 sp->type = SCTP_SOCKET_UDP;
4225 break;
4226 case SOCK_STREAM:
4227 sp->type = SCTP_SOCKET_TCP;
4228 break;
4229 default:
4230 return -ESOCKTNOSUPPORT;
4231 }
4232
4233 sk->sk_gso_type = SKB_GSO_SCTP;
4234
4235 /* Initialize default send parameters. These parameters can be
4236 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4237 */
4238 sp->default_stream = 0;
4239 sp->default_ppid = 0;
4240 sp->default_flags = 0;
4241 sp->default_context = 0;
4242 sp->default_timetolive = 0;
4243
4244 sp->default_rcv_context = 0;
4245 sp->max_burst = net->sctp.max_burst;
4246
4247 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4248
4249 /* Initialize default setup parameters. These parameters
4250 * can be modified with the SCTP_INITMSG socket option or
4251 * overridden by the SCTP_INIT CMSG.
4252 */
4253 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4254 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4255 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4256 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4257
4258 /* Initialize default RTO related parameters. These parameters can
4259 * be modified for with the SCTP_RTOINFO socket option.
4260 */
4261 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4262 sp->rtoinfo.srto_max = net->sctp.rto_max;
4263 sp->rtoinfo.srto_min = net->sctp.rto_min;
4264
4265 /* Initialize default association related parameters. These parameters
4266 * can be modified with the SCTP_ASSOCINFO socket option.
4267 */
4268 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4269 sp->assocparams.sasoc_number_peer_destinations = 0;
4270 sp->assocparams.sasoc_peer_rwnd = 0;
4271 sp->assocparams.sasoc_local_rwnd = 0;
4272 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4273
4274 /* Initialize default event subscriptions. By default, all the
4275 * options are off.
4276 */
4277 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4278
4279 /* Default Peer Address Parameters. These defaults can
4280 * be modified via SCTP_PEER_ADDR_PARAMS
4281 */
4282 sp->hbinterval = net->sctp.hb_interval;
4283 sp->pathmaxrxt = net->sctp.max_retrans_path;
4284 sp->pathmtu = 0; /* allow default discovery */
4285 sp->sackdelay = net->sctp.sack_timeout;
4286 sp->sackfreq = 2;
4287 sp->param_flags = SPP_HB_ENABLE |
4288 SPP_PMTUD_ENABLE |
4289 SPP_SACKDELAY_ENABLE;
4290
4291 /* If enabled no SCTP message fragmentation will be performed.
4292 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4293 */
4294 sp->disable_fragments = 0;
4295
4296 /* Enable Nagle algorithm by default. */
4297 sp->nodelay = 0;
4298
4299 sp->recvrcvinfo = 0;
4300 sp->recvnxtinfo = 0;
4301
4302 /* Enable by default. */
4303 sp->v4mapped = 1;
4304
4305 /* Auto-close idle associations after the configured
4306 * number of seconds. A value of 0 disables this
4307 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4308 * for UDP-style sockets only.
4309 */
4310 sp->autoclose = 0;
4311
4312 /* User specified fragmentation limit. */
4313 sp->user_frag = 0;
4314
4315 sp->adaptation_ind = 0;
4316
4317 sp->pf = sctp_get_pf_specific(sk->sk_family);
4318
4319 /* Control variables for partial data delivery. */
4320 atomic_set(&sp->pd_mode, 0);
4321 skb_queue_head_init(&sp->pd_lobby);
4322 sp->frag_interleave = 0;
4323
4324 /* Create a per socket endpoint structure. Even if we
4325 * change the data structure relationships, this may still
4326 * be useful for storing pre-connect address information.
4327 */
4328 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4329 if (!sp->ep)
4330 return -ENOMEM;
4331
4332 sp->hmac = NULL;
4333
4334 sk->sk_destruct = sctp_destruct_sock;
4335
4336 SCTP_DBG_OBJCNT_INC(sock);
4337
4338 local_bh_disable();
4339 percpu_counter_inc(&sctp_sockets_allocated);
4340 sock_prot_inuse_add(net, sk->sk_prot, 1);
4341
4342 /* Nothing can fail after this block, otherwise
4343 * sctp_destroy_sock() will be called without addr_wq_lock held
4344 */
4345 if (net->sctp.default_auto_asconf) {
4346 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4347 list_add_tail(&sp->auto_asconf_list,
4348 &net->sctp.auto_asconf_splist);
4349 sp->do_auto_asconf = 1;
4350 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4351 } else {
4352 sp->do_auto_asconf = 0;
4353 }
4354
4355 local_bh_enable();
4356
4357 return 0;
4358 }
4359
4360 /* Cleanup any SCTP per socket resources. Must be called with
4361 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4362 */
4363 static void sctp_destroy_sock(struct sock *sk)
4364 {
4365 struct sctp_sock *sp;
4366
4367 pr_debug("%s: sk:%p\n", __func__, sk);
4368
4369 /* Release our hold on the endpoint. */
4370 sp = sctp_sk(sk);
4371 /* This could happen during socket init, thus we bail out
4372 * early, since the rest of the below is not setup either.
4373 */
4374 if (sp->ep == NULL)
4375 return;
4376
4377 if (sp->do_auto_asconf) {
4378 sp->do_auto_asconf = 0;
4379 list_del(&sp->auto_asconf_list);
4380 }
4381 sctp_endpoint_free(sp->ep);
4382 local_bh_disable();
4383 percpu_counter_dec(&sctp_sockets_allocated);
4384 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4385 local_bh_enable();
4386 }
4387
4388 /* Triggered when there are no references on the socket anymore */
4389 static void sctp_destruct_sock(struct sock *sk)
4390 {
4391 struct sctp_sock *sp = sctp_sk(sk);
4392
4393 /* Free up the HMAC transform. */
4394 crypto_free_shash(sp->hmac);
4395
4396 inet_sock_destruct(sk);
4397 }
4398
4399 /* API 4.1.7 shutdown() - TCP Style Syntax
4400 * int shutdown(int socket, int how);
4401 *
4402 * sd - the socket descriptor of the association to be closed.
4403 * how - Specifies the type of shutdown. The values are
4404 * as follows:
4405 * SHUT_RD
4406 * Disables further receive operations. No SCTP
4407 * protocol action is taken.
4408 * SHUT_WR
4409 * Disables further send operations, and initiates
4410 * the SCTP shutdown sequence.
4411 * SHUT_RDWR
4412 * Disables further send and receive operations
4413 * and initiates the SCTP shutdown sequence.
4414 */
4415 static void sctp_shutdown(struct sock *sk, int how)
4416 {
4417 struct net *net = sock_net(sk);
4418 struct sctp_endpoint *ep;
4419
4420 if (!sctp_style(sk, TCP))
4421 return;
4422
4423 ep = sctp_sk(sk)->ep;
4424 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4425 struct sctp_association *asoc;
4426
4427 sk->sk_state = SCTP_SS_CLOSING;
4428 asoc = list_entry(ep->asocs.next,
4429 struct sctp_association, asocs);
4430 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4431 }
4432 }
4433
4434 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4435 struct sctp_info *info)
4436 {
4437 struct sctp_transport *prim;
4438 struct list_head *pos;
4439 int mask;
4440
4441 memset(info, 0, sizeof(*info));
4442 if (!asoc) {
4443 struct sctp_sock *sp = sctp_sk(sk);
4444
4445 info->sctpi_s_autoclose = sp->autoclose;
4446 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4447 info->sctpi_s_pd_point = sp->pd_point;
4448 info->sctpi_s_nodelay = sp->nodelay;
4449 info->sctpi_s_disable_fragments = sp->disable_fragments;
4450 info->sctpi_s_v4mapped = sp->v4mapped;
4451 info->sctpi_s_frag_interleave = sp->frag_interleave;
4452 info->sctpi_s_type = sp->type;
4453
4454 return 0;
4455 }
4456
4457 info->sctpi_tag = asoc->c.my_vtag;
4458 info->sctpi_state = asoc->state;
4459 info->sctpi_rwnd = asoc->a_rwnd;
4460 info->sctpi_unackdata = asoc->unack_data;
4461 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4462 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4463 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4464 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4465 info->sctpi_inqueue++;
4466 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4467 info->sctpi_outqueue++;
4468 info->sctpi_overall_error = asoc->overall_error_count;
4469 info->sctpi_max_burst = asoc->max_burst;
4470 info->sctpi_maxseg = asoc->frag_point;
4471 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4472 info->sctpi_peer_tag = asoc->c.peer_vtag;
4473
4474 mask = asoc->peer.ecn_capable << 1;
4475 mask = (mask | asoc->peer.ipv4_address) << 1;
4476 mask = (mask | asoc->peer.ipv6_address) << 1;
4477 mask = (mask | asoc->peer.hostname_address) << 1;
4478 mask = (mask | asoc->peer.asconf_capable) << 1;
4479 mask = (mask | asoc->peer.prsctp_capable) << 1;
4480 mask = (mask | asoc->peer.auth_capable);
4481 info->sctpi_peer_capable = mask;
4482 mask = asoc->peer.sack_needed << 1;
4483 mask = (mask | asoc->peer.sack_generation) << 1;
4484 mask = (mask | asoc->peer.zero_window_announced);
4485 info->sctpi_peer_sack = mask;
4486
4487 info->sctpi_isacks = asoc->stats.isacks;
4488 info->sctpi_osacks = asoc->stats.osacks;
4489 info->sctpi_opackets = asoc->stats.opackets;
4490 info->sctpi_ipackets = asoc->stats.ipackets;
4491 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4492 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4493 info->sctpi_idupchunks = asoc->stats.idupchunks;
4494 info->sctpi_gapcnt = asoc->stats.gapcnt;
4495 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4496 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4497 info->sctpi_oodchunks = asoc->stats.oodchunks;
4498 info->sctpi_iodchunks = asoc->stats.iodchunks;
4499 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4500 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4501
4502 prim = asoc->peer.primary_path;
4503 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4504 sizeof(struct sockaddr_storage));
4505 info->sctpi_p_state = prim->state;
4506 info->sctpi_p_cwnd = prim->cwnd;
4507 info->sctpi_p_srtt = prim->srtt;
4508 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4509 info->sctpi_p_hbinterval = prim->hbinterval;
4510 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4511 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4512 info->sctpi_p_ssthresh = prim->ssthresh;
4513 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4514 info->sctpi_p_flight_size = prim->flight_size;
4515 info->sctpi_p_error = prim->error_count;
4516
4517 return 0;
4518 }
4519 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4520
4521 /* use callback to avoid exporting the core structure */
4522 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4523 {
4524 int err;
4525
4526 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4527
4528 err = rhashtable_walk_start(iter);
4529 if (err && err != -EAGAIN) {
4530 rhashtable_walk_stop(iter);
4531 rhashtable_walk_exit(iter);
4532 return err;
4533 }
4534
4535 return 0;
4536 }
4537
4538 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4539 {
4540 rhashtable_walk_stop(iter);
4541 rhashtable_walk_exit(iter);
4542 }
4543
4544 struct sctp_transport *sctp_transport_get_next(struct net *net,
4545 struct rhashtable_iter *iter)
4546 {
4547 struct sctp_transport *t;
4548
4549 t = rhashtable_walk_next(iter);
4550 for (; t; t = rhashtable_walk_next(iter)) {
4551 if (IS_ERR(t)) {
4552 if (PTR_ERR(t) == -EAGAIN)
4553 continue;
4554 break;
4555 }
4556
4557 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4558 t->asoc->peer.primary_path == t)
4559 break;
4560 }
4561
4562 return t;
4563 }
4564
4565 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4566 struct rhashtable_iter *iter,
4567 int pos)
4568 {
4569 void *obj = SEQ_START_TOKEN;
4570
4571 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4572 !IS_ERR(obj))
4573 pos--;
4574
4575 return obj;
4576 }
4577
4578 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4579 void *p) {
4580 int err = 0;
4581 int hash = 0;
4582 struct sctp_ep_common *epb;
4583 struct sctp_hashbucket *head;
4584
4585 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4586 hash++, head++) {
4587 read_lock(&head->lock);
4588 sctp_for_each_hentry(epb, &head->chain) {
4589 err = cb(sctp_ep(epb), p);
4590 if (err)
4591 break;
4592 }
4593 read_unlock(&head->lock);
4594 }
4595
4596 return err;
4597 }
4598 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4599
4600 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4601 struct net *net,
4602 const union sctp_addr *laddr,
4603 const union sctp_addr *paddr, void *p)
4604 {
4605 struct sctp_transport *transport;
4606 int err;
4607
4608 rcu_read_lock();
4609 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4610 rcu_read_unlock();
4611 if (!transport)
4612 return -ENOENT;
4613
4614 err = cb(transport, p);
4615 sctp_transport_put(transport);
4616
4617 return err;
4618 }
4619 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4620
4621 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4622 struct net *net, int pos, void *p) {
4623 struct rhashtable_iter hti;
4624 void *obj;
4625 int err;
4626
4627 err = sctp_transport_walk_start(&hti);
4628 if (err)
4629 return err;
4630
4631 sctp_transport_get_idx(net, &hti, pos);
4632 obj = sctp_transport_get_next(net, &hti);
4633 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4634 struct sctp_transport *transport = obj;
4635
4636 if (!sctp_transport_hold(transport))
4637 continue;
4638 err = cb(transport, p);
4639 sctp_transport_put(transport);
4640 if (err)
4641 break;
4642 }
4643 sctp_transport_walk_stop(&hti);
4644
4645 return err;
4646 }
4647 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4648
4649 /* 7.2.1 Association Status (SCTP_STATUS)
4650
4651 * Applications can retrieve current status information about an
4652 * association, including association state, peer receiver window size,
4653 * number of unacked data chunks, and number of data chunks pending
4654 * receipt. This information is read-only.
4655 */
4656 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4657 char __user *optval,
4658 int __user *optlen)
4659 {
4660 struct sctp_status status;
4661 struct sctp_association *asoc = NULL;
4662 struct sctp_transport *transport;
4663 sctp_assoc_t associd;
4664 int retval = 0;
4665
4666 if (len < sizeof(status)) {
4667 retval = -EINVAL;
4668 goto out;
4669 }
4670
4671 len = sizeof(status);
4672 if (copy_from_user(&status, optval, len)) {
4673 retval = -EFAULT;
4674 goto out;
4675 }
4676
4677 associd = status.sstat_assoc_id;
4678 asoc = sctp_id2assoc(sk, associd);
4679 if (!asoc) {
4680 retval = -EINVAL;
4681 goto out;
4682 }
4683
4684 transport = asoc->peer.primary_path;
4685
4686 status.sstat_assoc_id = sctp_assoc2id(asoc);
4687 status.sstat_state = sctp_assoc_to_state(asoc);
4688 status.sstat_rwnd = asoc->peer.rwnd;
4689 status.sstat_unackdata = asoc->unack_data;
4690
4691 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4692 status.sstat_instrms = asoc->c.sinit_max_instreams;
4693 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4694 status.sstat_fragmentation_point = asoc->frag_point;
4695 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4696 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4697 transport->af_specific->sockaddr_len);
4698 /* Map ipv4 address into v4-mapped-on-v6 address. */
4699 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4700 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4701 status.sstat_primary.spinfo_state = transport->state;
4702 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4703 status.sstat_primary.spinfo_srtt = transport->srtt;
4704 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4705 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4706
4707 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4708 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4709
4710 if (put_user(len, optlen)) {
4711 retval = -EFAULT;
4712 goto out;
4713 }
4714
4715 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4716 __func__, len, status.sstat_state, status.sstat_rwnd,
4717 status.sstat_assoc_id);
4718
4719 if (copy_to_user(optval, &status, len)) {
4720 retval = -EFAULT;
4721 goto out;
4722 }
4723
4724 out:
4725 return retval;
4726 }
4727
4728
4729 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4730 *
4731 * Applications can retrieve information about a specific peer address
4732 * of an association, including its reachability state, congestion
4733 * window, and retransmission timer values. This information is
4734 * read-only.
4735 */
4736 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4737 char __user *optval,
4738 int __user *optlen)
4739 {
4740 struct sctp_paddrinfo pinfo;
4741 struct sctp_transport *transport;
4742 int retval = 0;
4743
4744 if (len < sizeof(pinfo)) {
4745 retval = -EINVAL;
4746 goto out;
4747 }
4748
4749 len = sizeof(pinfo);
4750 if (copy_from_user(&pinfo, optval, len)) {
4751 retval = -EFAULT;
4752 goto out;
4753 }
4754
4755 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4756 pinfo.spinfo_assoc_id);
4757 if (!transport)
4758 return -EINVAL;
4759
4760 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4761 pinfo.spinfo_state = transport->state;
4762 pinfo.spinfo_cwnd = transport->cwnd;
4763 pinfo.spinfo_srtt = transport->srtt;
4764 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4765 pinfo.spinfo_mtu = transport->pathmtu;
4766
4767 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4768 pinfo.spinfo_state = SCTP_ACTIVE;
4769
4770 if (put_user(len, optlen)) {
4771 retval = -EFAULT;
4772 goto out;
4773 }
4774
4775 if (copy_to_user(optval, &pinfo, len)) {
4776 retval = -EFAULT;
4777 goto out;
4778 }
4779
4780 out:
4781 return retval;
4782 }
4783
4784 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4785 *
4786 * This option is a on/off flag. If enabled no SCTP message
4787 * fragmentation will be performed. Instead if a message being sent
4788 * exceeds the current PMTU size, the message will NOT be sent and
4789 * instead a error will be indicated to the user.
4790 */
4791 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4792 char __user *optval, int __user *optlen)
4793 {
4794 int val;
4795
4796 if (len < sizeof(int))
4797 return -EINVAL;
4798
4799 len = sizeof(int);
4800 val = (sctp_sk(sk)->disable_fragments == 1);
4801 if (put_user(len, optlen))
4802 return -EFAULT;
4803 if (copy_to_user(optval, &val, len))
4804 return -EFAULT;
4805 return 0;
4806 }
4807
4808 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4809 *
4810 * This socket option is used to specify various notifications and
4811 * ancillary data the user wishes to receive.
4812 */
4813 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4814 int __user *optlen)
4815 {
4816 if (len == 0)
4817 return -EINVAL;
4818 if (len > sizeof(struct sctp_event_subscribe))
4819 len = sizeof(struct sctp_event_subscribe);
4820 if (put_user(len, optlen))
4821 return -EFAULT;
4822 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4823 return -EFAULT;
4824 return 0;
4825 }
4826
4827 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4828 *
4829 * This socket option is applicable to the UDP-style socket only. When
4830 * set it will cause associations that are idle for more than the
4831 * specified number of seconds to automatically close. An association
4832 * being idle is defined an association that has NOT sent or received
4833 * user data. The special value of '0' indicates that no automatic
4834 * close of any associations should be performed. The option expects an
4835 * integer defining the number of seconds of idle time before an
4836 * association is closed.
4837 */
4838 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4839 {
4840 /* Applicable to UDP-style socket only */
4841 if (sctp_style(sk, TCP))
4842 return -EOPNOTSUPP;
4843 if (len < sizeof(int))
4844 return -EINVAL;
4845 len = sizeof(int);
4846 if (put_user(len, optlen))
4847 return -EFAULT;
4848 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4849 return -EFAULT;
4850 return 0;
4851 }
4852
4853 /* Helper routine to branch off an association to a new socket. */
4854 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4855 {
4856 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4857 struct sctp_sock *sp = sctp_sk(sk);
4858 struct socket *sock;
4859 int err = 0;
4860
4861 if (!asoc)
4862 return -EINVAL;
4863
4864 /* An association cannot be branched off from an already peeled-off
4865 * socket, nor is this supported for tcp style sockets.
4866 */
4867 if (!sctp_style(sk, UDP))
4868 return -EINVAL;
4869
4870 /* Create a new socket. */
4871 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4872 if (err < 0)
4873 return err;
4874
4875 sctp_copy_sock(sock->sk, sk, asoc);
4876
4877 /* Make peeled-off sockets more like 1-1 accepted sockets.
4878 * Set the daddr and initialize id to something more random
4879 */
4880 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4881
4882 /* Populate the fields of the newsk from the oldsk and migrate the
4883 * asoc to the newsk.
4884 */
4885 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4886
4887 *sockp = sock;
4888
4889 return err;
4890 }
4891 EXPORT_SYMBOL(sctp_do_peeloff);
4892
4893 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4894 {
4895 sctp_peeloff_arg_t peeloff;
4896 struct socket *newsock;
4897 struct file *newfile;
4898 int retval = 0;
4899
4900 if (len < sizeof(sctp_peeloff_arg_t))
4901 return -EINVAL;
4902 len = sizeof(sctp_peeloff_arg_t);
4903 if (copy_from_user(&peeloff, optval, len))
4904 return -EFAULT;
4905
4906 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4907 if (retval < 0)
4908 goto out;
4909
4910 /* Map the socket to an unused fd that can be returned to the user. */
4911 retval = get_unused_fd_flags(0);
4912 if (retval < 0) {
4913 sock_release(newsock);
4914 goto out;
4915 }
4916
4917 newfile = sock_alloc_file(newsock, 0, NULL);
4918 if (IS_ERR(newfile)) {
4919 put_unused_fd(retval);
4920 sock_release(newsock);
4921 return PTR_ERR(newfile);
4922 }
4923
4924 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4925 retval);
4926
4927 /* Return the fd mapped to the new socket. */
4928 if (put_user(len, optlen)) {
4929 fput(newfile);
4930 put_unused_fd(retval);
4931 return -EFAULT;
4932 }
4933 peeloff.sd = retval;
4934 if (copy_to_user(optval, &peeloff, len)) {
4935 fput(newfile);
4936 put_unused_fd(retval);
4937 return -EFAULT;
4938 }
4939 fd_install(retval, newfile);
4940 out:
4941 return retval;
4942 }
4943
4944 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4945 *
4946 * Applications can enable or disable heartbeats for any peer address of
4947 * an association, modify an address's heartbeat interval, force a
4948 * heartbeat to be sent immediately, and adjust the address's maximum
4949 * number of retransmissions sent before an address is considered
4950 * unreachable. The following structure is used to access and modify an
4951 * address's parameters:
4952 *
4953 * struct sctp_paddrparams {
4954 * sctp_assoc_t spp_assoc_id;
4955 * struct sockaddr_storage spp_address;
4956 * uint32_t spp_hbinterval;
4957 * uint16_t spp_pathmaxrxt;
4958 * uint32_t spp_pathmtu;
4959 * uint32_t spp_sackdelay;
4960 * uint32_t spp_flags;
4961 * };
4962 *
4963 * spp_assoc_id - (one-to-many style socket) This is filled in the
4964 * application, and identifies the association for
4965 * this query.
4966 * spp_address - This specifies which address is of interest.
4967 * spp_hbinterval - This contains the value of the heartbeat interval,
4968 * in milliseconds. If a value of zero
4969 * is present in this field then no changes are to
4970 * be made to this parameter.
4971 * spp_pathmaxrxt - This contains the maximum number of
4972 * retransmissions before this address shall be
4973 * considered unreachable. If a value of zero
4974 * is present in this field then no changes are to
4975 * be made to this parameter.
4976 * spp_pathmtu - When Path MTU discovery is disabled the value
4977 * specified here will be the "fixed" path mtu.
4978 * Note that if the spp_address field is empty
4979 * then all associations on this address will
4980 * have this fixed path mtu set upon them.
4981 *
4982 * spp_sackdelay - When delayed sack is enabled, this value specifies
4983 * the number of milliseconds that sacks will be delayed
4984 * for. This value will apply to all addresses of an
4985 * association if the spp_address field is empty. Note
4986 * also, that if delayed sack is enabled and this
4987 * value is set to 0, no change is made to the last
4988 * recorded delayed sack timer value.
4989 *
4990 * spp_flags - These flags are used to control various features
4991 * on an association. The flag field may contain
4992 * zero or more of the following options.
4993 *
4994 * SPP_HB_ENABLE - Enable heartbeats on the
4995 * specified address. Note that if the address
4996 * field is empty all addresses for the association
4997 * have heartbeats enabled upon them.
4998 *
4999 * SPP_HB_DISABLE - Disable heartbeats on the
5000 * speicifed address. Note that if the address
5001 * field is empty all addresses for the association
5002 * will have their heartbeats disabled. Note also
5003 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5004 * mutually exclusive, only one of these two should
5005 * be specified. Enabling both fields will have
5006 * undetermined results.
5007 *
5008 * SPP_HB_DEMAND - Request a user initiated heartbeat
5009 * to be made immediately.
5010 *
5011 * SPP_PMTUD_ENABLE - This field will enable PMTU
5012 * discovery upon the specified address. Note that
5013 * if the address feild is empty then all addresses
5014 * on the association are effected.
5015 *
5016 * SPP_PMTUD_DISABLE - This field will disable PMTU
5017 * discovery upon the specified address. Note that
5018 * if the address feild is empty then all addresses
5019 * on the association are effected. Not also that
5020 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5021 * exclusive. Enabling both will have undetermined
5022 * results.
5023 *
5024 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5025 * on delayed sack. The time specified in spp_sackdelay
5026 * is used to specify the sack delay for this address. Note
5027 * that if spp_address is empty then all addresses will
5028 * enable delayed sack and take on the sack delay
5029 * value specified in spp_sackdelay.
5030 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5031 * off delayed sack. If the spp_address field is blank then
5032 * delayed sack is disabled for the entire association. Note
5033 * also that this field is mutually exclusive to
5034 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5035 * results.
5036 */
5037 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5038 char __user *optval, int __user *optlen)
5039 {
5040 struct sctp_paddrparams params;
5041 struct sctp_transport *trans = NULL;
5042 struct sctp_association *asoc = NULL;
5043 struct sctp_sock *sp = sctp_sk(sk);
5044
5045 if (len < sizeof(struct sctp_paddrparams))
5046 return -EINVAL;
5047 len = sizeof(struct sctp_paddrparams);
5048 if (copy_from_user(&params, optval, len))
5049 return -EFAULT;
5050
5051 /* If an address other than INADDR_ANY is specified, and
5052 * no transport is found, then the request is invalid.
5053 */
5054 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5055 trans = sctp_addr_id2transport(sk, &params.spp_address,
5056 params.spp_assoc_id);
5057 if (!trans) {
5058 pr_debug("%s: failed no transport\n", __func__);
5059 return -EINVAL;
5060 }
5061 }
5062
5063 /* Get association, if assoc_id != 0 and the socket is a one
5064 * to many style socket, and an association was not found, then
5065 * the id was invalid.
5066 */
5067 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5068 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5069 pr_debug("%s: failed no association\n", __func__);
5070 return -EINVAL;
5071 }
5072
5073 if (trans) {
5074 /* Fetch transport values. */
5075 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5076 params.spp_pathmtu = trans->pathmtu;
5077 params.spp_pathmaxrxt = trans->pathmaxrxt;
5078 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5079
5080 /*draft-11 doesn't say what to return in spp_flags*/
5081 params.spp_flags = trans->param_flags;
5082 } else if (asoc) {
5083 /* Fetch association values. */
5084 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5085 params.spp_pathmtu = asoc->pathmtu;
5086 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5087 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5088
5089 /*draft-11 doesn't say what to return in spp_flags*/
5090 params.spp_flags = asoc->param_flags;
5091 } else {
5092 /* Fetch socket values. */
5093 params.spp_hbinterval = sp->hbinterval;
5094 params.spp_pathmtu = sp->pathmtu;
5095 params.spp_sackdelay = sp->sackdelay;
5096 params.spp_pathmaxrxt = sp->pathmaxrxt;
5097
5098 /*draft-11 doesn't say what to return in spp_flags*/
5099 params.spp_flags = sp->param_flags;
5100 }
5101
5102 if (copy_to_user(optval, &params, len))
5103 return -EFAULT;
5104
5105 if (put_user(len, optlen))
5106 return -EFAULT;
5107
5108 return 0;
5109 }
5110
5111 /*
5112 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5113 *
5114 * This option will effect the way delayed acks are performed. This
5115 * option allows you to get or set the delayed ack time, in
5116 * milliseconds. It also allows changing the delayed ack frequency.
5117 * Changing the frequency to 1 disables the delayed sack algorithm. If
5118 * the assoc_id is 0, then this sets or gets the endpoints default
5119 * values. If the assoc_id field is non-zero, then the set or get
5120 * effects the specified association for the one to many model (the
5121 * assoc_id field is ignored by the one to one model). Note that if
5122 * sack_delay or sack_freq are 0 when setting this option, then the
5123 * current values will remain unchanged.
5124 *
5125 * struct sctp_sack_info {
5126 * sctp_assoc_t sack_assoc_id;
5127 * uint32_t sack_delay;
5128 * uint32_t sack_freq;
5129 * };
5130 *
5131 * sack_assoc_id - This parameter, indicates which association the user
5132 * is performing an action upon. Note that if this field's value is
5133 * zero then the endpoints default value is changed (effecting future
5134 * associations only).
5135 *
5136 * sack_delay - This parameter contains the number of milliseconds that
5137 * the user is requesting the delayed ACK timer be set to. Note that
5138 * this value is defined in the standard to be between 200 and 500
5139 * milliseconds.
5140 *
5141 * sack_freq - This parameter contains the number of packets that must
5142 * be received before a sack is sent without waiting for the delay
5143 * timer to expire. The default value for this is 2, setting this
5144 * value to 1 will disable the delayed sack algorithm.
5145 */
5146 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5147 char __user *optval,
5148 int __user *optlen)
5149 {
5150 struct sctp_sack_info params;
5151 struct sctp_association *asoc = NULL;
5152 struct sctp_sock *sp = sctp_sk(sk);
5153
5154 if (len >= sizeof(struct sctp_sack_info)) {
5155 len = sizeof(struct sctp_sack_info);
5156
5157 if (copy_from_user(&params, optval, len))
5158 return -EFAULT;
5159 } else if (len == sizeof(struct sctp_assoc_value)) {
5160 pr_warn_ratelimited(DEPRECATED
5161 "%s (pid %d) "
5162 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5163 "Use struct sctp_sack_info instead\n",
5164 current->comm, task_pid_nr(current));
5165 if (copy_from_user(&params, optval, len))
5166 return -EFAULT;
5167 } else
5168 return -EINVAL;
5169
5170 /* Get association, if sack_assoc_id != 0 and the socket is a one
5171 * to many style socket, and an association was not found, then
5172 * the id was invalid.
5173 */
5174 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5175 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5176 return -EINVAL;
5177
5178 if (asoc) {
5179 /* Fetch association values. */
5180 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5181 params.sack_delay = jiffies_to_msecs(
5182 asoc->sackdelay);
5183 params.sack_freq = asoc->sackfreq;
5184
5185 } else {
5186 params.sack_delay = 0;
5187 params.sack_freq = 1;
5188 }
5189 } else {
5190 /* Fetch socket values. */
5191 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5192 params.sack_delay = sp->sackdelay;
5193 params.sack_freq = sp->sackfreq;
5194 } else {
5195 params.sack_delay = 0;
5196 params.sack_freq = 1;
5197 }
5198 }
5199
5200 if (copy_to_user(optval, &params, len))
5201 return -EFAULT;
5202
5203 if (put_user(len, optlen))
5204 return -EFAULT;
5205
5206 return 0;
5207 }
5208
5209 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5210 *
5211 * Applications can specify protocol parameters for the default association
5212 * initialization. The option name argument to setsockopt() and getsockopt()
5213 * is SCTP_INITMSG.
5214 *
5215 * Setting initialization parameters is effective only on an unconnected
5216 * socket (for UDP-style sockets only future associations are effected
5217 * by the change). With TCP-style sockets, this option is inherited by
5218 * sockets derived from a listener socket.
5219 */
5220 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5221 {
5222 if (len < sizeof(struct sctp_initmsg))
5223 return -EINVAL;
5224 len = sizeof(struct sctp_initmsg);
5225 if (put_user(len, optlen))
5226 return -EFAULT;
5227 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5228 return -EFAULT;
5229 return 0;
5230 }
5231
5232
5233 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5234 char __user *optval, int __user *optlen)
5235 {
5236 struct sctp_association *asoc;
5237 int cnt = 0;
5238 struct sctp_getaddrs getaddrs;
5239 struct sctp_transport *from;
5240 void __user *to;
5241 union sctp_addr temp;
5242 struct sctp_sock *sp = sctp_sk(sk);
5243 int addrlen;
5244 size_t space_left;
5245 int bytes_copied;
5246
5247 if (len < sizeof(struct sctp_getaddrs))
5248 return -EINVAL;
5249
5250 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5251 return -EFAULT;
5252
5253 /* For UDP-style sockets, id specifies the association to query. */
5254 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5255 if (!asoc)
5256 return -EINVAL;
5257
5258 to = optval + offsetof(struct sctp_getaddrs, addrs);
5259 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5260
5261 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5262 transports) {
5263 memcpy(&temp, &from->ipaddr, sizeof(temp));
5264 addrlen = sctp_get_pf_specific(sk->sk_family)
5265 ->addr_to_user(sp, &temp);
5266 if (space_left < addrlen)
5267 return -ENOMEM;
5268 if (copy_to_user(to, &temp, addrlen))
5269 return -EFAULT;
5270 to += addrlen;
5271 cnt++;
5272 space_left -= addrlen;
5273 }
5274
5275 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5276 return -EFAULT;
5277 bytes_copied = ((char __user *)to) - optval;
5278 if (put_user(bytes_copied, optlen))
5279 return -EFAULT;
5280
5281 return 0;
5282 }
5283
5284 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5285 size_t space_left, int *bytes_copied)
5286 {
5287 struct sctp_sockaddr_entry *addr;
5288 union sctp_addr temp;
5289 int cnt = 0;
5290 int addrlen;
5291 struct net *net = sock_net(sk);
5292
5293 rcu_read_lock();
5294 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5295 if (!addr->valid)
5296 continue;
5297
5298 if ((PF_INET == sk->sk_family) &&
5299 (AF_INET6 == addr->a.sa.sa_family))
5300 continue;
5301 if ((PF_INET6 == sk->sk_family) &&
5302 inet_v6_ipv6only(sk) &&
5303 (AF_INET == addr->a.sa.sa_family))
5304 continue;
5305 memcpy(&temp, &addr->a, sizeof(temp));
5306 if (!temp.v4.sin_port)
5307 temp.v4.sin_port = htons(port);
5308
5309 addrlen = sctp_get_pf_specific(sk->sk_family)
5310 ->addr_to_user(sctp_sk(sk), &temp);
5311
5312 if (space_left < addrlen) {
5313 cnt = -ENOMEM;
5314 break;
5315 }
5316 memcpy(to, &temp, addrlen);
5317
5318 to += addrlen;
5319 cnt++;
5320 space_left -= addrlen;
5321 *bytes_copied += addrlen;
5322 }
5323 rcu_read_unlock();
5324
5325 return cnt;
5326 }
5327
5328
5329 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5330 char __user *optval, int __user *optlen)
5331 {
5332 struct sctp_bind_addr *bp;
5333 struct sctp_association *asoc;
5334 int cnt = 0;
5335 struct sctp_getaddrs getaddrs;
5336 struct sctp_sockaddr_entry *addr;
5337 void __user *to;
5338 union sctp_addr temp;
5339 struct sctp_sock *sp = sctp_sk(sk);
5340 int addrlen;
5341 int err = 0;
5342 size_t space_left;
5343 int bytes_copied = 0;
5344 void *addrs;
5345 void *buf;
5346
5347 if (len < sizeof(struct sctp_getaddrs))
5348 return -EINVAL;
5349
5350 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5351 return -EFAULT;
5352
5353 /*
5354 * For UDP-style sockets, id specifies the association to query.
5355 * If the id field is set to the value '0' then the locally bound
5356 * addresses are returned without regard to any particular
5357 * association.
5358 */
5359 if (0 == getaddrs.assoc_id) {
5360 bp = &sctp_sk(sk)->ep->base.bind_addr;
5361 } else {
5362 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5363 if (!asoc)
5364 return -EINVAL;
5365 bp = &asoc->base.bind_addr;
5366 }
5367
5368 to = optval + offsetof(struct sctp_getaddrs, addrs);
5369 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5370
5371 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5372 if (!addrs)
5373 return -ENOMEM;
5374
5375 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5376 * addresses from the global local address list.
5377 */
5378 if (sctp_list_single_entry(&bp->address_list)) {
5379 addr = list_entry(bp->address_list.next,
5380 struct sctp_sockaddr_entry, list);
5381 if (sctp_is_any(sk, &addr->a)) {
5382 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5383 space_left, &bytes_copied);
5384 if (cnt < 0) {
5385 err = cnt;
5386 goto out;
5387 }
5388 goto copy_getaddrs;
5389 }
5390 }
5391
5392 buf = addrs;
5393 /* Protection on the bound address list is not needed since
5394 * in the socket option context we hold a socket lock and
5395 * thus the bound address list can't change.
5396 */
5397 list_for_each_entry(addr, &bp->address_list, list) {
5398 memcpy(&temp, &addr->a, sizeof(temp));
5399 addrlen = sctp_get_pf_specific(sk->sk_family)
5400 ->addr_to_user(sp, &temp);
5401 if (space_left < addrlen) {
5402 err = -ENOMEM; /*fixme: right error?*/
5403 goto out;
5404 }
5405 memcpy(buf, &temp, addrlen);
5406 buf += addrlen;
5407 bytes_copied += addrlen;
5408 cnt++;
5409 space_left -= addrlen;
5410 }
5411
5412 copy_getaddrs:
5413 if (copy_to_user(to, addrs, bytes_copied)) {
5414 err = -EFAULT;
5415 goto out;
5416 }
5417 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5418 err = -EFAULT;
5419 goto out;
5420 }
5421 if (put_user(bytes_copied, optlen))
5422 err = -EFAULT;
5423 out:
5424 kfree(addrs);
5425 return err;
5426 }
5427
5428 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5429 *
5430 * Requests that the local SCTP stack use the enclosed peer address as
5431 * the association primary. The enclosed address must be one of the
5432 * association peer's addresses.
5433 */
5434 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5435 char __user *optval, int __user *optlen)
5436 {
5437 struct sctp_prim prim;
5438 struct sctp_association *asoc;
5439 struct sctp_sock *sp = sctp_sk(sk);
5440
5441 if (len < sizeof(struct sctp_prim))
5442 return -EINVAL;
5443
5444 len = sizeof(struct sctp_prim);
5445
5446 if (copy_from_user(&prim, optval, len))
5447 return -EFAULT;
5448
5449 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5450 if (!asoc)
5451 return -EINVAL;
5452
5453 if (!asoc->peer.primary_path)
5454 return -ENOTCONN;
5455
5456 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5457 asoc->peer.primary_path->af_specific->sockaddr_len);
5458
5459 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5460 (union sctp_addr *)&prim.ssp_addr);
5461
5462 if (put_user(len, optlen))
5463 return -EFAULT;
5464 if (copy_to_user(optval, &prim, len))
5465 return -EFAULT;
5466
5467 return 0;
5468 }
5469
5470 /*
5471 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5472 *
5473 * Requests that the local endpoint set the specified Adaptation Layer
5474 * Indication parameter for all future INIT and INIT-ACK exchanges.
5475 */
5476 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5477 char __user *optval, int __user *optlen)
5478 {
5479 struct sctp_setadaptation adaptation;
5480
5481 if (len < sizeof(struct sctp_setadaptation))
5482 return -EINVAL;
5483
5484 len = sizeof(struct sctp_setadaptation);
5485
5486 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5487
5488 if (put_user(len, optlen))
5489 return -EFAULT;
5490 if (copy_to_user(optval, &adaptation, len))
5491 return -EFAULT;
5492
5493 return 0;
5494 }
5495
5496 /*
5497 *
5498 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5499 *
5500 * Applications that wish to use the sendto() system call may wish to
5501 * specify a default set of parameters that would normally be supplied
5502 * through the inclusion of ancillary data. This socket option allows
5503 * such an application to set the default sctp_sndrcvinfo structure.
5504
5505
5506 * The application that wishes to use this socket option simply passes
5507 * in to this call the sctp_sndrcvinfo structure defined in Section
5508 * 5.2.2) The input parameters accepted by this call include
5509 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5510 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5511 * to this call if the caller is using the UDP model.
5512 *
5513 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5514 */
5515 static int sctp_getsockopt_default_send_param(struct sock *sk,
5516 int len, char __user *optval,
5517 int __user *optlen)
5518 {
5519 struct sctp_sock *sp = sctp_sk(sk);
5520 struct sctp_association *asoc;
5521 struct sctp_sndrcvinfo info;
5522
5523 if (len < sizeof(info))
5524 return -EINVAL;
5525
5526 len = sizeof(info);
5527
5528 if (copy_from_user(&info, optval, len))
5529 return -EFAULT;
5530
5531 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5532 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5533 return -EINVAL;
5534 if (asoc) {
5535 info.sinfo_stream = asoc->default_stream;
5536 info.sinfo_flags = asoc->default_flags;
5537 info.sinfo_ppid = asoc->default_ppid;
5538 info.sinfo_context = asoc->default_context;
5539 info.sinfo_timetolive = asoc->default_timetolive;
5540 } else {
5541 info.sinfo_stream = sp->default_stream;
5542 info.sinfo_flags = sp->default_flags;
5543 info.sinfo_ppid = sp->default_ppid;
5544 info.sinfo_context = sp->default_context;
5545 info.sinfo_timetolive = sp->default_timetolive;
5546 }
5547
5548 if (put_user(len, optlen))
5549 return -EFAULT;
5550 if (copy_to_user(optval, &info, len))
5551 return -EFAULT;
5552
5553 return 0;
5554 }
5555
5556 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5557 * (SCTP_DEFAULT_SNDINFO)
5558 */
5559 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5560 char __user *optval,
5561 int __user *optlen)
5562 {
5563 struct sctp_sock *sp = sctp_sk(sk);
5564 struct sctp_association *asoc;
5565 struct sctp_sndinfo info;
5566
5567 if (len < sizeof(info))
5568 return -EINVAL;
5569
5570 len = sizeof(info);
5571
5572 if (copy_from_user(&info, optval, len))
5573 return -EFAULT;
5574
5575 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5576 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5577 return -EINVAL;
5578 if (asoc) {
5579 info.snd_sid = asoc->default_stream;
5580 info.snd_flags = asoc->default_flags;
5581 info.snd_ppid = asoc->default_ppid;
5582 info.snd_context = asoc->default_context;
5583 } else {
5584 info.snd_sid = sp->default_stream;
5585 info.snd_flags = sp->default_flags;
5586 info.snd_ppid = sp->default_ppid;
5587 info.snd_context = sp->default_context;
5588 }
5589
5590 if (put_user(len, optlen))
5591 return -EFAULT;
5592 if (copy_to_user(optval, &info, len))
5593 return -EFAULT;
5594
5595 return 0;
5596 }
5597
5598 /*
5599 *
5600 * 7.1.5 SCTP_NODELAY
5601 *
5602 * Turn on/off any Nagle-like algorithm. This means that packets are
5603 * generally sent as soon as possible and no unnecessary delays are
5604 * introduced, at the cost of more packets in the network. Expects an
5605 * integer boolean flag.
5606 */
5607
5608 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5609 char __user *optval, int __user *optlen)
5610 {
5611 int val;
5612
5613 if (len < sizeof(int))
5614 return -EINVAL;
5615
5616 len = sizeof(int);
5617 val = (sctp_sk(sk)->nodelay == 1);
5618 if (put_user(len, optlen))
5619 return -EFAULT;
5620 if (copy_to_user(optval, &val, len))
5621 return -EFAULT;
5622 return 0;
5623 }
5624
5625 /*
5626 *
5627 * 7.1.1 SCTP_RTOINFO
5628 *
5629 * The protocol parameters used to initialize and bound retransmission
5630 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5631 * and modify these parameters.
5632 * All parameters are time values, in milliseconds. A value of 0, when
5633 * modifying the parameters, indicates that the current value should not
5634 * be changed.
5635 *
5636 */
5637 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5638 char __user *optval,
5639 int __user *optlen) {
5640 struct sctp_rtoinfo rtoinfo;
5641 struct sctp_association *asoc;
5642
5643 if (len < sizeof (struct sctp_rtoinfo))
5644 return -EINVAL;
5645
5646 len = sizeof(struct sctp_rtoinfo);
5647
5648 if (copy_from_user(&rtoinfo, optval, len))
5649 return -EFAULT;
5650
5651 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5652
5653 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5654 return -EINVAL;
5655
5656 /* Values corresponding to the specific association. */
5657 if (asoc) {
5658 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5659 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5660 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5661 } else {
5662 /* Values corresponding to the endpoint. */
5663 struct sctp_sock *sp = sctp_sk(sk);
5664
5665 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5666 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5667 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5668 }
5669
5670 if (put_user(len, optlen))
5671 return -EFAULT;
5672
5673 if (copy_to_user(optval, &rtoinfo, len))
5674 return -EFAULT;
5675
5676 return 0;
5677 }
5678
5679 /*
5680 *
5681 * 7.1.2 SCTP_ASSOCINFO
5682 *
5683 * This option is used to tune the maximum retransmission attempts
5684 * of the association.
5685 * Returns an error if the new association retransmission value is
5686 * greater than the sum of the retransmission value of the peer.
5687 * See [SCTP] for more information.
5688 *
5689 */
5690 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5691 char __user *optval,
5692 int __user *optlen)
5693 {
5694
5695 struct sctp_assocparams assocparams;
5696 struct sctp_association *asoc;
5697 struct list_head *pos;
5698 int cnt = 0;
5699
5700 if (len < sizeof (struct sctp_assocparams))
5701 return -EINVAL;
5702
5703 len = sizeof(struct sctp_assocparams);
5704
5705 if (copy_from_user(&assocparams, optval, len))
5706 return -EFAULT;
5707
5708 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5709
5710 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5711 return -EINVAL;
5712
5713 /* Values correspoinding to the specific association */
5714 if (asoc) {
5715 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5716 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5717 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5718 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5719
5720 list_for_each(pos, &asoc->peer.transport_addr_list) {
5721 cnt++;
5722 }
5723
5724 assocparams.sasoc_number_peer_destinations = cnt;
5725 } else {
5726 /* Values corresponding to the endpoint */
5727 struct sctp_sock *sp = sctp_sk(sk);
5728
5729 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5730 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5731 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5732 assocparams.sasoc_cookie_life =
5733 sp->assocparams.sasoc_cookie_life;
5734 assocparams.sasoc_number_peer_destinations =
5735 sp->assocparams.
5736 sasoc_number_peer_destinations;
5737 }
5738
5739 if (put_user(len, optlen))
5740 return -EFAULT;
5741
5742 if (copy_to_user(optval, &assocparams, len))
5743 return -EFAULT;
5744
5745 return 0;
5746 }
5747
5748 /*
5749 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5750 *
5751 * This socket option is a boolean flag which turns on or off mapped V4
5752 * addresses. If this option is turned on and the socket is type
5753 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5754 * If this option is turned off, then no mapping will be done of V4
5755 * addresses and a user will receive both PF_INET6 and PF_INET type
5756 * addresses on the socket.
5757 */
5758 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5759 char __user *optval, int __user *optlen)
5760 {
5761 int val;
5762 struct sctp_sock *sp = sctp_sk(sk);
5763
5764 if (len < sizeof(int))
5765 return -EINVAL;
5766
5767 len = sizeof(int);
5768 val = sp->v4mapped;
5769 if (put_user(len, optlen))
5770 return -EFAULT;
5771 if (copy_to_user(optval, &val, len))
5772 return -EFAULT;
5773
5774 return 0;
5775 }
5776
5777 /*
5778 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5779 * (chapter and verse is quoted at sctp_setsockopt_context())
5780 */
5781 static int sctp_getsockopt_context(struct sock *sk, int len,
5782 char __user *optval, int __user *optlen)
5783 {
5784 struct sctp_assoc_value params;
5785 struct sctp_sock *sp;
5786 struct sctp_association *asoc;
5787
5788 if (len < sizeof(struct sctp_assoc_value))
5789 return -EINVAL;
5790
5791 len = sizeof(struct sctp_assoc_value);
5792
5793 if (copy_from_user(&params, optval, len))
5794 return -EFAULT;
5795
5796 sp = sctp_sk(sk);
5797
5798 if (params.assoc_id != 0) {
5799 asoc = sctp_id2assoc(sk, params.assoc_id);
5800 if (!asoc)
5801 return -EINVAL;
5802 params.assoc_value = asoc->default_rcv_context;
5803 } else {
5804 params.assoc_value = sp->default_rcv_context;
5805 }
5806
5807 if (put_user(len, optlen))
5808 return -EFAULT;
5809 if (copy_to_user(optval, &params, len))
5810 return -EFAULT;
5811
5812 return 0;
5813 }
5814
5815 /*
5816 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5817 * This option will get or set the maximum size to put in any outgoing
5818 * SCTP DATA chunk. If a message is larger than this size it will be
5819 * fragmented by SCTP into the specified size. Note that the underlying
5820 * SCTP implementation may fragment into smaller sized chunks when the
5821 * PMTU of the underlying association is smaller than the value set by
5822 * the user. The default value for this option is '0' which indicates
5823 * the user is NOT limiting fragmentation and only the PMTU will effect
5824 * SCTP's choice of DATA chunk size. Note also that values set larger
5825 * than the maximum size of an IP datagram will effectively let SCTP
5826 * control fragmentation (i.e. the same as setting this option to 0).
5827 *
5828 * The following structure is used to access and modify this parameter:
5829 *
5830 * struct sctp_assoc_value {
5831 * sctp_assoc_t assoc_id;
5832 * uint32_t assoc_value;
5833 * };
5834 *
5835 * assoc_id: This parameter is ignored for one-to-one style sockets.
5836 * For one-to-many style sockets this parameter indicates which
5837 * association the user is performing an action upon. Note that if
5838 * this field's value is zero then the endpoints default value is
5839 * changed (effecting future associations only).
5840 * assoc_value: This parameter specifies the maximum size in bytes.
5841 */
5842 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5843 char __user *optval, int __user *optlen)
5844 {
5845 struct sctp_assoc_value params;
5846 struct sctp_association *asoc;
5847
5848 if (len == sizeof(int)) {
5849 pr_warn_ratelimited(DEPRECATED
5850 "%s (pid %d) "
5851 "Use of int in maxseg socket option.\n"
5852 "Use struct sctp_assoc_value instead\n",
5853 current->comm, task_pid_nr(current));
5854 params.assoc_id = 0;
5855 } else if (len >= sizeof(struct sctp_assoc_value)) {
5856 len = sizeof(struct sctp_assoc_value);
5857 if (copy_from_user(&params, optval, sizeof(params)))
5858 return -EFAULT;
5859 } else
5860 return -EINVAL;
5861
5862 asoc = sctp_id2assoc(sk, params.assoc_id);
5863 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5864 return -EINVAL;
5865
5866 if (asoc)
5867 params.assoc_value = asoc->frag_point;
5868 else
5869 params.assoc_value = sctp_sk(sk)->user_frag;
5870
5871 if (put_user(len, optlen))
5872 return -EFAULT;
5873 if (len == sizeof(int)) {
5874 if (copy_to_user(optval, &params.assoc_value, len))
5875 return -EFAULT;
5876 } else {
5877 if (copy_to_user(optval, &params, len))
5878 return -EFAULT;
5879 }
5880
5881 return 0;
5882 }
5883
5884 /*
5885 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5886 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5887 */
5888 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5889 char __user *optval, int __user *optlen)
5890 {
5891 int val;
5892
5893 if (len < sizeof(int))
5894 return -EINVAL;
5895
5896 len = sizeof(int);
5897
5898 val = sctp_sk(sk)->frag_interleave;
5899 if (put_user(len, optlen))
5900 return -EFAULT;
5901 if (copy_to_user(optval, &val, len))
5902 return -EFAULT;
5903
5904 return 0;
5905 }
5906
5907 /*
5908 * 7.1.25. Set or Get the sctp partial delivery point
5909 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5910 */
5911 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5912 char __user *optval,
5913 int __user *optlen)
5914 {
5915 u32 val;
5916
5917 if (len < sizeof(u32))
5918 return -EINVAL;
5919
5920 len = sizeof(u32);
5921
5922 val = sctp_sk(sk)->pd_point;
5923 if (put_user(len, optlen))
5924 return -EFAULT;
5925 if (copy_to_user(optval, &val, len))
5926 return -EFAULT;
5927
5928 return 0;
5929 }
5930
5931 /*
5932 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5933 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5934 */
5935 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5936 char __user *optval,
5937 int __user *optlen)
5938 {
5939 struct sctp_assoc_value params;
5940 struct sctp_sock *sp;
5941 struct sctp_association *asoc;
5942
5943 if (len == sizeof(int)) {
5944 pr_warn_ratelimited(DEPRECATED
5945 "%s (pid %d) "
5946 "Use of int in max_burst socket option.\n"
5947 "Use struct sctp_assoc_value instead\n",
5948 current->comm, task_pid_nr(current));
5949 params.assoc_id = 0;
5950 } else if (len >= sizeof(struct sctp_assoc_value)) {
5951 len = sizeof(struct sctp_assoc_value);
5952 if (copy_from_user(&params, optval, len))
5953 return -EFAULT;
5954 } else
5955 return -EINVAL;
5956
5957 sp = sctp_sk(sk);
5958
5959 if (params.assoc_id != 0) {
5960 asoc = sctp_id2assoc(sk, params.assoc_id);
5961 if (!asoc)
5962 return -EINVAL;
5963 params.assoc_value = asoc->max_burst;
5964 } else
5965 params.assoc_value = sp->max_burst;
5966
5967 if (len == sizeof(int)) {
5968 if (copy_to_user(optval, &params.assoc_value, len))
5969 return -EFAULT;
5970 } else {
5971 if (copy_to_user(optval, &params, len))
5972 return -EFAULT;
5973 }
5974
5975 return 0;
5976
5977 }
5978
5979 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5980 char __user *optval, int __user *optlen)
5981 {
5982 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5983 struct sctp_hmacalgo __user *p = (void __user *)optval;
5984 struct sctp_hmac_algo_param *hmacs;
5985 __u16 data_len = 0;
5986 u32 num_idents;
5987 int i;
5988
5989 if (!ep->auth_enable)
5990 return -EACCES;
5991
5992 hmacs = ep->auth_hmacs_list;
5993 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5994
5995 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5996 return -EINVAL;
5997
5998 len = sizeof(struct sctp_hmacalgo) + data_len;
5999 num_idents = data_len / sizeof(u16);
6000
6001 if (put_user(len, optlen))
6002 return -EFAULT;
6003 if (put_user(num_idents, &p->shmac_num_idents))
6004 return -EFAULT;
6005 for (i = 0; i < num_idents; i++) {
6006 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6007
6008 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6009 return -EFAULT;
6010 }
6011 return 0;
6012 }
6013
6014 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6015 char __user *optval, int __user *optlen)
6016 {
6017 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6018 struct sctp_authkeyid val;
6019 struct sctp_association *asoc;
6020
6021 if (!ep->auth_enable)
6022 return -EACCES;
6023
6024 if (len < sizeof(struct sctp_authkeyid))
6025 return -EINVAL;
6026 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
6027 return -EFAULT;
6028
6029 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6030 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6031 return -EINVAL;
6032
6033 if (asoc)
6034 val.scact_keynumber = asoc->active_key_id;
6035 else
6036 val.scact_keynumber = ep->active_key_id;
6037
6038 len = sizeof(struct sctp_authkeyid);
6039 if (put_user(len, optlen))
6040 return -EFAULT;
6041 if (copy_to_user(optval, &val, len))
6042 return -EFAULT;
6043
6044 return 0;
6045 }
6046
6047 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6048 char __user *optval, int __user *optlen)
6049 {
6050 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6051 struct sctp_authchunks __user *p = (void __user *)optval;
6052 struct sctp_authchunks val;
6053 struct sctp_association *asoc;
6054 struct sctp_chunks_param *ch;
6055 u32 num_chunks = 0;
6056 char __user *to;
6057
6058 if (!ep->auth_enable)
6059 return -EACCES;
6060
6061 if (len < sizeof(struct sctp_authchunks))
6062 return -EINVAL;
6063
6064 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6065 return -EFAULT;
6066
6067 to = p->gauth_chunks;
6068 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6069 if (!asoc)
6070 return -EINVAL;
6071
6072 ch = asoc->peer.peer_chunks;
6073 if (!ch)
6074 goto num;
6075
6076 /* See if the user provided enough room for all the data */
6077 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6078 if (len < num_chunks)
6079 return -EINVAL;
6080
6081 if (copy_to_user(to, ch->chunks, num_chunks))
6082 return -EFAULT;
6083 num:
6084 len = sizeof(struct sctp_authchunks) + num_chunks;
6085 if (put_user(len, optlen))
6086 return -EFAULT;
6087 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6088 return -EFAULT;
6089 return 0;
6090 }
6091
6092 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6093 char __user *optval, int __user *optlen)
6094 {
6095 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6096 struct sctp_authchunks __user *p = (void __user *)optval;
6097 struct sctp_authchunks val;
6098 struct sctp_association *asoc;
6099 struct sctp_chunks_param *ch;
6100 u32 num_chunks = 0;
6101 char __user *to;
6102
6103 if (!ep->auth_enable)
6104 return -EACCES;
6105
6106 if (len < sizeof(struct sctp_authchunks))
6107 return -EINVAL;
6108
6109 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6110 return -EFAULT;
6111
6112 to = p->gauth_chunks;
6113 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6114 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6115 return -EINVAL;
6116
6117 if (asoc)
6118 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6119 else
6120 ch = ep->auth_chunk_list;
6121
6122 if (!ch)
6123 goto num;
6124
6125 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6126 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6127 return -EINVAL;
6128
6129 if (copy_to_user(to, ch->chunks, num_chunks))
6130 return -EFAULT;
6131 num:
6132 len = sizeof(struct sctp_authchunks) + num_chunks;
6133 if (put_user(len, optlen))
6134 return -EFAULT;
6135 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6136 return -EFAULT;
6137
6138 return 0;
6139 }
6140
6141 /*
6142 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6143 * This option gets the current number of associations that are attached
6144 * to a one-to-many style socket. The option value is an uint32_t.
6145 */
6146 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6147 char __user *optval, int __user *optlen)
6148 {
6149 struct sctp_sock *sp = sctp_sk(sk);
6150 struct sctp_association *asoc;
6151 u32 val = 0;
6152
6153 if (sctp_style(sk, TCP))
6154 return -EOPNOTSUPP;
6155
6156 if (len < sizeof(u32))
6157 return -EINVAL;
6158
6159 len = sizeof(u32);
6160
6161 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6162 val++;
6163 }
6164
6165 if (put_user(len, optlen))
6166 return -EFAULT;
6167 if (copy_to_user(optval, &val, len))
6168 return -EFAULT;
6169
6170 return 0;
6171 }
6172
6173 /*
6174 * 8.1.23 SCTP_AUTO_ASCONF
6175 * See the corresponding setsockopt entry as description
6176 */
6177 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6178 char __user *optval, int __user *optlen)
6179 {
6180 int val = 0;
6181
6182 if (len < sizeof(int))
6183 return -EINVAL;
6184
6185 len = sizeof(int);
6186 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6187 val = 1;
6188 if (put_user(len, optlen))
6189 return -EFAULT;
6190 if (copy_to_user(optval, &val, len))
6191 return -EFAULT;
6192 return 0;
6193 }
6194
6195 /*
6196 * 8.2.6. Get the Current Identifiers of Associations
6197 * (SCTP_GET_ASSOC_ID_LIST)
6198 *
6199 * This option gets the current list of SCTP association identifiers of
6200 * the SCTP associations handled by a one-to-many style socket.
6201 */
6202 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6203 char __user *optval, int __user *optlen)
6204 {
6205 struct sctp_sock *sp = sctp_sk(sk);
6206 struct sctp_association *asoc;
6207 struct sctp_assoc_ids *ids;
6208 u32 num = 0;
6209
6210 if (sctp_style(sk, TCP))
6211 return -EOPNOTSUPP;
6212
6213 if (len < sizeof(struct sctp_assoc_ids))
6214 return -EINVAL;
6215
6216 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6217 num++;
6218 }
6219
6220 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6221 return -EINVAL;
6222
6223 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6224
6225 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6226 if (unlikely(!ids))
6227 return -ENOMEM;
6228
6229 ids->gaids_number_of_ids = num;
6230 num = 0;
6231 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6232 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6233 }
6234
6235 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6236 kfree(ids);
6237 return -EFAULT;
6238 }
6239
6240 kfree(ids);
6241 return 0;
6242 }
6243
6244 /*
6245 * SCTP_PEER_ADDR_THLDS
6246 *
6247 * This option allows us to fetch the partially failed threshold for one or all
6248 * transports in an association. See Section 6.1 of:
6249 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6250 */
6251 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6252 char __user *optval,
6253 int len,
6254 int __user *optlen)
6255 {
6256 struct sctp_paddrthlds val;
6257 struct sctp_transport *trans;
6258 struct sctp_association *asoc;
6259
6260 if (len < sizeof(struct sctp_paddrthlds))
6261 return -EINVAL;
6262 len = sizeof(struct sctp_paddrthlds);
6263 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6264 return -EFAULT;
6265
6266 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6267 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6268 if (!asoc)
6269 return -ENOENT;
6270
6271 val.spt_pathpfthld = asoc->pf_retrans;
6272 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6273 } else {
6274 trans = sctp_addr_id2transport(sk, &val.spt_address,
6275 val.spt_assoc_id);
6276 if (!trans)
6277 return -ENOENT;
6278
6279 val.spt_pathmaxrxt = trans->pathmaxrxt;
6280 val.spt_pathpfthld = trans->pf_retrans;
6281 }
6282
6283 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6284 return -EFAULT;
6285
6286 return 0;
6287 }
6288
6289 /*
6290 * SCTP_GET_ASSOC_STATS
6291 *
6292 * This option retrieves local per endpoint statistics. It is modeled
6293 * after OpenSolaris' implementation
6294 */
6295 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6296 char __user *optval,
6297 int __user *optlen)
6298 {
6299 struct sctp_assoc_stats sas;
6300 struct sctp_association *asoc = NULL;
6301
6302 /* User must provide at least the assoc id */
6303 if (len < sizeof(sctp_assoc_t))
6304 return -EINVAL;
6305
6306 /* Allow the struct to grow and fill in as much as possible */
6307 len = min_t(size_t, len, sizeof(sas));
6308
6309 if (copy_from_user(&sas, optval, len))
6310 return -EFAULT;
6311
6312 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6313 if (!asoc)
6314 return -EINVAL;
6315
6316 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6317 sas.sas_gapcnt = asoc->stats.gapcnt;
6318 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6319 sas.sas_osacks = asoc->stats.osacks;
6320 sas.sas_isacks = asoc->stats.isacks;
6321 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6322 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6323 sas.sas_oodchunks = asoc->stats.oodchunks;
6324 sas.sas_iodchunks = asoc->stats.iodchunks;
6325 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6326 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6327 sas.sas_idupchunks = asoc->stats.idupchunks;
6328 sas.sas_opackets = asoc->stats.opackets;
6329 sas.sas_ipackets = asoc->stats.ipackets;
6330
6331 /* New high max rto observed, will return 0 if not a single
6332 * RTO update took place. obs_rto_ipaddr will be bogus
6333 * in such a case
6334 */
6335 sas.sas_maxrto = asoc->stats.max_obs_rto;
6336 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6337 sizeof(struct sockaddr_storage));
6338
6339 /* Mark beginning of a new observation period */
6340 asoc->stats.max_obs_rto = asoc->rto_min;
6341
6342 if (put_user(len, optlen))
6343 return -EFAULT;
6344
6345 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6346
6347 if (copy_to_user(optval, &sas, len))
6348 return -EFAULT;
6349
6350 return 0;
6351 }
6352
6353 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6354 char __user *optval,
6355 int __user *optlen)
6356 {
6357 int val = 0;
6358
6359 if (len < sizeof(int))
6360 return -EINVAL;
6361
6362 len = sizeof(int);
6363 if (sctp_sk(sk)->recvrcvinfo)
6364 val = 1;
6365 if (put_user(len, optlen))
6366 return -EFAULT;
6367 if (copy_to_user(optval, &val, len))
6368 return -EFAULT;
6369
6370 return 0;
6371 }
6372
6373 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6374 char __user *optval,
6375 int __user *optlen)
6376 {
6377 int val = 0;
6378
6379 if (len < sizeof(int))
6380 return -EINVAL;
6381
6382 len = sizeof(int);
6383 if (sctp_sk(sk)->recvnxtinfo)
6384 val = 1;
6385 if (put_user(len, optlen))
6386 return -EFAULT;
6387 if (copy_to_user(optval, &val, len))
6388 return -EFAULT;
6389
6390 return 0;
6391 }
6392
6393 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6394 char __user *optval,
6395 int __user *optlen)
6396 {
6397 struct sctp_assoc_value params;
6398 struct sctp_association *asoc;
6399 int retval = -EFAULT;
6400
6401 if (len < sizeof(params)) {
6402 retval = -EINVAL;
6403 goto out;
6404 }
6405
6406 len = sizeof(params);
6407 if (copy_from_user(&params, optval, len))
6408 goto out;
6409
6410 asoc = sctp_id2assoc(sk, params.assoc_id);
6411 if (asoc) {
6412 params.assoc_value = asoc->prsctp_enable;
6413 } else if (!params.assoc_id) {
6414 struct sctp_sock *sp = sctp_sk(sk);
6415
6416 params.assoc_value = sp->ep->prsctp_enable;
6417 } else {
6418 retval = -EINVAL;
6419 goto out;
6420 }
6421
6422 if (put_user(len, optlen))
6423 goto out;
6424
6425 if (copy_to_user(optval, &params, len))
6426 goto out;
6427
6428 retval = 0;
6429
6430 out:
6431 return retval;
6432 }
6433
6434 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6435 char __user *optval,
6436 int __user *optlen)
6437 {
6438 struct sctp_default_prinfo info;
6439 struct sctp_association *asoc;
6440 int retval = -EFAULT;
6441
6442 if (len < sizeof(info)) {
6443 retval = -EINVAL;
6444 goto out;
6445 }
6446
6447 len = sizeof(info);
6448 if (copy_from_user(&info, optval, len))
6449 goto out;
6450
6451 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6452 if (asoc) {
6453 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6454 info.pr_value = asoc->default_timetolive;
6455 } else if (!info.pr_assoc_id) {
6456 struct sctp_sock *sp = sctp_sk(sk);
6457
6458 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6459 info.pr_value = sp->default_timetolive;
6460 } else {
6461 retval = -EINVAL;
6462 goto out;
6463 }
6464
6465 if (put_user(len, optlen))
6466 goto out;
6467
6468 if (copy_to_user(optval, &info, len))
6469 goto out;
6470
6471 retval = 0;
6472
6473 out:
6474 return retval;
6475 }
6476
6477 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6478 char __user *optval,
6479 int __user *optlen)
6480 {
6481 struct sctp_prstatus params;
6482 struct sctp_association *asoc;
6483 int policy;
6484 int retval = -EINVAL;
6485
6486 if (len < sizeof(params))
6487 goto out;
6488
6489 len = sizeof(params);
6490 if (copy_from_user(&params, optval, len)) {
6491 retval = -EFAULT;
6492 goto out;
6493 }
6494
6495 policy = params.sprstat_policy;
6496 if (policy & ~SCTP_PR_SCTP_MASK)
6497 goto out;
6498
6499 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6500 if (!asoc)
6501 goto out;
6502
6503 if (policy == SCTP_PR_SCTP_NONE) {
6504 params.sprstat_abandoned_unsent = 0;
6505 params.sprstat_abandoned_sent = 0;
6506 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6507 params.sprstat_abandoned_unsent +=
6508 asoc->abandoned_unsent[policy];
6509 params.sprstat_abandoned_sent +=
6510 asoc->abandoned_sent[policy];
6511 }
6512 } else {
6513 params.sprstat_abandoned_unsent =
6514 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6515 params.sprstat_abandoned_sent =
6516 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6517 }
6518
6519 if (put_user(len, optlen)) {
6520 retval = -EFAULT;
6521 goto out;
6522 }
6523
6524 if (copy_to_user(optval, &params, len)) {
6525 retval = -EFAULT;
6526 goto out;
6527 }
6528
6529 retval = 0;
6530
6531 out:
6532 return retval;
6533 }
6534
6535 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6536 char __user *optval,
6537 int __user *optlen)
6538 {
6539 struct sctp_assoc_value params;
6540 struct sctp_association *asoc;
6541 int retval = -EFAULT;
6542
6543 if (len < sizeof(params)) {
6544 retval = -EINVAL;
6545 goto out;
6546 }
6547
6548 len = sizeof(params);
6549 if (copy_from_user(&params, optval, len))
6550 goto out;
6551
6552 asoc = sctp_id2assoc(sk, params.assoc_id);
6553 if (asoc) {
6554 params.assoc_value = asoc->strreset_enable;
6555 } else if (!params.assoc_id) {
6556 struct sctp_sock *sp = sctp_sk(sk);
6557
6558 params.assoc_value = sp->ep->strreset_enable;
6559 } else {
6560 retval = -EINVAL;
6561 goto out;
6562 }
6563
6564 if (put_user(len, optlen))
6565 goto out;
6566
6567 if (copy_to_user(optval, &params, len))
6568 goto out;
6569
6570 retval = 0;
6571
6572 out:
6573 return retval;
6574 }
6575
6576 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6577 char __user *optval, int __user *optlen)
6578 {
6579 int retval = 0;
6580 int len;
6581
6582 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6583
6584 /* I can hardly begin to describe how wrong this is. This is
6585 * so broken as to be worse than useless. The API draft
6586 * REALLY is NOT helpful here... I am not convinced that the
6587 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6588 * are at all well-founded.
6589 */
6590 if (level != SOL_SCTP) {
6591 struct sctp_af *af = sctp_sk(sk)->pf->af;
6592
6593 retval = af->getsockopt(sk, level, optname, optval, optlen);
6594 return retval;
6595 }
6596
6597 if (get_user(len, optlen))
6598 return -EFAULT;
6599
6600 if (len < 0)
6601 return -EINVAL;
6602
6603 lock_sock(sk);
6604
6605 switch (optname) {
6606 case SCTP_STATUS:
6607 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6608 break;
6609 case SCTP_DISABLE_FRAGMENTS:
6610 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6611 optlen);
6612 break;
6613 case SCTP_EVENTS:
6614 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6615 break;
6616 case SCTP_AUTOCLOSE:
6617 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6618 break;
6619 case SCTP_SOCKOPT_PEELOFF:
6620 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6621 break;
6622 case SCTP_PEER_ADDR_PARAMS:
6623 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6624 optlen);
6625 break;
6626 case SCTP_DELAYED_SACK:
6627 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6628 optlen);
6629 break;
6630 case SCTP_INITMSG:
6631 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6632 break;
6633 case SCTP_GET_PEER_ADDRS:
6634 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6635 optlen);
6636 break;
6637 case SCTP_GET_LOCAL_ADDRS:
6638 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6639 optlen);
6640 break;
6641 case SCTP_SOCKOPT_CONNECTX3:
6642 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6643 break;
6644 case SCTP_DEFAULT_SEND_PARAM:
6645 retval = sctp_getsockopt_default_send_param(sk, len,
6646 optval, optlen);
6647 break;
6648 case SCTP_DEFAULT_SNDINFO:
6649 retval = sctp_getsockopt_default_sndinfo(sk, len,
6650 optval, optlen);
6651 break;
6652 case SCTP_PRIMARY_ADDR:
6653 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6654 break;
6655 case SCTP_NODELAY:
6656 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6657 break;
6658 case SCTP_RTOINFO:
6659 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6660 break;
6661 case SCTP_ASSOCINFO:
6662 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6663 break;
6664 case SCTP_I_WANT_MAPPED_V4_ADDR:
6665 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6666 break;
6667 case SCTP_MAXSEG:
6668 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6669 break;
6670 case SCTP_GET_PEER_ADDR_INFO:
6671 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6672 optlen);
6673 break;
6674 case SCTP_ADAPTATION_LAYER:
6675 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6676 optlen);
6677 break;
6678 case SCTP_CONTEXT:
6679 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6680 break;
6681 case SCTP_FRAGMENT_INTERLEAVE:
6682 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6683 optlen);
6684 break;
6685 case SCTP_PARTIAL_DELIVERY_POINT:
6686 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6687 optlen);
6688 break;
6689 case SCTP_MAX_BURST:
6690 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6691 break;
6692 case SCTP_AUTH_KEY:
6693 case SCTP_AUTH_CHUNK:
6694 case SCTP_AUTH_DELETE_KEY:
6695 retval = -EOPNOTSUPP;
6696 break;
6697 case SCTP_HMAC_IDENT:
6698 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6699 break;
6700 case SCTP_AUTH_ACTIVE_KEY:
6701 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6702 break;
6703 case SCTP_PEER_AUTH_CHUNKS:
6704 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6705 optlen);
6706 break;
6707 case SCTP_LOCAL_AUTH_CHUNKS:
6708 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6709 optlen);
6710 break;
6711 case SCTP_GET_ASSOC_NUMBER:
6712 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6713 break;
6714 case SCTP_GET_ASSOC_ID_LIST:
6715 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6716 break;
6717 case SCTP_AUTO_ASCONF:
6718 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6719 break;
6720 case SCTP_PEER_ADDR_THLDS:
6721 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6722 break;
6723 case SCTP_GET_ASSOC_STATS:
6724 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6725 break;
6726 case SCTP_RECVRCVINFO:
6727 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6728 break;
6729 case SCTP_RECVNXTINFO:
6730 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6731 break;
6732 case SCTP_PR_SUPPORTED:
6733 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6734 break;
6735 case SCTP_DEFAULT_PRINFO:
6736 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6737 optlen);
6738 break;
6739 case SCTP_PR_ASSOC_STATUS:
6740 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6741 optlen);
6742 break;
6743 case SCTP_ENABLE_STREAM_RESET:
6744 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
6745 optlen);
6746 break;
6747 default:
6748 retval = -ENOPROTOOPT;
6749 break;
6750 }
6751
6752 release_sock(sk);
6753 return retval;
6754 }
6755
6756 static int sctp_hash(struct sock *sk)
6757 {
6758 /* STUB */
6759 return 0;
6760 }
6761
6762 static void sctp_unhash(struct sock *sk)
6763 {
6764 /* STUB */
6765 }
6766
6767 /* Check if port is acceptable. Possibly find first available port.
6768 *
6769 * The port hash table (contained in the 'global' SCTP protocol storage
6770 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6771 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6772 * list (the list number is the port number hashed out, so as you
6773 * would expect from a hash function, all the ports in a given list have
6774 * such a number that hashes out to the same list number; you were
6775 * expecting that, right?); so each list has a set of ports, with a
6776 * link to the socket (struct sock) that uses it, the port number and
6777 * a fastreuse flag (FIXME: NPI ipg).
6778 */
6779 static struct sctp_bind_bucket *sctp_bucket_create(
6780 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6781
6782 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6783 {
6784 struct sctp_bind_hashbucket *head; /* hash list */
6785 struct sctp_bind_bucket *pp;
6786 unsigned short snum;
6787 int ret;
6788
6789 snum = ntohs(addr->v4.sin_port);
6790
6791 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6792
6793 local_bh_disable();
6794
6795 if (snum == 0) {
6796 /* Search for an available port. */
6797 int low, high, remaining, index;
6798 unsigned int rover;
6799 struct net *net = sock_net(sk);
6800
6801 inet_get_local_port_range(net, &low, &high);
6802 remaining = (high - low) + 1;
6803 rover = prandom_u32() % remaining + low;
6804
6805 do {
6806 rover++;
6807 if ((rover < low) || (rover > high))
6808 rover = low;
6809 if (inet_is_local_reserved_port(net, rover))
6810 continue;
6811 index = sctp_phashfn(sock_net(sk), rover);
6812 head = &sctp_port_hashtable[index];
6813 spin_lock(&head->lock);
6814 sctp_for_each_hentry(pp, &head->chain)
6815 if ((pp->port == rover) &&
6816 net_eq(sock_net(sk), pp->net))
6817 goto next;
6818 break;
6819 next:
6820 spin_unlock(&head->lock);
6821 } while (--remaining > 0);
6822
6823 /* Exhausted local port range during search? */
6824 ret = 1;
6825 if (remaining <= 0)
6826 goto fail;
6827
6828 /* OK, here is the one we will use. HEAD (the port
6829 * hash table list entry) is non-NULL and we hold it's
6830 * mutex.
6831 */
6832 snum = rover;
6833 } else {
6834 /* We are given an specific port number; we verify
6835 * that it is not being used. If it is used, we will
6836 * exahust the search in the hash list corresponding
6837 * to the port number (snum) - we detect that with the
6838 * port iterator, pp being NULL.
6839 */
6840 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6841 spin_lock(&head->lock);
6842 sctp_for_each_hentry(pp, &head->chain) {
6843 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6844 goto pp_found;
6845 }
6846 }
6847 pp = NULL;
6848 goto pp_not_found;
6849 pp_found:
6850 if (!hlist_empty(&pp->owner)) {
6851 /* We had a port hash table hit - there is an
6852 * available port (pp != NULL) and it is being
6853 * used by other socket (pp->owner not empty); that other
6854 * socket is going to be sk2.
6855 */
6856 int reuse = sk->sk_reuse;
6857 struct sock *sk2;
6858
6859 pr_debug("%s: found a possible match\n", __func__);
6860
6861 if (pp->fastreuse && sk->sk_reuse &&
6862 sk->sk_state != SCTP_SS_LISTENING)
6863 goto success;
6864
6865 /* Run through the list of sockets bound to the port
6866 * (pp->port) [via the pointers bind_next and
6867 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6868 * we get the endpoint they describe and run through
6869 * the endpoint's list of IP (v4 or v6) addresses,
6870 * comparing each of the addresses with the address of
6871 * the socket sk. If we find a match, then that means
6872 * that this port/socket (sk) combination are already
6873 * in an endpoint.
6874 */
6875 sk_for_each_bound(sk2, &pp->owner) {
6876 struct sctp_endpoint *ep2;
6877 ep2 = sctp_sk(sk2)->ep;
6878
6879 if (sk == sk2 ||
6880 (reuse && sk2->sk_reuse &&
6881 sk2->sk_state != SCTP_SS_LISTENING))
6882 continue;
6883
6884 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6885 sctp_sk(sk2), sctp_sk(sk))) {
6886 ret = (long)sk2;
6887 goto fail_unlock;
6888 }
6889 }
6890
6891 pr_debug("%s: found a match\n", __func__);
6892 }
6893 pp_not_found:
6894 /* If there was a hash table miss, create a new port. */
6895 ret = 1;
6896 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6897 goto fail_unlock;
6898
6899 /* In either case (hit or miss), make sure fastreuse is 1 only
6900 * if sk->sk_reuse is too (that is, if the caller requested
6901 * SO_REUSEADDR on this socket -sk-).
6902 */
6903 if (hlist_empty(&pp->owner)) {
6904 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6905 pp->fastreuse = 1;
6906 else
6907 pp->fastreuse = 0;
6908 } else if (pp->fastreuse &&
6909 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6910 pp->fastreuse = 0;
6911
6912 /* We are set, so fill up all the data in the hash table
6913 * entry, tie the socket list information with the rest of the
6914 * sockets FIXME: Blurry, NPI (ipg).
6915 */
6916 success:
6917 if (!sctp_sk(sk)->bind_hash) {
6918 inet_sk(sk)->inet_num = snum;
6919 sk_add_bind_node(sk, &pp->owner);
6920 sctp_sk(sk)->bind_hash = pp;
6921 }
6922 ret = 0;
6923
6924 fail_unlock:
6925 spin_unlock(&head->lock);
6926
6927 fail:
6928 local_bh_enable();
6929 return ret;
6930 }
6931
6932 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6933 * port is requested.
6934 */
6935 static int sctp_get_port(struct sock *sk, unsigned short snum)
6936 {
6937 union sctp_addr addr;
6938 struct sctp_af *af = sctp_sk(sk)->pf->af;
6939
6940 /* Set up a dummy address struct from the sk. */
6941 af->from_sk(&addr, sk);
6942 addr.v4.sin_port = htons(snum);
6943
6944 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6945 return !!sctp_get_port_local(sk, &addr);
6946 }
6947
6948 /*
6949 * Move a socket to LISTENING state.
6950 */
6951 static int sctp_listen_start(struct sock *sk, int backlog)
6952 {
6953 struct sctp_sock *sp = sctp_sk(sk);
6954 struct sctp_endpoint *ep = sp->ep;
6955 struct crypto_shash *tfm = NULL;
6956 char alg[32];
6957
6958 /* Allocate HMAC for generating cookie. */
6959 if (!sp->hmac && sp->sctp_hmac_alg) {
6960 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6961 tfm = crypto_alloc_shash(alg, 0, 0);
6962 if (IS_ERR(tfm)) {
6963 net_info_ratelimited("failed to load transform for %s: %ld\n",
6964 sp->sctp_hmac_alg, PTR_ERR(tfm));
6965 return -ENOSYS;
6966 }
6967 sctp_sk(sk)->hmac = tfm;
6968 }
6969
6970 /*
6971 * If a bind() or sctp_bindx() is not called prior to a listen()
6972 * call that allows new associations to be accepted, the system
6973 * picks an ephemeral port and will choose an address set equivalent
6974 * to binding with a wildcard address.
6975 *
6976 * This is not currently spelled out in the SCTP sockets
6977 * extensions draft, but follows the practice as seen in TCP
6978 * sockets.
6979 *
6980 */
6981 sk->sk_state = SCTP_SS_LISTENING;
6982 if (!ep->base.bind_addr.port) {
6983 if (sctp_autobind(sk))
6984 return -EAGAIN;
6985 } else {
6986 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6987 sk->sk_state = SCTP_SS_CLOSED;
6988 return -EADDRINUSE;
6989 }
6990 }
6991
6992 sk->sk_max_ack_backlog = backlog;
6993 sctp_hash_endpoint(ep);
6994 return 0;
6995 }
6996
6997 /*
6998 * 4.1.3 / 5.1.3 listen()
6999 *
7000 * By default, new associations are not accepted for UDP style sockets.
7001 * An application uses listen() to mark a socket as being able to
7002 * accept new associations.
7003 *
7004 * On TCP style sockets, applications use listen() to ready the SCTP
7005 * endpoint for accepting inbound associations.
7006 *
7007 * On both types of endpoints a backlog of '0' disables listening.
7008 *
7009 * Move a socket to LISTENING state.
7010 */
7011 int sctp_inet_listen(struct socket *sock, int backlog)
7012 {
7013 struct sock *sk = sock->sk;
7014 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7015 int err = -EINVAL;
7016
7017 if (unlikely(backlog < 0))
7018 return err;
7019
7020 lock_sock(sk);
7021
7022 /* Peeled-off sockets are not allowed to listen(). */
7023 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7024 goto out;
7025
7026 if (sock->state != SS_UNCONNECTED)
7027 goto out;
7028
7029 /* If backlog is zero, disable listening. */
7030 if (!backlog) {
7031 if (sctp_sstate(sk, CLOSED))
7032 goto out;
7033
7034 err = 0;
7035 sctp_unhash_endpoint(ep);
7036 sk->sk_state = SCTP_SS_CLOSED;
7037 if (sk->sk_reuse)
7038 sctp_sk(sk)->bind_hash->fastreuse = 1;
7039 goto out;
7040 }
7041
7042 /* If we are already listening, just update the backlog */
7043 if (sctp_sstate(sk, LISTENING))
7044 sk->sk_max_ack_backlog = backlog;
7045 else {
7046 err = sctp_listen_start(sk, backlog);
7047 if (err)
7048 goto out;
7049 }
7050
7051 err = 0;
7052 out:
7053 release_sock(sk);
7054 return err;
7055 }
7056
7057 /*
7058 * This function is done by modeling the current datagram_poll() and the
7059 * tcp_poll(). Note that, based on these implementations, we don't
7060 * lock the socket in this function, even though it seems that,
7061 * ideally, locking or some other mechanisms can be used to ensure
7062 * the integrity of the counters (sndbuf and wmem_alloc) used
7063 * in this place. We assume that we don't need locks either until proven
7064 * otherwise.
7065 *
7066 * Another thing to note is that we include the Async I/O support
7067 * here, again, by modeling the current TCP/UDP code. We don't have
7068 * a good way to test with it yet.
7069 */
7070 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7071 {
7072 struct sock *sk = sock->sk;
7073 struct sctp_sock *sp = sctp_sk(sk);
7074 unsigned int mask;
7075
7076 poll_wait(file, sk_sleep(sk), wait);
7077
7078 sock_rps_record_flow(sk);
7079
7080 /* A TCP-style listening socket becomes readable when the accept queue
7081 * is not empty.
7082 */
7083 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7084 return (!list_empty(&sp->ep->asocs)) ?
7085 (POLLIN | POLLRDNORM) : 0;
7086
7087 mask = 0;
7088
7089 /* Is there any exceptional events? */
7090 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7091 mask |= POLLERR |
7092 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7093 if (sk->sk_shutdown & RCV_SHUTDOWN)
7094 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7095 if (sk->sk_shutdown == SHUTDOWN_MASK)
7096 mask |= POLLHUP;
7097
7098 /* Is it readable? Reconsider this code with TCP-style support. */
7099 if (!skb_queue_empty(&sk->sk_receive_queue))
7100 mask |= POLLIN | POLLRDNORM;
7101
7102 /* The association is either gone or not ready. */
7103 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7104 return mask;
7105
7106 /* Is it writable? */
7107 if (sctp_writeable(sk)) {
7108 mask |= POLLOUT | POLLWRNORM;
7109 } else {
7110 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7111 /*
7112 * Since the socket is not locked, the buffer
7113 * might be made available after the writeable check and
7114 * before the bit is set. This could cause a lost I/O
7115 * signal. tcp_poll() has a race breaker for this race
7116 * condition. Based on their implementation, we put
7117 * in the following code to cover it as well.
7118 */
7119 if (sctp_writeable(sk))
7120 mask |= POLLOUT | POLLWRNORM;
7121 }
7122 return mask;
7123 }
7124
7125 /********************************************************************
7126 * 2nd Level Abstractions
7127 ********************************************************************/
7128
7129 static struct sctp_bind_bucket *sctp_bucket_create(
7130 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7131 {
7132 struct sctp_bind_bucket *pp;
7133
7134 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7135 if (pp) {
7136 SCTP_DBG_OBJCNT_INC(bind_bucket);
7137 pp->port = snum;
7138 pp->fastreuse = 0;
7139 INIT_HLIST_HEAD(&pp->owner);
7140 pp->net = net;
7141 hlist_add_head(&pp->node, &head->chain);
7142 }
7143 return pp;
7144 }
7145
7146 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7147 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7148 {
7149 if (pp && hlist_empty(&pp->owner)) {
7150 __hlist_del(&pp->node);
7151 kmem_cache_free(sctp_bucket_cachep, pp);
7152 SCTP_DBG_OBJCNT_DEC(bind_bucket);
7153 }
7154 }
7155
7156 /* Release this socket's reference to a local port. */
7157 static inline void __sctp_put_port(struct sock *sk)
7158 {
7159 struct sctp_bind_hashbucket *head =
7160 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7161 inet_sk(sk)->inet_num)];
7162 struct sctp_bind_bucket *pp;
7163
7164 spin_lock(&head->lock);
7165 pp = sctp_sk(sk)->bind_hash;
7166 __sk_del_bind_node(sk);
7167 sctp_sk(sk)->bind_hash = NULL;
7168 inet_sk(sk)->inet_num = 0;
7169 sctp_bucket_destroy(pp);
7170 spin_unlock(&head->lock);
7171 }
7172
7173 void sctp_put_port(struct sock *sk)
7174 {
7175 local_bh_disable();
7176 __sctp_put_port(sk);
7177 local_bh_enable();
7178 }
7179
7180 /*
7181 * The system picks an ephemeral port and choose an address set equivalent
7182 * to binding with a wildcard address.
7183 * One of those addresses will be the primary address for the association.
7184 * This automatically enables the multihoming capability of SCTP.
7185 */
7186 static int sctp_autobind(struct sock *sk)
7187 {
7188 union sctp_addr autoaddr;
7189 struct sctp_af *af;
7190 __be16 port;
7191
7192 /* Initialize a local sockaddr structure to INADDR_ANY. */
7193 af = sctp_sk(sk)->pf->af;
7194
7195 port = htons(inet_sk(sk)->inet_num);
7196 af->inaddr_any(&autoaddr, port);
7197
7198 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7199 }
7200
7201 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7202 *
7203 * From RFC 2292
7204 * 4.2 The cmsghdr Structure *
7205 *
7206 * When ancillary data is sent or received, any number of ancillary data
7207 * objects can be specified by the msg_control and msg_controllen members of
7208 * the msghdr structure, because each object is preceded by
7209 * a cmsghdr structure defining the object's length (the cmsg_len member).
7210 * Historically Berkeley-derived implementations have passed only one object
7211 * at a time, but this API allows multiple objects to be
7212 * passed in a single call to sendmsg() or recvmsg(). The following example
7213 * shows two ancillary data objects in a control buffer.
7214 *
7215 * |<--------------------------- msg_controllen -------------------------->|
7216 * | |
7217 *
7218 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7219 *
7220 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7221 * | | |
7222 *
7223 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7224 *
7225 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7226 * | | | | |
7227 *
7228 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7229 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7230 *
7231 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7232 *
7233 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7234 * ^
7235 * |
7236 *
7237 * msg_control
7238 * points here
7239 */
7240 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7241 {
7242 struct cmsghdr *cmsg;
7243 struct msghdr *my_msg = (struct msghdr *)msg;
7244
7245 for_each_cmsghdr(cmsg, my_msg) {
7246 if (!CMSG_OK(my_msg, cmsg))
7247 return -EINVAL;
7248
7249 /* Should we parse this header or ignore? */
7250 if (cmsg->cmsg_level != IPPROTO_SCTP)
7251 continue;
7252
7253 /* Strictly check lengths following example in SCM code. */
7254 switch (cmsg->cmsg_type) {
7255 case SCTP_INIT:
7256 /* SCTP Socket API Extension
7257 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7258 *
7259 * This cmsghdr structure provides information for
7260 * initializing new SCTP associations with sendmsg().
7261 * The SCTP_INITMSG socket option uses this same data
7262 * structure. This structure is not used for
7263 * recvmsg().
7264 *
7265 * cmsg_level cmsg_type cmsg_data[]
7266 * ------------ ------------ ----------------------
7267 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7268 */
7269 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7270 return -EINVAL;
7271
7272 cmsgs->init = CMSG_DATA(cmsg);
7273 break;
7274
7275 case SCTP_SNDRCV:
7276 /* SCTP Socket API Extension
7277 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7278 *
7279 * This cmsghdr structure specifies SCTP options for
7280 * sendmsg() and describes SCTP header information
7281 * about a received message through recvmsg().
7282 *
7283 * cmsg_level cmsg_type cmsg_data[]
7284 * ------------ ------------ ----------------------
7285 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7286 */
7287 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7288 return -EINVAL;
7289
7290 cmsgs->srinfo = CMSG_DATA(cmsg);
7291
7292 if (cmsgs->srinfo->sinfo_flags &
7293 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7294 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7295 SCTP_ABORT | SCTP_EOF))
7296 return -EINVAL;
7297 break;
7298
7299 case SCTP_SNDINFO:
7300 /* SCTP Socket API Extension
7301 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7302 *
7303 * This cmsghdr structure specifies SCTP options for
7304 * sendmsg(). This structure and SCTP_RCVINFO replaces
7305 * SCTP_SNDRCV which has been deprecated.
7306 *
7307 * cmsg_level cmsg_type cmsg_data[]
7308 * ------------ ------------ ---------------------
7309 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7310 */
7311 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7312 return -EINVAL;
7313
7314 cmsgs->sinfo = CMSG_DATA(cmsg);
7315
7316 if (cmsgs->sinfo->snd_flags &
7317 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7318 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7319 SCTP_ABORT | SCTP_EOF))
7320 return -EINVAL;
7321 break;
7322 default:
7323 return -EINVAL;
7324 }
7325 }
7326
7327 return 0;
7328 }
7329
7330 /*
7331 * Wait for a packet..
7332 * Note: This function is the same function as in core/datagram.c
7333 * with a few modifications to make lksctp work.
7334 */
7335 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7336 {
7337 int error;
7338 DEFINE_WAIT(wait);
7339
7340 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7341
7342 /* Socket errors? */
7343 error = sock_error(sk);
7344 if (error)
7345 goto out;
7346
7347 if (!skb_queue_empty(&sk->sk_receive_queue))
7348 goto ready;
7349
7350 /* Socket shut down? */
7351 if (sk->sk_shutdown & RCV_SHUTDOWN)
7352 goto out;
7353
7354 /* Sequenced packets can come disconnected. If so we report the
7355 * problem.
7356 */
7357 error = -ENOTCONN;
7358
7359 /* Is there a good reason to think that we may receive some data? */
7360 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7361 goto out;
7362
7363 /* Handle signals. */
7364 if (signal_pending(current))
7365 goto interrupted;
7366
7367 /* Let another process have a go. Since we are going to sleep
7368 * anyway. Note: This may cause odd behaviors if the message
7369 * does not fit in the user's buffer, but this seems to be the
7370 * only way to honor MSG_DONTWAIT realistically.
7371 */
7372 release_sock(sk);
7373 *timeo_p = schedule_timeout(*timeo_p);
7374 lock_sock(sk);
7375
7376 ready:
7377 finish_wait(sk_sleep(sk), &wait);
7378 return 0;
7379
7380 interrupted:
7381 error = sock_intr_errno(*timeo_p);
7382
7383 out:
7384 finish_wait(sk_sleep(sk), &wait);
7385 *err = error;
7386 return error;
7387 }
7388
7389 /* Receive a datagram.
7390 * Note: This is pretty much the same routine as in core/datagram.c
7391 * with a few changes to make lksctp work.
7392 */
7393 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7394 int noblock, int *err)
7395 {
7396 int error;
7397 struct sk_buff *skb;
7398 long timeo;
7399
7400 timeo = sock_rcvtimeo(sk, noblock);
7401
7402 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7403 MAX_SCHEDULE_TIMEOUT);
7404
7405 do {
7406 /* Again only user level code calls this function,
7407 * so nothing interrupt level
7408 * will suddenly eat the receive_queue.
7409 *
7410 * Look at current nfs client by the way...
7411 * However, this function was correct in any case. 8)
7412 */
7413 if (flags & MSG_PEEK) {
7414 skb = skb_peek(&sk->sk_receive_queue);
7415 if (skb)
7416 atomic_inc(&skb->users);
7417 } else {
7418 skb = __skb_dequeue(&sk->sk_receive_queue);
7419 }
7420
7421 if (skb)
7422 return skb;
7423
7424 /* Caller is allowed not to check sk->sk_err before calling. */
7425 error = sock_error(sk);
7426 if (error)
7427 goto no_packet;
7428
7429 if (sk->sk_shutdown & RCV_SHUTDOWN)
7430 break;
7431
7432 if (sk_can_busy_loop(sk) &&
7433 sk_busy_loop(sk, noblock))
7434 continue;
7435
7436 /* User doesn't want to wait. */
7437 error = -EAGAIN;
7438 if (!timeo)
7439 goto no_packet;
7440 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7441
7442 return NULL;
7443
7444 no_packet:
7445 *err = error;
7446 return NULL;
7447 }
7448
7449 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7450 static void __sctp_write_space(struct sctp_association *asoc)
7451 {
7452 struct sock *sk = asoc->base.sk;
7453
7454 if (sctp_wspace(asoc) <= 0)
7455 return;
7456
7457 if (waitqueue_active(&asoc->wait))
7458 wake_up_interruptible(&asoc->wait);
7459
7460 if (sctp_writeable(sk)) {
7461 struct socket_wq *wq;
7462
7463 rcu_read_lock();
7464 wq = rcu_dereference(sk->sk_wq);
7465 if (wq) {
7466 if (waitqueue_active(&wq->wait))
7467 wake_up_interruptible(&wq->wait);
7468
7469 /* Note that we try to include the Async I/O support
7470 * here by modeling from the current TCP/UDP code.
7471 * We have not tested with it yet.
7472 */
7473 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7474 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7475 }
7476 rcu_read_unlock();
7477 }
7478 }
7479
7480 static void sctp_wake_up_waiters(struct sock *sk,
7481 struct sctp_association *asoc)
7482 {
7483 struct sctp_association *tmp = asoc;
7484
7485 /* We do accounting for the sndbuf space per association,
7486 * so we only need to wake our own association.
7487 */
7488 if (asoc->ep->sndbuf_policy)
7489 return __sctp_write_space(asoc);
7490
7491 /* If association goes down and is just flushing its
7492 * outq, then just normally notify others.
7493 */
7494 if (asoc->base.dead)
7495 return sctp_write_space(sk);
7496
7497 /* Accounting for the sndbuf space is per socket, so we
7498 * need to wake up others, try to be fair and in case of
7499 * other associations, let them have a go first instead
7500 * of just doing a sctp_write_space() call.
7501 *
7502 * Note that we reach sctp_wake_up_waiters() only when
7503 * associations free up queued chunks, thus we are under
7504 * lock and the list of associations on a socket is
7505 * guaranteed not to change.
7506 */
7507 for (tmp = list_next_entry(tmp, asocs); 1;
7508 tmp = list_next_entry(tmp, asocs)) {
7509 /* Manually skip the head element. */
7510 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7511 continue;
7512 /* Wake up association. */
7513 __sctp_write_space(tmp);
7514 /* We've reached the end. */
7515 if (tmp == asoc)
7516 break;
7517 }
7518 }
7519
7520 /* Do accounting for the sndbuf space.
7521 * Decrement the used sndbuf space of the corresponding association by the
7522 * data size which was just transmitted(freed).
7523 */
7524 static void sctp_wfree(struct sk_buff *skb)
7525 {
7526 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7527 struct sctp_association *asoc = chunk->asoc;
7528 struct sock *sk = asoc->base.sk;
7529
7530 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7531 sizeof(struct sk_buff) +
7532 sizeof(struct sctp_chunk);
7533
7534 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7535
7536 /*
7537 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7538 */
7539 sk->sk_wmem_queued -= skb->truesize;
7540 sk_mem_uncharge(sk, skb->truesize);
7541
7542 sock_wfree(skb);
7543 sctp_wake_up_waiters(sk, asoc);
7544
7545 sctp_association_put(asoc);
7546 }
7547
7548 /* Do accounting for the receive space on the socket.
7549 * Accounting for the association is done in ulpevent.c
7550 * We set this as a destructor for the cloned data skbs so that
7551 * accounting is done at the correct time.
7552 */
7553 void sctp_sock_rfree(struct sk_buff *skb)
7554 {
7555 struct sock *sk = skb->sk;
7556 struct sctp_ulpevent *event = sctp_skb2event(skb);
7557
7558 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7559
7560 /*
7561 * Mimic the behavior of sock_rfree
7562 */
7563 sk_mem_uncharge(sk, event->rmem_len);
7564 }
7565
7566
7567 /* Helper function to wait for space in the sndbuf. */
7568 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7569 size_t msg_len)
7570 {
7571 struct sock *sk = asoc->base.sk;
7572 int err = 0;
7573 long current_timeo = *timeo_p;
7574 DEFINE_WAIT(wait);
7575
7576 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7577 *timeo_p, msg_len);
7578
7579 /* Increment the association's refcnt. */
7580 sctp_association_hold(asoc);
7581
7582 /* Wait on the association specific sndbuf space. */
7583 for (;;) {
7584 prepare_to_wait_exclusive(&asoc->wait, &wait,
7585 TASK_INTERRUPTIBLE);
7586 if (!*timeo_p)
7587 goto do_nonblock;
7588 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7589 asoc->base.dead)
7590 goto do_error;
7591 if (signal_pending(current))
7592 goto do_interrupted;
7593 if (msg_len <= sctp_wspace(asoc))
7594 break;
7595
7596 /* Let another process have a go. Since we are going
7597 * to sleep anyway.
7598 */
7599 release_sock(sk);
7600 current_timeo = schedule_timeout(current_timeo);
7601 if (sk != asoc->base.sk)
7602 goto do_error;
7603 lock_sock(sk);
7604
7605 *timeo_p = current_timeo;
7606 }
7607
7608 out:
7609 finish_wait(&asoc->wait, &wait);
7610
7611 /* Release the association's refcnt. */
7612 sctp_association_put(asoc);
7613
7614 return err;
7615
7616 do_error:
7617 err = -EPIPE;
7618 goto out;
7619
7620 do_interrupted:
7621 err = sock_intr_errno(*timeo_p);
7622 goto out;
7623
7624 do_nonblock:
7625 err = -EAGAIN;
7626 goto out;
7627 }
7628
7629 void sctp_data_ready(struct sock *sk)
7630 {
7631 struct socket_wq *wq;
7632
7633 rcu_read_lock();
7634 wq = rcu_dereference(sk->sk_wq);
7635 if (skwq_has_sleeper(wq))
7636 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7637 POLLRDNORM | POLLRDBAND);
7638 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7639 rcu_read_unlock();
7640 }
7641
7642 /* If socket sndbuf has changed, wake up all per association waiters. */
7643 void sctp_write_space(struct sock *sk)
7644 {
7645 struct sctp_association *asoc;
7646
7647 /* Wake up the tasks in each wait queue. */
7648 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7649 __sctp_write_space(asoc);
7650 }
7651 }
7652
7653 /* Is there any sndbuf space available on the socket?
7654 *
7655 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7656 * associations on the same socket. For a UDP-style socket with
7657 * multiple associations, it is possible for it to be "unwriteable"
7658 * prematurely. I assume that this is acceptable because
7659 * a premature "unwriteable" is better than an accidental "writeable" which
7660 * would cause an unwanted block under certain circumstances. For the 1-1
7661 * UDP-style sockets or TCP-style sockets, this code should work.
7662 * - Daisy
7663 */
7664 static int sctp_writeable(struct sock *sk)
7665 {
7666 int amt = 0;
7667
7668 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7669 if (amt < 0)
7670 amt = 0;
7671 return amt;
7672 }
7673
7674 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7675 * returns immediately with EINPROGRESS.
7676 */
7677 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7678 {
7679 struct sock *sk = asoc->base.sk;
7680 int err = 0;
7681 long current_timeo = *timeo_p;
7682 DEFINE_WAIT(wait);
7683
7684 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7685
7686 /* Increment the association's refcnt. */
7687 sctp_association_hold(asoc);
7688
7689 for (;;) {
7690 prepare_to_wait_exclusive(&asoc->wait, &wait,
7691 TASK_INTERRUPTIBLE);
7692 if (!*timeo_p)
7693 goto do_nonblock;
7694 if (sk->sk_shutdown & RCV_SHUTDOWN)
7695 break;
7696 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7697 asoc->base.dead)
7698 goto do_error;
7699 if (signal_pending(current))
7700 goto do_interrupted;
7701
7702 if (sctp_state(asoc, ESTABLISHED))
7703 break;
7704
7705 /* Let another process have a go. Since we are going
7706 * to sleep anyway.
7707 */
7708 release_sock(sk);
7709 current_timeo = schedule_timeout(current_timeo);
7710 lock_sock(sk);
7711
7712 *timeo_p = current_timeo;
7713 }
7714
7715 out:
7716 finish_wait(&asoc->wait, &wait);
7717
7718 /* Release the association's refcnt. */
7719 sctp_association_put(asoc);
7720
7721 return err;
7722
7723 do_error:
7724 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7725 err = -ETIMEDOUT;
7726 else
7727 err = -ECONNREFUSED;
7728 goto out;
7729
7730 do_interrupted:
7731 err = sock_intr_errno(*timeo_p);
7732 goto out;
7733
7734 do_nonblock:
7735 err = -EINPROGRESS;
7736 goto out;
7737 }
7738
7739 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7740 {
7741 struct sctp_endpoint *ep;
7742 int err = 0;
7743 DEFINE_WAIT(wait);
7744
7745 ep = sctp_sk(sk)->ep;
7746
7747
7748 for (;;) {
7749 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7750 TASK_INTERRUPTIBLE);
7751
7752 if (list_empty(&ep->asocs)) {
7753 release_sock(sk);
7754 timeo = schedule_timeout(timeo);
7755 lock_sock(sk);
7756 }
7757
7758 err = -EINVAL;
7759 if (!sctp_sstate(sk, LISTENING))
7760 break;
7761
7762 err = 0;
7763 if (!list_empty(&ep->asocs))
7764 break;
7765
7766 err = sock_intr_errno(timeo);
7767 if (signal_pending(current))
7768 break;
7769
7770 err = -EAGAIN;
7771 if (!timeo)
7772 break;
7773 }
7774
7775 finish_wait(sk_sleep(sk), &wait);
7776
7777 return err;
7778 }
7779
7780 static void sctp_wait_for_close(struct sock *sk, long timeout)
7781 {
7782 DEFINE_WAIT(wait);
7783
7784 do {
7785 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7786 if (list_empty(&sctp_sk(sk)->ep->asocs))
7787 break;
7788 release_sock(sk);
7789 timeout = schedule_timeout(timeout);
7790 lock_sock(sk);
7791 } while (!signal_pending(current) && timeout);
7792
7793 finish_wait(sk_sleep(sk), &wait);
7794 }
7795
7796 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7797 {
7798 struct sk_buff *frag;
7799
7800 if (!skb->data_len)
7801 goto done;
7802
7803 /* Don't forget the fragments. */
7804 skb_walk_frags(skb, frag)
7805 sctp_skb_set_owner_r_frag(frag, sk);
7806
7807 done:
7808 sctp_skb_set_owner_r(skb, sk);
7809 }
7810
7811 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7812 struct sctp_association *asoc)
7813 {
7814 struct inet_sock *inet = inet_sk(sk);
7815 struct inet_sock *newinet;
7816
7817 newsk->sk_type = sk->sk_type;
7818 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7819 newsk->sk_flags = sk->sk_flags;
7820 newsk->sk_tsflags = sk->sk_tsflags;
7821 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7822 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7823 newsk->sk_reuse = sk->sk_reuse;
7824
7825 newsk->sk_shutdown = sk->sk_shutdown;
7826 newsk->sk_destruct = sctp_destruct_sock;
7827 newsk->sk_family = sk->sk_family;
7828 newsk->sk_protocol = IPPROTO_SCTP;
7829 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7830 newsk->sk_sndbuf = sk->sk_sndbuf;
7831 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7832 newsk->sk_lingertime = sk->sk_lingertime;
7833 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7834 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7835 newsk->sk_rxhash = sk->sk_rxhash;
7836
7837 newinet = inet_sk(newsk);
7838
7839 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7840 * getsockname() and getpeername()
7841 */
7842 newinet->inet_sport = inet->inet_sport;
7843 newinet->inet_saddr = inet->inet_saddr;
7844 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7845 newinet->inet_dport = htons(asoc->peer.port);
7846 newinet->pmtudisc = inet->pmtudisc;
7847 newinet->inet_id = asoc->next_tsn ^ jiffies;
7848
7849 newinet->uc_ttl = inet->uc_ttl;
7850 newinet->mc_loop = 1;
7851 newinet->mc_ttl = 1;
7852 newinet->mc_index = 0;
7853 newinet->mc_list = NULL;
7854
7855 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7856 net_enable_timestamp();
7857
7858 security_sk_clone(sk, newsk);
7859 }
7860
7861 static inline void sctp_copy_descendant(struct sock *sk_to,
7862 const struct sock *sk_from)
7863 {
7864 int ancestor_size = sizeof(struct inet_sock) +
7865 sizeof(struct sctp_sock) -
7866 offsetof(struct sctp_sock, auto_asconf_list);
7867
7868 if (sk_from->sk_family == PF_INET6)
7869 ancestor_size += sizeof(struct ipv6_pinfo);
7870
7871 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7872 }
7873
7874 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7875 * and its messages to the newsk.
7876 */
7877 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7878 struct sctp_association *assoc,
7879 sctp_socket_type_t type)
7880 {
7881 struct sctp_sock *oldsp = sctp_sk(oldsk);
7882 struct sctp_sock *newsp = sctp_sk(newsk);
7883 struct sctp_bind_bucket *pp; /* hash list port iterator */
7884 struct sctp_endpoint *newep = newsp->ep;
7885 struct sk_buff *skb, *tmp;
7886 struct sctp_ulpevent *event;
7887 struct sctp_bind_hashbucket *head;
7888
7889 /* Migrate socket buffer sizes and all the socket level options to the
7890 * new socket.
7891 */
7892 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7893 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7894 /* Brute force copy old sctp opt. */
7895 sctp_copy_descendant(newsk, oldsk);
7896
7897 /* Restore the ep value that was overwritten with the above structure
7898 * copy.
7899 */
7900 newsp->ep = newep;
7901 newsp->hmac = NULL;
7902
7903 /* Hook this new socket in to the bind_hash list. */
7904 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7905 inet_sk(oldsk)->inet_num)];
7906 spin_lock_bh(&head->lock);
7907 pp = sctp_sk(oldsk)->bind_hash;
7908 sk_add_bind_node(newsk, &pp->owner);
7909 sctp_sk(newsk)->bind_hash = pp;
7910 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7911 spin_unlock_bh(&head->lock);
7912
7913 /* Copy the bind_addr list from the original endpoint to the new
7914 * endpoint so that we can handle restarts properly
7915 */
7916 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7917 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7918
7919 /* Move any messages in the old socket's receive queue that are for the
7920 * peeled off association to the new socket's receive queue.
7921 */
7922 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7923 event = sctp_skb2event(skb);
7924 if (event->asoc == assoc) {
7925 __skb_unlink(skb, &oldsk->sk_receive_queue);
7926 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7927 sctp_skb_set_owner_r_frag(skb, newsk);
7928 }
7929 }
7930
7931 /* Clean up any messages pending delivery due to partial
7932 * delivery. Three cases:
7933 * 1) No partial deliver; no work.
7934 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7935 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7936 */
7937 skb_queue_head_init(&newsp->pd_lobby);
7938 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7939
7940 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7941 struct sk_buff_head *queue;
7942
7943 /* Decide which queue to move pd_lobby skbs to. */
7944 if (assoc->ulpq.pd_mode) {
7945 queue = &newsp->pd_lobby;
7946 } else
7947 queue = &newsk->sk_receive_queue;
7948
7949 /* Walk through the pd_lobby, looking for skbs that
7950 * need moved to the new socket.
7951 */
7952 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7953 event = sctp_skb2event(skb);
7954 if (event->asoc == assoc) {
7955 __skb_unlink(skb, &oldsp->pd_lobby);
7956 __skb_queue_tail(queue, skb);
7957 sctp_skb_set_owner_r_frag(skb, newsk);
7958 }
7959 }
7960
7961 /* Clear up any skbs waiting for the partial
7962 * delivery to finish.
7963 */
7964 if (assoc->ulpq.pd_mode)
7965 sctp_clear_pd(oldsk, NULL);
7966
7967 }
7968
7969 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7970 sctp_skb_set_owner_r_frag(skb, newsk);
7971
7972 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7973 sctp_skb_set_owner_r_frag(skb, newsk);
7974
7975 /* Set the type of socket to indicate that it is peeled off from the
7976 * original UDP-style socket or created with the accept() call on a
7977 * TCP-style socket..
7978 */
7979 newsp->type = type;
7980
7981 /* Mark the new socket "in-use" by the user so that any packets
7982 * that may arrive on the association after we've moved it are
7983 * queued to the backlog. This prevents a potential race between
7984 * backlog processing on the old socket and new-packet processing
7985 * on the new socket.
7986 *
7987 * The caller has just allocated newsk so we can guarantee that other
7988 * paths won't try to lock it and then oldsk.
7989 */
7990 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7991 sctp_assoc_migrate(assoc, newsk);
7992
7993 /* If the association on the newsk is already closed before accept()
7994 * is called, set RCV_SHUTDOWN flag.
7995 */
7996 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7997 newsk->sk_state = SCTP_SS_CLOSED;
7998 newsk->sk_shutdown |= RCV_SHUTDOWN;
7999 } else {
8000 newsk->sk_state = SCTP_SS_ESTABLISHED;
8001 }
8002
8003 release_sock(newsk);
8004 }
8005
8006
8007 /* This proto struct describes the ULP interface for SCTP. */
8008 struct proto sctp_prot = {
8009 .name = "SCTP",
8010 .owner = THIS_MODULE,
8011 .close = sctp_close,
8012 .connect = sctp_connect,
8013 .disconnect = sctp_disconnect,
8014 .accept = sctp_accept,
8015 .ioctl = sctp_ioctl,
8016 .init = sctp_init_sock,
8017 .destroy = sctp_destroy_sock,
8018 .shutdown = sctp_shutdown,
8019 .setsockopt = sctp_setsockopt,
8020 .getsockopt = sctp_getsockopt,
8021 .sendmsg = sctp_sendmsg,
8022 .recvmsg = sctp_recvmsg,
8023 .bind = sctp_bind,
8024 .backlog_rcv = sctp_backlog_rcv,
8025 .hash = sctp_hash,
8026 .unhash = sctp_unhash,
8027 .get_port = sctp_get_port,
8028 .obj_size = sizeof(struct sctp_sock),
8029 .sysctl_mem = sysctl_sctp_mem,
8030 .sysctl_rmem = sysctl_sctp_rmem,
8031 .sysctl_wmem = sysctl_sctp_wmem,
8032 .memory_pressure = &sctp_memory_pressure,
8033 .enter_memory_pressure = sctp_enter_memory_pressure,
8034 .memory_allocated = &sctp_memory_allocated,
8035 .sockets_allocated = &sctp_sockets_allocated,
8036 };
8037
8038 #if IS_ENABLED(CONFIG_IPV6)
8039
8040 #include <net/transp_v6.h>
8041 static void sctp_v6_destroy_sock(struct sock *sk)
8042 {
8043 sctp_destroy_sock(sk);
8044 inet6_destroy_sock(sk);
8045 }
8046
8047 struct proto sctpv6_prot = {
8048 .name = "SCTPv6",
8049 .owner = THIS_MODULE,
8050 .close = sctp_close,
8051 .connect = sctp_connect,
8052 .disconnect = sctp_disconnect,
8053 .accept = sctp_accept,
8054 .ioctl = sctp_ioctl,
8055 .init = sctp_init_sock,
8056 .destroy = sctp_v6_destroy_sock,
8057 .shutdown = sctp_shutdown,
8058 .setsockopt = sctp_setsockopt,
8059 .getsockopt = sctp_getsockopt,
8060 .sendmsg = sctp_sendmsg,
8061 .recvmsg = sctp_recvmsg,
8062 .bind = sctp_bind,
8063 .backlog_rcv = sctp_backlog_rcv,
8064 .hash = sctp_hash,
8065 .unhash = sctp_unhash,
8066 .get_port = sctp_get_port,
8067 .obj_size = sizeof(struct sctp6_sock),
8068 .sysctl_mem = sysctl_sctp_mem,
8069 .sysctl_rmem = sysctl_sctp_rmem,
8070 .sysctl_wmem = sysctl_sctp_wmem,
8071 .memory_pressure = &sctp_memory_pressure,
8072 .enter_memory_pressure = sctp_enter_memory_pressure,
8073 .memory_allocated = &sctp_memory_allocated,
8074 .sockets_allocated = &sctp_sockets_allocated,
8075 };
8076 #endif /* IS_ENABLED(CONFIG_IPV6) */