]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/sctp/socket.c
[SCTP]: Update AUTH structures to match declarations in draft-16.
[mirror_ubuntu-kernels.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
118
119 static void sctp_enter_memory_pressure(void)
120 {
121 sctp_memory_pressure = 1;
122 }
123
124
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 int amt;
129
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
142 }
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
145 }
146 return amt;
147 }
148
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
152 *
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
157 */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
162
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
165
166 skb_set_owner_w(chunk->skb, sk);
167
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
175
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
179 }
180
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
184 {
185 struct sctp_af *af;
186
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
191
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
195
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
198
199 return 0;
200 }
201
202 /* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
204 */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 struct sctp_association *asoc = NULL;
208
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
214 */
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
217
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
223 }
224
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
228
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
232
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
235
236 return asoc;
237 }
238
239 /* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
242 */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
246 {
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
250
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
254
255 if (!addr_asoc)
256 return NULL;
257
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
261
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
264
265 return transport;
266 }
267
268 /* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
270 *
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
272 *
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
277 */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 int retval = 0;
281
282 sctp_lock_sock(sk);
283
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
286
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
293
294 sctp_release_sock(sk);
295
296 return retval;
297 }
298
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
304 {
305 struct sctp_af *af;
306
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
310
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314
315 /* If we get this far, af is valid. */
316 af = sctp_get_af_specific(addr->sa.sa_family);
317
318 if (len < af->sockaddr_len)
319 return NULL;
320
321 return af;
322 }
323
324 /* Bind a local address either to an endpoint or to an association. */
325 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
326 {
327 struct sctp_sock *sp = sctp_sk(sk);
328 struct sctp_endpoint *ep = sp->ep;
329 struct sctp_bind_addr *bp = &ep->base.bind_addr;
330 struct sctp_af *af;
331 unsigned short snum;
332 int ret = 0;
333
334 /* Common sockaddr verification. */
335 af = sctp_sockaddr_af(sp, addr, len);
336 if (!af) {
337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
338 sk, addr, len);
339 return -EINVAL;
340 }
341
342 snum = ntohs(addr->v4.sin_port);
343
344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
345 ", port: %d, new port: %d, len: %d)\n",
346 sk,
347 addr,
348 bp->port, snum,
349 len);
350
351 /* PF specific bind() address verification. */
352 if (!sp->pf->bind_verify(sp, addr))
353 return -EADDRNOTAVAIL;
354
355 /* We must either be unbound, or bind to the same port.
356 * It's OK to allow 0 ports if we are already bound.
357 * We'll just inhert an already bound port in this case
358 */
359 if (bp->port) {
360 if (!snum)
361 snum = bp->port;
362 else if (snum != bp->port) {
363 SCTP_DEBUG_PRINTK("sctp_do_bind:"
364 " New port %d does not match existing port "
365 "%d.\n", snum, bp->port);
366 return -EINVAL;
367 }
368 }
369
370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
371 return -EACCES;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 if (ret == (long) sk) {
380 /* This endpoint has a conflicting address. */
381 return -EINVAL;
382 } else {
383 return -EADDRINUSE;
384 }
385 }
386
387 /* Refresh ephemeral port. */
388 if (!bp->port)
389 bp->port = inet_sk(sk)->num;
390
391 /* Add the address to the bind address list.
392 * Use GFP_ATOMIC since BHs will be disabled.
393 */
394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
399 af->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403 }
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417 {
418 int retval = 0;
419
420 /* If there is an outstanding ASCONF chunk, queue it for later
421 * transmission.
422 */
423 if (asoc->addip_last_asconf) {
424 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 goto out;
426 }
427
428 /* Hold the chunk until an ASCONF_ACK is received. */
429 sctp_chunk_hold(chunk);
430 retval = sctp_primitive_ASCONF(asoc, chunk);
431 if (retval)
432 sctp_chunk_free(chunk);
433 else
434 asoc->addip_last_asconf = chunk;
435
436 out:
437 return retval;
438 }
439
440 /* Add a list of addresses as bind addresses to local endpoint or
441 * association.
442 *
443 * Basically run through each address specified in the addrs/addrcnt
444 * array/length pair, determine if it is IPv6 or IPv4 and call
445 * sctp_do_bind() on it.
446 *
447 * If any of them fails, then the operation will be reversed and the
448 * ones that were added will be removed.
449 *
450 * Only sctp_setsockopt_bindx() is supposed to call this function.
451 */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 int cnt;
455 int retval = 0;
456 void *addr_buf;
457 struct sockaddr *sa_addr;
458 struct sctp_af *af;
459
460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
461 sk, addrs, addrcnt);
462
463 addr_buf = addrs;
464 for (cnt = 0; cnt < addrcnt; cnt++) {
465 /* The list may contain either IPv4 or IPv6 address;
466 * determine the address length for walking thru the list.
467 */
468 sa_addr = (struct sockaddr *)addr_buf;
469 af = sctp_get_af_specific(sa_addr->sa_family);
470 if (!af) {
471 retval = -EINVAL;
472 goto err_bindx_add;
473 }
474
475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 af->sockaddr_len);
477
478 addr_buf += af->sockaddr_len;
479
480 err_bindx_add:
481 if (retval < 0) {
482 /* Failed. Cleanup the ones that have been added */
483 if (cnt > 0)
484 sctp_bindx_rem(sk, addrs, cnt);
485 return retval;
486 }
487 }
488
489 return retval;
490 }
491
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493 * associations that are part of the endpoint indicating that a list of local
494 * addresses are added to the endpoint.
495 *
496 * If any of the addresses is already in the bind address list of the
497 * association, we do not send the chunk for that association. But it will not
498 * affect other associations.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
502 static int sctp_send_asconf_add_ip(struct sock *sk,
503 struct sockaddr *addrs,
504 int addrcnt)
505 {
506 struct sctp_sock *sp;
507 struct sctp_endpoint *ep;
508 struct sctp_association *asoc;
509 struct sctp_bind_addr *bp;
510 struct sctp_chunk *chunk;
511 struct sctp_sockaddr_entry *laddr;
512 union sctp_addr *addr;
513 union sctp_addr saveaddr;
514 void *addr_buf;
515 struct sctp_af *af;
516 struct list_head *pos;
517 struct list_head *p;
518 int i;
519 int retval = 0;
520
521 if (!sctp_addip_enable)
522 return retval;
523
524 sp = sctp_sk(sk);
525 ep = sp->ep;
526
527 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
528 __FUNCTION__, sk, addrs, addrcnt);
529
530 list_for_each(pos, &ep->asocs) {
531 asoc = list_entry(pos, struct sctp_association, asocs);
532
533 if (!asoc->peer.asconf_capable)
534 continue;
535
536 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
537 continue;
538
539 if (!sctp_state(asoc, ESTABLISHED))
540 continue;
541
542 /* Check if any address in the packed array of addresses is
543 * in the bind address list of the association. If so,
544 * do not send the asconf chunk to its peer, but continue with
545 * other associations.
546 */
547 addr_buf = addrs;
548 for (i = 0; i < addrcnt; i++) {
549 addr = (union sctp_addr *)addr_buf;
550 af = sctp_get_af_specific(addr->v4.sin_family);
551 if (!af) {
552 retval = -EINVAL;
553 goto out;
554 }
555
556 if (sctp_assoc_lookup_laddr(asoc, addr))
557 break;
558
559 addr_buf += af->sockaddr_len;
560 }
561 if (i < addrcnt)
562 continue;
563
564 /* Use the first valid address in bind addr list of
565 * association as Address Parameter of ASCONF CHUNK.
566 */
567 bp = &asoc->base.bind_addr;
568 p = bp->address_list.next;
569 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
570 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
571 addrcnt, SCTP_PARAM_ADD_IP);
572 if (!chunk) {
573 retval = -ENOMEM;
574 goto out;
575 }
576
577 retval = sctp_send_asconf(asoc, chunk);
578 if (retval)
579 goto out;
580
581 /* Add the new addresses to the bind address list with
582 * use_as_src set to 0.
583 */
584 addr_buf = addrs;
585 for (i = 0; i < addrcnt; i++) {
586 addr = (union sctp_addr *)addr_buf;
587 af = sctp_get_af_specific(addr->v4.sin_family);
588 memcpy(&saveaddr, addr, af->sockaddr_len);
589 retval = sctp_add_bind_addr(bp, &saveaddr,
590 SCTP_ADDR_NEW, GFP_ATOMIC);
591 addr_buf += af->sockaddr_len;
592 }
593 }
594
595 out:
596 return retval;
597 }
598
599 /* Remove a list of addresses from bind addresses list. Do not remove the
600 * last address.
601 *
602 * Basically run through each address specified in the addrs/addrcnt
603 * array/length pair, determine if it is IPv6 or IPv4 and call
604 * sctp_del_bind() on it.
605 *
606 * If any of them fails, then the operation will be reversed and the
607 * ones that were removed will be added back.
608 *
609 * At least one address has to be left; if only one address is
610 * available, the operation will return -EBUSY.
611 *
612 * Only sctp_setsockopt_bindx() is supposed to call this function.
613 */
614 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
615 {
616 struct sctp_sock *sp = sctp_sk(sk);
617 struct sctp_endpoint *ep = sp->ep;
618 int cnt;
619 struct sctp_bind_addr *bp = &ep->base.bind_addr;
620 int retval = 0;
621 void *addr_buf;
622 union sctp_addr *sa_addr;
623 struct sctp_af *af;
624
625 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
626 sk, addrs, addrcnt);
627
628 addr_buf = addrs;
629 for (cnt = 0; cnt < addrcnt; cnt++) {
630 /* If the bind address list is empty or if there is only one
631 * bind address, there is nothing more to be removed (we need
632 * at least one address here).
633 */
634 if (list_empty(&bp->address_list) ||
635 (sctp_list_single_entry(&bp->address_list))) {
636 retval = -EBUSY;
637 goto err_bindx_rem;
638 }
639
640 sa_addr = (union sctp_addr *)addr_buf;
641 af = sctp_get_af_specific(sa_addr->sa.sa_family);
642 if (!af) {
643 retval = -EINVAL;
644 goto err_bindx_rem;
645 }
646
647 if (!af->addr_valid(sa_addr, sp, NULL)) {
648 retval = -EADDRNOTAVAIL;
649 goto err_bindx_rem;
650 }
651
652 if (sa_addr->v4.sin_port != htons(bp->port)) {
653 retval = -EINVAL;
654 goto err_bindx_rem;
655 }
656
657 /* FIXME - There is probably a need to check if sk->sk_saddr and
658 * sk->sk_rcv_addr are currently set to one of the addresses to
659 * be removed. This is something which needs to be looked into
660 * when we are fixing the outstanding issues with multi-homing
661 * socket routing and failover schemes. Refer to comments in
662 * sctp_do_bind(). -daisy
663 */
664 retval = sctp_del_bind_addr(bp, sa_addr);
665
666 addr_buf += af->sockaddr_len;
667 err_bindx_rem:
668 if (retval < 0) {
669 /* Failed. Add the ones that has been removed back */
670 if (cnt > 0)
671 sctp_bindx_add(sk, addrs, cnt);
672 return retval;
673 }
674 }
675
676 return retval;
677 }
678
679 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
680 * the associations that are part of the endpoint indicating that a list of
681 * local addresses are removed from the endpoint.
682 *
683 * If any of the addresses is already in the bind address list of the
684 * association, we do not send the chunk for that association. But it will not
685 * affect other associations.
686 *
687 * Only sctp_setsockopt_bindx() is supposed to call this function.
688 */
689 static int sctp_send_asconf_del_ip(struct sock *sk,
690 struct sockaddr *addrs,
691 int addrcnt)
692 {
693 struct sctp_sock *sp;
694 struct sctp_endpoint *ep;
695 struct sctp_association *asoc;
696 struct sctp_transport *transport;
697 struct sctp_bind_addr *bp;
698 struct sctp_chunk *chunk;
699 union sctp_addr *laddr;
700 void *addr_buf;
701 struct sctp_af *af;
702 struct list_head *pos, *pos1;
703 struct sctp_sockaddr_entry *saddr;
704 int i;
705 int retval = 0;
706
707 if (!sctp_addip_enable)
708 return retval;
709
710 sp = sctp_sk(sk);
711 ep = sp->ep;
712
713 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
714 __FUNCTION__, sk, addrs, addrcnt);
715
716 list_for_each(pos, &ep->asocs) {
717 asoc = list_entry(pos, struct sctp_association, asocs);
718
719 if (!asoc->peer.asconf_capable)
720 continue;
721
722 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
723 continue;
724
725 if (!sctp_state(asoc, ESTABLISHED))
726 continue;
727
728 /* Check if any address in the packed array of addresses is
729 * not present in the bind address list of the association.
730 * If so, do not send the asconf chunk to its peer, but
731 * continue with other associations.
732 */
733 addr_buf = addrs;
734 for (i = 0; i < addrcnt; i++) {
735 laddr = (union sctp_addr *)addr_buf;
736 af = sctp_get_af_specific(laddr->v4.sin_family);
737 if (!af) {
738 retval = -EINVAL;
739 goto out;
740 }
741
742 if (!sctp_assoc_lookup_laddr(asoc, laddr))
743 break;
744
745 addr_buf += af->sockaddr_len;
746 }
747 if (i < addrcnt)
748 continue;
749
750 /* Find one address in the association's bind address list
751 * that is not in the packed array of addresses. This is to
752 * make sure that we do not delete all the addresses in the
753 * association.
754 */
755 bp = &asoc->base.bind_addr;
756 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
757 addrcnt, sp);
758 if (!laddr)
759 continue;
760
761 /* We do not need RCU protection throughout this loop
762 * because this is done under a socket lock from the
763 * setsockopt call.
764 */
765 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
766 SCTP_PARAM_DEL_IP);
767 if (!chunk) {
768 retval = -ENOMEM;
769 goto out;
770 }
771
772 /* Reset use_as_src flag for the addresses in the bind address
773 * list that are to be deleted.
774 */
775 addr_buf = addrs;
776 for (i = 0; i < addrcnt; i++) {
777 laddr = (union sctp_addr *)addr_buf;
778 af = sctp_get_af_specific(laddr->v4.sin_family);
779 list_for_each_entry(saddr, &bp->address_list, list) {
780 if (sctp_cmp_addr_exact(&saddr->a, laddr))
781 saddr->state = SCTP_ADDR_DEL;
782 }
783 addr_buf += af->sockaddr_len;
784 }
785
786 /* Update the route and saddr entries for all the transports
787 * as some of the addresses in the bind address list are
788 * about to be deleted and cannot be used as source addresses.
789 */
790 list_for_each(pos1, &asoc->peer.transport_addr_list) {
791 transport = list_entry(pos1, struct sctp_transport,
792 transports);
793 dst_release(transport->dst);
794 sctp_transport_route(transport, NULL,
795 sctp_sk(asoc->base.sk));
796 }
797
798 retval = sctp_send_asconf(asoc, chunk);
799 }
800 out:
801 return retval;
802 }
803
804 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
805 *
806 * API 8.1
807 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
808 * int flags);
809 *
810 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
811 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
812 * or IPv6 addresses.
813 *
814 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
815 * Section 3.1.2 for this usage.
816 *
817 * addrs is a pointer to an array of one or more socket addresses. Each
818 * address is contained in its appropriate structure (i.e. struct
819 * sockaddr_in or struct sockaddr_in6) the family of the address type
820 * must be used to distinguish the address length (note that this
821 * representation is termed a "packed array" of addresses). The caller
822 * specifies the number of addresses in the array with addrcnt.
823 *
824 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
825 * -1, and sets errno to the appropriate error code.
826 *
827 * For SCTP, the port given in each socket address must be the same, or
828 * sctp_bindx() will fail, setting errno to EINVAL.
829 *
830 * The flags parameter is formed from the bitwise OR of zero or more of
831 * the following currently defined flags:
832 *
833 * SCTP_BINDX_ADD_ADDR
834 *
835 * SCTP_BINDX_REM_ADDR
836 *
837 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
838 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
839 * addresses from the association. The two flags are mutually exclusive;
840 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
841 * not remove all addresses from an association; sctp_bindx() will
842 * reject such an attempt with EINVAL.
843 *
844 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
845 * additional addresses with an endpoint after calling bind(). Or use
846 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
847 * socket is associated with so that no new association accepted will be
848 * associated with those addresses. If the endpoint supports dynamic
849 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
850 * endpoint to send the appropriate message to the peer to change the
851 * peers address lists.
852 *
853 * Adding and removing addresses from a connected association is
854 * optional functionality. Implementations that do not support this
855 * functionality should return EOPNOTSUPP.
856 *
857 * Basically do nothing but copying the addresses from user to kernel
858 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
859 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
860 * from userspace.
861 *
862 * We don't use copy_from_user() for optimization: we first do the
863 * sanity checks (buffer size -fast- and access check-healthy
864 * pointer); if all of those succeed, then we can alloc the memory
865 * (expensive operation) needed to copy the data to kernel. Then we do
866 * the copying without checking the user space area
867 * (__copy_from_user()).
868 *
869 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
870 * it.
871 *
872 * sk The sk of the socket
873 * addrs The pointer to the addresses in user land
874 * addrssize Size of the addrs buffer
875 * op Operation to perform (add or remove, see the flags of
876 * sctp_bindx)
877 *
878 * Returns 0 if ok, <0 errno code on error.
879 */
880 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
881 struct sockaddr __user *addrs,
882 int addrs_size, int op)
883 {
884 struct sockaddr *kaddrs;
885 int err;
886 int addrcnt = 0;
887 int walk_size = 0;
888 struct sockaddr *sa_addr;
889 void *addr_buf;
890 struct sctp_af *af;
891
892 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
893 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
894
895 if (unlikely(addrs_size <= 0))
896 return -EINVAL;
897
898 /* Check the user passed a healthy pointer. */
899 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
900 return -EFAULT;
901
902 /* Alloc space for the address array in kernel memory. */
903 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
904 if (unlikely(!kaddrs))
905 return -ENOMEM;
906
907 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
908 kfree(kaddrs);
909 return -EFAULT;
910 }
911
912 /* Walk through the addrs buffer and count the number of addresses. */
913 addr_buf = kaddrs;
914 while (walk_size < addrs_size) {
915 sa_addr = (struct sockaddr *)addr_buf;
916 af = sctp_get_af_specific(sa_addr->sa_family);
917
918 /* If the address family is not supported or if this address
919 * causes the address buffer to overflow return EINVAL.
920 */
921 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
922 kfree(kaddrs);
923 return -EINVAL;
924 }
925 addrcnt++;
926 addr_buf += af->sockaddr_len;
927 walk_size += af->sockaddr_len;
928 }
929
930 /* Do the work. */
931 switch (op) {
932 case SCTP_BINDX_ADD_ADDR:
933 err = sctp_bindx_add(sk, kaddrs, addrcnt);
934 if (err)
935 goto out;
936 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
937 break;
938
939 case SCTP_BINDX_REM_ADDR:
940 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
941 if (err)
942 goto out;
943 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
944 break;
945
946 default:
947 err = -EINVAL;
948 break;
949 }
950
951 out:
952 kfree(kaddrs);
953
954 return err;
955 }
956
957 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
958 *
959 * Common routine for handling connect() and sctp_connectx().
960 * Connect will come in with just a single address.
961 */
962 static int __sctp_connect(struct sock* sk,
963 struct sockaddr *kaddrs,
964 int addrs_size)
965 {
966 struct sctp_sock *sp;
967 struct sctp_endpoint *ep;
968 struct sctp_association *asoc = NULL;
969 struct sctp_association *asoc2;
970 struct sctp_transport *transport;
971 union sctp_addr to;
972 struct sctp_af *af;
973 sctp_scope_t scope;
974 long timeo;
975 int err = 0;
976 int addrcnt = 0;
977 int walk_size = 0;
978 union sctp_addr *sa_addr = NULL;
979 void *addr_buf;
980 unsigned short port;
981 unsigned int f_flags = 0;
982
983 sp = sctp_sk(sk);
984 ep = sp->ep;
985
986 /* connect() cannot be done on a socket that is already in ESTABLISHED
987 * state - UDP-style peeled off socket or a TCP-style socket that
988 * is already connected.
989 * It cannot be done even on a TCP-style listening socket.
990 */
991 if (sctp_sstate(sk, ESTABLISHED) ||
992 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
993 err = -EISCONN;
994 goto out_free;
995 }
996
997 /* Walk through the addrs buffer and count the number of addresses. */
998 addr_buf = kaddrs;
999 while (walk_size < addrs_size) {
1000 sa_addr = (union sctp_addr *)addr_buf;
1001 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1002 port = ntohs(sa_addr->v4.sin_port);
1003
1004 /* If the address family is not supported or if this address
1005 * causes the address buffer to overflow return EINVAL.
1006 */
1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008 err = -EINVAL;
1009 goto out_free;
1010 }
1011
1012 /* Save current address so we can work with it */
1013 memcpy(&to, sa_addr, af->sockaddr_len);
1014
1015 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1016 if (err)
1017 goto out_free;
1018
1019 /* Make sure the destination port is correctly set
1020 * in all addresses.
1021 */
1022 if (asoc && asoc->peer.port && asoc->peer.port != port)
1023 goto out_free;
1024
1025
1026 /* Check if there already is a matching association on the
1027 * endpoint (other than the one created here).
1028 */
1029 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1030 if (asoc2 && asoc2 != asoc) {
1031 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1032 err = -EISCONN;
1033 else
1034 err = -EALREADY;
1035 goto out_free;
1036 }
1037
1038 /* If we could not find a matching association on the endpoint,
1039 * make sure that there is no peeled-off association matching
1040 * the peer address even on another socket.
1041 */
1042 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1043 err = -EADDRNOTAVAIL;
1044 goto out_free;
1045 }
1046
1047 if (!asoc) {
1048 /* If a bind() or sctp_bindx() is not called prior to
1049 * an sctp_connectx() call, the system picks an
1050 * ephemeral port and will choose an address set
1051 * equivalent to binding with a wildcard address.
1052 */
1053 if (!ep->base.bind_addr.port) {
1054 if (sctp_autobind(sk)) {
1055 err = -EAGAIN;
1056 goto out_free;
1057 }
1058 } else {
1059 /*
1060 * If an unprivileged user inherits a 1-many
1061 * style socket with open associations on a
1062 * privileged port, it MAY be permitted to
1063 * accept new associations, but it SHOULD NOT
1064 * be permitted to open new associations.
1065 */
1066 if (ep->base.bind_addr.port < PROT_SOCK &&
1067 !capable(CAP_NET_BIND_SERVICE)) {
1068 err = -EACCES;
1069 goto out_free;
1070 }
1071 }
1072
1073 scope = sctp_scope(&to);
1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 if (!asoc) {
1076 err = -ENOMEM;
1077 goto out_free;
1078 }
1079 }
1080
1081 /* Prime the peer's transport structures. */
1082 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1083 SCTP_UNKNOWN);
1084 if (!transport) {
1085 err = -ENOMEM;
1086 goto out_free;
1087 }
1088
1089 addrcnt++;
1090 addr_buf += af->sockaddr_len;
1091 walk_size += af->sockaddr_len;
1092 }
1093
1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1095 if (err < 0) {
1096 goto out_free;
1097 }
1098
1099 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1100 if (err < 0) {
1101 goto out_free;
1102 }
1103
1104 /* Initialize sk's dport and daddr for getpeername() */
1105 inet_sk(sk)->dport = htons(asoc->peer.port);
1106 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1107 af->to_sk_daddr(sa_addr, sk);
1108 sk->sk_err = 0;
1109
1110 /* in-kernel sockets don't generally have a file allocated to them
1111 * if all they do is call sock_create_kern().
1112 */
1113 if (sk->sk_socket->file)
1114 f_flags = sk->sk_socket->file->f_flags;
1115
1116 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1117
1118 err = sctp_wait_for_connect(asoc, &timeo);
1119
1120 /* Don't free association on exit. */
1121 asoc = NULL;
1122
1123 out_free:
1124
1125 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1126 " kaddrs: %p err: %d\n",
1127 asoc, kaddrs, err);
1128 if (asoc)
1129 sctp_association_free(asoc);
1130 return err;
1131 }
1132
1133 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1134 *
1135 * API 8.9
1136 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1137 *
1138 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1139 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1140 * or IPv6 addresses.
1141 *
1142 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1143 * Section 3.1.2 for this usage.
1144 *
1145 * addrs is a pointer to an array of one or more socket addresses. Each
1146 * address is contained in its appropriate structure (i.e. struct
1147 * sockaddr_in or struct sockaddr_in6) the family of the address type
1148 * must be used to distengish the address length (note that this
1149 * representation is termed a "packed array" of addresses). The caller
1150 * specifies the number of addresses in the array with addrcnt.
1151 *
1152 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1153 * -1, and sets errno to the appropriate error code.
1154 *
1155 * For SCTP, the port given in each socket address must be the same, or
1156 * sctp_connectx() will fail, setting errno to EINVAL.
1157 *
1158 * An application can use sctp_connectx to initiate an association with
1159 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1160 * allows a caller to specify multiple addresses at which a peer can be
1161 * reached. The way the SCTP stack uses the list of addresses to set up
1162 * the association is implementation dependant. This function only
1163 * specifies that the stack will try to make use of all the addresses in
1164 * the list when needed.
1165 *
1166 * Note that the list of addresses passed in is only used for setting up
1167 * the association. It does not necessarily equal the set of addresses
1168 * the peer uses for the resulting association. If the caller wants to
1169 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1170 * retrieve them after the association has been set up.
1171 *
1172 * Basically do nothing but copying the addresses from user to kernel
1173 * land and invoking either sctp_connectx(). This is used for tunneling
1174 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1175 *
1176 * We don't use copy_from_user() for optimization: we first do the
1177 * sanity checks (buffer size -fast- and access check-healthy
1178 * pointer); if all of those succeed, then we can alloc the memory
1179 * (expensive operation) needed to copy the data to kernel. Then we do
1180 * the copying without checking the user space area
1181 * (__copy_from_user()).
1182 *
1183 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1184 * it.
1185 *
1186 * sk The sk of the socket
1187 * addrs The pointer to the addresses in user land
1188 * addrssize Size of the addrs buffer
1189 *
1190 * Returns 0 if ok, <0 errno code on error.
1191 */
1192 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1193 struct sockaddr __user *addrs,
1194 int addrs_size)
1195 {
1196 int err = 0;
1197 struct sockaddr *kaddrs;
1198
1199 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1200 __FUNCTION__, sk, addrs, addrs_size);
1201
1202 if (unlikely(addrs_size <= 0))
1203 return -EINVAL;
1204
1205 /* Check the user passed a healthy pointer. */
1206 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1207 return -EFAULT;
1208
1209 /* Alloc space for the address array in kernel memory. */
1210 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1211 if (unlikely(!kaddrs))
1212 return -ENOMEM;
1213
1214 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1215 err = -EFAULT;
1216 } else {
1217 err = __sctp_connect(sk, kaddrs, addrs_size);
1218 }
1219
1220 kfree(kaddrs);
1221 return err;
1222 }
1223
1224 /* API 3.1.4 close() - UDP Style Syntax
1225 * Applications use close() to perform graceful shutdown (as described in
1226 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1227 * by a UDP-style socket.
1228 *
1229 * The syntax is
1230 *
1231 * ret = close(int sd);
1232 *
1233 * sd - the socket descriptor of the associations to be closed.
1234 *
1235 * To gracefully shutdown a specific association represented by the
1236 * UDP-style socket, an application should use the sendmsg() call,
1237 * passing no user data, but including the appropriate flag in the
1238 * ancillary data (see Section xxxx).
1239 *
1240 * If sd in the close() call is a branched-off socket representing only
1241 * one association, the shutdown is performed on that association only.
1242 *
1243 * 4.1.6 close() - TCP Style Syntax
1244 *
1245 * Applications use close() to gracefully close down an association.
1246 *
1247 * The syntax is:
1248 *
1249 * int close(int sd);
1250 *
1251 * sd - the socket descriptor of the association to be closed.
1252 *
1253 * After an application calls close() on a socket descriptor, no further
1254 * socket operations will succeed on that descriptor.
1255 *
1256 * API 7.1.4 SO_LINGER
1257 *
1258 * An application using the TCP-style socket can use this option to
1259 * perform the SCTP ABORT primitive. The linger option structure is:
1260 *
1261 * struct linger {
1262 * int l_onoff; // option on/off
1263 * int l_linger; // linger time
1264 * };
1265 *
1266 * To enable the option, set l_onoff to 1. If the l_linger value is set
1267 * to 0, calling close() is the same as the ABORT primitive. If the
1268 * value is set to a negative value, the setsockopt() call will return
1269 * an error. If the value is set to a positive value linger_time, the
1270 * close() can be blocked for at most linger_time ms. If the graceful
1271 * shutdown phase does not finish during this period, close() will
1272 * return but the graceful shutdown phase continues in the system.
1273 */
1274 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1275 {
1276 struct sctp_endpoint *ep;
1277 struct sctp_association *asoc;
1278 struct list_head *pos, *temp;
1279
1280 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1281
1282 sctp_lock_sock(sk);
1283 sk->sk_shutdown = SHUTDOWN_MASK;
1284
1285 ep = sctp_sk(sk)->ep;
1286
1287 /* Walk all associations on an endpoint. */
1288 list_for_each_safe(pos, temp, &ep->asocs) {
1289 asoc = list_entry(pos, struct sctp_association, asocs);
1290
1291 if (sctp_style(sk, TCP)) {
1292 /* A closed association can still be in the list if
1293 * it belongs to a TCP-style listening socket that is
1294 * not yet accepted. If so, free it. If not, send an
1295 * ABORT or SHUTDOWN based on the linger options.
1296 */
1297 if (sctp_state(asoc, CLOSED)) {
1298 sctp_unhash_established(asoc);
1299 sctp_association_free(asoc);
1300 continue;
1301 }
1302 }
1303
1304 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1305 struct sctp_chunk *chunk;
1306
1307 chunk = sctp_make_abort_user(asoc, NULL, 0);
1308 if (chunk)
1309 sctp_primitive_ABORT(asoc, chunk);
1310 } else
1311 sctp_primitive_SHUTDOWN(asoc, NULL);
1312 }
1313
1314 /* Clean up any skbs sitting on the receive queue. */
1315 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1316 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1317
1318 /* On a TCP-style socket, block for at most linger_time if set. */
1319 if (sctp_style(sk, TCP) && timeout)
1320 sctp_wait_for_close(sk, timeout);
1321
1322 /* This will run the backlog queue. */
1323 sctp_release_sock(sk);
1324
1325 /* Supposedly, no process has access to the socket, but
1326 * the net layers still may.
1327 */
1328 sctp_local_bh_disable();
1329 sctp_bh_lock_sock(sk);
1330
1331 /* Hold the sock, since sk_common_release() will put sock_put()
1332 * and we have just a little more cleanup.
1333 */
1334 sock_hold(sk);
1335 sk_common_release(sk);
1336
1337 sctp_bh_unlock_sock(sk);
1338 sctp_local_bh_enable();
1339
1340 sock_put(sk);
1341
1342 SCTP_DBG_OBJCNT_DEC(sock);
1343 }
1344
1345 /* Handle EPIPE error. */
1346 static int sctp_error(struct sock *sk, int flags, int err)
1347 {
1348 if (err == -EPIPE)
1349 err = sock_error(sk) ? : -EPIPE;
1350 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1351 send_sig(SIGPIPE, current, 0);
1352 return err;
1353 }
1354
1355 /* API 3.1.3 sendmsg() - UDP Style Syntax
1356 *
1357 * An application uses sendmsg() and recvmsg() calls to transmit data to
1358 * and receive data from its peer.
1359 *
1360 * ssize_t sendmsg(int socket, const struct msghdr *message,
1361 * int flags);
1362 *
1363 * socket - the socket descriptor of the endpoint.
1364 * message - pointer to the msghdr structure which contains a single
1365 * user message and possibly some ancillary data.
1366 *
1367 * See Section 5 for complete description of the data
1368 * structures.
1369 *
1370 * flags - flags sent or received with the user message, see Section
1371 * 5 for complete description of the flags.
1372 *
1373 * Note: This function could use a rewrite especially when explicit
1374 * connect support comes in.
1375 */
1376 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1377
1378 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1379
1380 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1381 struct msghdr *msg, size_t msg_len)
1382 {
1383 struct sctp_sock *sp;
1384 struct sctp_endpoint *ep;
1385 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1386 struct sctp_transport *transport, *chunk_tp;
1387 struct sctp_chunk *chunk;
1388 union sctp_addr to;
1389 struct sockaddr *msg_name = NULL;
1390 struct sctp_sndrcvinfo default_sinfo = { 0 };
1391 struct sctp_sndrcvinfo *sinfo;
1392 struct sctp_initmsg *sinit;
1393 sctp_assoc_t associd = 0;
1394 sctp_cmsgs_t cmsgs = { NULL };
1395 int err;
1396 sctp_scope_t scope;
1397 long timeo;
1398 __u16 sinfo_flags = 0;
1399 struct sctp_datamsg *datamsg;
1400 struct list_head *pos;
1401 int msg_flags = msg->msg_flags;
1402
1403 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1404 sk, msg, msg_len);
1405
1406 err = 0;
1407 sp = sctp_sk(sk);
1408 ep = sp->ep;
1409
1410 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1411
1412 /* We cannot send a message over a TCP-style listening socket. */
1413 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1414 err = -EPIPE;
1415 goto out_nounlock;
1416 }
1417
1418 /* Parse out the SCTP CMSGs. */
1419 err = sctp_msghdr_parse(msg, &cmsgs);
1420
1421 if (err) {
1422 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1423 goto out_nounlock;
1424 }
1425
1426 /* Fetch the destination address for this packet. This
1427 * address only selects the association--it is not necessarily
1428 * the address we will send to.
1429 * For a peeled-off socket, msg_name is ignored.
1430 */
1431 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1432 int msg_namelen = msg->msg_namelen;
1433
1434 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1435 msg_namelen);
1436 if (err)
1437 return err;
1438
1439 if (msg_namelen > sizeof(to))
1440 msg_namelen = sizeof(to);
1441 memcpy(&to, msg->msg_name, msg_namelen);
1442 msg_name = msg->msg_name;
1443 }
1444
1445 sinfo = cmsgs.info;
1446 sinit = cmsgs.init;
1447
1448 /* Did the user specify SNDRCVINFO? */
1449 if (sinfo) {
1450 sinfo_flags = sinfo->sinfo_flags;
1451 associd = sinfo->sinfo_assoc_id;
1452 }
1453
1454 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1455 msg_len, sinfo_flags);
1456
1457 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1458 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1459 err = -EINVAL;
1460 goto out_nounlock;
1461 }
1462
1463 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1464 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1465 * If SCTP_ABORT is set, the message length could be non zero with
1466 * the msg_iov set to the user abort reason.
1467 */
1468 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1469 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1470 err = -EINVAL;
1471 goto out_nounlock;
1472 }
1473
1474 /* If SCTP_ADDR_OVER is set, there must be an address
1475 * specified in msg_name.
1476 */
1477 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1478 err = -EINVAL;
1479 goto out_nounlock;
1480 }
1481
1482 transport = NULL;
1483
1484 SCTP_DEBUG_PRINTK("About to look up association.\n");
1485
1486 sctp_lock_sock(sk);
1487
1488 /* If a msg_name has been specified, assume this is to be used. */
1489 if (msg_name) {
1490 /* Look for a matching association on the endpoint. */
1491 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1492 if (!asoc) {
1493 /* If we could not find a matching association on the
1494 * endpoint, make sure that it is not a TCP-style
1495 * socket that already has an association or there is
1496 * no peeled-off association on another socket.
1497 */
1498 if ((sctp_style(sk, TCP) &&
1499 sctp_sstate(sk, ESTABLISHED)) ||
1500 sctp_endpoint_is_peeled_off(ep, &to)) {
1501 err = -EADDRNOTAVAIL;
1502 goto out_unlock;
1503 }
1504 }
1505 } else {
1506 asoc = sctp_id2assoc(sk, associd);
1507 if (!asoc) {
1508 err = -EPIPE;
1509 goto out_unlock;
1510 }
1511 }
1512
1513 if (asoc) {
1514 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1515
1516 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1517 * socket that has an association in CLOSED state. This can
1518 * happen when an accepted socket has an association that is
1519 * already CLOSED.
1520 */
1521 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1522 err = -EPIPE;
1523 goto out_unlock;
1524 }
1525
1526 if (sinfo_flags & SCTP_EOF) {
1527 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1528 asoc);
1529 sctp_primitive_SHUTDOWN(asoc, NULL);
1530 err = 0;
1531 goto out_unlock;
1532 }
1533 if (sinfo_flags & SCTP_ABORT) {
1534
1535 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1536 if (!chunk) {
1537 err = -ENOMEM;
1538 goto out_unlock;
1539 }
1540
1541 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1542 sctp_primitive_ABORT(asoc, chunk);
1543 err = 0;
1544 goto out_unlock;
1545 }
1546 }
1547
1548 /* Do we need to create the association? */
1549 if (!asoc) {
1550 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1551
1552 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1553 err = -EINVAL;
1554 goto out_unlock;
1555 }
1556
1557 /* Check for invalid stream against the stream counts,
1558 * either the default or the user specified stream counts.
1559 */
1560 if (sinfo) {
1561 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1562 /* Check against the defaults. */
1563 if (sinfo->sinfo_stream >=
1564 sp->initmsg.sinit_num_ostreams) {
1565 err = -EINVAL;
1566 goto out_unlock;
1567 }
1568 } else {
1569 /* Check against the requested. */
1570 if (sinfo->sinfo_stream >=
1571 sinit->sinit_num_ostreams) {
1572 err = -EINVAL;
1573 goto out_unlock;
1574 }
1575 }
1576 }
1577
1578 /*
1579 * API 3.1.2 bind() - UDP Style Syntax
1580 * If a bind() or sctp_bindx() is not called prior to a
1581 * sendmsg() call that initiates a new association, the
1582 * system picks an ephemeral port and will choose an address
1583 * set equivalent to binding with a wildcard address.
1584 */
1585 if (!ep->base.bind_addr.port) {
1586 if (sctp_autobind(sk)) {
1587 err = -EAGAIN;
1588 goto out_unlock;
1589 }
1590 } else {
1591 /*
1592 * If an unprivileged user inherits a one-to-many
1593 * style socket with open associations on a privileged
1594 * port, it MAY be permitted to accept new associations,
1595 * but it SHOULD NOT be permitted to open new
1596 * associations.
1597 */
1598 if (ep->base.bind_addr.port < PROT_SOCK &&
1599 !capable(CAP_NET_BIND_SERVICE)) {
1600 err = -EACCES;
1601 goto out_unlock;
1602 }
1603 }
1604
1605 scope = sctp_scope(&to);
1606 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1607 if (!new_asoc) {
1608 err = -ENOMEM;
1609 goto out_unlock;
1610 }
1611 asoc = new_asoc;
1612
1613 /* If the SCTP_INIT ancillary data is specified, set all
1614 * the association init values accordingly.
1615 */
1616 if (sinit) {
1617 if (sinit->sinit_num_ostreams) {
1618 asoc->c.sinit_num_ostreams =
1619 sinit->sinit_num_ostreams;
1620 }
1621 if (sinit->sinit_max_instreams) {
1622 asoc->c.sinit_max_instreams =
1623 sinit->sinit_max_instreams;
1624 }
1625 if (sinit->sinit_max_attempts) {
1626 asoc->max_init_attempts
1627 = sinit->sinit_max_attempts;
1628 }
1629 if (sinit->sinit_max_init_timeo) {
1630 asoc->max_init_timeo =
1631 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1632 }
1633 }
1634
1635 /* Prime the peer's transport structures. */
1636 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1637 if (!transport) {
1638 err = -ENOMEM;
1639 goto out_free;
1640 }
1641 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1642 if (err < 0) {
1643 err = -ENOMEM;
1644 goto out_free;
1645 }
1646 }
1647
1648 /* ASSERT: we have a valid association at this point. */
1649 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1650
1651 if (!sinfo) {
1652 /* If the user didn't specify SNDRCVINFO, make up one with
1653 * some defaults.
1654 */
1655 default_sinfo.sinfo_stream = asoc->default_stream;
1656 default_sinfo.sinfo_flags = asoc->default_flags;
1657 default_sinfo.sinfo_ppid = asoc->default_ppid;
1658 default_sinfo.sinfo_context = asoc->default_context;
1659 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1660 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1661 sinfo = &default_sinfo;
1662 }
1663
1664 /* API 7.1.7, the sndbuf size per association bounds the
1665 * maximum size of data that can be sent in a single send call.
1666 */
1667 if (msg_len > sk->sk_sndbuf) {
1668 err = -EMSGSIZE;
1669 goto out_free;
1670 }
1671
1672 if (asoc->pmtu_pending)
1673 sctp_assoc_pending_pmtu(asoc);
1674
1675 /* If fragmentation is disabled and the message length exceeds the
1676 * association fragmentation point, return EMSGSIZE. The I-D
1677 * does not specify what this error is, but this looks like
1678 * a great fit.
1679 */
1680 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1681 err = -EMSGSIZE;
1682 goto out_free;
1683 }
1684
1685 if (sinfo) {
1686 /* Check for invalid stream. */
1687 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1688 err = -EINVAL;
1689 goto out_free;
1690 }
1691 }
1692
1693 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1694 if (!sctp_wspace(asoc)) {
1695 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1696 if (err)
1697 goto out_free;
1698 }
1699
1700 /* If an address is passed with the sendto/sendmsg call, it is used
1701 * to override the primary destination address in the TCP model, or
1702 * when SCTP_ADDR_OVER flag is set in the UDP model.
1703 */
1704 if ((sctp_style(sk, TCP) && msg_name) ||
1705 (sinfo_flags & SCTP_ADDR_OVER)) {
1706 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1707 if (!chunk_tp) {
1708 err = -EINVAL;
1709 goto out_free;
1710 }
1711 } else
1712 chunk_tp = NULL;
1713
1714 /* Auto-connect, if we aren't connected already. */
1715 if (sctp_state(asoc, CLOSED)) {
1716 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1717 if (err < 0)
1718 goto out_free;
1719 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1720 }
1721
1722 /* Break the message into multiple chunks of maximum size. */
1723 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1724 if (!datamsg) {
1725 err = -ENOMEM;
1726 goto out_free;
1727 }
1728
1729 /* Now send the (possibly) fragmented message. */
1730 list_for_each(pos, &datamsg->chunks) {
1731 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1732 sctp_datamsg_track(chunk);
1733
1734 /* Do accounting for the write space. */
1735 sctp_set_owner_w(chunk);
1736
1737 chunk->transport = chunk_tp;
1738
1739 /* Send it to the lower layers. Note: all chunks
1740 * must either fail or succeed. The lower layer
1741 * works that way today. Keep it that way or this
1742 * breaks.
1743 */
1744 err = sctp_primitive_SEND(asoc, chunk);
1745 /* Did the lower layer accept the chunk? */
1746 if (err)
1747 sctp_chunk_free(chunk);
1748 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1749 }
1750
1751 sctp_datamsg_free(datamsg);
1752 if (err)
1753 goto out_free;
1754 else
1755 err = msg_len;
1756
1757 /* If we are already past ASSOCIATE, the lower
1758 * layers are responsible for association cleanup.
1759 */
1760 goto out_unlock;
1761
1762 out_free:
1763 if (new_asoc)
1764 sctp_association_free(asoc);
1765 out_unlock:
1766 sctp_release_sock(sk);
1767
1768 out_nounlock:
1769 return sctp_error(sk, msg_flags, err);
1770
1771 #if 0
1772 do_sock_err:
1773 if (msg_len)
1774 err = msg_len;
1775 else
1776 err = sock_error(sk);
1777 goto out;
1778
1779 do_interrupted:
1780 if (msg_len)
1781 err = msg_len;
1782 goto out;
1783 #endif /* 0 */
1784 }
1785
1786 /* This is an extended version of skb_pull() that removes the data from the
1787 * start of a skb even when data is spread across the list of skb's in the
1788 * frag_list. len specifies the total amount of data that needs to be removed.
1789 * when 'len' bytes could be removed from the skb, it returns 0.
1790 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1791 * could not be removed.
1792 */
1793 static int sctp_skb_pull(struct sk_buff *skb, int len)
1794 {
1795 struct sk_buff *list;
1796 int skb_len = skb_headlen(skb);
1797 int rlen;
1798
1799 if (len <= skb_len) {
1800 __skb_pull(skb, len);
1801 return 0;
1802 }
1803 len -= skb_len;
1804 __skb_pull(skb, skb_len);
1805
1806 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1807 rlen = sctp_skb_pull(list, len);
1808 skb->len -= (len-rlen);
1809 skb->data_len -= (len-rlen);
1810
1811 if (!rlen)
1812 return 0;
1813
1814 len = rlen;
1815 }
1816
1817 return len;
1818 }
1819
1820 /* API 3.1.3 recvmsg() - UDP Style Syntax
1821 *
1822 * ssize_t recvmsg(int socket, struct msghdr *message,
1823 * int flags);
1824 *
1825 * socket - the socket descriptor of the endpoint.
1826 * message - pointer to the msghdr structure which contains a single
1827 * user message and possibly some ancillary data.
1828 *
1829 * See Section 5 for complete description of the data
1830 * structures.
1831 *
1832 * flags - flags sent or received with the user message, see Section
1833 * 5 for complete description of the flags.
1834 */
1835 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1836
1837 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1838 struct msghdr *msg, size_t len, int noblock,
1839 int flags, int *addr_len)
1840 {
1841 struct sctp_ulpevent *event = NULL;
1842 struct sctp_sock *sp = sctp_sk(sk);
1843 struct sk_buff *skb;
1844 int copied;
1845 int err = 0;
1846 int skb_len;
1847
1848 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1849 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1850 "len", len, "knoblauch", noblock,
1851 "flags", flags, "addr_len", addr_len);
1852
1853 sctp_lock_sock(sk);
1854
1855 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1856 err = -ENOTCONN;
1857 goto out;
1858 }
1859
1860 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1861 if (!skb)
1862 goto out;
1863
1864 /* Get the total length of the skb including any skb's in the
1865 * frag_list.
1866 */
1867 skb_len = skb->len;
1868
1869 copied = skb_len;
1870 if (copied > len)
1871 copied = len;
1872
1873 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1874
1875 event = sctp_skb2event(skb);
1876
1877 if (err)
1878 goto out_free;
1879
1880 sock_recv_timestamp(msg, sk, skb);
1881 if (sctp_ulpevent_is_notification(event)) {
1882 msg->msg_flags |= MSG_NOTIFICATION;
1883 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1884 } else {
1885 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1886 }
1887
1888 /* Check if we allow SCTP_SNDRCVINFO. */
1889 if (sp->subscribe.sctp_data_io_event)
1890 sctp_ulpevent_read_sndrcvinfo(event, msg);
1891 #if 0
1892 /* FIXME: we should be calling IP/IPv6 layers. */
1893 if (sk->sk_protinfo.af_inet.cmsg_flags)
1894 ip_cmsg_recv(msg, skb);
1895 #endif
1896
1897 err = copied;
1898
1899 /* If skb's length exceeds the user's buffer, update the skb and
1900 * push it back to the receive_queue so that the next call to
1901 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1902 */
1903 if (skb_len > copied) {
1904 msg->msg_flags &= ~MSG_EOR;
1905 if (flags & MSG_PEEK)
1906 goto out_free;
1907 sctp_skb_pull(skb, copied);
1908 skb_queue_head(&sk->sk_receive_queue, skb);
1909
1910 /* When only partial message is copied to the user, increase
1911 * rwnd by that amount. If all the data in the skb is read,
1912 * rwnd is updated when the event is freed.
1913 */
1914 if (!sctp_ulpevent_is_notification(event))
1915 sctp_assoc_rwnd_increase(event->asoc, copied);
1916 goto out;
1917 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1918 (event->msg_flags & MSG_EOR))
1919 msg->msg_flags |= MSG_EOR;
1920 else
1921 msg->msg_flags &= ~MSG_EOR;
1922
1923 out_free:
1924 if (flags & MSG_PEEK) {
1925 /* Release the skb reference acquired after peeking the skb in
1926 * sctp_skb_recv_datagram().
1927 */
1928 kfree_skb(skb);
1929 } else {
1930 /* Free the event which includes releasing the reference to
1931 * the owner of the skb, freeing the skb and updating the
1932 * rwnd.
1933 */
1934 sctp_ulpevent_free(event);
1935 }
1936 out:
1937 sctp_release_sock(sk);
1938 return err;
1939 }
1940
1941 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1942 *
1943 * This option is a on/off flag. If enabled no SCTP message
1944 * fragmentation will be performed. Instead if a message being sent
1945 * exceeds the current PMTU size, the message will NOT be sent and
1946 * instead a error will be indicated to the user.
1947 */
1948 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1949 char __user *optval, int optlen)
1950 {
1951 int val;
1952
1953 if (optlen < sizeof(int))
1954 return -EINVAL;
1955
1956 if (get_user(val, (int __user *)optval))
1957 return -EFAULT;
1958
1959 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1960
1961 return 0;
1962 }
1963
1964 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1965 int optlen)
1966 {
1967 if (optlen > sizeof(struct sctp_event_subscribe))
1968 return -EINVAL;
1969 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1970 return -EFAULT;
1971 return 0;
1972 }
1973
1974 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1975 *
1976 * This socket option is applicable to the UDP-style socket only. When
1977 * set it will cause associations that are idle for more than the
1978 * specified number of seconds to automatically close. An association
1979 * being idle is defined an association that has NOT sent or received
1980 * user data. The special value of '0' indicates that no automatic
1981 * close of any associations should be performed. The option expects an
1982 * integer defining the number of seconds of idle time before an
1983 * association is closed.
1984 */
1985 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1986 int optlen)
1987 {
1988 struct sctp_sock *sp = sctp_sk(sk);
1989
1990 /* Applicable to UDP-style socket only */
1991 if (sctp_style(sk, TCP))
1992 return -EOPNOTSUPP;
1993 if (optlen != sizeof(int))
1994 return -EINVAL;
1995 if (copy_from_user(&sp->autoclose, optval, optlen))
1996 return -EFAULT;
1997
1998 return 0;
1999 }
2000
2001 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2002 *
2003 * Applications can enable or disable heartbeats for any peer address of
2004 * an association, modify an address's heartbeat interval, force a
2005 * heartbeat to be sent immediately, and adjust the address's maximum
2006 * number of retransmissions sent before an address is considered
2007 * unreachable. The following structure is used to access and modify an
2008 * address's parameters:
2009 *
2010 * struct sctp_paddrparams {
2011 * sctp_assoc_t spp_assoc_id;
2012 * struct sockaddr_storage spp_address;
2013 * uint32_t spp_hbinterval;
2014 * uint16_t spp_pathmaxrxt;
2015 * uint32_t spp_pathmtu;
2016 * uint32_t spp_sackdelay;
2017 * uint32_t spp_flags;
2018 * };
2019 *
2020 * spp_assoc_id - (one-to-many style socket) This is filled in the
2021 * application, and identifies the association for
2022 * this query.
2023 * spp_address - This specifies which address is of interest.
2024 * spp_hbinterval - This contains the value of the heartbeat interval,
2025 * in milliseconds. If a value of zero
2026 * is present in this field then no changes are to
2027 * be made to this parameter.
2028 * spp_pathmaxrxt - This contains the maximum number of
2029 * retransmissions before this address shall be
2030 * considered unreachable. If a value of zero
2031 * is present in this field then no changes are to
2032 * be made to this parameter.
2033 * spp_pathmtu - When Path MTU discovery is disabled the value
2034 * specified here will be the "fixed" path mtu.
2035 * Note that if the spp_address field is empty
2036 * then all associations on this address will
2037 * have this fixed path mtu set upon them.
2038 *
2039 * spp_sackdelay - When delayed sack is enabled, this value specifies
2040 * the number of milliseconds that sacks will be delayed
2041 * for. This value will apply to all addresses of an
2042 * association if the spp_address field is empty. Note
2043 * also, that if delayed sack is enabled and this
2044 * value is set to 0, no change is made to the last
2045 * recorded delayed sack timer value.
2046 *
2047 * spp_flags - These flags are used to control various features
2048 * on an association. The flag field may contain
2049 * zero or more of the following options.
2050 *
2051 * SPP_HB_ENABLE - Enable heartbeats on the
2052 * specified address. Note that if the address
2053 * field is empty all addresses for the association
2054 * have heartbeats enabled upon them.
2055 *
2056 * SPP_HB_DISABLE - Disable heartbeats on the
2057 * speicifed address. Note that if the address
2058 * field is empty all addresses for the association
2059 * will have their heartbeats disabled. Note also
2060 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2061 * mutually exclusive, only one of these two should
2062 * be specified. Enabling both fields will have
2063 * undetermined results.
2064 *
2065 * SPP_HB_DEMAND - Request a user initiated heartbeat
2066 * to be made immediately.
2067 *
2068 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2069 * heartbeat delayis to be set to the value of 0
2070 * milliseconds.
2071 *
2072 * SPP_PMTUD_ENABLE - This field will enable PMTU
2073 * discovery upon the specified address. Note that
2074 * if the address feild is empty then all addresses
2075 * on the association are effected.
2076 *
2077 * SPP_PMTUD_DISABLE - This field will disable PMTU
2078 * discovery upon the specified address. Note that
2079 * if the address feild is empty then all addresses
2080 * on the association are effected. Not also that
2081 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2082 * exclusive. Enabling both will have undetermined
2083 * results.
2084 *
2085 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2086 * on delayed sack. The time specified in spp_sackdelay
2087 * is used to specify the sack delay for this address. Note
2088 * that if spp_address is empty then all addresses will
2089 * enable delayed sack and take on the sack delay
2090 * value specified in spp_sackdelay.
2091 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2092 * off delayed sack. If the spp_address field is blank then
2093 * delayed sack is disabled for the entire association. Note
2094 * also that this field is mutually exclusive to
2095 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2096 * results.
2097 */
2098 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2099 struct sctp_transport *trans,
2100 struct sctp_association *asoc,
2101 struct sctp_sock *sp,
2102 int hb_change,
2103 int pmtud_change,
2104 int sackdelay_change)
2105 {
2106 int error;
2107
2108 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2109 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2110 if (error)
2111 return error;
2112 }
2113
2114 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2115 * this field is ignored. Note also that a value of zero indicates
2116 * the current setting should be left unchanged.
2117 */
2118 if (params->spp_flags & SPP_HB_ENABLE) {
2119
2120 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2121 * set. This lets us use 0 value when this flag
2122 * is set.
2123 */
2124 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2125 params->spp_hbinterval = 0;
2126
2127 if (params->spp_hbinterval ||
2128 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2129 if (trans) {
2130 trans->hbinterval =
2131 msecs_to_jiffies(params->spp_hbinterval);
2132 } else if (asoc) {
2133 asoc->hbinterval =
2134 msecs_to_jiffies(params->spp_hbinterval);
2135 } else {
2136 sp->hbinterval = params->spp_hbinterval;
2137 }
2138 }
2139 }
2140
2141 if (hb_change) {
2142 if (trans) {
2143 trans->param_flags =
2144 (trans->param_flags & ~SPP_HB) | hb_change;
2145 } else if (asoc) {
2146 asoc->param_flags =
2147 (asoc->param_flags & ~SPP_HB) | hb_change;
2148 } else {
2149 sp->param_flags =
2150 (sp->param_flags & ~SPP_HB) | hb_change;
2151 }
2152 }
2153
2154 /* When Path MTU discovery is disabled the value specified here will
2155 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2156 * include the flag SPP_PMTUD_DISABLE for this field to have any
2157 * effect).
2158 */
2159 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2160 if (trans) {
2161 trans->pathmtu = params->spp_pathmtu;
2162 sctp_assoc_sync_pmtu(asoc);
2163 } else if (asoc) {
2164 asoc->pathmtu = params->spp_pathmtu;
2165 sctp_frag_point(sp, params->spp_pathmtu);
2166 } else {
2167 sp->pathmtu = params->spp_pathmtu;
2168 }
2169 }
2170
2171 if (pmtud_change) {
2172 if (trans) {
2173 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2174 (params->spp_flags & SPP_PMTUD_ENABLE);
2175 trans->param_flags =
2176 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2177 if (update) {
2178 sctp_transport_pmtu(trans);
2179 sctp_assoc_sync_pmtu(asoc);
2180 }
2181 } else if (asoc) {
2182 asoc->param_flags =
2183 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2184 } else {
2185 sp->param_flags =
2186 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2187 }
2188 }
2189
2190 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2191 * value of this field is ignored. Note also that a value of zero
2192 * indicates the current setting should be left unchanged.
2193 */
2194 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2195 if (trans) {
2196 trans->sackdelay =
2197 msecs_to_jiffies(params->spp_sackdelay);
2198 } else if (asoc) {
2199 asoc->sackdelay =
2200 msecs_to_jiffies(params->spp_sackdelay);
2201 } else {
2202 sp->sackdelay = params->spp_sackdelay;
2203 }
2204 }
2205
2206 if (sackdelay_change) {
2207 if (trans) {
2208 trans->param_flags =
2209 (trans->param_flags & ~SPP_SACKDELAY) |
2210 sackdelay_change;
2211 } else if (asoc) {
2212 asoc->param_flags =
2213 (asoc->param_flags & ~SPP_SACKDELAY) |
2214 sackdelay_change;
2215 } else {
2216 sp->param_flags =
2217 (sp->param_flags & ~SPP_SACKDELAY) |
2218 sackdelay_change;
2219 }
2220 }
2221
2222 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2223 * of this field is ignored. Note also that a value of zero
2224 * indicates the current setting should be left unchanged.
2225 */
2226 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2227 if (trans) {
2228 trans->pathmaxrxt = params->spp_pathmaxrxt;
2229 } else if (asoc) {
2230 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2231 } else {
2232 sp->pathmaxrxt = params->spp_pathmaxrxt;
2233 }
2234 }
2235
2236 return 0;
2237 }
2238
2239 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2240 char __user *optval, int optlen)
2241 {
2242 struct sctp_paddrparams params;
2243 struct sctp_transport *trans = NULL;
2244 struct sctp_association *asoc = NULL;
2245 struct sctp_sock *sp = sctp_sk(sk);
2246 int error;
2247 int hb_change, pmtud_change, sackdelay_change;
2248
2249 if (optlen != sizeof(struct sctp_paddrparams))
2250 return - EINVAL;
2251
2252 if (copy_from_user(&params, optval, optlen))
2253 return -EFAULT;
2254
2255 /* Validate flags and value parameters. */
2256 hb_change = params.spp_flags & SPP_HB;
2257 pmtud_change = params.spp_flags & SPP_PMTUD;
2258 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2259
2260 if (hb_change == SPP_HB ||
2261 pmtud_change == SPP_PMTUD ||
2262 sackdelay_change == SPP_SACKDELAY ||
2263 params.spp_sackdelay > 500 ||
2264 (params.spp_pathmtu
2265 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2266 return -EINVAL;
2267
2268 /* If an address other than INADDR_ANY is specified, and
2269 * no transport is found, then the request is invalid.
2270 */
2271 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2272 trans = sctp_addr_id2transport(sk, &params.spp_address,
2273 params.spp_assoc_id);
2274 if (!trans)
2275 return -EINVAL;
2276 }
2277
2278 /* Get association, if assoc_id != 0 and the socket is a one
2279 * to many style socket, and an association was not found, then
2280 * the id was invalid.
2281 */
2282 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2283 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2284 return -EINVAL;
2285
2286 /* Heartbeat demand can only be sent on a transport or
2287 * association, but not a socket.
2288 */
2289 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2290 return -EINVAL;
2291
2292 /* Process parameters. */
2293 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2294 hb_change, pmtud_change,
2295 sackdelay_change);
2296
2297 if (error)
2298 return error;
2299
2300 /* If changes are for association, also apply parameters to each
2301 * transport.
2302 */
2303 if (!trans && asoc) {
2304 struct list_head *pos;
2305
2306 list_for_each(pos, &asoc->peer.transport_addr_list) {
2307 trans = list_entry(pos, struct sctp_transport,
2308 transports);
2309 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2310 hb_change, pmtud_change,
2311 sackdelay_change);
2312 }
2313 }
2314
2315 return 0;
2316 }
2317
2318 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2319 *
2320 * This options will get or set the delayed ack timer. The time is set
2321 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2322 * endpoints default delayed ack timer value. If the assoc_id field is
2323 * non-zero, then the set or get effects the specified association.
2324 *
2325 * struct sctp_assoc_value {
2326 * sctp_assoc_t assoc_id;
2327 * uint32_t assoc_value;
2328 * };
2329 *
2330 * assoc_id - This parameter, indicates which association the
2331 * user is preforming an action upon. Note that if
2332 * this field's value is zero then the endpoints
2333 * default value is changed (effecting future
2334 * associations only).
2335 *
2336 * assoc_value - This parameter contains the number of milliseconds
2337 * that the user is requesting the delayed ACK timer
2338 * be set to. Note that this value is defined in
2339 * the standard to be between 200 and 500 milliseconds.
2340 *
2341 * Note: a value of zero will leave the value alone,
2342 * but disable SACK delay. A non-zero value will also
2343 * enable SACK delay.
2344 */
2345
2346 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2347 char __user *optval, int optlen)
2348 {
2349 struct sctp_assoc_value params;
2350 struct sctp_transport *trans = NULL;
2351 struct sctp_association *asoc = NULL;
2352 struct sctp_sock *sp = sctp_sk(sk);
2353
2354 if (optlen != sizeof(struct sctp_assoc_value))
2355 return - EINVAL;
2356
2357 if (copy_from_user(&params, optval, optlen))
2358 return -EFAULT;
2359
2360 /* Validate value parameter. */
2361 if (params.assoc_value > 500)
2362 return -EINVAL;
2363
2364 /* Get association, if assoc_id != 0 and the socket is a one
2365 * to many style socket, and an association was not found, then
2366 * the id was invalid.
2367 */
2368 asoc = sctp_id2assoc(sk, params.assoc_id);
2369 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2370 return -EINVAL;
2371
2372 if (params.assoc_value) {
2373 if (asoc) {
2374 asoc->sackdelay =
2375 msecs_to_jiffies(params.assoc_value);
2376 asoc->param_flags =
2377 (asoc->param_flags & ~SPP_SACKDELAY) |
2378 SPP_SACKDELAY_ENABLE;
2379 } else {
2380 sp->sackdelay = params.assoc_value;
2381 sp->param_flags =
2382 (sp->param_flags & ~SPP_SACKDELAY) |
2383 SPP_SACKDELAY_ENABLE;
2384 }
2385 } else {
2386 if (asoc) {
2387 asoc->param_flags =
2388 (asoc->param_flags & ~SPP_SACKDELAY) |
2389 SPP_SACKDELAY_DISABLE;
2390 } else {
2391 sp->param_flags =
2392 (sp->param_flags & ~SPP_SACKDELAY) |
2393 SPP_SACKDELAY_DISABLE;
2394 }
2395 }
2396
2397 /* If change is for association, also apply to each transport. */
2398 if (asoc) {
2399 struct list_head *pos;
2400
2401 list_for_each(pos, &asoc->peer.transport_addr_list) {
2402 trans = list_entry(pos, struct sctp_transport,
2403 transports);
2404 if (params.assoc_value) {
2405 trans->sackdelay =
2406 msecs_to_jiffies(params.assoc_value);
2407 trans->param_flags =
2408 (trans->param_flags & ~SPP_SACKDELAY) |
2409 SPP_SACKDELAY_ENABLE;
2410 } else {
2411 trans->param_flags =
2412 (trans->param_flags & ~SPP_SACKDELAY) |
2413 SPP_SACKDELAY_DISABLE;
2414 }
2415 }
2416 }
2417
2418 return 0;
2419 }
2420
2421 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2422 *
2423 * Applications can specify protocol parameters for the default association
2424 * initialization. The option name argument to setsockopt() and getsockopt()
2425 * is SCTP_INITMSG.
2426 *
2427 * Setting initialization parameters is effective only on an unconnected
2428 * socket (for UDP-style sockets only future associations are effected
2429 * by the change). With TCP-style sockets, this option is inherited by
2430 * sockets derived from a listener socket.
2431 */
2432 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2433 {
2434 struct sctp_initmsg sinit;
2435 struct sctp_sock *sp = sctp_sk(sk);
2436
2437 if (optlen != sizeof(struct sctp_initmsg))
2438 return -EINVAL;
2439 if (copy_from_user(&sinit, optval, optlen))
2440 return -EFAULT;
2441
2442 if (sinit.sinit_num_ostreams)
2443 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2444 if (sinit.sinit_max_instreams)
2445 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2446 if (sinit.sinit_max_attempts)
2447 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2448 if (sinit.sinit_max_init_timeo)
2449 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2450
2451 return 0;
2452 }
2453
2454 /*
2455 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2456 *
2457 * Applications that wish to use the sendto() system call may wish to
2458 * specify a default set of parameters that would normally be supplied
2459 * through the inclusion of ancillary data. This socket option allows
2460 * such an application to set the default sctp_sndrcvinfo structure.
2461 * The application that wishes to use this socket option simply passes
2462 * in to this call the sctp_sndrcvinfo structure defined in Section
2463 * 5.2.2) The input parameters accepted by this call include
2464 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2465 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2466 * to this call if the caller is using the UDP model.
2467 */
2468 static int sctp_setsockopt_default_send_param(struct sock *sk,
2469 char __user *optval, int optlen)
2470 {
2471 struct sctp_sndrcvinfo info;
2472 struct sctp_association *asoc;
2473 struct sctp_sock *sp = sctp_sk(sk);
2474
2475 if (optlen != sizeof(struct sctp_sndrcvinfo))
2476 return -EINVAL;
2477 if (copy_from_user(&info, optval, optlen))
2478 return -EFAULT;
2479
2480 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2481 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2482 return -EINVAL;
2483
2484 if (asoc) {
2485 asoc->default_stream = info.sinfo_stream;
2486 asoc->default_flags = info.sinfo_flags;
2487 asoc->default_ppid = info.sinfo_ppid;
2488 asoc->default_context = info.sinfo_context;
2489 asoc->default_timetolive = info.sinfo_timetolive;
2490 } else {
2491 sp->default_stream = info.sinfo_stream;
2492 sp->default_flags = info.sinfo_flags;
2493 sp->default_ppid = info.sinfo_ppid;
2494 sp->default_context = info.sinfo_context;
2495 sp->default_timetolive = info.sinfo_timetolive;
2496 }
2497
2498 return 0;
2499 }
2500
2501 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2502 *
2503 * Requests that the local SCTP stack use the enclosed peer address as
2504 * the association primary. The enclosed address must be one of the
2505 * association peer's addresses.
2506 */
2507 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2508 int optlen)
2509 {
2510 struct sctp_prim prim;
2511 struct sctp_transport *trans;
2512
2513 if (optlen != sizeof(struct sctp_prim))
2514 return -EINVAL;
2515
2516 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2517 return -EFAULT;
2518
2519 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2520 if (!trans)
2521 return -EINVAL;
2522
2523 sctp_assoc_set_primary(trans->asoc, trans);
2524
2525 return 0;
2526 }
2527
2528 /*
2529 * 7.1.5 SCTP_NODELAY
2530 *
2531 * Turn on/off any Nagle-like algorithm. This means that packets are
2532 * generally sent as soon as possible and no unnecessary delays are
2533 * introduced, at the cost of more packets in the network. Expects an
2534 * integer boolean flag.
2535 */
2536 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2537 int optlen)
2538 {
2539 int val;
2540
2541 if (optlen < sizeof(int))
2542 return -EINVAL;
2543 if (get_user(val, (int __user *)optval))
2544 return -EFAULT;
2545
2546 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2547 return 0;
2548 }
2549
2550 /*
2551 *
2552 * 7.1.1 SCTP_RTOINFO
2553 *
2554 * The protocol parameters used to initialize and bound retransmission
2555 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2556 * and modify these parameters.
2557 * All parameters are time values, in milliseconds. A value of 0, when
2558 * modifying the parameters, indicates that the current value should not
2559 * be changed.
2560 *
2561 */
2562 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2563 struct sctp_rtoinfo rtoinfo;
2564 struct sctp_association *asoc;
2565
2566 if (optlen != sizeof (struct sctp_rtoinfo))
2567 return -EINVAL;
2568
2569 if (copy_from_user(&rtoinfo, optval, optlen))
2570 return -EFAULT;
2571
2572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2573
2574 /* Set the values to the specific association */
2575 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2576 return -EINVAL;
2577
2578 if (asoc) {
2579 if (rtoinfo.srto_initial != 0)
2580 asoc->rto_initial =
2581 msecs_to_jiffies(rtoinfo.srto_initial);
2582 if (rtoinfo.srto_max != 0)
2583 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2584 if (rtoinfo.srto_min != 0)
2585 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2586 } else {
2587 /* If there is no association or the association-id = 0
2588 * set the values to the endpoint.
2589 */
2590 struct sctp_sock *sp = sctp_sk(sk);
2591
2592 if (rtoinfo.srto_initial != 0)
2593 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2594 if (rtoinfo.srto_max != 0)
2595 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2596 if (rtoinfo.srto_min != 0)
2597 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2598 }
2599
2600 return 0;
2601 }
2602
2603 /*
2604 *
2605 * 7.1.2 SCTP_ASSOCINFO
2606 *
2607 * This option is used to tune the maximum retransmission attempts
2608 * of the association.
2609 * Returns an error if the new association retransmission value is
2610 * greater than the sum of the retransmission value of the peer.
2611 * See [SCTP] for more information.
2612 *
2613 */
2614 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2615 {
2616
2617 struct sctp_assocparams assocparams;
2618 struct sctp_association *asoc;
2619
2620 if (optlen != sizeof(struct sctp_assocparams))
2621 return -EINVAL;
2622 if (copy_from_user(&assocparams, optval, optlen))
2623 return -EFAULT;
2624
2625 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2626
2627 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2628 return -EINVAL;
2629
2630 /* Set the values to the specific association */
2631 if (asoc) {
2632 if (assocparams.sasoc_asocmaxrxt != 0) {
2633 __u32 path_sum = 0;
2634 int paths = 0;
2635 struct list_head *pos;
2636 struct sctp_transport *peer_addr;
2637
2638 list_for_each(pos, &asoc->peer.transport_addr_list) {
2639 peer_addr = list_entry(pos,
2640 struct sctp_transport,
2641 transports);
2642 path_sum += peer_addr->pathmaxrxt;
2643 paths++;
2644 }
2645
2646 /* Only validate asocmaxrxt if we have more then
2647 * one path/transport. We do this because path
2648 * retransmissions are only counted when we have more
2649 * then one path.
2650 */
2651 if (paths > 1 &&
2652 assocparams.sasoc_asocmaxrxt > path_sum)
2653 return -EINVAL;
2654
2655 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2656 }
2657
2658 if (assocparams.sasoc_cookie_life != 0) {
2659 asoc->cookie_life.tv_sec =
2660 assocparams.sasoc_cookie_life / 1000;
2661 asoc->cookie_life.tv_usec =
2662 (assocparams.sasoc_cookie_life % 1000)
2663 * 1000;
2664 }
2665 } else {
2666 /* Set the values to the endpoint */
2667 struct sctp_sock *sp = sctp_sk(sk);
2668
2669 if (assocparams.sasoc_asocmaxrxt != 0)
2670 sp->assocparams.sasoc_asocmaxrxt =
2671 assocparams.sasoc_asocmaxrxt;
2672 if (assocparams.sasoc_cookie_life != 0)
2673 sp->assocparams.sasoc_cookie_life =
2674 assocparams.sasoc_cookie_life;
2675 }
2676 return 0;
2677 }
2678
2679 /*
2680 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2681 *
2682 * This socket option is a boolean flag which turns on or off mapped V4
2683 * addresses. If this option is turned on and the socket is type
2684 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2685 * If this option is turned off, then no mapping will be done of V4
2686 * addresses and a user will receive both PF_INET6 and PF_INET type
2687 * addresses on the socket.
2688 */
2689 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2690 {
2691 int val;
2692 struct sctp_sock *sp = sctp_sk(sk);
2693
2694 if (optlen < sizeof(int))
2695 return -EINVAL;
2696 if (get_user(val, (int __user *)optval))
2697 return -EFAULT;
2698 if (val)
2699 sp->v4mapped = 1;
2700 else
2701 sp->v4mapped = 0;
2702
2703 return 0;
2704 }
2705
2706 /*
2707 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2708 *
2709 * This socket option specifies the maximum size to put in any outgoing
2710 * SCTP chunk. If a message is larger than this size it will be
2711 * fragmented by SCTP into the specified size. Note that the underlying
2712 * SCTP implementation may fragment into smaller sized chunks when the
2713 * PMTU of the underlying association is smaller than the value set by
2714 * the user.
2715 */
2716 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2717 {
2718 struct sctp_association *asoc;
2719 struct list_head *pos;
2720 struct sctp_sock *sp = sctp_sk(sk);
2721 int val;
2722
2723 if (optlen < sizeof(int))
2724 return -EINVAL;
2725 if (get_user(val, (int __user *)optval))
2726 return -EFAULT;
2727 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2728 return -EINVAL;
2729 sp->user_frag = val;
2730
2731 /* Update the frag_point of the existing associations. */
2732 list_for_each(pos, &(sp->ep->asocs)) {
2733 asoc = list_entry(pos, struct sctp_association, asocs);
2734 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2735 }
2736
2737 return 0;
2738 }
2739
2740
2741 /*
2742 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2743 *
2744 * Requests that the peer mark the enclosed address as the association
2745 * primary. The enclosed address must be one of the association's
2746 * locally bound addresses. The following structure is used to make a
2747 * set primary request:
2748 */
2749 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2750 int optlen)
2751 {
2752 struct sctp_sock *sp;
2753 struct sctp_endpoint *ep;
2754 struct sctp_association *asoc = NULL;
2755 struct sctp_setpeerprim prim;
2756 struct sctp_chunk *chunk;
2757 int err;
2758
2759 sp = sctp_sk(sk);
2760 ep = sp->ep;
2761
2762 if (!sctp_addip_enable)
2763 return -EPERM;
2764
2765 if (optlen != sizeof(struct sctp_setpeerprim))
2766 return -EINVAL;
2767
2768 if (copy_from_user(&prim, optval, optlen))
2769 return -EFAULT;
2770
2771 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2772 if (!asoc)
2773 return -EINVAL;
2774
2775 if (!asoc->peer.asconf_capable)
2776 return -EPERM;
2777
2778 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2779 return -EPERM;
2780
2781 if (!sctp_state(asoc, ESTABLISHED))
2782 return -ENOTCONN;
2783
2784 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2785 return -EADDRNOTAVAIL;
2786
2787 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2788 chunk = sctp_make_asconf_set_prim(asoc,
2789 (union sctp_addr *)&prim.sspp_addr);
2790 if (!chunk)
2791 return -ENOMEM;
2792
2793 err = sctp_send_asconf(asoc, chunk);
2794
2795 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2796
2797 return err;
2798 }
2799
2800 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2801 int optlen)
2802 {
2803 struct sctp_setadaptation adaptation;
2804
2805 if (optlen != sizeof(struct sctp_setadaptation))
2806 return -EINVAL;
2807 if (copy_from_user(&adaptation, optval, optlen))
2808 return -EFAULT;
2809
2810 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2811
2812 return 0;
2813 }
2814
2815 /*
2816 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2817 *
2818 * The context field in the sctp_sndrcvinfo structure is normally only
2819 * used when a failed message is retrieved holding the value that was
2820 * sent down on the actual send call. This option allows the setting of
2821 * a default context on an association basis that will be received on
2822 * reading messages from the peer. This is especially helpful in the
2823 * one-2-many model for an application to keep some reference to an
2824 * internal state machine that is processing messages on the
2825 * association. Note that the setting of this value only effects
2826 * received messages from the peer and does not effect the value that is
2827 * saved with outbound messages.
2828 */
2829 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2830 int optlen)
2831 {
2832 struct sctp_assoc_value params;
2833 struct sctp_sock *sp;
2834 struct sctp_association *asoc;
2835
2836 if (optlen != sizeof(struct sctp_assoc_value))
2837 return -EINVAL;
2838 if (copy_from_user(&params, optval, optlen))
2839 return -EFAULT;
2840
2841 sp = sctp_sk(sk);
2842
2843 if (params.assoc_id != 0) {
2844 asoc = sctp_id2assoc(sk, params.assoc_id);
2845 if (!asoc)
2846 return -EINVAL;
2847 asoc->default_rcv_context = params.assoc_value;
2848 } else {
2849 sp->default_rcv_context = params.assoc_value;
2850 }
2851
2852 return 0;
2853 }
2854
2855 /*
2856 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2857 *
2858 * This options will at a minimum specify if the implementation is doing
2859 * fragmented interleave. Fragmented interleave, for a one to many
2860 * socket, is when subsequent calls to receive a message may return
2861 * parts of messages from different associations. Some implementations
2862 * may allow you to turn this value on or off. If so, when turned off,
2863 * no fragment interleave will occur (which will cause a head of line
2864 * blocking amongst multiple associations sharing the same one to many
2865 * socket). When this option is turned on, then each receive call may
2866 * come from a different association (thus the user must receive data
2867 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2868 * association each receive belongs to.
2869 *
2870 * This option takes a boolean value. A non-zero value indicates that
2871 * fragmented interleave is on. A value of zero indicates that
2872 * fragmented interleave is off.
2873 *
2874 * Note that it is important that an implementation that allows this
2875 * option to be turned on, have it off by default. Otherwise an unaware
2876 * application using the one to many model may become confused and act
2877 * incorrectly.
2878 */
2879 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2880 char __user *optval,
2881 int optlen)
2882 {
2883 int val;
2884
2885 if (optlen != sizeof(int))
2886 return -EINVAL;
2887 if (get_user(val, (int __user *)optval))
2888 return -EFAULT;
2889
2890 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2891
2892 return 0;
2893 }
2894
2895 /*
2896 * 7.1.25. Set or Get the sctp partial delivery point
2897 * (SCTP_PARTIAL_DELIVERY_POINT)
2898 * This option will set or get the SCTP partial delivery point. This
2899 * point is the size of a message where the partial delivery API will be
2900 * invoked to help free up rwnd space for the peer. Setting this to a
2901 * lower value will cause partial delivery's to happen more often. The
2902 * calls argument is an integer that sets or gets the partial delivery
2903 * point.
2904 */
2905 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2906 char __user *optval,
2907 int optlen)
2908 {
2909 u32 val;
2910
2911 if (optlen != sizeof(u32))
2912 return -EINVAL;
2913 if (get_user(val, (int __user *)optval))
2914 return -EFAULT;
2915
2916 sctp_sk(sk)->pd_point = val;
2917
2918 return 0; /* is this the right error code? */
2919 }
2920
2921 /*
2922 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2923 *
2924 * This option will allow a user to change the maximum burst of packets
2925 * that can be emitted by this association. Note that the default value
2926 * is 4, and some implementations may restrict this setting so that it
2927 * can only be lowered.
2928 *
2929 * NOTE: This text doesn't seem right. Do this on a socket basis with
2930 * future associations inheriting the socket value.
2931 */
2932 static int sctp_setsockopt_maxburst(struct sock *sk,
2933 char __user *optval,
2934 int optlen)
2935 {
2936 int val;
2937
2938 if (optlen != sizeof(int))
2939 return -EINVAL;
2940 if (get_user(val, (int __user *)optval))
2941 return -EFAULT;
2942
2943 if (val < 0)
2944 return -EINVAL;
2945
2946 sctp_sk(sk)->max_burst = val;
2947
2948 return 0;
2949 }
2950
2951 /*
2952 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
2953 *
2954 * This set option adds a chunk type that the user is requesting to be
2955 * received only in an authenticated way. Changes to the list of chunks
2956 * will only effect future associations on the socket.
2957 */
2958 static int sctp_setsockopt_auth_chunk(struct sock *sk,
2959 char __user *optval,
2960 int optlen)
2961 {
2962 struct sctp_authchunk val;
2963
2964 if (optlen != sizeof(struct sctp_authchunk))
2965 return -EINVAL;
2966 if (copy_from_user(&val, optval, optlen))
2967 return -EFAULT;
2968
2969 switch (val.sauth_chunk) {
2970 case SCTP_CID_INIT:
2971 case SCTP_CID_INIT_ACK:
2972 case SCTP_CID_SHUTDOWN_COMPLETE:
2973 case SCTP_CID_AUTH:
2974 return -EINVAL;
2975 }
2976
2977 /* add this chunk id to the endpoint */
2978 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
2979 }
2980
2981 /*
2982 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
2983 *
2984 * This option gets or sets the list of HMAC algorithms that the local
2985 * endpoint requires the peer to use.
2986 */
2987 static int sctp_setsockopt_hmac_ident(struct sock *sk,
2988 char __user *optval,
2989 int optlen)
2990 {
2991 struct sctp_hmacalgo *hmacs;
2992 int err;
2993
2994 if (optlen < sizeof(struct sctp_hmacalgo))
2995 return -EINVAL;
2996
2997 hmacs = kmalloc(optlen, GFP_KERNEL);
2998 if (!hmacs)
2999 return -ENOMEM;
3000
3001 if (copy_from_user(hmacs, optval, optlen)) {
3002 err = -EFAULT;
3003 goto out;
3004 }
3005
3006 if (hmacs->shmac_num_idents == 0 ||
3007 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
3008 err = -EINVAL;
3009 goto out;
3010 }
3011
3012 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3013 out:
3014 kfree(hmacs);
3015 return err;
3016 }
3017
3018 /*
3019 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3020 *
3021 * This option will set a shared secret key which is used to build an
3022 * association shared key.
3023 */
3024 static int sctp_setsockopt_auth_key(struct sock *sk,
3025 char __user *optval,
3026 int optlen)
3027 {
3028 struct sctp_authkey *authkey;
3029 struct sctp_association *asoc;
3030 int ret;
3031
3032 if (optlen <= sizeof(struct sctp_authkey))
3033 return -EINVAL;
3034
3035 authkey = kmalloc(optlen, GFP_KERNEL);
3036 if (!authkey)
3037 return -ENOMEM;
3038
3039 if (copy_from_user(authkey, optval, optlen)) {
3040 ret = -EFAULT;
3041 goto out;
3042 }
3043
3044 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3045 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3046 ret = -EINVAL;
3047 goto out;
3048 }
3049
3050 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3051 out:
3052 kfree(authkey);
3053 return ret;
3054 }
3055
3056 /*
3057 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3058 *
3059 * This option will get or set the active shared key to be used to build
3060 * the association shared key.
3061 */
3062 static int sctp_setsockopt_active_key(struct sock *sk,
3063 char __user *optval,
3064 int optlen)
3065 {
3066 struct sctp_authkeyid val;
3067 struct sctp_association *asoc;
3068
3069 if (optlen != sizeof(struct sctp_authkeyid))
3070 return -EINVAL;
3071 if (copy_from_user(&val, optval, optlen))
3072 return -EFAULT;
3073
3074 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3075 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3076 return -EINVAL;
3077
3078 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3079 val.scact_keynumber);
3080 }
3081
3082 /*
3083 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3084 *
3085 * This set option will delete a shared secret key from use.
3086 */
3087 static int sctp_setsockopt_del_key(struct sock *sk,
3088 char __user *optval,
3089 int optlen)
3090 {
3091 struct sctp_authkeyid val;
3092 struct sctp_association *asoc;
3093
3094 if (optlen != sizeof(struct sctp_authkeyid))
3095 return -EINVAL;
3096 if (copy_from_user(&val, optval, optlen))
3097 return -EFAULT;
3098
3099 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3100 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3101 return -EINVAL;
3102
3103 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3104 val.scact_keynumber);
3105
3106 }
3107
3108
3109 /* API 6.2 setsockopt(), getsockopt()
3110 *
3111 * Applications use setsockopt() and getsockopt() to set or retrieve
3112 * socket options. Socket options are used to change the default
3113 * behavior of sockets calls. They are described in Section 7.
3114 *
3115 * The syntax is:
3116 *
3117 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3118 * int __user *optlen);
3119 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3120 * int optlen);
3121 *
3122 * sd - the socket descript.
3123 * level - set to IPPROTO_SCTP for all SCTP options.
3124 * optname - the option name.
3125 * optval - the buffer to store the value of the option.
3126 * optlen - the size of the buffer.
3127 */
3128 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3129 char __user *optval, int optlen)
3130 {
3131 int retval = 0;
3132
3133 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3134 sk, optname);
3135
3136 /* I can hardly begin to describe how wrong this is. This is
3137 * so broken as to be worse than useless. The API draft
3138 * REALLY is NOT helpful here... I am not convinced that the
3139 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3140 * are at all well-founded.
3141 */
3142 if (level != SOL_SCTP) {
3143 struct sctp_af *af = sctp_sk(sk)->pf->af;
3144 retval = af->setsockopt(sk, level, optname, optval, optlen);
3145 goto out_nounlock;
3146 }
3147
3148 sctp_lock_sock(sk);
3149
3150 switch (optname) {
3151 case SCTP_SOCKOPT_BINDX_ADD:
3152 /* 'optlen' is the size of the addresses buffer. */
3153 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3154 optlen, SCTP_BINDX_ADD_ADDR);
3155 break;
3156
3157 case SCTP_SOCKOPT_BINDX_REM:
3158 /* 'optlen' is the size of the addresses buffer. */
3159 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3160 optlen, SCTP_BINDX_REM_ADDR);
3161 break;
3162
3163 case SCTP_SOCKOPT_CONNECTX:
3164 /* 'optlen' is the size of the addresses buffer. */
3165 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3166 optlen);
3167 break;
3168
3169 case SCTP_DISABLE_FRAGMENTS:
3170 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3171 break;
3172
3173 case SCTP_EVENTS:
3174 retval = sctp_setsockopt_events(sk, optval, optlen);
3175 break;
3176
3177 case SCTP_AUTOCLOSE:
3178 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3179 break;
3180
3181 case SCTP_PEER_ADDR_PARAMS:
3182 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3183 break;
3184
3185 case SCTP_DELAYED_ACK_TIME:
3186 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3187 break;
3188 case SCTP_PARTIAL_DELIVERY_POINT:
3189 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3190 break;
3191
3192 case SCTP_INITMSG:
3193 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3194 break;
3195 case SCTP_DEFAULT_SEND_PARAM:
3196 retval = sctp_setsockopt_default_send_param(sk, optval,
3197 optlen);
3198 break;
3199 case SCTP_PRIMARY_ADDR:
3200 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3201 break;
3202 case SCTP_SET_PEER_PRIMARY_ADDR:
3203 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3204 break;
3205 case SCTP_NODELAY:
3206 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3207 break;
3208 case SCTP_RTOINFO:
3209 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3210 break;
3211 case SCTP_ASSOCINFO:
3212 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3213 break;
3214 case SCTP_I_WANT_MAPPED_V4_ADDR:
3215 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3216 break;
3217 case SCTP_MAXSEG:
3218 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3219 break;
3220 case SCTP_ADAPTATION_LAYER:
3221 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3222 break;
3223 case SCTP_CONTEXT:
3224 retval = sctp_setsockopt_context(sk, optval, optlen);
3225 break;
3226 case SCTP_FRAGMENT_INTERLEAVE:
3227 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3228 break;
3229 case SCTP_MAX_BURST:
3230 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3231 break;
3232 case SCTP_AUTH_CHUNK:
3233 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3234 break;
3235 case SCTP_HMAC_IDENT:
3236 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3237 break;
3238 case SCTP_AUTH_KEY:
3239 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3240 break;
3241 case SCTP_AUTH_ACTIVE_KEY:
3242 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3243 break;
3244 case SCTP_AUTH_DELETE_KEY:
3245 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3246 break;
3247 default:
3248 retval = -ENOPROTOOPT;
3249 break;
3250 }
3251
3252 sctp_release_sock(sk);
3253
3254 out_nounlock:
3255 return retval;
3256 }
3257
3258 /* API 3.1.6 connect() - UDP Style Syntax
3259 *
3260 * An application may use the connect() call in the UDP model to initiate an
3261 * association without sending data.
3262 *
3263 * The syntax is:
3264 *
3265 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3266 *
3267 * sd: the socket descriptor to have a new association added to.
3268 *
3269 * nam: the address structure (either struct sockaddr_in or struct
3270 * sockaddr_in6 defined in RFC2553 [7]).
3271 *
3272 * len: the size of the address.
3273 */
3274 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3275 int addr_len)
3276 {
3277 int err = 0;
3278 struct sctp_af *af;
3279
3280 sctp_lock_sock(sk);
3281
3282 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3283 __FUNCTION__, sk, addr, addr_len);
3284
3285 /* Validate addr_len before calling common connect/connectx routine. */
3286 af = sctp_get_af_specific(addr->sa_family);
3287 if (!af || addr_len < af->sockaddr_len) {
3288 err = -EINVAL;
3289 } else {
3290 /* Pass correct addr len to common routine (so it knows there
3291 * is only one address being passed.
3292 */
3293 err = __sctp_connect(sk, addr, af->sockaddr_len);
3294 }
3295
3296 sctp_release_sock(sk);
3297 return err;
3298 }
3299
3300 /* FIXME: Write comments. */
3301 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3302 {
3303 return -EOPNOTSUPP; /* STUB */
3304 }
3305
3306 /* 4.1.4 accept() - TCP Style Syntax
3307 *
3308 * Applications use accept() call to remove an established SCTP
3309 * association from the accept queue of the endpoint. A new socket
3310 * descriptor will be returned from accept() to represent the newly
3311 * formed association.
3312 */
3313 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3314 {
3315 struct sctp_sock *sp;
3316 struct sctp_endpoint *ep;
3317 struct sock *newsk = NULL;
3318 struct sctp_association *asoc;
3319 long timeo;
3320 int error = 0;
3321
3322 sctp_lock_sock(sk);
3323
3324 sp = sctp_sk(sk);
3325 ep = sp->ep;
3326
3327 if (!sctp_style(sk, TCP)) {
3328 error = -EOPNOTSUPP;
3329 goto out;
3330 }
3331
3332 if (!sctp_sstate(sk, LISTENING)) {
3333 error = -EINVAL;
3334 goto out;
3335 }
3336
3337 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3338
3339 error = sctp_wait_for_accept(sk, timeo);
3340 if (error)
3341 goto out;
3342
3343 /* We treat the list of associations on the endpoint as the accept
3344 * queue and pick the first association on the list.
3345 */
3346 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3347
3348 newsk = sp->pf->create_accept_sk(sk, asoc);
3349 if (!newsk) {
3350 error = -ENOMEM;
3351 goto out;
3352 }
3353
3354 /* Populate the fields of the newsk from the oldsk and migrate the
3355 * asoc to the newsk.
3356 */
3357 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3358
3359 out:
3360 sctp_release_sock(sk);
3361 *err = error;
3362 return newsk;
3363 }
3364
3365 /* The SCTP ioctl handler. */
3366 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3367 {
3368 return -ENOIOCTLCMD;
3369 }
3370
3371 /* This is the function which gets called during socket creation to
3372 * initialized the SCTP-specific portion of the sock.
3373 * The sock structure should already be zero-filled memory.
3374 */
3375 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3376 {
3377 struct sctp_endpoint *ep;
3378 struct sctp_sock *sp;
3379
3380 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3381
3382 sp = sctp_sk(sk);
3383
3384 /* Initialize the SCTP per socket area. */
3385 switch (sk->sk_type) {
3386 case SOCK_SEQPACKET:
3387 sp->type = SCTP_SOCKET_UDP;
3388 break;
3389 case SOCK_STREAM:
3390 sp->type = SCTP_SOCKET_TCP;
3391 break;
3392 default:
3393 return -ESOCKTNOSUPPORT;
3394 }
3395
3396 /* Initialize default send parameters. These parameters can be
3397 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3398 */
3399 sp->default_stream = 0;
3400 sp->default_ppid = 0;
3401 sp->default_flags = 0;
3402 sp->default_context = 0;
3403 sp->default_timetolive = 0;
3404
3405 sp->default_rcv_context = 0;
3406 sp->max_burst = sctp_max_burst;
3407
3408 /* Initialize default setup parameters. These parameters
3409 * can be modified with the SCTP_INITMSG socket option or
3410 * overridden by the SCTP_INIT CMSG.
3411 */
3412 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3413 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3414 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3415 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3416
3417 /* Initialize default RTO related parameters. These parameters can
3418 * be modified for with the SCTP_RTOINFO socket option.
3419 */
3420 sp->rtoinfo.srto_initial = sctp_rto_initial;
3421 sp->rtoinfo.srto_max = sctp_rto_max;
3422 sp->rtoinfo.srto_min = sctp_rto_min;
3423
3424 /* Initialize default association related parameters. These parameters
3425 * can be modified with the SCTP_ASSOCINFO socket option.
3426 */
3427 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3428 sp->assocparams.sasoc_number_peer_destinations = 0;
3429 sp->assocparams.sasoc_peer_rwnd = 0;
3430 sp->assocparams.sasoc_local_rwnd = 0;
3431 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3432
3433 /* Initialize default event subscriptions. By default, all the
3434 * options are off.
3435 */
3436 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3437
3438 /* Default Peer Address Parameters. These defaults can
3439 * be modified via SCTP_PEER_ADDR_PARAMS
3440 */
3441 sp->hbinterval = sctp_hb_interval;
3442 sp->pathmaxrxt = sctp_max_retrans_path;
3443 sp->pathmtu = 0; // allow default discovery
3444 sp->sackdelay = sctp_sack_timeout;
3445 sp->param_flags = SPP_HB_ENABLE |
3446 SPP_PMTUD_ENABLE |
3447 SPP_SACKDELAY_ENABLE;
3448
3449 /* If enabled no SCTP message fragmentation will be performed.
3450 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3451 */
3452 sp->disable_fragments = 0;
3453
3454 /* Enable Nagle algorithm by default. */
3455 sp->nodelay = 0;
3456
3457 /* Enable by default. */
3458 sp->v4mapped = 1;
3459
3460 /* Auto-close idle associations after the configured
3461 * number of seconds. A value of 0 disables this
3462 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3463 * for UDP-style sockets only.
3464 */
3465 sp->autoclose = 0;
3466
3467 /* User specified fragmentation limit. */
3468 sp->user_frag = 0;
3469
3470 sp->adaptation_ind = 0;
3471
3472 sp->pf = sctp_get_pf_specific(sk->sk_family);
3473
3474 /* Control variables for partial data delivery. */
3475 atomic_set(&sp->pd_mode, 0);
3476 skb_queue_head_init(&sp->pd_lobby);
3477 sp->frag_interleave = 0;
3478
3479 /* Create a per socket endpoint structure. Even if we
3480 * change the data structure relationships, this may still
3481 * be useful for storing pre-connect address information.
3482 */
3483 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3484 if (!ep)
3485 return -ENOMEM;
3486
3487 sp->ep = ep;
3488 sp->hmac = NULL;
3489
3490 SCTP_DBG_OBJCNT_INC(sock);
3491 atomic_inc(&sctp_sockets_allocated);
3492 return 0;
3493 }
3494
3495 /* Cleanup any SCTP per socket resources. */
3496 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3497 {
3498 struct sctp_endpoint *ep;
3499
3500 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3501
3502 /* Release our hold on the endpoint. */
3503 ep = sctp_sk(sk)->ep;
3504 sctp_endpoint_free(ep);
3505 atomic_dec(&sctp_sockets_allocated);
3506 return 0;
3507 }
3508
3509 /* API 4.1.7 shutdown() - TCP Style Syntax
3510 * int shutdown(int socket, int how);
3511 *
3512 * sd - the socket descriptor of the association to be closed.
3513 * how - Specifies the type of shutdown. The values are
3514 * as follows:
3515 * SHUT_RD
3516 * Disables further receive operations. No SCTP
3517 * protocol action is taken.
3518 * SHUT_WR
3519 * Disables further send operations, and initiates
3520 * the SCTP shutdown sequence.
3521 * SHUT_RDWR
3522 * Disables further send and receive operations
3523 * and initiates the SCTP shutdown sequence.
3524 */
3525 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3526 {
3527 struct sctp_endpoint *ep;
3528 struct sctp_association *asoc;
3529
3530 if (!sctp_style(sk, TCP))
3531 return;
3532
3533 if (how & SEND_SHUTDOWN) {
3534 ep = sctp_sk(sk)->ep;
3535 if (!list_empty(&ep->asocs)) {
3536 asoc = list_entry(ep->asocs.next,
3537 struct sctp_association, asocs);
3538 sctp_primitive_SHUTDOWN(asoc, NULL);
3539 }
3540 }
3541 }
3542
3543 /* 7.2.1 Association Status (SCTP_STATUS)
3544
3545 * Applications can retrieve current status information about an
3546 * association, including association state, peer receiver window size,
3547 * number of unacked data chunks, and number of data chunks pending
3548 * receipt. This information is read-only.
3549 */
3550 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3551 char __user *optval,
3552 int __user *optlen)
3553 {
3554 struct sctp_status status;
3555 struct sctp_association *asoc = NULL;
3556 struct sctp_transport *transport;
3557 sctp_assoc_t associd;
3558 int retval = 0;
3559
3560 if (len < sizeof(status)) {
3561 retval = -EINVAL;
3562 goto out;
3563 }
3564
3565 len = sizeof(status);
3566 if (copy_from_user(&status, optval, len)) {
3567 retval = -EFAULT;
3568 goto out;
3569 }
3570
3571 associd = status.sstat_assoc_id;
3572 asoc = sctp_id2assoc(sk, associd);
3573 if (!asoc) {
3574 retval = -EINVAL;
3575 goto out;
3576 }
3577
3578 transport = asoc->peer.primary_path;
3579
3580 status.sstat_assoc_id = sctp_assoc2id(asoc);
3581 status.sstat_state = asoc->state;
3582 status.sstat_rwnd = asoc->peer.rwnd;
3583 status.sstat_unackdata = asoc->unack_data;
3584
3585 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3586 status.sstat_instrms = asoc->c.sinit_max_instreams;
3587 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3588 status.sstat_fragmentation_point = asoc->frag_point;
3589 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3590 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3591 transport->af_specific->sockaddr_len);
3592 /* Map ipv4 address into v4-mapped-on-v6 address. */
3593 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3594 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3595 status.sstat_primary.spinfo_state = transport->state;
3596 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3597 status.sstat_primary.spinfo_srtt = transport->srtt;
3598 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3599 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3600
3601 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3602 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3603
3604 if (put_user(len, optlen)) {
3605 retval = -EFAULT;
3606 goto out;
3607 }
3608
3609 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3610 len, status.sstat_state, status.sstat_rwnd,
3611 status.sstat_assoc_id);
3612
3613 if (copy_to_user(optval, &status, len)) {
3614 retval = -EFAULT;
3615 goto out;
3616 }
3617
3618 out:
3619 return (retval);
3620 }
3621
3622
3623 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3624 *
3625 * Applications can retrieve information about a specific peer address
3626 * of an association, including its reachability state, congestion
3627 * window, and retransmission timer values. This information is
3628 * read-only.
3629 */
3630 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3631 char __user *optval,
3632 int __user *optlen)
3633 {
3634 struct sctp_paddrinfo pinfo;
3635 struct sctp_transport *transport;
3636 int retval = 0;
3637
3638 if (len < sizeof(pinfo)) {
3639 retval = -EINVAL;
3640 goto out;
3641 }
3642
3643 len = sizeof(pinfo);
3644 if (copy_from_user(&pinfo, optval, len)) {
3645 retval = -EFAULT;
3646 goto out;
3647 }
3648
3649 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3650 pinfo.spinfo_assoc_id);
3651 if (!transport)
3652 return -EINVAL;
3653
3654 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3655 pinfo.spinfo_state = transport->state;
3656 pinfo.spinfo_cwnd = transport->cwnd;
3657 pinfo.spinfo_srtt = transport->srtt;
3658 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3659 pinfo.spinfo_mtu = transport->pathmtu;
3660
3661 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3662 pinfo.spinfo_state = SCTP_ACTIVE;
3663
3664 if (put_user(len, optlen)) {
3665 retval = -EFAULT;
3666 goto out;
3667 }
3668
3669 if (copy_to_user(optval, &pinfo, len)) {
3670 retval = -EFAULT;
3671 goto out;
3672 }
3673
3674 out:
3675 return (retval);
3676 }
3677
3678 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3679 *
3680 * This option is a on/off flag. If enabled no SCTP message
3681 * fragmentation will be performed. Instead if a message being sent
3682 * exceeds the current PMTU size, the message will NOT be sent and
3683 * instead a error will be indicated to the user.
3684 */
3685 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3686 char __user *optval, int __user *optlen)
3687 {
3688 int val;
3689
3690 if (len < sizeof(int))
3691 return -EINVAL;
3692
3693 len = sizeof(int);
3694 val = (sctp_sk(sk)->disable_fragments == 1);
3695 if (put_user(len, optlen))
3696 return -EFAULT;
3697 if (copy_to_user(optval, &val, len))
3698 return -EFAULT;
3699 return 0;
3700 }
3701
3702 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3703 *
3704 * This socket option is used to specify various notifications and
3705 * ancillary data the user wishes to receive.
3706 */
3707 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3708 int __user *optlen)
3709 {
3710 if (len < sizeof(struct sctp_event_subscribe))
3711 return -EINVAL;
3712 len = sizeof(struct sctp_event_subscribe);
3713 if (put_user(len, optlen))
3714 return -EFAULT;
3715 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3716 return -EFAULT;
3717 return 0;
3718 }
3719
3720 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3721 *
3722 * This socket option is applicable to the UDP-style socket only. When
3723 * set it will cause associations that are idle for more than the
3724 * specified number of seconds to automatically close. An association
3725 * being idle is defined an association that has NOT sent or received
3726 * user data. The special value of '0' indicates that no automatic
3727 * close of any associations should be performed. The option expects an
3728 * integer defining the number of seconds of idle time before an
3729 * association is closed.
3730 */
3731 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3732 {
3733 /* Applicable to UDP-style socket only */
3734 if (sctp_style(sk, TCP))
3735 return -EOPNOTSUPP;
3736 if (len < sizeof(int))
3737 return -EINVAL;
3738 len = sizeof(int);
3739 if (put_user(len, optlen))
3740 return -EFAULT;
3741 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3742 return -EFAULT;
3743 return 0;
3744 }
3745
3746 /* Helper routine to branch off an association to a new socket. */
3747 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3748 struct socket **sockp)
3749 {
3750 struct sock *sk = asoc->base.sk;
3751 struct socket *sock;
3752 struct inet_sock *inetsk;
3753 struct sctp_af *af;
3754 int err = 0;
3755
3756 /* An association cannot be branched off from an already peeled-off
3757 * socket, nor is this supported for tcp style sockets.
3758 */
3759 if (!sctp_style(sk, UDP))
3760 return -EINVAL;
3761
3762 /* Create a new socket. */
3763 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3764 if (err < 0)
3765 return err;
3766
3767 /* Populate the fields of the newsk from the oldsk and migrate the
3768 * asoc to the newsk.
3769 */
3770 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3771
3772 /* Make peeled-off sockets more like 1-1 accepted sockets.
3773 * Set the daddr and initialize id to something more random
3774 */
3775 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3776 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3777 inetsk = inet_sk(sock->sk);
3778 inetsk->id = asoc->next_tsn ^ jiffies;
3779
3780 *sockp = sock;
3781
3782 return err;
3783 }
3784
3785 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3786 {
3787 sctp_peeloff_arg_t peeloff;
3788 struct socket *newsock;
3789 int retval = 0;
3790 struct sctp_association *asoc;
3791
3792 if (len < sizeof(sctp_peeloff_arg_t))
3793 return -EINVAL;
3794 len = sizeof(sctp_peeloff_arg_t);
3795 if (copy_from_user(&peeloff, optval, len))
3796 return -EFAULT;
3797
3798 asoc = sctp_id2assoc(sk, peeloff.associd);
3799 if (!asoc) {
3800 retval = -EINVAL;
3801 goto out;
3802 }
3803
3804 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3805
3806 retval = sctp_do_peeloff(asoc, &newsock);
3807 if (retval < 0)
3808 goto out;
3809
3810 /* Map the socket to an unused fd that can be returned to the user. */
3811 retval = sock_map_fd(newsock);
3812 if (retval < 0) {
3813 sock_release(newsock);
3814 goto out;
3815 }
3816
3817 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3818 __FUNCTION__, sk, asoc, newsock->sk, retval);
3819
3820 /* Return the fd mapped to the new socket. */
3821 peeloff.sd = retval;
3822 if (put_user(len, optlen))
3823 return -EFAULT;
3824 if (copy_to_user(optval, &peeloff, len))
3825 retval = -EFAULT;
3826
3827 out:
3828 return retval;
3829 }
3830
3831 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3832 *
3833 * Applications can enable or disable heartbeats for any peer address of
3834 * an association, modify an address's heartbeat interval, force a
3835 * heartbeat to be sent immediately, and adjust the address's maximum
3836 * number of retransmissions sent before an address is considered
3837 * unreachable. The following structure is used to access and modify an
3838 * address's parameters:
3839 *
3840 * struct sctp_paddrparams {
3841 * sctp_assoc_t spp_assoc_id;
3842 * struct sockaddr_storage spp_address;
3843 * uint32_t spp_hbinterval;
3844 * uint16_t spp_pathmaxrxt;
3845 * uint32_t spp_pathmtu;
3846 * uint32_t spp_sackdelay;
3847 * uint32_t spp_flags;
3848 * };
3849 *
3850 * spp_assoc_id - (one-to-many style socket) This is filled in the
3851 * application, and identifies the association for
3852 * this query.
3853 * spp_address - This specifies which address is of interest.
3854 * spp_hbinterval - This contains the value of the heartbeat interval,
3855 * in milliseconds. If a value of zero
3856 * is present in this field then no changes are to
3857 * be made to this parameter.
3858 * spp_pathmaxrxt - This contains the maximum number of
3859 * retransmissions before this address shall be
3860 * considered unreachable. If a value of zero
3861 * is present in this field then no changes are to
3862 * be made to this parameter.
3863 * spp_pathmtu - When Path MTU discovery is disabled the value
3864 * specified here will be the "fixed" path mtu.
3865 * Note that if the spp_address field is empty
3866 * then all associations on this address will
3867 * have this fixed path mtu set upon them.
3868 *
3869 * spp_sackdelay - When delayed sack is enabled, this value specifies
3870 * the number of milliseconds that sacks will be delayed
3871 * for. This value will apply to all addresses of an
3872 * association if the spp_address field is empty. Note
3873 * also, that if delayed sack is enabled and this
3874 * value is set to 0, no change is made to the last
3875 * recorded delayed sack timer value.
3876 *
3877 * spp_flags - These flags are used to control various features
3878 * on an association. The flag field may contain
3879 * zero or more of the following options.
3880 *
3881 * SPP_HB_ENABLE - Enable heartbeats on the
3882 * specified address. Note that if the address
3883 * field is empty all addresses for the association
3884 * have heartbeats enabled upon them.
3885 *
3886 * SPP_HB_DISABLE - Disable heartbeats on the
3887 * speicifed address. Note that if the address
3888 * field is empty all addresses for the association
3889 * will have their heartbeats disabled. Note also
3890 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3891 * mutually exclusive, only one of these two should
3892 * be specified. Enabling both fields will have
3893 * undetermined results.
3894 *
3895 * SPP_HB_DEMAND - Request a user initiated heartbeat
3896 * to be made immediately.
3897 *
3898 * SPP_PMTUD_ENABLE - This field will enable PMTU
3899 * discovery upon the specified address. Note that
3900 * if the address feild is empty then all addresses
3901 * on the association are effected.
3902 *
3903 * SPP_PMTUD_DISABLE - This field will disable PMTU
3904 * discovery upon the specified address. Note that
3905 * if the address feild is empty then all addresses
3906 * on the association are effected. Not also that
3907 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3908 * exclusive. Enabling both will have undetermined
3909 * results.
3910 *
3911 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3912 * on delayed sack. The time specified in spp_sackdelay
3913 * is used to specify the sack delay for this address. Note
3914 * that if spp_address is empty then all addresses will
3915 * enable delayed sack and take on the sack delay
3916 * value specified in spp_sackdelay.
3917 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3918 * off delayed sack. If the spp_address field is blank then
3919 * delayed sack is disabled for the entire association. Note
3920 * also that this field is mutually exclusive to
3921 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3922 * results.
3923 */
3924 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3925 char __user *optval, int __user *optlen)
3926 {
3927 struct sctp_paddrparams params;
3928 struct sctp_transport *trans = NULL;
3929 struct sctp_association *asoc = NULL;
3930 struct sctp_sock *sp = sctp_sk(sk);
3931
3932 if (len < sizeof(struct sctp_paddrparams))
3933 return -EINVAL;
3934 len = sizeof(struct sctp_paddrparams);
3935 if (copy_from_user(&params, optval, len))
3936 return -EFAULT;
3937
3938 /* If an address other than INADDR_ANY is specified, and
3939 * no transport is found, then the request is invalid.
3940 */
3941 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3942 trans = sctp_addr_id2transport(sk, &params.spp_address,
3943 params.spp_assoc_id);
3944 if (!trans) {
3945 SCTP_DEBUG_PRINTK("Failed no transport\n");
3946 return -EINVAL;
3947 }
3948 }
3949
3950 /* Get association, if assoc_id != 0 and the socket is a one
3951 * to many style socket, and an association was not found, then
3952 * the id was invalid.
3953 */
3954 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3955 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3956 SCTP_DEBUG_PRINTK("Failed no association\n");
3957 return -EINVAL;
3958 }
3959
3960 if (trans) {
3961 /* Fetch transport values. */
3962 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3963 params.spp_pathmtu = trans->pathmtu;
3964 params.spp_pathmaxrxt = trans->pathmaxrxt;
3965 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3966
3967 /*draft-11 doesn't say what to return in spp_flags*/
3968 params.spp_flags = trans->param_flags;
3969 } else if (asoc) {
3970 /* Fetch association values. */
3971 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3972 params.spp_pathmtu = asoc->pathmtu;
3973 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3974 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3975
3976 /*draft-11 doesn't say what to return in spp_flags*/
3977 params.spp_flags = asoc->param_flags;
3978 } else {
3979 /* Fetch socket values. */
3980 params.spp_hbinterval = sp->hbinterval;
3981 params.spp_pathmtu = sp->pathmtu;
3982 params.spp_sackdelay = sp->sackdelay;
3983 params.spp_pathmaxrxt = sp->pathmaxrxt;
3984
3985 /*draft-11 doesn't say what to return in spp_flags*/
3986 params.spp_flags = sp->param_flags;
3987 }
3988
3989 if (copy_to_user(optval, &params, len))
3990 return -EFAULT;
3991
3992 if (put_user(len, optlen))
3993 return -EFAULT;
3994
3995 return 0;
3996 }
3997
3998 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3999 *
4000 * This options will get or set the delayed ack timer. The time is set
4001 * in milliseconds. If the assoc_id is 0, then this sets or gets the
4002 * endpoints default delayed ack timer value. If the assoc_id field is
4003 * non-zero, then the set or get effects the specified association.
4004 *
4005 * struct sctp_assoc_value {
4006 * sctp_assoc_t assoc_id;
4007 * uint32_t assoc_value;
4008 * };
4009 *
4010 * assoc_id - This parameter, indicates which association the
4011 * user is preforming an action upon. Note that if
4012 * this field's value is zero then the endpoints
4013 * default value is changed (effecting future
4014 * associations only).
4015 *
4016 * assoc_value - This parameter contains the number of milliseconds
4017 * that the user is requesting the delayed ACK timer
4018 * be set to. Note that this value is defined in
4019 * the standard to be between 200 and 500 milliseconds.
4020 *
4021 * Note: a value of zero will leave the value alone,
4022 * but disable SACK delay. A non-zero value will also
4023 * enable SACK delay.
4024 */
4025 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
4026 char __user *optval,
4027 int __user *optlen)
4028 {
4029 struct sctp_assoc_value params;
4030 struct sctp_association *asoc = NULL;
4031 struct sctp_sock *sp = sctp_sk(sk);
4032
4033 if (len < sizeof(struct sctp_assoc_value))
4034 return - EINVAL;
4035
4036 len = sizeof(struct sctp_assoc_value);
4037
4038 if (copy_from_user(&params, optval, len))
4039 return -EFAULT;
4040
4041 /* Get association, if assoc_id != 0 and the socket is a one
4042 * to many style socket, and an association was not found, then
4043 * the id was invalid.
4044 */
4045 asoc = sctp_id2assoc(sk, params.assoc_id);
4046 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4047 return -EINVAL;
4048
4049 if (asoc) {
4050 /* Fetch association values. */
4051 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
4052 params.assoc_value = jiffies_to_msecs(
4053 asoc->sackdelay);
4054 else
4055 params.assoc_value = 0;
4056 } else {
4057 /* Fetch socket values. */
4058 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
4059 params.assoc_value = sp->sackdelay;
4060 else
4061 params.assoc_value = 0;
4062 }
4063
4064 if (copy_to_user(optval, &params, len))
4065 return -EFAULT;
4066
4067 if (put_user(len, optlen))
4068 return -EFAULT;
4069
4070 return 0;
4071 }
4072
4073 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4074 *
4075 * Applications can specify protocol parameters for the default association
4076 * initialization. The option name argument to setsockopt() and getsockopt()
4077 * is SCTP_INITMSG.
4078 *
4079 * Setting initialization parameters is effective only on an unconnected
4080 * socket (for UDP-style sockets only future associations are effected
4081 * by the change). With TCP-style sockets, this option is inherited by
4082 * sockets derived from a listener socket.
4083 */
4084 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4085 {
4086 if (len < sizeof(struct sctp_initmsg))
4087 return -EINVAL;
4088 len = sizeof(struct sctp_initmsg);
4089 if (put_user(len, optlen))
4090 return -EFAULT;
4091 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4092 return -EFAULT;
4093 return 0;
4094 }
4095
4096 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4097 char __user *optval,
4098 int __user *optlen)
4099 {
4100 sctp_assoc_t id;
4101 struct sctp_association *asoc;
4102 struct list_head *pos;
4103 int cnt = 0;
4104
4105 if (len < sizeof(sctp_assoc_t))
4106 return -EINVAL;
4107
4108 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4109 return -EFAULT;
4110
4111 /* For UDP-style sockets, id specifies the association to query. */
4112 asoc = sctp_id2assoc(sk, id);
4113 if (!asoc)
4114 return -EINVAL;
4115
4116 list_for_each(pos, &asoc->peer.transport_addr_list) {
4117 cnt ++;
4118 }
4119
4120 return cnt;
4121 }
4122
4123 /*
4124 * Old API for getting list of peer addresses. Does not work for 32-bit
4125 * programs running on a 64-bit kernel
4126 */
4127 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4128 char __user *optval,
4129 int __user *optlen)
4130 {
4131 struct sctp_association *asoc;
4132 struct list_head *pos;
4133 int cnt = 0;
4134 struct sctp_getaddrs_old getaddrs;
4135 struct sctp_transport *from;
4136 void __user *to;
4137 union sctp_addr temp;
4138 struct sctp_sock *sp = sctp_sk(sk);
4139 int addrlen;
4140
4141 if (len < sizeof(struct sctp_getaddrs_old))
4142 return -EINVAL;
4143
4144 len = sizeof(struct sctp_getaddrs_old);
4145
4146 if (copy_from_user(&getaddrs, optval, len))
4147 return -EFAULT;
4148
4149 if (getaddrs.addr_num <= 0) return -EINVAL;
4150
4151 /* For UDP-style sockets, id specifies the association to query. */
4152 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4153 if (!asoc)
4154 return -EINVAL;
4155
4156 to = (void __user *)getaddrs.addrs;
4157 list_for_each(pos, &asoc->peer.transport_addr_list) {
4158 from = list_entry(pos, struct sctp_transport, transports);
4159 memcpy(&temp, &from->ipaddr, sizeof(temp));
4160 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4161 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4162 if (copy_to_user(to, &temp, addrlen))
4163 return -EFAULT;
4164 to += addrlen ;
4165 cnt ++;
4166 if (cnt >= getaddrs.addr_num) break;
4167 }
4168 getaddrs.addr_num = cnt;
4169 if (put_user(len, optlen))
4170 return -EFAULT;
4171 if (copy_to_user(optval, &getaddrs, len))
4172 return -EFAULT;
4173
4174 return 0;
4175 }
4176
4177 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4178 char __user *optval, int __user *optlen)
4179 {
4180 struct sctp_association *asoc;
4181 struct list_head *pos;
4182 int cnt = 0;
4183 struct sctp_getaddrs getaddrs;
4184 struct sctp_transport *from;
4185 void __user *to;
4186 union sctp_addr temp;
4187 struct sctp_sock *sp = sctp_sk(sk);
4188 int addrlen;
4189 size_t space_left;
4190 int bytes_copied;
4191
4192 if (len < sizeof(struct sctp_getaddrs))
4193 return -EINVAL;
4194
4195 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4196 return -EFAULT;
4197
4198 /* For UDP-style sockets, id specifies the association to query. */
4199 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4200 if (!asoc)
4201 return -EINVAL;
4202
4203 to = optval + offsetof(struct sctp_getaddrs,addrs);
4204 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4205
4206 list_for_each(pos, &asoc->peer.transport_addr_list) {
4207 from = list_entry(pos, struct sctp_transport, transports);
4208 memcpy(&temp, &from->ipaddr, sizeof(temp));
4209 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4210 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4211 if (space_left < addrlen)
4212 return -ENOMEM;
4213 if (copy_to_user(to, &temp, addrlen))
4214 return -EFAULT;
4215 to += addrlen;
4216 cnt++;
4217 space_left -= addrlen;
4218 }
4219
4220 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4221 return -EFAULT;
4222 bytes_copied = ((char __user *)to) - optval;
4223 if (put_user(bytes_copied, optlen))
4224 return -EFAULT;
4225
4226 return 0;
4227 }
4228
4229 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4230 char __user *optval,
4231 int __user *optlen)
4232 {
4233 sctp_assoc_t id;
4234 struct sctp_bind_addr *bp;
4235 struct sctp_association *asoc;
4236 struct sctp_sockaddr_entry *addr;
4237 int cnt = 0;
4238
4239 if (len < sizeof(sctp_assoc_t))
4240 return -EINVAL;
4241
4242 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4243 return -EFAULT;
4244
4245 /*
4246 * For UDP-style sockets, id specifies the association to query.
4247 * If the id field is set to the value '0' then the locally bound
4248 * addresses are returned without regard to any particular
4249 * association.
4250 */
4251 if (0 == id) {
4252 bp = &sctp_sk(sk)->ep->base.bind_addr;
4253 } else {
4254 asoc = sctp_id2assoc(sk, id);
4255 if (!asoc)
4256 return -EINVAL;
4257 bp = &asoc->base.bind_addr;
4258 }
4259
4260 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4261 * addresses from the global local address list.
4262 */
4263 if (sctp_list_single_entry(&bp->address_list)) {
4264 addr = list_entry(bp->address_list.next,
4265 struct sctp_sockaddr_entry, list);
4266 if (sctp_is_any(&addr->a)) {
4267 rcu_read_lock();
4268 list_for_each_entry_rcu(addr,
4269 &sctp_local_addr_list, list) {
4270 if (!addr->valid)
4271 continue;
4272
4273 if ((PF_INET == sk->sk_family) &&
4274 (AF_INET6 == addr->a.sa.sa_family))
4275 continue;
4276
4277 cnt++;
4278 }
4279 rcu_read_unlock();
4280 } else {
4281 cnt = 1;
4282 }
4283 goto done;
4284 }
4285
4286 /* Protection on the bound address list is not needed,
4287 * since in the socket option context we hold the socket lock,
4288 * so there is no way that the bound address list can change.
4289 */
4290 list_for_each_entry(addr, &bp->address_list, list) {
4291 cnt ++;
4292 }
4293 done:
4294 return cnt;
4295 }
4296
4297 /* Helper function that copies local addresses to user and returns the number
4298 * of addresses copied.
4299 */
4300 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4301 int max_addrs, void *to,
4302 int *bytes_copied)
4303 {
4304 struct sctp_sockaddr_entry *addr;
4305 union sctp_addr temp;
4306 int cnt = 0;
4307 int addrlen;
4308
4309 rcu_read_lock();
4310 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4311 if (!addr->valid)
4312 continue;
4313
4314 if ((PF_INET == sk->sk_family) &&
4315 (AF_INET6 == addr->a.sa.sa_family))
4316 continue;
4317 memcpy(&temp, &addr->a, sizeof(temp));
4318 if (!temp.v4.sin_port)
4319 temp.v4.sin_port = htons(port);
4320
4321 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4322 &temp);
4323 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4324 memcpy(to, &temp, addrlen);
4325
4326 to += addrlen;
4327 *bytes_copied += addrlen;
4328 cnt ++;
4329 if (cnt >= max_addrs) break;
4330 }
4331 rcu_read_unlock();
4332
4333 return cnt;
4334 }
4335
4336 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4337 size_t space_left, int *bytes_copied)
4338 {
4339 struct sctp_sockaddr_entry *addr;
4340 union sctp_addr temp;
4341 int cnt = 0;
4342 int addrlen;
4343
4344 rcu_read_lock();
4345 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4346 if (!addr->valid)
4347 continue;
4348
4349 if ((PF_INET == sk->sk_family) &&
4350 (AF_INET6 == addr->a.sa.sa_family))
4351 continue;
4352 memcpy(&temp, &addr->a, sizeof(temp));
4353 if (!temp.v4.sin_port)
4354 temp.v4.sin_port = htons(port);
4355
4356 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4357 &temp);
4358 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4359 if (space_left < addrlen) {
4360 cnt = -ENOMEM;
4361 break;
4362 }
4363 memcpy(to, &temp, addrlen);
4364
4365 to += addrlen;
4366 cnt ++;
4367 space_left -= addrlen;
4368 *bytes_copied += addrlen;
4369 }
4370 rcu_read_unlock();
4371
4372 return cnt;
4373 }
4374
4375 /* Old API for getting list of local addresses. Does not work for 32-bit
4376 * programs running on a 64-bit kernel
4377 */
4378 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4379 char __user *optval, int __user *optlen)
4380 {
4381 struct sctp_bind_addr *bp;
4382 struct sctp_association *asoc;
4383 int cnt = 0;
4384 struct sctp_getaddrs_old getaddrs;
4385 struct sctp_sockaddr_entry *addr;
4386 void __user *to;
4387 union sctp_addr temp;
4388 struct sctp_sock *sp = sctp_sk(sk);
4389 int addrlen;
4390 int err = 0;
4391 void *addrs;
4392 void *buf;
4393 int bytes_copied = 0;
4394
4395 if (len < sizeof(struct sctp_getaddrs_old))
4396 return -EINVAL;
4397
4398 len = sizeof(struct sctp_getaddrs_old);
4399 if (copy_from_user(&getaddrs, optval, len))
4400 return -EFAULT;
4401
4402 if (getaddrs.addr_num <= 0) return -EINVAL;
4403 /*
4404 * For UDP-style sockets, id specifies the association to query.
4405 * If the id field is set to the value '0' then the locally bound
4406 * addresses are returned without regard to any particular
4407 * association.
4408 */
4409 if (0 == getaddrs.assoc_id) {
4410 bp = &sctp_sk(sk)->ep->base.bind_addr;
4411 } else {
4412 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4413 if (!asoc)
4414 return -EINVAL;
4415 bp = &asoc->base.bind_addr;
4416 }
4417
4418 to = getaddrs.addrs;
4419
4420 /* Allocate space for a local instance of packed array to hold all
4421 * the data. We store addresses here first and then put write them
4422 * to the user in one shot.
4423 */
4424 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4425 GFP_KERNEL);
4426 if (!addrs)
4427 return -ENOMEM;
4428
4429 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4430 * addresses from the global local address list.
4431 */
4432 if (sctp_list_single_entry(&bp->address_list)) {
4433 addr = list_entry(bp->address_list.next,
4434 struct sctp_sockaddr_entry, list);
4435 if (sctp_is_any(&addr->a)) {
4436 cnt = sctp_copy_laddrs_old(sk, bp->port,
4437 getaddrs.addr_num,
4438 addrs, &bytes_copied);
4439 goto copy_getaddrs;
4440 }
4441 }
4442
4443 buf = addrs;
4444 /* Protection on the bound address list is not needed since
4445 * in the socket option context we hold a socket lock and
4446 * thus the bound address list can't change.
4447 */
4448 list_for_each_entry(addr, &bp->address_list, list) {
4449 memcpy(&temp, &addr->a, sizeof(temp));
4450 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4451 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4452 memcpy(buf, &temp, addrlen);
4453 buf += addrlen;
4454 bytes_copied += addrlen;
4455 cnt ++;
4456 if (cnt >= getaddrs.addr_num) break;
4457 }
4458
4459 copy_getaddrs:
4460 /* copy the entire address list into the user provided space */
4461 if (copy_to_user(to, addrs, bytes_copied)) {
4462 err = -EFAULT;
4463 goto error;
4464 }
4465
4466 /* copy the leading structure back to user */
4467 getaddrs.addr_num = cnt;
4468 if (copy_to_user(optval, &getaddrs, len))
4469 err = -EFAULT;
4470
4471 error:
4472 kfree(addrs);
4473 return err;
4474 }
4475
4476 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4477 char __user *optval, int __user *optlen)
4478 {
4479 struct sctp_bind_addr *bp;
4480 struct sctp_association *asoc;
4481 int cnt = 0;
4482 struct sctp_getaddrs getaddrs;
4483 struct sctp_sockaddr_entry *addr;
4484 void __user *to;
4485 union sctp_addr temp;
4486 struct sctp_sock *sp = sctp_sk(sk);
4487 int addrlen;
4488 int err = 0;
4489 size_t space_left;
4490 int bytes_copied = 0;
4491 void *addrs;
4492 void *buf;
4493
4494 if (len < sizeof(struct sctp_getaddrs))
4495 return -EINVAL;
4496
4497 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4498 return -EFAULT;
4499
4500 /*
4501 * For UDP-style sockets, id specifies the association to query.
4502 * If the id field is set to the value '0' then the locally bound
4503 * addresses are returned without regard to any particular
4504 * association.
4505 */
4506 if (0 == getaddrs.assoc_id) {
4507 bp = &sctp_sk(sk)->ep->base.bind_addr;
4508 } else {
4509 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4510 if (!asoc)
4511 return -EINVAL;
4512 bp = &asoc->base.bind_addr;
4513 }
4514
4515 to = optval + offsetof(struct sctp_getaddrs,addrs);
4516 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4517
4518 addrs = kmalloc(space_left, GFP_KERNEL);
4519 if (!addrs)
4520 return -ENOMEM;
4521
4522 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4523 * addresses from the global local address list.
4524 */
4525 if (sctp_list_single_entry(&bp->address_list)) {
4526 addr = list_entry(bp->address_list.next,
4527 struct sctp_sockaddr_entry, list);
4528 if (sctp_is_any(&addr->a)) {
4529 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4530 space_left, &bytes_copied);
4531 if (cnt < 0) {
4532 err = cnt;
4533 goto out;
4534 }
4535 goto copy_getaddrs;
4536 }
4537 }
4538
4539 buf = addrs;
4540 /* Protection on the bound address list is not needed since
4541 * in the socket option context we hold a socket lock and
4542 * thus the bound address list can't change.
4543 */
4544 list_for_each_entry(addr, &bp->address_list, list) {
4545 memcpy(&temp, &addr->a, sizeof(temp));
4546 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4547 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4548 if (space_left < addrlen) {
4549 err = -ENOMEM; /*fixme: right error?*/
4550 goto out;
4551 }
4552 memcpy(buf, &temp, addrlen);
4553 buf += addrlen;
4554 bytes_copied += addrlen;
4555 cnt ++;
4556 space_left -= addrlen;
4557 }
4558
4559 copy_getaddrs:
4560 if (copy_to_user(to, addrs, bytes_copied)) {
4561 err = -EFAULT;
4562 goto out;
4563 }
4564 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4565 err = -EFAULT;
4566 goto out;
4567 }
4568 if (put_user(bytes_copied, optlen))
4569 err = -EFAULT;
4570 out:
4571 kfree(addrs);
4572 return err;
4573 }
4574
4575 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4576 *
4577 * Requests that the local SCTP stack use the enclosed peer address as
4578 * the association primary. The enclosed address must be one of the
4579 * association peer's addresses.
4580 */
4581 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4582 char __user *optval, int __user *optlen)
4583 {
4584 struct sctp_prim prim;
4585 struct sctp_association *asoc;
4586 struct sctp_sock *sp = sctp_sk(sk);
4587
4588 if (len < sizeof(struct sctp_prim))
4589 return -EINVAL;
4590
4591 len = sizeof(struct sctp_prim);
4592
4593 if (copy_from_user(&prim, optval, len))
4594 return -EFAULT;
4595
4596 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4597 if (!asoc)
4598 return -EINVAL;
4599
4600 if (!asoc->peer.primary_path)
4601 return -ENOTCONN;
4602
4603 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4604 asoc->peer.primary_path->af_specific->sockaddr_len);
4605
4606 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4607 (union sctp_addr *)&prim.ssp_addr);
4608
4609 if (put_user(len, optlen))
4610 return -EFAULT;
4611 if (copy_to_user(optval, &prim, len))
4612 return -EFAULT;
4613
4614 return 0;
4615 }
4616
4617 /*
4618 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4619 *
4620 * Requests that the local endpoint set the specified Adaptation Layer
4621 * Indication parameter for all future INIT and INIT-ACK exchanges.
4622 */
4623 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4624 char __user *optval, int __user *optlen)
4625 {
4626 struct sctp_setadaptation adaptation;
4627
4628 if (len < sizeof(struct sctp_setadaptation))
4629 return -EINVAL;
4630
4631 len = sizeof(struct sctp_setadaptation);
4632
4633 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4634
4635 if (put_user(len, optlen))
4636 return -EFAULT;
4637 if (copy_to_user(optval, &adaptation, len))
4638 return -EFAULT;
4639
4640 return 0;
4641 }
4642
4643 /*
4644 *
4645 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4646 *
4647 * Applications that wish to use the sendto() system call may wish to
4648 * specify a default set of parameters that would normally be supplied
4649 * through the inclusion of ancillary data. This socket option allows
4650 * such an application to set the default sctp_sndrcvinfo structure.
4651
4652
4653 * The application that wishes to use this socket option simply passes
4654 * in to this call the sctp_sndrcvinfo structure defined in Section
4655 * 5.2.2) The input parameters accepted by this call include
4656 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4657 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4658 * to this call if the caller is using the UDP model.
4659 *
4660 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4661 */
4662 static int sctp_getsockopt_default_send_param(struct sock *sk,
4663 int len, char __user *optval,
4664 int __user *optlen)
4665 {
4666 struct sctp_sndrcvinfo info;
4667 struct sctp_association *asoc;
4668 struct sctp_sock *sp = sctp_sk(sk);
4669
4670 if (len < sizeof(struct sctp_sndrcvinfo))
4671 return -EINVAL;
4672
4673 len = sizeof(struct sctp_sndrcvinfo);
4674
4675 if (copy_from_user(&info, optval, len))
4676 return -EFAULT;
4677
4678 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4679 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4680 return -EINVAL;
4681
4682 if (asoc) {
4683 info.sinfo_stream = asoc->default_stream;
4684 info.sinfo_flags = asoc->default_flags;
4685 info.sinfo_ppid = asoc->default_ppid;
4686 info.sinfo_context = asoc->default_context;
4687 info.sinfo_timetolive = asoc->default_timetolive;
4688 } else {
4689 info.sinfo_stream = sp->default_stream;
4690 info.sinfo_flags = sp->default_flags;
4691 info.sinfo_ppid = sp->default_ppid;
4692 info.sinfo_context = sp->default_context;
4693 info.sinfo_timetolive = sp->default_timetolive;
4694 }
4695
4696 if (put_user(len, optlen))
4697 return -EFAULT;
4698 if (copy_to_user(optval, &info, len))
4699 return -EFAULT;
4700
4701 return 0;
4702 }
4703
4704 /*
4705 *
4706 * 7.1.5 SCTP_NODELAY
4707 *
4708 * Turn on/off any Nagle-like algorithm. This means that packets are
4709 * generally sent as soon as possible and no unnecessary delays are
4710 * introduced, at the cost of more packets in the network. Expects an
4711 * integer boolean flag.
4712 */
4713
4714 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4715 char __user *optval, int __user *optlen)
4716 {
4717 int val;
4718
4719 if (len < sizeof(int))
4720 return -EINVAL;
4721
4722 len = sizeof(int);
4723 val = (sctp_sk(sk)->nodelay == 1);
4724 if (put_user(len, optlen))
4725 return -EFAULT;
4726 if (copy_to_user(optval, &val, len))
4727 return -EFAULT;
4728 return 0;
4729 }
4730
4731 /*
4732 *
4733 * 7.1.1 SCTP_RTOINFO
4734 *
4735 * The protocol parameters used to initialize and bound retransmission
4736 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4737 * and modify these parameters.
4738 * All parameters are time values, in milliseconds. A value of 0, when
4739 * modifying the parameters, indicates that the current value should not
4740 * be changed.
4741 *
4742 */
4743 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4744 char __user *optval,
4745 int __user *optlen) {
4746 struct sctp_rtoinfo rtoinfo;
4747 struct sctp_association *asoc;
4748
4749 if (len < sizeof (struct sctp_rtoinfo))
4750 return -EINVAL;
4751
4752 len = sizeof(struct sctp_rtoinfo);
4753
4754 if (copy_from_user(&rtoinfo, optval, len))
4755 return -EFAULT;
4756
4757 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4758
4759 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4760 return -EINVAL;
4761
4762 /* Values corresponding to the specific association. */
4763 if (asoc) {
4764 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4765 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4766 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4767 } else {
4768 /* Values corresponding to the endpoint. */
4769 struct sctp_sock *sp = sctp_sk(sk);
4770
4771 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4772 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4773 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4774 }
4775
4776 if (put_user(len, optlen))
4777 return -EFAULT;
4778
4779 if (copy_to_user(optval, &rtoinfo, len))
4780 return -EFAULT;
4781
4782 return 0;
4783 }
4784
4785 /*
4786 *
4787 * 7.1.2 SCTP_ASSOCINFO
4788 *
4789 * This option is used to tune the maximum retransmission attempts
4790 * of the association.
4791 * Returns an error if the new association retransmission value is
4792 * greater than the sum of the retransmission value of the peer.
4793 * See [SCTP] for more information.
4794 *
4795 */
4796 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4797 char __user *optval,
4798 int __user *optlen)
4799 {
4800
4801 struct sctp_assocparams assocparams;
4802 struct sctp_association *asoc;
4803 struct list_head *pos;
4804 int cnt = 0;
4805
4806 if (len < sizeof (struct sctp_assocparams))
4807 return -EINVAL;
4808
4809 len = sizeof(struct sctp_assocparams);
4810
4811 if (copy_from_user(&assocparams, optval, len))
4812 return -EFAULT;
4813
4814 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4815
4816 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4817 return -EINVAL;
4818
4819 /* Values correspoinding to the specific association */
4820 if (asoc) {
4821 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4822 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4823 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4824 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4825 * 1000) +
4826 (asoc->cookie_life.tv_usec
4827 / 1000);
4828
4829 list_for_each(pos, &asoc->peer.transport_addr_list) {
4830 cnt ++;
4831 }
4832
4833 assocparams.sasoc_number_peer_destinations = cnt;
4834 } else {
4835 /* Values corresponding to the endpoint */
4836 struct sctp_sock *sp = sctp_sk(sk);
4837
4838 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4839 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4840 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4841 assocparams.sasoc_cookie_life =
4842 sp->assocparams.sasoc_cookie_life;
4843 assocparams.sasoc_number_peer_destinations =
4844 sp->assocparams.
4845 sasoc_number_peer_destinations;
4846 }
4847
4848 if (put_user(len, optlen))
4849 return -EFAULT;
4850
4851 if (copy_to_user(optval, &assocparams, len))
4852 return -EFAULT;
4853
4854 return 0;
4855 }
4856
4857 /*
4858 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4859 *
4860 * This socket option is a boolean flag which turns on or off mapped V4
4861 * addresses. If this option is turned on and the socket is type
4862 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4863 * If this option is turned off, then no mapping will be done of V4
4864 * addresses and a user will receive both PF_INET6 and PF_INET type
4865 * addresses on the socket.
4866 */
4867 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4868 char __user *optval, int __user *optlen)
4869 {
4870 int val;
4871 struct sctp_sock *sp = sctp_sk(sk);
4872
4873 if (len < sizeof(int))
4874 return -EINVAL;
4875
4876 len = sizeof(int);
4877 val = sp->v4mapped;
4878 if (put_user(len, optlen))
4879 return -EFAULT;
4880 if (copy_to_user(optval, &val, len))
4881 return -EFAULT;
4882
4883 return 0;
4884 }
4885
4886 /*
4887 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4888 * (chapter and verse is quoted at sctp_setsockopt_context())
4889 */
4890 static int sctp_getsockopt_context(struct sock *sk, int len,
4891 char __user *optval, int __user *optlen)
4892 {
4893 struct sctp_assoc_value params;
4894 struct sctp_sock *sp;
4895 struct sctp_association *asoc;
4896
4897 if (len < sizeof(struct sctp_assoc_value))
4898 return -EINVAL;
4899
4900 len = sizeof(struct sctp_assoc_value);
4901
4902 if (copy_from_user(&params, optval, len))
4903 return -EFAULT;
4904
4905 sp = sctp_sk(sk);
4906
4907 if (params.assoc_id != 0) {
4908 asoc = sctp_id2assoc(sk, params.assoc_id);
4909 if (!asoc)
4910 return -EINVAL;
4911 params.assoc_value = asoc->default_rcv_context;
4912 } else {
4913 params.assoc_value = sp->default_rcv_context;
4914 }
4915
4916 if (put_user(len, optlen))
4917 return -EFAULT;
4918 if (copy_to_user(optval, &params, len))
4919 return -EFAULT;
4920
4921 return 0;
4922 }
4923
4924 /*
4925 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4926 *
4927 * This socket option specifies the maximum size to put in any outgoing
4928 * SCTP chunk. If a message is larger than this size it will be
4929 * fragmented by SCTP into the specified size. Note that the underlying
4930 * SCTP implementation may fragment into smaller sized chunks when the
4931 * PMTU of the underlying association is smaller than the value set by
4932 * the user.
4933 */
4934 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4935 char __user *optval, int __user *optlen)
4936 {
4937 int val;
4938
4939 if (len < sizeof(int))
4940 return -EINVAL;
4941
4942 len = sizeof(int);
4943
4944 val = sctp_sk(sk)->user_frag;
4945 if (put_user(len, optlen))
4946 return -EFAULT;
4947 if (copy_to_user(optval, &val, len))
4948 return -EFAULT;
4949
4950 return 0;
4951 }
4952
4953 /*
4954 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4955 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4956 */
4957 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4958 char __user *optval, int __user *optlen)
4959 {
4960 int val;
4961
4962 if (len < sizeof(int))
4963 return -EINVAL;
4964
4965 len = sizeof(int);
4966
4967 val = sctp_sk(sk)->frag_interleave;
4968 if (put_user(len, optlen))
4969 return -EFAULT;
4970 if (copy_to_user(optval, &val, len))
4971 return -EFAULT;
4972
4973 return 0;
4974 }
4975
4976 /*
4977 * 7.1.25. Set or Get the sctp partial delivery point
4978 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4979 */
4980 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4981 char __user *optval,
4982 int __user *optlen)
4983 {
4984 u32 val;
4985
4986 if (len < sizeof(u32))
4987 return -EINVAL;
4988
4989 len = sizeof(u32);
4990
4991 val = sctp_sk(sk)->pd_point;
4992 if (put_user(len, optlen))
4993 return -EFAULT;
4994 if (copy_to_user(optval, &val, len))
4995 return -EFAULT;
4996
4997 return -ENOTSUPP;
4998 }
4999
5000 /*
5001 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5002 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5003 */
5004 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5005 char __user *optval,
5006 int __user *optlen)
5007 {
5008 int val;
5009
5010 if (len < sizeof(int))
5011 return -EINVAL;
5012
5013 len = sizeof(int);
5014
5015 val = sctp_sk(sk)->max_burst;
5016 if (put_user(len, optlen))
5017 return -EFAULT;
5018 if (copy_to_user(optval, &val, len))
5019 return -EFAULT;
5020
5021 return -ENOTSUPP;
5022 }
5023
5024 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5025 char __user *optval, int __user *optlen)
5026 {
5027 struct sctp_hmac_algo_param *hmacs;
5028 __u16 param_len;
5029
5030 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5031 param_len = ntohs(hmacs->param_hdr.length);
5032
5033 if (len < param_len)
5034 return -EINVAL;
5035 if (put_user(len, optlen))
5036 return -EFAULT;
5037 if (copy_to_user(optval, hmacs->hmac_ids, len))
5038 return -EFAULT;
5039
5040 return 0;
5041 }
5042
5043 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5044 char __user *optval, int __user *optlen)
5045 {
5046 struct sctp_authkeyid val;
5047 struct sctp_association *asoc;
5048
5049 if (len < sizeof(struct sctp_authkeyid))
5050 return -EINVAL;
5051 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5052 return -EFAULT;
5053
5054 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5055 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5056 return -EINVAL;
5057
5058 if (asoc)
5059 val.scact_keynumber = asoc->active_key_id;
5060 else
5061 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5062
5063 return 0;
5064 }
5065
5066 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5067 char __user *optval, int __user *optlen)
5068 {
5069 struct sctp_authchunks __user *p = (void __user *)optval;
5070 struct sctp_authchunks val;
5071 struct sctp_association *asoc;
5072 struct sctp_chunks_param *ch;
5073 u32 num_chunks;
5074 char __user *to;
5075
5076 if (len <= sizeof(struct sctp_authchunks))
5077 return -EINVAL;
5078
5079 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5080 return -EFAULT;
5081
5082 to = p->gauth_chunks;
5083 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5084 if (!asoc)
5085 return -EINVAL;
5086
5087 ch = asoc->peer.peer_chunks;
5088
5089 /* See if the user provided enough room for all the data */
5090 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5091 if (len < num_chunks)
5092 return -EINVAL;
5093
5094 len = num_chunks;
5095 if (put_user(len, optlen))
5096 return -EFAULT;
5097 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5098 return -EFAULT;
5099 if (copy_to_user(to, ch->chunks, len))
5100 return -EFAULT;
5101
5102 return 0;
5103 }
5104
5105 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5106 char __user *optval, int __user *optlen)
5107 {
5108 struct sctp_authchunks __user *p = (void __user *)optval;
5109 struct sctp_authchunks val;
5110 struct sctp_association *asoc;
5111 struct sctp_chunks_param *ch;
5112 u32 num_chunks;
5113 char __user *to;
5114
5115 if (len <= sizeof(struct sctp_authchunks))
5116 return -EINVAL;
5117
5118 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5119 return -EFAULT;
5120
5121 to = p->gauth_chunks;
5122 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5123 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5124 return -EINVAL;
5125
5126 if (asoc)
5127 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5128 else
5129 ch = sctp_sk(sk)->ep->auth_chunk_list;
5130
5131 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5132 if (len < num_chunks)
5133 return -EINVAL;
5134
5135 len = num_chunks;
5136 if (put_user(len, optlen))
5137 return -EFAULT;
5138 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5139 return -EFAULT;
5140 if (copy_to_user(to, ch->chunks, len))
5141 return -EFAULT;
5142
5143 return 0;
5144 }
5145
5146 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5147 char __user *optval, int __user *optlen)
5148 {
5149 int retval = 0;
5150 int len;
5151
5152 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5153 sk, optname);
5154
5155 /* I can hardly begin to describe how wrong this is. This is
5156 * so broken as to be worse than useless. The API draft
5157 * REALLY is NOT helpful here... I am not convinced that the
5158 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5159 * are at all well-founded.
5160 */
5161 if (level != SOL_SCTP) {
5162 struct sctp_af *af = sctp_sk(sk)->pf->af;
5163
5164 retval = af->getsockopt(sk, level, optname, optval, optlen);
5165 return retval;
5166 }
5167
5168 if (get_user(len, optlen))
5169 return -EFAULT;
5170
5171 sctp_lock_sock(sk);
5172
5173 switch (optname) {
5174 case SCTP_STATUS:
5175 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5176 break;
5177 case SCTP_DISABLE_FRAGMENTS:
5178 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5179 optlen);
5180 break;
5181 case SCTP_EVENTS:
5182 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5183 break;
5184 case SCTP_AUTOCLOSE:
5185 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5186 break;
5187 case SCTP_SOCKOPT_PEELOFF:
5188 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5189 break;
5190 case SCTP_PEER_ADDR_PARAMS:
5191 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5192 optlen);
5193 break;
5194 case SCTP_DELAYED_ACK_TIME:
5195 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
5196 optlen);
5197 break;
5198 case SCTP_INITMSG:
5199 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5200 break;
5201 case SCTP_GET_PEER_ADDRS_NUM_OLD:
5202 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5203 optlen);
5204 break;
5205 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5206 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5207 optlen);
5208 break;
5209 case SCTP_GET_PEER_ADDRS_OLD:
5210 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5211 optlen);
5212 break;
5213 case SCTP_GET_LOCAL_ADDRS_OLD:
5214 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5215 optlen);
5216 break;
5217 case SCTP_GET_PEER_ADDRS:
5218 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5219 optlen);
5220 break;
5221 case SCTP_GET_LOCAL_ADDRS:
5222 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5223 optlen);
5224 break;
5225 case SCTP_DEFAULT_SEND_PARAM:
5226 retval = sctp_getsockopt_default_send_param(sk, len,
5227 optval, optlen);
5228 break;
5229 case SCTP_PRIMARY_ADDR:
5230 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5231 break;
5232 case SCTP_NODELAY:
5233 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5234 break;
5235 case SCTP_RTOINFO:
5236 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5237 break;
5238 case SCTP_ASSOCINFO:
5239 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5240 break;
5241 case SCTP_I_WANT_MAPPED_V4_ADDR:
5242 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5243 break;
5244 case SCTP_MAXSEG:
5245 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5246 break;
5247 case SCTP_GET_PEER_ADDR_INFO:
5248 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5249 optlen);
5250 break;
5251 case SCTP_ADAPTATION_LAYER:
5252 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5253 optlen);
5254 break;
5255 case SCTP_CONTEXT:
5256 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5257 break;
5258 case SCTP_FRAGMENT_INTERLEAVE:
5259 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5260 optlen);
5261 break;
5262 case SCTP_PARTIAL_DELIVERY_POINT:
5263 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5264 optlen);
5265 break;
5266 case SCTP_MAX_BURST:
5267 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5268 break;
5269 case SCTP_AUTH_KEY:
5270 case SCTP_AUTH_CHUNK:
5271 case SCTP_AUTH_DELETE_KEY:
5272 retval = -EOPNOTSUPP;
5273 break;
5274 case SCTP_HMAC_IDENT:
5275 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5276 break;
5277 case SCTP_AUTH_ACTIVE_KEY:
5278 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5279 break;
5280 case SCTP_PEER_AUTH_CHUNKS:
5281 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5282 optlen);
5283 break;
5284 case SCTP_LOCAL_AUTH_CHUNKS:
5285 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5286 optlen);
5287 break;
5288 default:
5289 retval = -ENOPROTOOPT;
5290 break;
5291 }
5292
5293 sctp_release_sock(sk);
5294 return retval;
5295 }
5296
5297 static void sctp_hash(struct sock *sk)
5298 {
5299 /* STUB */
5300 }
5301
5302 static void sctp_unhash(struct sock *sk)
5303 {
5304 /* STUB */
5305 }
5306
5307 /* Check if port is acceptable. Possibly find first available port.
5308 *
5309 * The port hash table (contained in the 'global' SCTP protocol storage
5310 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5311 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5312 * list (the list number is the port number hashed out, so as you
5313 * would expect from a hash function, all the ports in a given list have
5314 * such a number that hashes out to the same list number; you were
5315 * expecting that, right?); so each list has a set of ports, with a
5316 * link to the socket (struct sock) that uses it, the port number and
5317 * a fastreuse flag (FIXME: NPI ipg).
5318 */
5319 static struct sctp_bind_bucket *sctp_bucket_create(
5320 struct sctp_bind_hashbucket *head, unsigned short snum);
5321
5322 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5323 {
5324 struct sctp_bind_hashbucket *head; /* hash list */
5325 struct sctp_bind_bucket *pp; /* hash list port iterator */
5326 struct hlist_node *node;
5327 unsigned short snum;
5328 int ret;
5329
5330 snum = ntohs(addr->v4.sin_port);
5331
5332 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5333 sctp_local_bh_disable();
5334
5335 if (snum == 0) {
5336 /* Search for an available port. */
5337 int low, high, remaining, index;
5338 unsigned int rover;
5339
5340 inet_get_local_port_range(&low, &high);
5341 remaining = (high - low) + 1;
5342 rover = net_random() % remaining + low;
5343
5344 do {
5345 rover++;
5346 if ((rover < low) || (rover > high))
5347 rover = low;
5348 index = sctp_phashfn(rover);
5349 head = &sctp_port_hashtable[index];
5350 sctp_spin_lock(&head->lock);
5351 sctp_for_each_hentry(pp, node, &head->chain)
5352 if (pp->port == rover)
5353 goto next;
5354 break;
5355 next:
5356 sctp_spin_unlock(&head->lock);
5357 } while (--remaining > 0);
5358
5359 /* Exhausted local port range during search? */
5360 ret = 1;
5361 if (remaining <= 0)
5362 goto fail;
5363
5364 /* OK, here is the one we will use. HEAD (the port
5365 * hash table list entry) is non-NULL and we hold it's
5366 * mutex.
5367 */
5368 snum = rover;
5369 } else {
5370 /* We are given an specific port number; we verify
5371 * that it is not being used. If it is used, we will
5372 * exahust the search in the hash list corresponding
5373 * to the port number (snum) - we detect that with the
5374 * port iterator, pp being NULL.
5375 */
5376 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5377 sctp_spin_lock(&head->lock);
5378 sctp_for_each_hentry(pp, node, &head->chain) {
5379 if (pp->port == snum)
5380 goto pp_found;
5381 }
5382 }
5383 pp = NULL;
5384 goto pp_not_found;
5385 pp_found:
5386 if (!hlist_empty(&pp->owner)) {
5387 /* We had a port hash table hit - there is an
5388 * available port (pp != NULL) and it is being
5389 * used by other socket (pp->owner not empty); that other
5390 * socket is going to be sk2.
5391 */
5392 int reuse = sk->sk_reuse;
5393 struct sock *sk2;
5394 struct hlist_node *node;
5395
5396 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5397 if (pp->fastreuse && sk->sk_reuse &&
5398 sk->sk_state != SCTP_SS_LISTENING)
5399 goto success;
5400
5401 /* Run through the list of sockets bound to the port
5402 * (pp->port) [via the pointers bind_next and
5403 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5404 * we get the endpoint they describe and run through
5405 * the endpoint's list of IP (v4 or v6) addresses,
5406 * comparing each of the addresses with the address of
5407 * the socket sk. If we find a match, then that means
5408 * that this port/socket (sk) combination are already
5409 * in an endpoint.
5410 */
5411 sk_for_each_bound(sk2, node, &pp->owner) {
5412 struct sctp_endpoint *ep2;
5413 ep2 = sctp_sk(sk2)->ep;
5414
5415 if (reuse && sk2->sk_reuse &&
5416 sk2->sk_state != SCTP_SS_LISTENING)
5417 continue;
5418
5419 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5420 sctp_sk(sk))) {
5421 ret = (long)sk2;
5422 goto fail_unlock;
5423 }
5424 }
5425 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5426 }
5427 pp_not_found:
5428 /* If there was a hash table miss, create a new port. */
5429 ret = 1;
5430 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5431 goto fail_unlock;
5432
5433 /* In either case (hit or miss), make sure fastreuse is 1 only
5434 * if sk->sk_reuse is too (that is, if the caller requested
5435 * SO_REUSEADDR on this socket -sk-).
5436 */
5437 if (hlist_empty(&pp->owner)) {
5438 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5439 pp->fastreuse = 1;
5440 else
5441 pp->fastreuse = 0;
5442 } else if (pp->fastreuse &&
5443 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5444 pp->fastreuse = 0;
5445
5446 /* We are set, so fill up all the data in the hash table
5447 * entry, tie the socket list information with the rest of the
5448 * sockets FIXME: Blurry, NPI (ipg).
5449 */
5450 success:
5451 if (!sctp_sk(sk)->bind_hash) {
5452 inet_sk(sk)->num = snum;
5453 sk_add_bind_node(sk, &pp->owner);
5454 sctp_sk(sk)->bind_hash = pp;
5455 }
5456 ret = 0;
5457
5458 fail_unlock:
5459 sctp_spin_unlock(&head->lock);
5460
5461 fail:
5462 sctp_local_bh_enable();
5463 return ret;
5464 }
5465
5466 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5467 * port is requested.
5468 */
5469 static int sctp_get_port(struct sock *sk, unsigned short snum)
5470 {
5471 long ret;
5472 union sctp_addr addr;
5473 struct sctp_af *af = sctp_sk(sk)->pf->af;
5474
5475 /* Set up a dummy address struct from the sk. */
5476 af->from_sk(&addr, sk);
5477 addr.v4.sin_port = htons(snum);
5478
5479 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5480 ret = sctp_get_port_local(sk, &addr);
5481
5482 return (ret ? 1 : 0);
5483 }
5484
5485 /*
5486 * 3.1.3 listen() - UDP Style Syntax
5487 *
5488 * By default, new associations are not accepted for UDP style sockets.
5489 * An application uses listen() to mark a socket as being able to
5490 * accept new associations.
5491 */
5492 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5493 {
5494 struct sctp_sock *sp = sctp_sk(sk);
5495 struct sctp_endpoint *ep = sp->ep;
5496
5497 /* Only UDP style sockets that are not peeled off are allowed to
5498 * listen().
5499 */
5500 if (!sctp_style(sk, UDP))
5501 return -EINVAL;
5502
5503 /* If backlog is zero, disable listening. */
5504 if (!backlog) {
5505 if (sctp_sstate(sk, CLOSED))
5506 return 0;
5507
5508 sctp_unhash_endpoint(ep);
5509 sk->sk_state = SCTP_SS_CLOSED;
5510 return 0;
5511 }
5512
5513 /* Return if we are already listening. */
5514 if (sctp_sstate(sk, LISTENING))
5515 return 0;
5516
5517 /*
5518 * If a bind() or sctp_bindx() is not called prior to a listen()
5519 * call that allows new associations to be accepted, the system
5520 * picks an ephemeral port and will choose an address set equivalent
5521 * to binding with a wildcard address.
5522 *
5523 * This is not currently spelled out in the SCTP sockets
5524 * extensions draft, but follows the practice as seen in TCP
5525 * sockets.
5526 *
5527 * Additionally, turn off fastreuse flag since we are not listening
5528 */
5529 sk->sk_state = SCTP_SS_LISTENING;
5530 if (!ep->base.bind_addr.port) {
5531 if (sctp_autobind(sk))
5532 return -EAGAIN;
5533 } else
5534 sctp_sk(sk)->bind_hash->fastreuse = 0;
5535
5536 sctp_hash_endpoint(ep);
5537 return 0;
5538 }
5539
5540 /*
5541 * 4.1.3 listen() - TCP Style Syntax
5542 *
5543 * Applications uses listen() to ready the SCTP endpoint for accepting
5544 * inbound associations.
5545 */
5546 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5547 {
5548 struct sctp_sock *sp = sctp_sk(sk);
5549 struct sctp_endpoint *ep = sp->ep;
5550
5551 /* If backlog is zero, disable listening. */
5552 if (!backlog) {
5553 if (sctp_sstate(sk, CLOSED))
5554 return 0;
5555
5556 sctp_unhash_endpoint(ep);
5557 sk->sk_state = SCTP_SS_CLOSED;
5558 return 0;
5559 }
5560
5561 if (sctp_sstate(sk, LISTENING))
5562 return 0;
5563
5564 /*
5565 * If a bind() or sctp_bindx() is not called prior to a listen()
5566 * call that allows new associations to be accepted, the system
5567 * picks an ephemeral port and will choose an address set equivalent
5568 * to binding with a wildcard address.
5569 *
5570 * This is not currently spelled out in the SCTP sockets
5571 * extensions draft, but follows the practice as seen in TCP
5572 * sockets.
5573 */
5574 sk->sk_state = SCTP_SS_LISTENING;
5575 if (!ep->base.bind_addr.port) {
5576 if (sctp_autobind(sk))
5577 return -EAGAIN;
5578 } else
5579 sctp_sk(sk)->bind_hash->fastreuse = 0;
5580
5581 sk->sk_max_ack_backlog = backlog;
5582 sctp_hash_endpoint(ep);
5583 return 0;
5584 }
5585
5586 /*
5587 * Move a socket to LISTENING state.
5588 */
5589 int sctp_inet_listen(struct socket *sock, int backlog)
5590 {
5591 struct sock *sk = sock->sk;
5592 struct crypto_hash *tfm = NULL;
5593 int err = -EINVAL;
5594
5595 if (unlikely(backlog < 0))
5596 goto out;
5597
5598 sctp_lock_sock(sk);
5599
5600 if (sock->state != SS_UNCONNECTED)
5601 goto out;
5602
5603 /* Allocate HMAC for generating cookie. */
5604 if (sctp_hmac_alg) {
5605 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5606 if (IS_ERR(tfm)) {
5607 if (net_ratelimit()) {
5608 printk(KERN_INFO
5609 "SCTP: failed to load transform for %s: %ld\n",
5610 sctp_hmac_alg, PTR_ERR(tfm));
5611 }
5612 err = -ENOSYS;
5613 goto out;
5614 }
5615 }
5616
5617 switch (sock->type) {
5618 case SOCK_SEQPACKET:
5619 err = sctp_seqpacket_listen(sk, backlog);
5620 break;
5621 case SOCK_STREAM:
5622 err = sctp_stream_listen(sk, backlog);
5623 break;
5624 default:
5625 break;
5626 }
5627
5628 if (err)
5629 goto cleanup;
5630
5631 /* Store away the transform reference. */
5632 sctp_sk(sk)->hmac = tfm;
5633 out:
5634 sctp_release_sock(sk);
5635 return err;
5636 cleanup:
5637 crypto_free_hash(tfm);
5638 goto out;
5639 }
5640
5641 /*
5642 * This function is done by modeling the current datagram_poll() and the
5643 * tcp_poll(). Note that, based on these implementations, we don't
5644 * lock the socket in this function, even though it seems that,
5645 * ideally, locking or some other mechanisms can be used to ensure
5646 * the integrity of the counters (sndbuf and wmem_alloc) used
5647 * in this place. We assume that we don't need locks either until proven
5648 * otherwise.
5649 *
5650 * Another thing to note is that we include the Async I/O support
5651 * here, again, by modeling the current TCP/UDP code. We don't have
5652 * a good way to test with it yet.
5653 */
5654 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5655 {
5656 struct sock *sk = sock->sk;
5657 struct sctp_sock *sp = sctp_sk(sk);
5658 unsigned int mask;
5659
5660 poll_wait(file, sk->sk_sleep, wait);
5661
5662 /* A TCP-style listening socket becomes readable when the accept queue
5663 * is not empty.
5664 */
5665 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5666 return (!list_empty(&sp->ep->asocs)) ?
5667 (POLLIN | POLLRDNORM) : 0;
5668
5669 mask = 0;
5670
5671 /* Is there any exceptional events? */
5672 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5673 mask |= POLLERR;
5674 if (sk->sk_shutdown & RCV_SHUTDOWN)
5675 mask |= POLLRDHUP;
5676 if (sk->sk_shutdown == SHUTDOWN_MASK)
5677 mask |= POLLHUP;
5678
5679 /* Is it readable? Reconsider this code with TCP-style support. */
5680 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5681 (sk->sk_shutdown & RCV_SHUTDOWN))
5682 mask |= POLLIN | POLLRDNORM;
5683
5684 /* The association is either gone or not ready. */
5685 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5686 return mask;
5687
5688 /* Is it writable? */
5689 if (sctp_writeable(sk)) {
5690 mask |= POLLOUT | POLLWRNORM;
5691 } else {
5692 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5693 /*
5694 * Since the socket is not locked, the buffer
5695 * might be made available after the writeable check and
5696 * before the bit is set. This could cause a lost I/O
5697 * signal. tcp_poll() has a race breaker for this race
5698 * condition. Based on their implementation, we put
5699 * in the following code to cover it as well.
5700 */
5701 if (sctp_writeable(sk))
5702 mask |= POLLOUT | POLLWRNORM;
5703 }
5704 return mask;
5705 }
5706
5707 /********************************************************************
5708 * 2nd Level Abstractions
5709 ********************************************************************/
5710
5711 static struct sctp_bind_bucket *sctp_bucket_create(
5712 struct sctp_bind_hashbucket *head, unsigned short snum)
5713 {
5714 struct sctp_bind_bucket *pp;
5715
5716 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5717 SCTP_DBG_OBJCNT_INC(bind_bucket);
5718 if (pp) {
5719 pp->port = snum;
5720 pp->fastreuse = 0;
5721 INIT_HLIST_HEAD(&pp->owner);
5722 hlist_add_head(&pp->node, &head->chain);
5723 }
5724 return pp;
5725 }
5726
5727 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5728 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5729 {
5730 if (pp && hlist_empty(&pp->owner)) {
5731 __hlist_del(&pp->node);
5732 kmem_cache_free(sctp_bucket_cachep, pp);
5733 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5734 }
5735 }
5736
5737 /* Release this socket's reference to a local port. */
5738 static inline void __sctp_put_port(struct sock *sk)
5739 {
5740 struct sctp_bind_hashbucket *head =
5741 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5742 struct sctp_bind_bucket *pp;
5743
5744 sctp_spin_lock(&head->lock);
5745 pp = sctp_sk(sk)->bind_hash;
5746 __sk_del_bind_node(sk);
5747 sctp_sk(sk)->bind_hash = NULL;
5748 inet_sk(sk)->num = 0;
5749 sctp_bucket_destroy(pp);
5750 sctp_spin_unlock(&head->lock);
5751 }
5752
5753 void sctp_put_port(struct sock *sk)
5754 {
5755 sctp_local_bh_disable();
5756 __sctp_put_port(sk);
5757 sctp_local_bh_enable();
5758 }
5759
5760 /*
5761 * The system picks an ephemeral port and choose an address set equivalent
5762 * to binding with a wildcard address.
5763 * One of those addresses will be the primary address for the association.
5764 * This automatically enables the multihoming capability of SCTP.
5765 */
5766 static int sctp_autobind(struct sock *sk)
5767 {
5768 union sctp_addr autoaddr;
5769 struct sctp_af *af;
5770 __be16 port;
5771
5772 /* Initialize a local sockaddr structure to INADDR_ANY. */
5773 af = sctp_sk(sk)->pf->af;
5774
5775 port = htons(inet_sk(sk)->num);
5776 af->inaddr_any(&autoaddr, port);
5777
5778 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5779 }
5780
5781 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5782 *
5783 * From RFC 2292
5784 * 4.2 The cmsghdr Structure *
5785 *
5786 * When ancillary data is sent or received, any number of ancillary data
5787 * objects can be specified by the msg_control and msg_controllen members of
5788 * the msghdr structure, because each object is preceded by
5789 * a cmsghdr structure defining the object's length (the cmsg_len member).
5790 * Historically Berkeley-derived implementations have passed only one object
5791 * at a time, but this API allows multiple objects to be
5792 * passed in a single call to sendmsg() or recvmsg(). The following example
5793 * shows two ancillary data objects in a control buffer.
5794 *
5795 * |<--------------------------- msg_controllen -------------------------->|
5796 * | |
5797 *
5798 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5799 *
5800 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5801 * | | |
5802 *
5803 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5804 *
5805 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5806 * | | | | |
5807 *
5808 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5809 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5810 *
5811 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5812 *
5813 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5814 * ^
5815 * |
5816 *
5817 * msg_control
5818 * points here
5819 */
5820 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5821 sctp_cmsgs_t *cmsgs)
5822 {
5823 struct cmsghdr *cmsg;
5824
5825 for (cmsg = CMSG_FIRSTHDR(msg);
5826 cmsg != NULL;
5827 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5828 if (!CMSG_OK(msg, cmsg))
5829 return -EINVAL;
5830
5831 /* Should we parse this header or ignore? */
5832 if (cmsg->cmsg_level != IPPROTO_SCTP)
5833 continue;
5834
5835 /* Strictly check lengths following example in SCM code. */
5836 switch (cmsg->cmsg_type) {
5837 case SCTP_INIT:
5838 /* SCTP Socket API Extension
5839 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5840 *
5841 * This cmsghdr structure provides information for
5842 * initializing new SCTP associations with sendmsg().
5843 * The SCTP_INITMSG socket option uses this same data
5844 * structure. This structure is not used for
5845 * recvmsg().
5846 *
5847 * cmsg_level cmsg_type cmsg_data[]
5848 * ------------ ------------ ----------------------
5849 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5850 */
5851 if (cmsg->cmsg_len !=
5852 CMSG_LEN(sizeof(struct sctp_initmsg)))
5853 return -EINVAL;
5854 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5855 break;
5856
5857 case SCTP_SNDRCV:
5858 /* SCTP Socket API Extension
5859 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5860 *
5861 * This cmsghdr structure specifies SCTP options for
5862 * sendmsg() and describes SCTP header information
5863 * about a received message through recvmsg().
5864 *
5865 * cmsg_level cmsg_type cmsg_data[]
5866 * ------------ ------------ ----------------------
5867 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5868 */
5869 if (cmsg->cmsg_len !=
5870 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5871 return -EINVAL;
5872
5873 cmsgs->info =
5874 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5875
5876 /* Minimally, validate the sinfo_flags. */
5877 if (cmsgs->info->sinfo_flags &
5878 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5879 SCTP_ABORT | SCTP_EOF))
5880 return -EINVAL;
5881 break;
5882
5883 default:
5884 return -EINVAL;
5885 }
5886 }
5887 return 0;
5888 }
5889
5890 /*
5891 * Wait for a packet..
5892 * Note: This function is the same function as in core/datagram.c
5893 * with a few modifications to make lksctp work.
5894 */
5895 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5896 {
5897 int error;
5898 DEFINE_WAIT(wait);
5899
5900 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5901
5902 /* Socket errors? */
5903 error = sock_error(sk);
5904 if (error)
5905 goto out;
5906
5907 if (!skb_queue_empty(&sk->sk_receive_queue))
5908 goto ready;
5909
5910 /* Socket shut down? */
5911 if (sk->sk_shutdown & RCV_SHUTDOWN)
5912 goto out;
5913
5914 /* Sequenced packets can come disconnected. If so we report the
5915 * problem.
5916 */
5917 error = -ENOTCONN;
5918
5919 /* Is there a good reason to think that we may receive some data? */
5920 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5921 goto out;
5922
5923 /* Handle signals. */
5924 if (signal_pending(current))
5925 goto interrupted;
5926
5927 /* Let another process have a go. Since we are going to sleep
5928 * anyway. Note: This may cause odd behaviors if the message
5929 * does not fit in the user's buffer, but this seems to be the
5930 * only way to honor MSG_DONTWAIT realistically.
5931 */
5932 sctp_release_sock(sk);
5933 *timeo_p = schedule_timeout(*timeo_p);
5934 sctp_lock_sock(sk);
5935
5936 ready:
5937 finish_wait(sk->sk_sleep, &wait);
5938 return 0;
5939
5940 interrupted:
5941 error = sock_intr_errno(*timeo_p);
5942
5943 out:
5944 finish_wait(sk->sk_sleep, &wait);
5945 *err = error;
5946 return error;
5947 }
5948
5949 /* Receive a datagram.
5950 * Note: This is pretty much the same routine as in core/datagram.c
5951 * with a few changes to make lksctp work.
5952 */
5953 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5954 int noblock, int *err)
5955 {
5956 int error;
5957 struct sk_buff *skb;
5958 long timeo;
5959
5960 timeo = sock_rcvtimeo(sk, noblock);
5961
5962 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5963 timeo, MAX_SCHEDULE_TIMEOUT);
5964
5965 do {
5966 /* Again only user level code calls this function,
5967 * so nothing interrupt level
5968 * will suddenly eat the receive_queue.
5969 *
5970 * Look at current nfs client by the way...
5971 * However, this function was corrent in any case. 8)
5972 */
5973 if (flags & MSG_PEEK) {
5974 spin_lock_bh(&sk->sk_receive_queue.lock);
5975 skb = skb_peek(&sk->sk_receive_queue);
5976 if (skb)
5977 atomic_inc(&skb->users);
5978 spin_unlock_bh(&sk->sk_receive_queue.lock);
5979 } else {
5980 skb = skb_dequeue(&sk->sk_receive_queue);
5981 }
5982
5983 if (skb)
5984 return skb;
5985
5986 /* Caller is allowed not to check sk->sk_err before calling. */
5987 error = sock_error(sk);
5988 if (error)
5989 goto no_packet;
5990
5991 if (sk->sk_shutdown & RCV_SHUTDOWN)
5992 break;
5993
5994 /* User doesn't want to wait. */
5995 error = -EAGAIN;
5996 if (!timeo)
5997 goto no_packet;
5998 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5999
6000 return NULL;
6001
6002 no_packet:
6003 *err = error;
6004 return NULL;
6005 }
6006
6007 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6008 static void __sctp_write_space(struct sctp_association *asoc)
6009 {
6010 struct sock *sk = asoc->base.sk;
6011 struct socket *sock = sk->sk_socket;
6012
6013 if ((sctp_wspace(asoc) > 0) && sock) {
6014 if (waitqueue_active(&asoc->wait))
6015 wake_up_interruptible(&asoc->wait);
6016
6017 if (sctp_writeable(sk)) {
6018 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6019 wake_up_interruptible(sk->sk_sleep);
6020
6021 /* Note that we try to include the Async I/O support
6022 * here by modeling from the current TCP/UDP code.
6023 * We have not tested with it yet.
6024 */
6025 if (sock->fasync_list &&
6026 !(sk->sk_shutdown & SEND_SHUTDOWN))
6027 sock_wake_async(sock,
6028 SOCK_WAKE_SPACE, POLL_OUT);
6029 }
6030 }
6031 }
6032
6033 /* Do accounting for the sndbuf space.
6034 * Decrement the used sndbuf space of the corresponding association by the
6035 * data size which was just transmitted(freed).
6036 */
6037 static void sctp_wfree(struct sk_buff *skb)
6038 {
6039 struct sctp_association *asoc;
6040 struct sctp_chunk *chunk;
6041 struct sock *sk;
6042
6043 /* Get the saved chunk pointer. */
6044 chunk = *((struct sctp_chunk **)(skb->cb));
6045 asoc = chunk->asoc;
6046 sk = asoc->base.sk;
6047 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6048 sizeof(struct sk_buff) +
6049 sizeof(struct sctp_chunk);
6050
6051 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6052
6053 /*
6054 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6055 */
6056 sk->sk_wmem_queued -= skb->truesize;
6057 sk_mem_uncharge(sk, skb->truesize);
6058
6059 sock_wfree(skb);
6060 __sctp_write_space(asoc);
6061
6062 sctp_association_put(asoc);
6063 }
6064
6065 /* Do accounting for the receive space on the socket.
6066 * Accounting for the association is done in ulpevent.c
6067 * We set this as a destructor for the cloned data skbs so that
6068 * accounting is done at the correct time.
6069 */
6070 void sctp_sock_rfree(struct sk_buff *skb)
6071 {
6072 struct sock *sk = skb->sk;
6073 struct sctp_ulpevent *event = sctp_skb2event(skb);
6074
6075 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6076
6077 /*
6078 * Mimic the behavior of sock_rfree
6079 */
6080 sk_mem_uncharge(sk, event->rmem_len);
6081 }
6082
6083
6084 /* Helper function to wait for space in the sndbuf. */
6085 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6086 size_t msg_len)
6087 {
6088 struct sock *sk = asoc->base.sk;
6089 int err = 0;
6090 long current_timeo = *timeo_p;
6091 DEFINE_WAIT(wait);
6092
6093 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6094 asoc, (long)(*timeo_p), msg_len);
6095
6096 /* Increment the association's refcnt. */
6097 sctp_association_hold(asoc);
6098
6099 /* Wait on the association specific sndbuf space. */
6100 for (;;) {
6101 prepare_to_wait_exclusive(&asoc->wait, &wait,
6102 TASK_INTERRUPTIBLE);
6103 if (!*timeo_p)
6104 goto do_nonblock;
6105 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6106 asoc->base.dead)
6107 goto do_error;
6108 if (signal_pending(current))
6109 goto do_interrupted;
6110 if (msg_len <= sctp_wspace(asoc))
6111 break;
6112
6113 /* Let another process have a go. Since we are going
6114 * to sleep anyway.
6115 */
6116 sctp_release_sock(sk);
6117 current_timeo = schedule_timeout(current_timeo);
6118 BUG_ON(sk != asoc->base.sk);
6119 sctp_lock_sock(sk);
6120
6121 *timeo_p = current_timeo;
6122 }
6123
6124 out:
6125 finish_wait(&asoc->wait, &wait);
6126
6127 /* Release the association's refcnt. */
6128 sctp_association_put(asoc);
6129
6130 return err;
6131
6132 do_error:
6133 err = -EPIPE;
6134 goto out;
6135
6136 do_interrupted:
6137 err = sock_intr_errno(*timeo_p);
6138 goto out;
6139
6140 do_nonblock:
6141 err = -EAGAIN;
6142 goto out;
6143 }
6144
6145 /* If socket sndbuf has changed, wake up all per association waiters. */
6146 void sctp_write_space(struct sock *sk)
6147 {
6148 struct sctp_association *asoc;
6149 struct list_head *pos;
6150
6151 /* Wake up the tasks in each wait queue. */
6152 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
6153 asoc = list_entry(pos, struct sctp_association, asocs);
6154 __sctp_write_space(asoc);
6155 }
6156 }
6157
6158 /* Is there any sndbuf space available on the socket?
6159 *
6160 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6161 * associations on the same socket. For a UDP-style socket with
6162 * multiple associations, it is possible for it to be "unwriteable"
6163 * prematurely. I assume that this is acceptable because
6164 * a premature "unwriteable" is better than an accidental "writeable" which
6165 * would cause an unwanted block under certain circumstances. For the 1-1
6166 * UDP-style sockets or TCP-style sockets, this code should work.
6167 * - Daisy
6168 */
6169 static int sctp_writeable(struct sock *sk)
6170 {
6171 int amt = 0;
6172
6173 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6174 if (amt < 0)
6175 amt = 0;
6176 return amt;
6177 }
6178
6179 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6180 * returns immediately with EINPROGRESS.
6181 */
6182 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6183 {
6184 struct sock *sk = asoc->base.sk;
6185 int err = 0;
6186 long current_timeo = *timeo_p;
6187 DEFINE_WAIT(wait);
6188
6189 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
6190 (long)(*timeo_p));
6191
6192 /* Increment the association's refcnt. */
6193 sctp_association_hold(asoc);
6194
6195 for (;;) {
6196 prepare_to_wait_exclusive(&asoc->wait, &wait,
6197 TASK_INTERRUPTIBLE);
6198 if (!*timeo_p)
6199 goto do_nonblock;
6200 if (sk->sk_shutdown & RCV_SHUTDOWN)
6201 break;
6202 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6203 asoc->base.dead)
6204 goto do_error;
6205 if (signal_pending(current))
6206 goto do_interrupted;
6207
6208 if (sctp_state(asoc, ESTABLISHED))
6209 break;
6210
6211 /* Let another process have a go. Since we are going
6212 * to sleep anyway.
6213 */
6214 sctp_release_sock(sk);
6215 current_timeo = schedule_timeout(current_timeo);
6216 sctp_lock_sock(sk);
6217
6218 *timeo_p = current_timeo;
6219 }
6220
6221 out:
6222 finish_wait(&asoc->wait, &wait);
6223
6224 /* Release the association's refcnt. */
6225 sctp_association_put(asoc);
6226
6227 return err;
6228
6229 do_error:
6230 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6231 err = -ETIMEDOUT;
6232 else
6233 err = -ECONNREFUSED;
6234 goto out;
6235
6236 do_interrupted:
6237 err = sock_intr_errno(*timeo_p);
6238 goto out;
6239
6240 do_nonblock:
6241 err = -EINPROGRESS;
6242 goto out;
6243 }
6244
6245 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6246 {
6247 struct sctp_endpoint *ep;
6248 int err = 0;
6249 DEFINE_WAIT(wait);
6250
6251 ep = sctp_sk(sk)->ep;
6252
6253
6254 for (;;) {
6255 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6256 TASK_INTERRUPTIBLE);
6257
6258 if (list_empty(&ep->asocs)) {
6259 sctp_release_sock(sk);
6260 timeo = schedule_timeout(timeo);
6261 sctp_lock_sock(sk);
6262 }
6263
6264 err = -EINVAL;
6265 if (!sctp_sstate(sk, LISTENING))
6266 break;
6267
6268 err = 0;
6269 if (!list_empty(&ep->asocs))
6270 break;
6271
6272 err = sock_intr_errno(timeo);
6273 if (signal_pending(current))
6274 break;
6275
6276 err = -EAGAIN;
6277 if (!timeo)
6278 break;
6279 }
6280
6281 finish_wait(sk->sk_sleep, &wait);
6282
6283 return err;
6284 }
6285
6286 static void sctp_wait_for_close(struct sock *sk, long timeout)
6287 {
6288 DEFINE_WAIT(wait);
6289
6290 do {
6291 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6292 if (list_empty(&sctp_sk(sk)->ep->asocs))
6293 break;
6294 sctp_release_sock(sk);
6295 timeout = schedule_timeout(timeout);
6296 sctp_lock_sock(sk);
6297 } while (!signal_pending(current) && timeout);
6298
6299 finish_wait(sk->sk_sleep, &wait);
6300 }
6301
6302 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6303 {
6304 struct sk_buff *frag;
6305
6306 if (!skb->data_len)
6307 goto done;
6308
6309 /* Don't forget the fragments. */
6310 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6311 sctp_sock_rfree_frag(frag);
6312
6313 done:
6314 sctp_sock_rfree(skb);
6315 }
6316
6317 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6318 {
6319 struct sk_buff *frag;
6320
6321 if (!skb->data_len)
6322 goto done;
6323
6324 /* Don't forget the fragments. */
6325 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6326 sctp_skb_set_owner_r_frag(frag, sk);
6327
6328 done:
6329 sctp_skb_set_owner_r(skb, sk);
6330 }
6331
6332 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6333 * and its messages to the newsk.
6334 */
6335 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6336 struct sctp_association *assoc,
6337 sctp_socket_type_t type)
6338 {
6339 struct sctp_sock *oldsp = sctp_sk(oldsk);
6340 struct sctp_sock *newsp = sctp_sk(newsk);
6341 struct sctp_bind_bucket *pp; /* hash list port iterator */
6342 struct sctp_endpoint *newep = newsp->ep;
6343 struct sk_buff *skb, *tmp;
6344 struct sctp_ulpevent *event;
6345 struct sctp_bind_hashbucket *head;
6346
6347 /* Migrate socket buffer sizes and all the socket level options to the
6348 * new socket.
6349 */
6350 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6351 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6352 /* Brute force copy old sctp opt. */
6353 inet_sk_copy_descendant(newsk, oldsk);
6354
6355 /* Restore the ep value that was overwritten with the above structure
6356 * copy.
6357 */
6358 newsp->ep = newep;
6359 newsp->hmac = NULL;
6360
6361 /* Hook this new socket in to the bind_hash list. */
6362 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6363 sctp_local_bh_disable();
6364 sctp_spin_lock(&head->lock);
6365 pp = sctp_sk(oldsk)->bind_hash;
6366 sk_add_bind_node(newsk, &pp->owner);
6367 sctp_sk(newsk)->bind_hash = pp;
6368 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6369 sctp_spin_unlock(&head->lock);
6370 sctp_local_bh_enable();
6371
6372 /* Copy the bind_addr list from the original endpoint to the new
6373 * endpoint so that we can handle restarts properly
6374 */
6375 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6376 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6377
6378 /* Move any messages in the old socket's receive queue that are for the
6379 * peeled off association to the new socket's receive queue.
6380 */
6381 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6382 event = sctp_skb2event(skb);
6383 if (event->asoc == assoc) {
6384 sctp_sock_rfree_frag(skb);
6385 __skb_unlink(skb, &oldsk->sk_receive_queue);
6386 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6387 sctp_skb_set_owner_r_frag(skb, newsk);
6388 }
6389 }
6390
6391 /* Clean up any messages pending delivery due to partial
6392 * delivery. Three cases:
6393 * 1) No partial deliver; no work.
6394 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6395 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6396 */
6397 skb_queue_head_init(&newsp->pd_lobby);
6398 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6399
6400 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6401 struct sk_buff_head *queue;
6402
6403 /* Decide which queue to move pd_lobby skbs to. */
6404 if (assoc->ulpq.pd_mode) {
6405 queue = &newsp->pd_lobby;
6406 } else
6407 queue = &newsk->sk_receive_queue;
6408
6409 /* Walk through the pd_lobby, looking for skbs that
6410 * need moved to the new socket.
6411 */
6412 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6413 event = sctp_skb2event(skb);
6414 if (event->asoc == assoc) {
6415 sctp_sock_rfree_frag(skb);
6416 __skb_unlink(skb, &oldsp->pd_lobby);
6417 __skb_queue_tail(queue, skb);
6418 sctp_skb_set_owner_r_frag(skb, newsk);
6419 }
6420 }
6421
6422 /* Clear up any skbs waiting for the partial
6423 * delivery to finish.
6424 */
6425 if (assoc->ulpq.pd_mode)
6426 sctp_clear_pd(oldsk, NULL);
6427
6428 }
6429
6430 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6431 sctp_sock_rfree_frag(skb);
6432 sctp_skb_set_owner_r_frag(skb, newsk);
6433 }
6434
6435 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6436 sctp_sock_rfree_frag(skb);
6437 sctp_skb_set_owner_r_frag(skb, newsk);
6438 }
6439
6440 /* Set the type of socket to indicate that it is peeled off from the
6441 * original UDP-style socket or created with the accept() call on a
6442 * TCP-style socket..
6443 */
6444 newsp->type = type;
6445
6446 /* Mark the new socket "in-use" by the user so that any packets
6447 * that may arrive on the association after we've moved it are
6448 * queued to the backlog. This prevents a potential race between
6449 * backlog processing on the old socket and new-packet processing
6450 * on the new socket.
6451 *
6452 * The caller has just allocated newsk so we can guarantee that other
6453 * paths won't try to lock it and then oldsk.
6454 */
6455 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6456 sctp_assoc_migrate(assoc, newsk);
6457
6458 /* If the association on the newsk is already closed before accept()
6459 * is called, set RCV_SHUTDOWN flag.
6460 */
6461 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6462 newsk->sk_shutdown |= RCV_SHUTDOWN;
6463
6464 newsk->sk_state = SCTP_SS_ESTABLISHED;
6465 sctp_release_sock(newsk);
6466 }
6467
6468
6469 DEFINE_PROTO_INUSE(sctp)
6470
6471 /* This proto struct describes the ULP interface for SCTP. */
6472 struct proto sctp_prot = {
6473 .name = "SCTP",
6474 .owner = THIS_MODULE,
6475 .close = sctp_close,
6476 .connect = sctp_connect,
6477 .disconnect = sctp_disconnect,
6478 .accept = sctp_accept,
6479 .ioctl = sctp_ioctl,
6480 .init = sctp_init_sock,
6481 .destroy = sctp_destroy_sock,
6482 .shutdown = sctp_shutdown,
6483 .setsockopt = sctp_setsockopt,
6484 .getsockopt = sctp_getsockopt,
6485 .sendmsg = sctp_sendmsg,
6486 .recvmsg = sctp_recvmsg,
6487 .bind = sctp_bind,
6488 .backlog_rcv = sctp_backlog_rcv,
6489 .hash = sctp_hash,
6490 .unhash = sctp_unhash,
6491 .get_port = sctp_get_port,
6492 .obj_size = sizeof(struct sctp_sock),
6493 .sysctl_mem = sysctl_sctp_mem,
6494 .sysctl_rmem = sysctl_sctp_rmem,
6495 .sysctl_wmem = sysctl_sctp_wmem,
6496 .memory_pressure = &sctp_memory_pressure,
6497 .enter_memory_pressure = sctp_enter_memory_pressure,
6498 .memory_allocated = &sctp_memory_allocated,
6499 .sockets_allocated = &sctp_sockets_allocated,
6500 REF_PROTO_INUSE(sctp)
6501 };
6502
6503 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6504 DEFINE_PROTO_INUSE(sctpv6)
6505
6506 struct proto sctpv6_prot = {
6507 .name = "SCTPv6",
6508 .owner = THIS_MODULE,
6509 .close = sctp_close,
6510 .connect = sctp_connect,
6511 .disconnect = sctp_disconnect,
6512 .accept = sctp_accept,
6513 .ioctl = sctp_ioctl,
6514 .init = sctp_init_sock,
6515 .destroy = sctp_destroy_sock,
6516 .shutdown = sctp_shutdown,
6517 .setsockopt = sctp_setsockopt,
6518 .getsockopt = sctp_getsockopt,
6519 .sendmsg = sctp_sendmsg,
6520 .recvmsg = sctp_recvmsg,
6521 .bind = sctp_bind,
6522 .backlog_rcv = sctp_backlog_rcv,
6523 .hash = sctp_hash,
6524 .unhash = sctp_unhash,
6525 .get_port = sctp_get_port,
6526 .obj_size = sizeof(struct sctp6_sock),
6527 .sysctl_mem = sysctl_sctp_mem,
6528 .sysctl_rmem = sysctl_sctp_rmem,
6529 .sysctl_wmem = sysctl_sctp_wmem,
6530 .memory_pressure = &sctp_memory_pressure,
6531 .enter_memory_pressure = sctp_enter_memory_pressure,
6532 .memory_allocated = &sctp_memory_allocated,
6533 .sockets_allocated = &sctp_sockets_allocated,
6534 REF_PROTO_INUSE(sctpv6)
6535 };
6536 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */