]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sctp/socket.c
9ea47259405772ef4e933776ffe721bd7904b7eb
[mirror_ubuntu-bionic-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69
70 #include <net/ip.h>
71 #include <net/icmp.h>
72 #include <net/route.h>
73 #include <net/ipv6.h>
74 #include <net/inet_common.h>
75 #include <net/busy_poll.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <linux/export.h>
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82 #include <net/sctp/stream_sched.h>
83
84 /* Forward declarations for internal helper functions. */
85 static bool sctp_writeable(struct sock *sk);
86 static void sctp_wfree(struct sk_buff *skb);
87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
88 size_t msg_len);
89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
91 static int sctp_wait_for_accept(struct sock *sk, long timeo);
92 static void sctp_wait_for_close(struct sock *sk, long timeo);
93 static void sctp_destruct_sock(struct sock *sk);
94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
95 union sctp_addr *addr, int len);
96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf(struct sctp_association *asoc,
101 struct sctp_chunk *chunk);
102 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
103 static int sctp_autobind(struct sock *sk);
104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
105 struct sctp_association *assoc,
106 enum sctp_socket_type type);
107
108 static unsigned long sctp_memory_pressure;
109 static atomic_long_t sctp_memory_allocated;
110 struct percpu_counter sctp_sockets_allocated;
111
112 static void sctp_enter_memory_pressure(struct sock *sk)
113 {
114 sctp_memory_pressure = 1;
115 }
116
117
118 /* Get the sndbuf space available at the time on the association. */
119 static inline int sctp_wspace(struct sctp_association *asoc)
120 {
121 struct sock *sk = asoc->base.sk;
122
123 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
124 : sk_stream_wspace(sk);
125 }
126
127 /* Increment the used sndbuf space count of the corresponding association by
128 * the size of the outgoing data chunk.
129 * Also, set the skb destructor for sndbuf accounting later.
130 *
131 * Since it is always 1-1 between chunk and skb, and also a new skb is always
132 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
133 * destructor in the data chunk skb for the purpose of the sndbuf space
134 * tracking.
135 */
136 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
137 {
138 struct sctp_association *asoc = chunk->asoc;
139 struct sock *sk = asoc->base.sk;
140
141 /* The sndbuf space is tracked per association. */
142 sctp_association_hold(asoc);
143
144 skb_set_owner_w(chunk->skb, sk);
145
146 chunk->skb->destructor = sctp_wfree;
147 /* Save the chunk pointer in skb for sctp_wfree to use later. */
148 skb_shinfo(chunk->skb)->destructor_arg = chunk;
149
150 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
151 sizeof(struct sk_buff) +
152 sizeof(struct sctp_chunk);
153
154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 sk->sk_wmem_queued += chunk->skb->truesize;
156 sk_mem_charge(sk, chunk->skb->truesize);
157 }
158
159 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
160 {
161 skb_orphan(chunk->skb);
162 }
163
164 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
165 void (*cb)(struct sctp_chunk *))
166
167 {
168 struct sctp_outq *q = &asoc->outqueue;
169 struct sctp_transport *t;
170 struct sctp_chunk *chunk;
171
172 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
173 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
174 cb(chunk);
175
176 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
177 cb(chunk);
178
179 list_for_each_entry(chunk, &q->sacked, transmitted_list)
180 cb(chunk);
181
182 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
183 cb(chunk);
184
185 list_for_each_entry(chunk, &q->out_chunk_list, list)
186 cb(chunk);
187 }
188
189 /* Verify that this is a valid address. */
190 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
191 int len)
192 {
193 struct sctp_af *af;
194
195 /* Verify basic sockaddr. */
196 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
197 if (!af)
198 return -EINVAL;
199
200 /* Is this a valid SCTP address? */
201 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
202 return -EINVAL;
203
204 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
205 return -EINVAL;
206
207 return 0;
208 }
209
210 /* Look up the association by its id. If this is not a UDP-style
211 * socket, the ID field is always ignored.
212 */
213 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
214 {
215 struct sctp_association *asoc = NULL;
216
217 /* If this is not a UDP-style socket, assoc id should be ignored. */
218 if (!sctp_style(sk, UDP)) {
219 /* Return NULL if the socket state is not ESTABLISHED. It
220 * could be a TCP-style listening socket or a socket which
221 * hasn't yet called connect() to establish an association.
222 */
223 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
224 return NULL;
225
226 /* Get the first and the only association from the list. */
227 if (!list_empty(&sctp_sk(sk)->ep->asocs))
228 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
229 struct sctp_association, asocs);
230 return asoc;
231 }
232
233 /* Otherwise this is a UDP-style socket. */
234 if (!id || (id == (sctp_assoc_t)-1))
235 return NULL;
236
237 spin_lock_bh(&sctp_assocs_id_lock);
238 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
239 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
240 asoc = NULL;
241 spin_unlock_bh(&sctp_assocs_id_lock);
242
243 return asoc;
244 }
245
246 /* Look up the transport from an address and an assoc id. If both address and
247 * id are specified, the associations matching the address and the id should be
248 * the same.
249 */
250 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
251 struct sockaddr_storage *addr,
252 sctp_assoc_t id)
253 {
254 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
255 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
256 union sctp_addr *laddr = (union sctp_addr *)addr;
257 struct sctp_transport *transport;
258
259 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
260 return NULL;
261
262 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
263 laddr,
264 &transport);
265
266 if (!addr_asoc)
267 return NULL;
268
269 id_asoc = sctp_id2assoc(sk, id);
270 if (id_asoc && (id_asoc != addr_asoc))
271 return NULL;
272
273 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
274 (union sctp_addr *)addr);
275
276 return transport;
277 }
278
279 /* API 3.1.2 bind() - UDP Style Syntax
280 * The syntax of bind() is,
281 *
282 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
283 *
284 * sd - the socket descriptor returned by socket().
285 * addr - the address structure (struct sockaddr_in or struct
286 * sockaddr_in6 [RFC 2553]),
287 * addr_len - the size of the address structure.
288 */
289 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
290 {
291 int retval = 0;
292
293 lock_sock(sk);
294
295 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
296 addr, addr_len);
297
298 /* Disallow binding twice. */
299 if (!sctp_sk(sk)->ep->base.bind_addr.port)
300 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
301 addr_len);
302 else
303 retval = -EINVAL;
304
305 release_sock(sk);
306
307 return retval;
308 }
309
310 static long sctp_get_port_local(struct sock *, union sctp_addr *);
311
312 /* Verify this is a valid sockaddr. */
313 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
314 union sctp_addr *addr, int len)
315 {
316 struct sctp_af *af;
317
318 /* Check minimum size. */
319 if (len < sizeof (struct sockaddr))
320 return NULL;
321
322 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 return NULL;
324
325 if (addr->sa.sa_family == AF_INET6) {
326 if (len < SIN6_LEN_RFC2133)
327 return NULL;
328 /* V4 mapped address are really of AF_INET family */
329 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
330 !opt->pf->af_supported(AF_INET, opt))
331 return NULL;
332 }
333
334 /* If we get this far, af is valid. */
335 af = sctp_get_af_specific(addr->sa.sa_family);
336
337 if (len < af->sockaddr_len)
338 return NULL;
339
340 return af;
341 }
342
343 /* Bind a local address either to an endpoint or to an association. */
344 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
345 {
346 struct net *net = sock_net(sk);
347 struct sctp_sock *sp = sctp_sk(sk);
348 struct sctp_endpoint *ep = sp->ep;
349 struct sctp_bind_addr *bp = &ep->base.bind_addr;
350 struct sctp_af *af;
351 unsigned short snum;
352 int ret = 0;
353
354 /* Common sockaddr verification. */
355 af = sctp_sockaddr_af(sp, addr, len);
356 if (!af) {
357 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
358 __func__, sk, addr, len);
359 return -EINVAL;
360 }
361
362 snum = ntohs(addr->v4.sin_port);
363
364 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
365 __func__, sk, &addr->sa, bp->port, snum, len);
366
367 /* PF specific bind() address verification. */
368 if (!sp->pf->bind_verify(sp, addr))
369 return -EADDRNOTAVAIL;
370
371 /* We must either be unbound, or bind to the same port.
372 * It's OK to allow 0 ports if we are already bound.
373 * We'll just inhert an already bound port in this case
374 */
375 if (bp->port) {
376 if (!snum)
377 snum = bp->port;
378 else if (snum != bp->port) {
379 pr_debug("%s: new port %d doesn't match existing port "
380 "%d\n", __func__, snum, bp->port);
381 return -EINVAL;
382 }
383 }
384
385 if (snum && snum < inet_prot_sock(net) &&
386 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
387 return -EACCES;
388
389 /* See if the address matches any of the addresses we may have
390 * already bound before checking against other endpoints.
391 */
392 if (sctp_bind_addr_match(bp, addr, sp))
393 return -EINVAL;
394
395 /* Make sure we are allowed to bind here.
396 * The function sctp_get_port_local() does duplicate address
397 * detection.
398 */
399 addr->v4.sin_port = htons(snum);
400 if ((ret = sctp_get_port_local(sk, addr))) {
401 return -EADDRINUSE;
402 }
403
404 /* Refresh ephemeral port. */
405 if (!bp->port)
406 bp->port = inet_sk(sk)->inet_num;
407
408 /* Add the address to the bind address list.
409 * Use GFP_ATOMIC since BHs will be disabled.
410 */
411 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
412 SCTP_ADDR_SRC, GFP_ATOMIC);
413
414 /* Copy back into socket for getsockname() use. */
415 if (!ret) {
416 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
417 sp->pf->to_sk_saddr(addr, sk);
418 }
419
420 return ret;
421 }
422
423 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
424 *
425 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
426 * at any one time. If a sender, after sending an ASCONF chunk, decides
427 * it needs to transfer another ASCONF Chunk, it MUST wait until the
428 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
429 * subsequent ASCONF. Note this restriction binds each side, so at any
430 * time two ASCONF may be in-transit on any given association (one sent
431 * from each endpoint).
432 */
433 static int sctp_send_asconf(struct sctp_association *asoc,
434 struct sctp_chunk *chunk)
435 {
436 struct net *net = sock_net(asoc->base.sk);
437 int retval = 0;
438
439 /* If there is an outstanding ASCONF chunk, queue it for later
440 * transmission.
441 */
442 if (asoc->addip_last_asconf) {
443 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
444 goto out;
445 }
446
447 /* Hold the chunk until an ASCONF_ACK is received. */
448 sctp_chunk_hold(chunk);
449 retval = sctp_primitive_ASCONF(net, asoc, chunk);
450 if (retval)
451 sctp_chunk_free(chunk);
452 else
453 asoc->addip_last_asconf = chunk;
454
455 out:
456 return retval;
457 }
458
459 /* Add a list of addresses as bind addresses to local endpoint or
460 * association.
461 *
462 * Basically run through each address specified in the addrs/addrcnt
463 * array/length pair, determine if it is IPv6 or IPv4 and call
464 * sctp_do_bind() on it.
465 *
466 * If any of them fails, then the operation will be reversed and the
467 * ones that were added will be removed.
468 *
469 * Only sctp_setsockopt_bindx() is supposed to call this function.
470 */
471 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
472 {
473 int cnt;
474 int retval = 0;
475 void *addr_buf;
476 struct sockaddr *sa_addr;
477 struct sctp_af *af;
478
479 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
480 addrs, addrcnt);
481
482 addr_buf = addrs;
483 for (cnt = 0; cnt < addrcnt; cnt++) {
484 /* The list may contain either IPv4 or IPv6 address;
485 * determine the address length for walking thru the list.
486 */
487 sa_addr = addr_buf;
488 af = sctp_get_af_specific(sa_addr->sa_family);
489 if (!af) {
490 retval = -EINVAL;
491 goto err_bindx_add;
492 }
493
494 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
495 af->sockaddr_len);
496
497 addr_buf += af->sockaddr_len;
498
499 err_bindx_add:
500 if (retval < 0) {
501 /* Failed. Cleanup the ones that have been added */
502 if (cnt > 0)
503 sctp_bindx_rem(sk, addrs, cnt);
504 return retval;
505 }
506 }
507
508 return retval;
509 }
510
511 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
512 * associations that are part of the endpoint indicating that a list of local
513 * addresses are added to the endpoint.
514 *
515 * If any of the addresses is already in the bind address list of the
516 * association, we do not send the chunk for that association. But it will not
517 * affect other associations.
518 *
519 * Only sctp_setsockopt_bindx() is supposed to call this function.
520 */
521 static int sctp_send_asconf_add_ip(struct sock *sk,
522 struct sockaddr *addrs,
523 int addrcnt)
524 {
525 struct net *net = sock_net(sk);
526 struct sctp_sock *sp;
527 struct sctp_endpoint *ep;
528 struct sctp_association *asoc;
529 struct sctp_bind_addr *bp;
530 struct sctp_chunk *chunk;
531 struct sctp_sockaddr_entry *laddr;
532 union sctp_addr *addr;
533 union sctp_addr saveaddr;
534 void *addr_buf;
535 struct sctp_af *af;
536 struct list_head *p;
537 int i;
538 int retval = 0;
539
540 if (!net->sctp.addip_enable)
541 return retval;
542
543 sp = sctp_sk(sk);
544 ep = sp->ep;
545
546 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
547 __func__, sk, addrs, addrcnt);
548
549 list_for_each_entry(asoc, &ep->asocs, asocs) {
550 if (!asoc->peer.asconf_capable)
551 continue;
552
553 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
554 continue;
555
556 if (!sctp_state(asoc, ESTABLISHED))
557 continue;
558
559 /* Check if any address in the packed array of addresses is
560 * in the bind address list of the association. If so,
561 * do not send the asconf chunk to its peer, but continue with
562 * other associations.
563 */
564 addr_buf = addrs;
565 for (i = 0; i < addrcnt; i++) {
566 addr = addr_buf;
567 af = sctp_get_af_specific(addr->v4.sin_family);
568 if (!af) {
569 retval = -EINVAL;
570 goto out;
571 }
572
573 if (sctp_assoc_lookup_laddr(asoc, addr))
574 break;
575
576 addr_buf += af->sockaddr_len;
577 }
578 if (i < addrcnt)
579 continue;
580
581 /* Use the first valid address in bind addr list of
582 * association as Address Parameter of ASCONF CHUNK.
583 */
584 bp = &asoc->base.bind_addr;
585 p = bp->address_list.next;
586 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
587 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
588 addrcnt, SCTP_PARAM_ADD_IP);
589 if (!chunk) {
590 retval = -ENOMEM;
591 goto out;
592 }
593
594 /* Add the new addresses to the bind address list with
595 * use_as_src set to 0.
596 */
597 addr_buf = addrs;
598 for (i = 0; i < addrcnt; i++) {
599 addr = addr_buf;
600 af = sctp_get_af_specific(addr->v4.sin_family);
601 memcpy(&saveaddr, addr, af->sockaddr_len);
602 retval = sctp_add_bind_addr(bp, &saveaddr,
603 sizeof(saveaddr),
604 SCTP_ADDR_NEW, GFP_ATOMIC);
605 addr_buf += af->sockaddr_len;
606 }
607 if (asoc->src_out_of_asoc_ok) {
608 struct sctp_transport *trans;
609
610 list_for_each_entry(trans,
611 &asoc->peer.transport_addr_list, transports) {
612 /* Clear the source and route cache */
613 sctp_transport_dst_release(trans);
614 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
615 2*asoc->pathmtu, 4380));
616 trans->ssthresh = asoc->peer.i.a_rwnd;
617 trans->rto = asoc->rto_initial;
618 sctp_max_rto(asoc, trans);
619 trans->rtt = trans->srtt = trans->rttvar = 0;
620 sctp_transport_route(trans, NULL,
621 sctp_sk(asoc->base.sk));
622 }
623 }
624 retval = sctp_send_asconf(asoc, chunk);
625 }
626
627 out:
628 return retval;
629 }
630
631 /* Remove a list of addresses from bind addresses list. Do not remove the
632 * last address.
633 *
634 * Basically run through each address specified in the addrs/addrcnt
635 * array/length pair, determine if it is IPv6 or IPv4 and call
636 * sctp_del_bind() on it.
637 *
638 * If any of them fails, then the operation will be reversed and the
639 * ones that were removed will be added back.
640 *
641 * At least one address has to be left; if only one address is
642 * available, the operation will return -EBUSY.
643 *
644 * Only sctp_setsockopt_bindx() is supposed to call this function.
645 */
646 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
647 {
648 struct sctp_sock *sp = sctp_sk(sk);
649 struct sctp_endpoint *ep = sp->ep;
650 int cnt;
651 struct sctp_bind_addr *bp = &ep->base.bind_addr;
652 int retval = 0;
653 void *addr_buf;
654 union sctp_addr *sa_addr;
655 struct sctp_af *af;
656
657 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
658 __func__, sk, addrs, addrcnt);
659
660 addr_buf = addrs;
661 for (cnt = 0; cnt < addrcnt; cnt++) {
662 /* If the bind address list is empty or if there is only one
663 * bind address, there is nothing more to be removed (we need
664 * at least one address here).
665 */
666 if (list_empty(&bp->address_list) ||
667 (sctp_list_single_entry(&bp->address_list))) {
668 retval = -EBUSY;
669 goto err_bindx_rem;
670 }
671
672 sa_addr = addr_buf;
673 af = sctp_get_af_specific(sa_addr->sa.sa_family);
674 if (!af) {
675 retval = -EINVAL;
676 goto err_bindx_rem;
677 }
678
679 if (!af->addr_valid(sa_addr, sp, NULL)) {
680 retval = -EADDRNOTAVAIL;
681 goto err_bindx_rem;
682 }
683
684 if (sa_addr->v4.sin_port &&
685 sa_addr->v4.sin_port != htons(bp->port)) {
686 retval = -EINVAL;
687 goto err_bindx_rem;
688 }
689
690 if (!sa_addr->v4.sin_port)
691 sa_addr->v4.sin_port = htons(bp->port);
692
693 /* FIXME - There is probably a need to check if sk->sk_saddr and
694 * sk->sk_rcv_addr are currently set to one of the addresses to
695 * be removed. This is something which needs to be looked into
696 * when we are fixing the outstanding issues with multi-homing
697 * socket routing and failover schemes. Refer to comments in
698 * sctp_do_bind(). -daisy
699 */
700 retval = sctp_del_bind_addr(bp, sa_addr);
701
702 addr_buf += af->sockaddr_len;
703 err_bindx_rem:
704 if (retval < 0) {
705 /* Failed. Add the ones that has been removed back */
706 if (cnt > 0)
707 sctp_bindx_add(sk, addrs, cnt);
708 return retval;
709 }
710 }
711
712 return retval;
713 }
714
715 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
716 * the associations that are part of the endpoint indicating that a list of
717 * local addresses are removed from the endpoint.
718 *
719 * If any of the addresses is already in the bind address list of the
720 * association, we do not send the chunk for that association. But it will not
721 * affect other associations.
722 *
723 * Only sctp_setsockopt_bindx() is supposed to call this function.
724 */
725 static int sctp_send_asconf_del_ip(struct sock *sk,
726 struct sockaddr *addrs,
727 int addrcnt)
728 {
729 struct net *net = sock_net(sk);
730 struct sctp_sock *sp;
731 struct sctp_endpoint *ep;
732 struct sctp_association *asoc;
733 struct sctp_transport *transport;
734 struct sctp_bind_addr *bp;
735 struct sctp_chunk *chunk;
736 union sctp_addr *laddr;
737 void *addr_buf;
738 struct sctp_af *af;
739 struct sctp_sockaddr_entry *saddr;
740 int i;
741 int retval = 0;
742 int stored = 0;
743
744 chunk = NULL;
745 if (!net->sctp.addip_enable)
746 return retval;
747
748 sp = sctp_sk(sk);
749 ep = sp->ep;
750
751 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
752 __func__, sk, addrs, addrcnt);
753
754 list_for_each_entry(asoc, &ep->asocs, asocs) {
755
756 if (!asoc->peer.asconf_capable)
757 continue;
758
759 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
760 continue;
761
762 if (!sctp_state(asoc, ESTABLISHED))
763 continue;
764
765 /* Check if any address in the packed array of addresses is
766 * not present in the bind address list of the association.
767 * If so, do not send the asconf chunk to its peer, but
768 * continue with other associations.
769 */
770 addr_buf = addrs;
771 for (i = 0; i < addrcnt; i++) {
772 laddr = addr_buf;
773 af = sctp_get_af_specific(laddr->v4.sin_family);
774 if (!af) {
775 retval = -EINVAL;
776 goto out;
777 }
778
779 if (!sctp_assoc_lookup_laddr(asoc, laddr))
780 break;
781
782 addr_buf += af->sockaddr_len;
783 }
784 if (i < addrcnt)
785 continue;
786
787 /* Find one address in the association's bind address list
788 * that is not in the packed array of addresses. This is to
789 * make sure that we do not delete all the addresses in the
790 * association.
791 */
792 bp = &asoc->base.bind_addr;
793 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
794 addrcnt, sp);
795 if ((laddr == NULL) && (addrcnt == 1)) {
796 if (asoc->asconf_addr_del_pending)
797 continue;
798 asoc->asconf_addr_del_pending =
799 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
800 if (asoc->asconf_addr_del_pending == NULL) {
801 retval = -ENOMEM;
802 goto out;
803 }
804 asoc->asconf_addr_del_pending->sa.sa_family =
805 addrs->sa_family;
806 asoc->asconf_addr_del_pending->v4.sin_port =
807 htons(bp->port);
808 if (addrs->sa_family == AF_INET) {
809 struct sockaddr_in *sin;
810
811 sin = (struct sockaddr_in *)addrs;
812 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
813 } else if (addrs->sa_family == AF_INET6) {
814 struct sockaddr_in6 *sin6;
815
816 sin6 = (struct sockaddr_in6 *)addrs;
817 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
818 }
819
820 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
821 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
822 asoc->asconf_addr_del_pending);
823
824 asoc->src_out_of_asoc_ok = 1;
825 stored = 1;
826 goto skip_mkasconf;
827 }
828
829 if (laddr == NULL)
830 return -EINVAL;
831
832 /* We do not need RCU protection throughout this loop
833 * because this is done under a socket lock from the
834 * setsockopt call.
835 */
836 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
837 SCTP_PARAM_DEL_IP);
838 if (!chunk) {
839 retval = -ENOMEM;
840 goto out;
841 }
842
843 skip_mkasconf:
844 /* Reset use_as_src flag for the addresses in the bind address
845 * list that are to be deleted.
846 */
847 addr_buf = addrs;
848 for (i = 0; i < addrcnt; i++) {
849 laddr = addr_buf;
850 af = sctp_get_af_specific(laddr->v4.sin_family);
851 list_for_each_entry(saddr, &bp->address_list, list) {
852 if (sctp_cmp_addr_exact(&saddr->a, laddr))
853 saddr->state = SCTP_ADDR_DEL;
854 }
855 addr_buf += af->sockaddr_len;
856 }
857
858 /* Update the route and saddr entries for all the transports
859 * as some of the addresses in the bind address list are
860 * about to be deleted and cannot be used as source addresses.
861 */
862 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
863 transports) {
864 sctp_transport_dst_release(transport);
865 sctp_transport_route(transport, NULL,
866 sctp_sk(asoc->base.sk));
867 }
868
869 if (stored)
870 /* We don't need to transmit ASCONF */
871 continue;
872 retval = sctp_send_asconf(asoc, chunk);
873 }
874 out:
875 return retval;
876 }
877
878 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
879 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
880 {
881 struct sock *sk = sctp_opt2sk(sp);
882 union sctp_addr *addr;
883 struct sctp_af *af;
884
885 /* It is safe to write port space in caller. */
886 addr = &addrw->a;
887 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
888 af = sctp_get_af_specific(addr->sa.sa_family);
889 if (!af)
890 return -EINVAL;
891 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
892 return -EINVAL;
893
894 if (addrw->state == SCTP_ADDR_NEW)
895 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
896 else
897 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
898 }
899
900 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
901 *
902 * API 8.1
903 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
904 * int flags);
905 *
906 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
907 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
908 * or IPv6 addresses.
909 *
910 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
911 * Section 3.1.2 for this usage.
912 *
913 * addrs is a pointer to an array of one or more socket addresses. Each
914 * address is contained in its appropriate structure (i.e. struct
915 * sockaddr_in or struct sockaddr_in6) the family of the address type
916 * must be used to distinguish the address length (note that this
917 * representation is termed a "packed array" of addresses). The caller
918 * specifies the number of addresses in the array with addrcnt.
919 *
920 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
921 * -1, and sets errno to the appropriate error code.
922 *
923 * For SCTP, the port given in each socket address must be the same, or
924 * sctp_bindx() will fail, setting errno to EINVAL.
925 *
926 * The flags parameter is formed from the bitwise OR of zero or more of
927 * the following currently defined flags:
928 *
929 * SCTP_BINDX_ADD_ADDR
930 *
931 * SCTP_BINDX_REM_ADDR
932 *
933 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
934 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
935 * addresses from the association. The two flags are mutually exclusive;
936 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
937 * not remove all addresses from an association; sctp_bindx() will
938 * reject such an attempt with EINVAL.
939 *
940 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
941 * additional addresses with an endpoint after calling bind(). Or use
942 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
943 * socket is associated with so that no new association accepted will be
944 * associated with those addresses. If the endpoint supports dynamic
945 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
946 * endpoint to send the appropriate message to the peer to change the
947 * peers address lists.
948 *
949 * Adding and removing addresses from a connected association is
950 * optional functionality. Implementations that do not support this
951 * functionality should return EOPNOTSUPP.
952 *
953 * Basically do nothing but copying the addresses from user to kernel
954 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
955 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
956 * from userspace.
957 *
958 * We don't use copy_from_user() for optimization: we first do the
959 * sanity checks (buffer size -fast- and access check-healthy
960 * pointer); if all of those succeed, then we can alloc the memory
961 * (expensive operation) needed to copy the data to kernel. Then we do
962 * the copying without checking the user space area
963 * (__copy_from_user()).
964 *
965 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
966 * it.
967 *
968 * sk The sk of the socket
969 * addrs The pointer to the addresses in user land
970 * addrssize Size of the addrs buffer
971 * op Operation to perform (add or remove, see the flags of
972 * sctp_bindx)
973 *
974 * Returns 0 if ok, <0 errno code on error.
975 */
976 static int sctp_setsockopt_bindx(struct sock *sk,
977 struct sockaddr __user *addrs,
978 int addrs_size, int op)
979 {
980 struct sockaddr *kaddrs;
981 int err;
982 int addrcnt = 0;
983 int walk_size = 0;
984 struct sockaddr *sa_addr;
985 void *addr_buf;
986 struct sctp_af *af;
987
988 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
989 __func__, sk, addrs, addrs_size, op);
990
991 if (unlikely(addrs_size <= 0))
992 return -EINVAL;
993
994 /* Check the user passed a healthy pointer. */
995 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
996 return -EFAULT;
997
998 /* Alloc space for the address array in kernel memory. */
999 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
1000 if (unlikely(!kaddrs))
1001 return -ENOMEM;
1002
1003 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1004 kfree(kaddrs);
1005 return -EFAULT;
1006 }
1007
1008 /* Walk through the addrs buffer and count the number of addresses. */
1009 addr_buf = kaddrs;
1010 while (walk_size < addrs_size) {
1011 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1012 kfree(kaddrs);
1013 return -EINVAL;
1014 }
1015
1016 sa_addr = addr_buf;
1017 af = sctp_get_af_specific(sa_addr->sa_family);
1018
1019 /* If the address family is not supported or if this address
1020 * causes the address buffer to overflow return EINVAL.
1021 */
1022 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1023 kfree(kaddrs);
1024 return -EINVAL;
1025 }
1026 addrcnt++;
1027 addr_buf += af->sockaddr_len;
1028 walk_size += af->sockaddr_len;
1029 }
1030
1031 /* Do the work. */
1032 switch (op) {
1033 case SCTP_BINDX_ADD_ADDR:
1034 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1035 if (err)
1036 goto out;
1037 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1038 break;
1039
1040 case SCTP_BINDX_REM_ADDR:
1041 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1042 if (err)
1043 goto out;
1044 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1045 break;
1046
1047 default:
1048 err = -EINVAL;
1049 break;
1050 }
1051
1052 out:
1053 kfree(kaddrs);
1054
1055 return err;
1056 }
1057
1058 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1059 *
1060 * Common routine for handling connect() and sctp_connectx().
1061 * Connect will come in with just a single address.
1062 */
1063 static int __sctp_connect(struct sock *sk,
1064 struct sockaddr *kaddrs,
1065 int addrs_size, int flags,
1066 sctp_assoc_t *assoc_id)
1067 {
1068 struct net *net = sock_net(sk);
1069 struct sctp_sock *sp;
1070 struct sctp_endpoint *ep;
1071 struct sctp_association *asoc = NULL;
1072 struct sctp_association *asoc2;
1073 struct sctp_transport *transport;
1074 union sctp_addr to;
1075 enum sctp_scope scope;
1076 long timeo;
1077 int err = 0;
1078 int addrcnt = 0;
1079 int walk_size = 0;
1080 union sctp_addr *sa_addr = NULL;
1081 void *addr_buf;
1082 unsigned short port;
1083
1084 sp = sctp_sk(sk);
1085 ep = sp->ep;
1086
1087 /* connect() cannot be done on a socket that is already in ESTABLISHED
1088 * state - UDP-style peeled off socket or a TCP-style socket that
1089 * is already connected.
1090 * It cannot be done even on a TCP-style listening socket.
1091 */
1092 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1093 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1094 err = -EISCONN;
1095 goto out_free;
1096 }
1097
1098 /* Walk through the addrs buffer and count the number of addresses. */
1099 addr_buf = kaddrs;
1100 while (walk_size < addrs_size) {
1101 struct sctp_af *af;
1102
1103 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1104 err = -EINVAL;
1105 goto out_free;
1106 }
1107
1108 sa_addr = addr_buf;
1109 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1110
1111 /* If the address family is not supported or if this address
1112 * causes the address buffer to overflow return EINVAL.
1113 */
1114 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1115 err = -EINVAL;
1116 goto out_free;
1117 }
1118
1119 port = ntohs(sa_addr->v4.sin_port);
1120
1121 /* Save current address so we can work with it */
1122 memcpy(&to, sa_addr, af->sockaddr_len);
1123
1124 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1125 if (err)
1126 goto out_free;
1127
1128 /* Make sure the destination port is correctly set
1129 * in all addresses.
1130 */
1131 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1132 err = -EINVAL;
1133 goto out_free;
1134 }
1135
1136 /* Check if there already is a matching association on the
1137 * endpoint (other than the one created here).
1138 */
1139 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1140 if (asoc2 && asoc2 != asoc) {
1141 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1142 err = -EISCONN;
1143 else
1144 err = -EALREADY;
1145 goto out_free;
1146 }
1147
1148 /* If we could not find a matching association on the endpoint,
1149 * make sure that there is no peeled-off association matching
1150 * the peer address even on another socket.
1151 */
1152 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1153 err = -EADDRNOTAVAIL;
1154 goto out_free;
1155 }
1156
1157 if (!asoc) {
1158 /* If a bind() or sctp_bindx() is not called prior to
1159 * an sctp_connectx() call, the system picks an
1160 * ephemeral port and will choose an address set
1161 * equivalent to binding with a wildcard address.
1162 */
1163 if (!ep->base.bind_addr.port) {
1164 if (sctp_autobind(sk)) {
1165 err = -EAGAIN;
1166 goto out_free;
1167 }
1168 } else {
1169 /*
1170 * If an unprivileged user inherits a 1-many
1171 * style socket with open associations on a
1172 * privileged port, it MAY be permitted to
1173 * accept new associations, but it SHOULD NOT
1174 * be permitted to open new associations.
1175 */
1176 if (ep->base.bind_addr.port <
1177 inet_prot_sock(net) &&
1178 !ns_capable(net->user_ns,
1179 CAP_NET_BIND_SERVICE)) {
1180 err = -EACCES;
1181 goto out_free;
1182 }
1183 }
1184
1185 scope = sctp_scope(&to);
1186 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1187 if (!asoc) {
1188 err = -ENOMEM;
1189 goto out_free;
1190 }
1191
1192 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1193 GFP_KERNEL);
1194 if (err < 0) {
1195 goto out_free;
1196 }
1197
1198 }
1199
1200 /* Prime the peer's transport structures. */
1201 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1202 SCTP_UNKNOWN);
1203 if (!transport) {
1204 err = -ENOMEM;
1205 goto out_free;
1206 }
1207
1208 addrcnt++;
1209 addr_buf += af->sockaddr_len;
1210 walk_size += af->sockaddr_len;
1211 }
1212
1213 /* In case the user of sctp_connectx() wants an association
1214 * id back, assign one now.
1215 */
1216 if (assoc_id) {
1217 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1218 if (err < 0)
1219 goto out_free;
1220 }
1221
1222 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1223 if (err < 0) {
1224 goto out_free;
1225 }
1226
1227 /* Initialize sk's dport and daddr for getpeername() */
1228 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1229 sp->pf->to_sk_daddr(sa_addr, sk);
1230 sk->sk_err = 0;
1231
1232 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1233
1234 if (assoc_id)
1235 *assoc_id = asoc->assoc_id;
1236 err = sctp_wait_for_connect(asoc, &timeo);
1237 /* Note: the asoc may be freed after the return of
1238 * sctp_wait_for_connect.
1239 */
1240
1241 /* Don't free association on exit. */
1242 asoc = NULL;
1243
1244 out_free:
1245 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1246 __func__, asoc, kaddrs, err);
1247
1248 if (asoc) {
1249 /* sctp_primitive_ASSOCIATE may have added this association
1250 * To the hash table, try to unhash it, just in case, its a noop
1251 * if it wasn't hashed so we're safe
1252 */
1253 sctp_association_free(asoc);
1254 }
1255 return err;
1256 }
1257
1258 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1259 *
1260 * API 8.9
1261 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1262 * sctp_assoc_t *asoc);
1263 *
1264 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1265 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1266 * or IPv6 addresses.
1267 *
1268 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1269 * Section 3.1.2 for this usage.
1270 *
1271 * addrs is a pointer to an array of one or more socket addresses. Each
1272 * address is contained in its appropriate structure (i.e. struct
1273 * sockaddr_in or struct sockaddr_in6) the family of the address type
1274 * must be used to distengish the address length (note that this
1275 * representation is termed a "packed array" of addresses). The caller
1276 * specifies the number of addresses in the array with addrcnt.
1277 *
1278 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1279 * the association id of the new association. On failure, sctp_connectx()
1280 * returns -1, and sets errno to the appropriate error code. The assoc_id
1281 * is not touched by the kernel.
1282 *
1283 * For SCTP, the port given in each socket address must be the same, or
1284 * sctp_connectx() will fail, setting errno to EINVAL.
1285 *
1286 * An application can use sctp_connectx to initiate an association with
1287 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1288 * allows a caller to specify multiple addresses at which a peer can be
1289 * reached. The way the SCTP stack uses the list of addresses to set up
1290 * the association is implementation dependent. This function only
1291 * specifies that the stack will try to make use of all the addresses in
1292 * the list when needed.
1293 *
1294 * Note that the list of addresses passed in is only used for setting up
1295 * the association. It does not necessarily equal the set of addresses
1296 * the peer uses for the resulting association. If the caller wants to
1297 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1298 * retrieve them after the association has been set up.
1299 *
1300 * Basically do nothing but copying the addresses from user to kernel
1301 * land and invoking either sctp_connectx(). This is used for tunneling
1302 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1303 *
1304 * We don't use copy_from_user() for optimization: we first do the
1305 * sanity checks (buffer size -fast- and access check-healthy
1306 * pointer); if all of those succeed, then we can alloc the memory
1307 * (expensive operation) needed to copy the data to kernel. Then we do
1308 * the copying without checking the user space area
1309 * (__copy_from_user()).
1310 *
1311 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1312 * it.
1313 *
1314 * sk The sk of the socket
1315 * addrs The pointer to the addresses in user land
1316 * addrssize Size of the addrs buffer
1317 *
1318 * Returns >=0 if ok, <0 errno code on error.
1319 */
1320 static int __sctp_setsockopt_connectx(struct sock *sk,
1321 struct sockaddr __user *addrs,
1322 int addrs_size,
1323 sctp_assoc_t *assoc_id)
1324 {
1325 struct sockaddr *kaddrs;
1326 gfp_t gfp = GFP_KERNEL;
1327 int err = 0, flags = 0;
1328
1329 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1330 __func__, sk, addrs, addrs_size);
1331
1332 if (unlikely(addrs_size <= 0))
1333 return -EINVAL;
1334
1335 /* Check the user passed a healthy pointer. */
1336 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1337 return -EFAULT;
1338
1339 /* Alloc space for the address array in kernel memory. */
1340 if (sk->sk_socket->file)
1341 gfp = GFP_USER | __GFP_NOWARN;
1342 kaddrs = kmalloc(addrs_size, gfp);
1343 if (unlikely(!kaddrs))
1344 return -ENOMEM;
1345
1346 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1347 kfree(kaddrs);
1348 return -EFAULT;
1349 }
1350
1351 /* in-kernel sockets don't generally have a file allocated to them
1352 * if all they do is call sock_create_kern().
1353 */
1354 if (sk->sk_socket->file)
1355 flags = sk->sk_socket->file->f_flags;
1356
1357 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1358
1359 kfree(kaddrs);
1360
1361 return err;
1362 }
1363
1364 /*
1365 * This is an older interface. It's kept for backward compatibility
1366 * to the option that doesn't provide association id.
1367 */
1368 static int sctp_setsockopt_connectx_old(struct sock *sk,
1369 struct sockaddr __user *addrs,
1370 int addrs_size)
1371 {
1372 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1373 }
1374
1375 /*
1376 * New interface for the API. The since the API is done with a socket
1377 * option, to make it simple we feed back the association id is as a return
1378 * indication to the call. Error is always negative and association id is
1379 * always positive.
1380 */
1381 static int sctp_setsockopt_connectx(struct sock *sk,
1382 struct sockaddr __user *addrs,
1383 int addrs_size)
1384 {
1385 sctp_assoc_t assoc_id = 0;
1386 int err = 0;
1387
1388 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1389
1390 if (err)
1391 return err;
1392 else
1393 return assoc_id;
1394 }
1395
1396 /*
1397 * New (hopefully final) interface for the API.
1398 * We use the sctp_getaddrs_old structure so that use-space library
1399 * can avoid any unnecessary allocations. The only different part
1400 * is that we store the actual length of the address buffer into the
1401 * addrs_num structure member. That way we can re-use the existing
1402 * code.
1403 */
1404 #ifdef CONFIG_COMPAT
1405 struct compat_sctp_getaddrs_old {
1406 sctp_assoc_t assoc_id;
1407 s32 addr_num;
1408 compat_uptr_t addrs; /* struct sockaddr * */
1409 };
1410 #endif
1411
1412 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1413 char __user *optval,
1414 int __user *optlen)
1415 {
1416 struct sctp_getaddrs_old param;
1417 sctp_assoc_t assoc_id = 0;
1418 int err = 0;
1419
1420 #ifdef CONFIG_COMPAT
1421 if (in_compat_syscall()) {
1422 struct compat_sctp_getaddrs_old param32;
1423
1424 if (len < sizeof(param32))
1425 return -EINVAL;
1426 if (copy_from_user(&param32, optval, sizeof(param32)))
1427 return -EFAULT;
1428
1429 param.assoc_id = param32.assoc_id;
1430 param.addr_num = param32.addr_num;
1431 param.addrs = compat_ptr(param32.addrs);
1432 } else
1433 #endif
1434 {
1435 if (len < sizeof(param))
1436 return -EINVAL;
1437 if (copy_from_user(&param, optval, sizeof(param)))
1438 return -EFAULT;
1439 }
1440
1441 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1442 param.addrs, param.addr_num,
1443 &assoc_id);
1444 if (err == 0 || err == -EINPROGRESS) {
1445 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1446 return -EFAULT;
1447 if (put_user(sizeof(assoc_id), optlen))
1448 return -EFAULT;
1449 }
1450
1451 return err;
1452 }
1453
1454 /* API 3.1.4 close() - UDP Style Syntax
1455 * Applications use close() to perform graceful shutdown (as described in
1456 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1457 * by a UDP-style socket.
1458 *
1459 * The syntax is
1460 *
1461 * ret = close(int sd);
1462 *
1463 * sd - the socket descriptor of the associations to be closed.
1464 *
1465 * To gracefully shutdown a specific association represented by the
1466 * UDP-style socket, an application should use the sendmsg() call,
1467 * passing no user data, but including the appropriate flag in the
1468 * ancillary data (see Section xxxx).
1469 *
1470 * If sd in the close() call is a branched-off socket representing only
1471 * one association, the shutdown is performed on that association only.
1472 *
1473 * 4.1.6 close() - TCP Style Syntax
1474 *
1475 * Applications use close() to gracefully close down an association.
1476 *
1477 * The syntax is:
1478 *
1479 * int close(int sd);
1480 *
1481 * sd - the socket descriptor of the association to be closed.
1482 *
1483 * After an application calls close() on a socket descriptor, no further
1484 * socket operations will succeed on that descriptor.
1485 *
1486 * API 7.1.4 SO_LINGER
1487 *
1488 * An application using the TCP-style socket can use this option to
1489 * perform the SCTP ABORT primitive. The linger option structure is:
1490 *
1491 * struct linger {
1492 * int l_onoff; // option on/off
1493 * int l_linger; // linger time
1494 * };
1495 *
1496 * To enable the option, set l_onoff to 1. If the l_linger value is set
1497 * to 0, calling close() is the same as the ABORT primitive. If the
1498 * value is set to a negative value, the setsockopt() call will return
1499 * an error. If the value is set to a positive value linger_time, the
1500 * close() can be blocked for at most linger_time ms. If the graceful
1501 * shutdown phase does not finish during this period, close() will
1502 * return but the graceful shutdown phase continues in the system.
1503 */
1504 static void sctp_close(struct sock *sk, long timeout)
1505 {
1506 struct net *net = sock_net(sk);
1507 struct sctp_endpoint *ep;
1508 struct sctp_association *asoc;
1509 struct list_head *pos, *temp;
1510 unsigned int data_was_unread;
1511
1512 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1513
1514 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1515 sk->sk_shutdown = SHUTDOWN_MASK;
1516 sk->sk_state = SCTP_SS_CLOSING;
1517
1518 ep = sctp_sk(sk)->ep;
1519
1520 /* Clean up any skbs sitting on the receive queue. */
1521 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1522 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1523
1524 /* Walk all associations on an endpoint. */
1525 list_for_each_safe(pos, temp, &ep->asocs) {
1526 asoc = list_entry(pos, struct sctp_association, asocs);
1527
1528 if (sctp_style(sk, TCP)) {
1529 /* A closed association can still be in the list if
1530 * it belongs to a TCP-style listening socket that is
1531 * not yet accepted. If so, free it. If not, send an
1532 * ABORT or SHUTDOWN based on the linger options.
1533 */
1534 if (sctp_state(asoc, CLOSED)) {
1535 sctp_association_free(asoc);
1536 continue;
1537 }
1538 }
1539
1540 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1541 !skb_queue_empty(&asoc->ulpq.reasm) ||
1542 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1543 struct sctp_chunk *chunk;
1544
1545 chunk = sctp_make_abort_user(asoc, NULL, 0);
1546 sctp_primitive_ABORT(net, asoc, chunk);
1547 } else
1548 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1549 }
1550
1551 /* On a TCP-style socket, block for at most linger_time if set. */
1552 if (sctp_style(sk, TCP) && timeout)
1553 sctp_wait_for_close(sk, timeout);
1554
1555 /* This will run the backlog queue. */
1556 release_sock(sk);
1557
1558 /* Supposedly, no process has access to the socket, but
1559 * the net layers still may.
1560 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1561 * held and that should be grabbed before socket lock.
1562 */
1563 spin_lock_bh(&net->sctp.addr_wq_lock);
1564 bh_lock_sock_nested(sk);
1565
1566 /* Hold the sock, since sk_common_release() will put sock_put()
1567 * and we have just a little more cleanup.
1568 */
1569 sock_hold(sk);
1570 sk_common_release(sk);
1571
1572 bh_unlock_sock(sk);
1573 spin_unlock_bh(&net->sctp.addr_wq_lock);
1574
1575 sock_put(sk);
1576
1577 SCTP_DBG_OBJCNT_DEC(sock);
1578 }
1579
1580 /* Handle EPIPE error. */
1581 static int sctp_error(struct sock *sk, int flags, int err)
1582 {
1583 if (err == -EPIPE)
1584 err = sock_error(sk) ? : -EPIPE;
1585 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1586 send_sig(SIGPIPE, current, 0);
1587 return err;
1588 }
1589
1590 /* API 3.1.3 sendmsg() - UDP Style Syntax
1591 *
1592 * An application uses sendmsg() and recvmsg() calls to transmit data to
1593 * and receive data from its peer.
1594 *
1595 * ssize_t sendmsg(int socket, const struct msghdr *message,
1596 * int flags);
1597 *
1598 * socket - the socket descriptor of the endpoint.
1599 * message - pointer to the msghdr structure which contains a single
1600 * user message and possibly some ancillary data.
1601 *
1602 * See Section 5 for complete description of the data
1603 * structures.
1604 *
1605 * flags - flags sent or received with the user message, see Section
1606 * 5 for complete description of the flags.
1607 *
1608 * Note: This function could use a rewrite especially when explicit
1609 * connect support comes in.
1610 */
1611 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1612
1613 static int sctp_msghdr_parse(const struct msghdr *msg,
1614 struct sctp_cmsgs *cmsgs);
1615
1616 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1617 {
1618 struct net *net = sock_net(sk);
1619 struct sctp_sock *sp;
1620 struct sctp_endpoint *ep;
1621 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1622 struct sctp_transport *transport, *chunk_tp;
1623 struct sctp_chunk *chunk;
1624 union sctp_addr to;
1625 struct sockaddr *msg_name = NULL;
1626 struct sctp_sndrcvinfo default_sinfo;
1627 struct sctp_sndrcvinfo *sinfo;
1628 struct sctp_initmsg *sinit;
1629 sctp_assoc_t associd = 0;
1630 struct sctp_cmsgs cmsgs = { NULL };
1631 enum sctp_scope scope;
1632 bool fill_sinfo_ttl = false, wait_connect = false;
1633 struct sctp_datamsg *datamsg;
1634 int msg_flags = msg->msg_flags;
1635 __u16 sinfo_flags = 0;
1636 long timeo;
1637 int err;
1638
1639 err = 0;
1640 sp = sctp_sk(sk);
1641 ep = sp->ep;
1642
1643 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1644 msg, msg_len, ep);
1645
1646 /* We cannot send a message over a TCP-style listening socket. */
1647 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1648 err = -EPIPE;
1649 goto out_nounlock;
1650 }
1651
1652 /* Parse out the SCTP CMSGs. */
1653 err = sctp_msghdr_parse(msg, &cmsgs);
1654 if (err) {
1655 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1656 goto out_nounlock;
1657 }
1658
1659 /* Fetch the destination address for this packet. This
1660 * address only selects the association--it is not necessarily
1661 * the address we will send to.
1662 * For a peeled-off socket, msg_name is ignored.
1663 */
1664 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1665 int msg_namelen = msg->msg_namelen;
1666
1667 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1668 msg_namelen);
1669 if (err)
1670 return err;
1671
1672 if (msg_namelen > sizeof(to))
1673 msg_namelen = sizeof(to);
1674 memcpy(&to, msg->msg_name, msg_namelen);
1675 msg_name = msg->msg_name;
1676 }
1677
1678 sinit = cmsgs.init;
1679 if (cmsgs.sinfo != NULL) {
1680 memset(&default_sinfo, 0, sizeof(default_sinfo));
1681 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1682 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1683 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1684 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1685 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1686
1687 sinfo = &default_sinfo;
1688 fill_sinfo_ttl = true;
1689 } else {
1690 sinfo = cmsgs.srinfo;
1691 }
1692 /* Did the user specify SNDINFO/SNDRCVINFO? */
1693 if (sinfo) {
1694 sinfo_flags = sinfo->sinfo_flags;
1695 associd = sinfo->sinfo_assoc_id;
1696 }
1697
1698 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1699 msg_len, sinfo_flags);
1700
1701 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1702 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1703 err = -EINVAL;
1704 goto out_nounlock;
1705 }
1706
1707 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1708 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1709 * If SCTP_ABORT is set, the message length could be non zero with
1710 * the msg_iov set to the user abort reason.
1711 */
1712 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1713 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1714 err = -EINVAL;
1715 goto out_nounlock;
1716 }
1717
1718 /* If SCTP_ADDR_OVER is set, there must be an address
1719 * specified in msg_name.
1720 */
1721 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1722 err = -EINVAL;
1723 goto out_nounlock;
1724 }
1725
1726 transport = NULL;
1727
1728 pr_debug("%s: about to look up association\n", __func__);
1729
1730 lock_sock(sk);
1731
1732 /* If a msg_name has been specified, assume this is to be used. */
1733 if (msg_name) {
1734 /* Look for a matching association on the endpoint. */
1735 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1736
1737 /* If we could not find a matching association on the
1738 * endpoint, make sure that it is not a TCP-style
1739 * socket that already has an association or there is
1740 * no peeled-off association on another socket.
1741 */
1742 if (!asoc &&
1743 ((sctp_style(sk, TCP) &&
1744 (sctp_sstate(sk, ESTABLISHED) ||
1745 sctp_sstate(sk, CLOSING))) ||
1746 sctp_endpoint_is_peeled_off(ep, &to))) {
1747 err = -EADDRNOTAVAIL;
1748 goto out_unlock;
1749 }
1750 } else {
1751 asoc = sctp_id2assoc(sk, associd);
1752 if (!asoc) {
1753 err = -EPIPE;
1754 goto out_unlock;
1755 }
1756 }
1757
1758 if (asoc) {
1759 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1760
1761 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1762 * socket that has an association in CLOSED state. This can
1763 * happen when an accepted socket has an association that is
1764 * already CLOSED.
1765 */
1766 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1767 err = -EPIPE;
1768 goto out_unlock;
1769 }
1770
1771 if (sinfo_flags & SCTP_EOF) {
1772 pr_debug("%s: shutting down association:%p\n",
1773 __func__, asoc);
1774
1775 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1776 err = 0;
1777 goto out_unlock;
1778 }
1779 if (sinfo_flags & SCTP_ABORT) {
1780
1781 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1782 if (!chunk) {
1783 err = -ENOMEM;
1784 goto out_unlock;
1785 }
1786
1787 pr_debug("%s: aborting association:%p\n",
1788 __func__, asoc);
1789
1790 sctp_primitive_ABORT(net, asoc, chunk);
1791 err = 0;
1792 goto out_unlock;
1793 }
1794 }
1795
1796 /* Do we need to create the association? */
1797 if (!asoc) {
1798 pr_debug("%s: there is no association yet\n", __func__);
1799
1800 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1801 err = -EINVAL;
1802 goto out_unlock;
1803 }
1804
1805 /* Check for invalid stream against the stream counts,
1806 * either the default or the user specified stream counts.
1807 */
1808 if (sinfo) {
1809 if (!sinit || !sinit->sinit_num_ostreams) {
1810 /* Check against the defaults. */
1811 if (sinfo->sinfo_stream >=
1812 sp->initmsg.sinit_num_ostreams) {
1813 err = -EINVAL;
1814 goto out_unlock;
1815 }
1816 } else {
1817 /* Check against the requested. */
1818 if (sinfo->sinfo_stream >=
1819 sinit->sinit_num_ostreams) {
1820 err = -EINVAL;
1821 goto out_unlock;
1822 }
1823 }
1824 }
1825
1826 /*
1827 * API 3.1.2 bind() - UDP Style Syntax
1828 * If a bind() or sctp_bindx() is not called prior to a
1829 * sendmsg() call that initiates a new association, the
1830 * system picks an ephemeral port and will choose an address
1831 * set equivalent to binding with a wildcard address.
1832 */
1833 if (!ep->base.bind_addr.port) {
1834 if (sctp_autobind(sk)) {
1835 err = -EAGAIN;
1836 goto out_unlock;
1837 }
1838 } else {
1839 /*
1840 * If an unprivileged user inherits a one-to-many
1841 * style socket with open associations on a privileged
1842 * port, it MAY be permitted to accept new associations,
1843 * but it SHOULD NOT be permitted to open new
1844 * associations.
1845 */
1846 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1847 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1848 err = -EACCES;
1849 goto out_unlock;
1850 }
1851 }
1852
1853 scope = sctp_scope(&to);
1854 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1855 if (!new_asoc) {
1856 err = -ENOMEM;
1857 goto out_unlock;
1858 }
1859 asoc = new_asoc;
1860 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1861 if (err < 0) {
1862 err = -ENOMEM;
1863 goto out_free;
1864 }
1865
1866 /* If the SCTP_INIT ancillary data is specified, set all
1867 * the association init values accordingly.
1868 */
1869 if (sinit) {
1870 if (sinit->sinit_num_ostreams) {
1871 __u16 outcnt = sinit->sinit_num_ostreams;
1872
1873 asoc->c.sinit_num_ostreams = outcnt;
1874 /* outcnt has been changed, so re-init stream */
1875 err = sctp_stream_init(&asoc->stream, outcnt, 0,
1876 GFP_KERNEL);
1877 if (err)
1878 goto out_free;
1879 }
1880 if (sinit->sinit_max_instreams) {
1881 asoc->c.sinit_max_instreams =
1882 sinit->sinit_max_instreams;
1883 }
1884 if (sinit->sinit_max_attempts) {
1885 asoc->max_init_attempts
1886 = sinit->sinit_max_attempts;
1887 }
1888 if (sinit->sinit_max_init_timeo) {
1889 asoc->max_init_timeo =
1890 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1891 }
1892 }
1893
1894 /* Prime the peer's transport structures. */
1895 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1896 if (!transport) {
1897 err = -ENOMEM;
1898 goto out_free;
1899 }
1900 }
1901
1902 /* ASSERT: we have a valid association at this point. */
1903 pr_debug("%s: we have a valid association\n", __func__);
1904
1905 if (!sinfo) {
1906 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1907 * one with some defaults.
1908 */
1909 memset(&default_sinfo, 0, sizeof(default_sinfo));
1910 default_sinfo.sinfo_stream = asoc->default_stream;
1911 default_sinfo.sinfo_flags = asoc->default_flags;
1912 default_sinfo.sinfo_ppid = asoc->default_ppid;
1913 default_sinfo.sinfo_context = asoc->default_context;
1914 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1915 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1916
1917 sinfo = &default_sinfo;
1918 } else if (fill_sinfo_ttl) {
1919 /* In case SNDINFO was specified, we still need to fill
1920 * it with a default ttl from the assoc here.
1921 */
1922 sinfo->sinfo_timetolive = asoc->default_timetolive;
1923 }
1924
1925 /* API 7.1.7, the sndbuf size per association bounds the
1926 * maximum size of data that can be sent in a single send call.
1927 */
1928 if (msg_len > sk->sk_sndbuf) {
1929 err = -EMSGSIZE;
1930 goto out_free;
1931 }
1932
1933 if (asoc->pmtu_pending)
1934 sctp_assoc_pending_pmtu(asoc);
1935
1936 /* If fragmentation is disabled and the message length exceeds the
1937 * association fragmentation point, return EMSGSIZE. The I-D
1938 * does not specify what this error is, but this looks like
1939 * a great fit.
1940 */
1941 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1942 err = -EMSGSIZE;
1943 goto out_free;
1944 }
1945
1946 /* Check for invalid stream. */
1947 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1948 err = -EINVAL;
1949 goto out_free;
1950 }
1951
1952 /* Allocate sctp_stream_out_ext if not already done */
1953 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) {
1954 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1955 if (err)
1956 goto out_free;
1957 }
1958
1959 if (sctp_wspace(asoc) < (int)msg_len)
1960 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1961
1962 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1963 if (sk_under_memory_pressure(sk))
1964 sk_mem_reclaim(sk);
1965
1966 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1967 /* sk can be changed by peel off when waiting for buf. */
1968 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1969 if (err) {
1970 if (err == -ESRCH) {
1971 /* asoc is already dead. */
1972 new_asoc = NULL;
1973 err = -EPIPE;
1974 }
1975 goto out_free;
1976 }
1977 }
1978
1979 /* If an address is passed with the sendto/sendmsg call, it is used
1980 * to override the primary destination address in the TCP model, or
1981 * when SCTP_ADDR_OVER flag is set in the UDP model.
1982 */
1983 if ((sctp_style(sk, TCP) && msg_name) ||
1984 (sinfo_flags & SCTP_ADDR_OVER)) {
1985 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1986 if (!chunk_tp) {
1987 err = -EINVAL;
1988 goto out_free;
1989 }
1990 } else
1991 chunk_tp = NULL;
1992
1993 /* Auto-connect, if we aren't connected already. */
1994 if (sctp_state(asoc, CLOSED)) {
1995 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1996 if (err < 0)
1997 goto out_free;
1998
1999 wait_connect = true;
2000 pr_debug("%s: we associated primitively\n", __func__);
2001 }
2002
2003 /* Break the message into multiple chunks of maximum size. */
2004 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
2005 if (IS_ERR(datamsg)) {
2006 err = PTR_ERR(datamsg);
2007 goto out_free;
2008 }
2009 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
2010
2011 /* Now send the (possibly) fragmented message. */
2012 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
2013 sctp_chunk_hold(chunk);
2014
2015 /* Do accounting for the write space. */
2016 sctp_set_owner_w(chunk);
2017
2018 chunk->transport = chunk_tp;
2019 }
2020
2021 /* Send it to the lower layers. Note: all chunks
2022 * must either fail or succeed. The lower layer
2023 * works that way today. Keep it that way or this
2024 * breaks.
2025 */
2026 err = sctp_primitive_SEND(net, asoc, datamsg);
2027 /* Did the lower layer accept the chunk? */
2028 if (err) {
2029 sctp_datamsg_free(datamsg);
2030 goto out_free;
2031 }
2032
2033 pr_debug("%s: we sent primitively\n", __func__);
2034
2035 sctp_datamsg_put(datamsg);
2036 err = msg_len;
2037
2038 if (unlikely(wait_connect)) {
2039 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
2040 sctp_wait_for_connect(asoc, &timeo);
2041 }
2042
2043 /* If we are already past ASSOCIATE, the lower
2044 * layers are responsible for association cleanup.
2045 */
2046 goto out_unlock;
2047
2048 out_free:
2049 if (new_asoc)
2050 sctp_association_free(asoc);
2051 out_unlock:
2052 release_sock(sk);
2053
2054 out_nounlock:
2055 return sctp_error(sk, msg_flags, err);
2056
2057 #if 0
2058 do_sock_err:
2059 if (msg_len)
2060 err = msg_len;
2061 else
2062 err = sock_error(sk);
2063 goto out;
2064
2065 do_interrupted:
2066 if (msg_len)
2067 err = msg_len;
2068 goto out;
2069 #endif /* 0 */
2070 }
2071
2072 /* This is an extended version of skb_pull() that removes the data from the
2073 * start of a skb even when data is spread across the list of skb's in the
2074 * frag_list. len specifies the total amount of data that needs to be removed.
2075 * when 'len' bytes could be removed from the skb, it returns 0.
2076 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2077 * could not be removed.
2078 */
2079 static int sctp_skb_pull(struct sk_buff *skb, int len)
2080 {
2081 struct sk_buff *list;
2082 int skb_len = skb_headlen(skb);
2083 int rlen;
2084
2085 if (len <= skb_len) {
2086 __skb_pull(skb, len);
2087 return 0;
2088 }
2089 len -= skb_len;
2090 __skb_pull(skb, skb_len);
2091
2092 skb_walk_frags(skb, list) {
2093 rlen = sctp_skb_pull(list, len);
2094 skb->len -= (len-rlen);
2095 skb->data_len -= (len-rlen);
2096
2097 if (!rlen)
2098 return 0;
2099
2100 len = rlen;
2101 }
2102
2103 return len;
2104 }
2105
2106 /* API 3.1.3 recvmsg() - UDP Style Syntax
2107 *
2108 * ssize_t recvmsg(int socket, struct msghdr *message,
2109 * int flags);
2110 *
2111 * socket - the socket descriptor of the endpoint.
2112 * message - pointer to the msghdr structure which contains a single
2113 * user message and possibly some ancillary data.
2114 *
2115 * See Section 5 for complete description of the data
2116 * structures.
2117 *
2118 * flags - flags sent or received with the user message, see Section
2119 * 5 for complete description of the flags.
2120 */
2121 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2122 int noblock, int flags, int *addr_len)
2123 {
2124 struct sctp_ulpevent *event = NULL;
2125 struct sctp_sock *sp = sctp_sk(sk);
2126 struct sk_buff *skb, *head_skb;
2127 int copied;
2128 int err = 0;
2129 int skb_len;
2130
2131 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2132 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2133 addr_len);
2134
2135 lock_sock(sk);
2136
2137 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2138 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2139 err = -ENOTCONN;
2140 goto out;
2141 }
2142
2143 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2144 if (!skb)
2145 goto out;
2146
2147 /* Get the total length of the skb including any skb's in the
2148 * frag_list.
2149 */
2150 skb_len = skb->len;
2151
2152 copied = skb_len;
2153 if (copied > len)
2154 copied = len;
2155
2156 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2157
2158 event = sctp_skb2event(skb);
2159
2160 if (err)
2161 goto out_free;
2162
2163 if (event->chunk && event->chunk->head_skb)
2164 head_skb = event->chunk->head_skb;
2165 else
2166 head_skb = skb;
2167 sock_recv_ts_and_drops(msg, sk, head_skb);
2168 if (sctp_ulpevent_is_notification(event)) {
2169 msg->msg_flags |= MSG_NOTIFICATION;
2170 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2171 } else {
2172 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2173 }
2174
2175 /* Check if we allow SCTP_NXTINFO. */
2176 if (sp->recvnxtinfo)
2177 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2178 /* Check if we allow SCTP_RCVINFO. */
2179 if (sp->recvrcvinfo)
2180 sctp_ulpevent_read_rcvinfo(event, msg);
2181 /* Check if we allow SCTP_SNDRCVINFO. */
2182 if (sp->subscribe.sctp_data_io_event)
2183 sctp_ulpevent_read_sndrcvinfo(event, msg);
2184
2185 err = copied;
2186
2187 /* If skb's length exceeds the user's buffer, update the skb and
2188 * push it back to the receive_queue so that the next call to
2189 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2190 */
2191 if (skb_len > copied) {
2192 msg->msg_flags &= ~MSG_EOR;
2193 if (flags & MSG_PEEK)
2194 goto out_free;
2195 sctp_skb_pull(skb, copied);
2196 skb_queue_head(&sk->sk_receive_queue, skb);
2197
2198 /* When only partial message is copied to the user, increase
2199 * rwnd by that amount. If all the data in the skb is read,
2200 * rwnd is updated when the event is freed.
2201 */
2202 if (!sctp_ulpevent_is_notification(event))
2203 sctp_assoc_rwnd_increase(event->asoc, copied);
2204 goto out;
2205 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2206 (event->msg_flags & MSG_EOR))
2207 msg->msg_flags |= MSG_EOR;
2208 else
2209 msg->msg_flags &= ~MSG_EOR;
2210
2211 out_free:
2212 if (flags & MSG_PEEK) {
2213 /* Release the skb reference acquired after peeking the skb in
2214 * sctp_skb_recv_datagram().
2215 */
2216 kfree_skb(skb);
2217 } else {
2218 /* Free the event which includes releasing the reference to
2219 * the owner of the skb, freeing the skb and updating the
2220 * rwnd.
2221 */
2222 sctp_ulpevent_free(event);
2223 }
2224 out:
2225 release_sock(sk);
2226 return err;
2227 }
2228
2229 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2230 *
2231 * This option is a on/off flag. If enabled no SCTP message
2232 * fragmentation will be performed. Instead if a message being sent
2233 * exceeds the current PMTU size, the message will NOT be sent and
2234 * instead a error will be indicated to the user.
2235 */
2236 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2237 char __user *optval,
2238 unsigned int optlen)
2239 {
2240 int val;
2241
2242 if (optlen < sizeof(int))
2243 return -EINVAL;
2244
2245 if (get_user(val, (int __user *)optval))
2246 return -EFAULT;
2247
2248 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2249
2250 return 0;
2251 }
2252
2253 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2254 unsigned int optlen)
2255 {
2256 struct sctp_association *asoc;
2257 struct sctp_ulpevent *event;
2258
2259 if (optlen > sizeof(struct sctp_event_subscribe))
2260 return -EINVAL;
2261 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2262 return -EFAULT;
2263
2264 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2265 * if there is no data to be sent or retransmit, the stack will
2266 * immediately send up this notification.
2267 */
2268 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2269 &sctp_sk(sk)->subscribe)) {
2270 asoc = sctp_id2assoc(sk, 0);
2271
2272 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2273 event = sctp_ulpevent_make_sender_dry_event(asoc,
2274 GFP_USER | __GFP_NOWARN);
2275 if (!event)
2276 return -ENOMEM;
2277
2278 sctp_ulpq_tail_event(&asoc->ulpq, event);
2279 }
2280 }
2281
2282 return 0;
2283 }
2284
2285 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2286 *
2287 * This socket option is applicable to the UDP-style socket only. When
2288 * set it will cause associations that are idle for more than the
2289 * specified number of seconds to automatically close. An association
2290 * being idle is defined an association that has NOT sent or received
2291 * user data. The special value of '0' indicates that no automatic
2292 * close of any associations should be performed. The option expects an
2293 * integer defining the number of seconds of idle time before an
2294 * association is closed.
2295 */
2296 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2297 unsigned int optlen)
2298 {
2299 struct sctp_sock *sp = sctp_sk(sk);
2300 struct net *net = sock_net(sk);
2301
2302 /* Applicable to UDP-style socket only */
2303 if (sctp_style(sk, TCP))
2304 return -EOPNOTSUPP;
2305 if (optlen != sizeof(int))
2306 return -EINVAL;
2307 if (copy_from_user(&sp->autoclose, optval, optlen))
2308 return -EFAULT;
2309
2310 if (sp->autoclose > net->sctp.max_autoclose)
2311 sp->autoclose = net->sctp.max_autoclose;
2312
2313 return 0;
2314 }
2315
2316 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2317 *
2318 * Applications can enable or disable heartbeats for any peer address of
2319 * an association, modify an address's heartbeat interval, force a
2320 * heartbeat to be sent immediately, and adjust the address's maximum
2321 * number of retransmissions sent before an address is considered
2322 * unreachable. The following structure is used to access and modify an
2323 * address's parameters:
2324 *
2325 * struct sctp_paddrparams {
2326 * sctp_assoc_t spp_assoc_id;
2327 * struct sockaddr_storage spp_address;
2328 * uint32_t spp_hbinterval;
2329 * uint16_t spp_pathmaxrxt;
2330 * uint32_t spp_pathmtu;
2331 * uint32_t spp_sackdelay;
2332 * uint32_t spp_flags;
2333 * };
2334 *
2335 * spp_assoc_id - (one-to-many style socket) This is filled in the
2336 * application, and identifies the association for
2337 * this query.
2338 * spp_address - This specifies which address is of interest.
2339 * spp_hbinterval - This contains the value of the heartbeat interval,
2340 * in milliseconds. If a value of zero
2341 * is present in this field then no changes are to
2342 * be made to this parameter.
2343 * spp_pathmaxrxt - This contains the maximum number of
2344 * retransmissions before this address shall be
2345 * considered unreachable. If a value of zero
2346 * is present in this field then no changes are to
2347 * be made to this parameter.
2348 * spp_pathmtu - When Path MTU discovery is disabled the value
2349 * specified here will be the "fixed" path mtu.
2350 * Note that if the spp_address field is empty
2351 * then all associations on this address will
2352 * have this fixed path mtu set upon them.
2353 *
2354 * spp_sackdelay - When delayed sack is enabled, this value specifies
2355 * the number of milliseconds that sacks will be delayed
2356 * for. This value will apply to all addresses of an
2357 * association if the spp_address field is empty. Note
2358 * also, that if delayed sack is enabled and this
2359 * value is set to 0, no change is made to the last
2360 * recorded delayed sack timer value.
2361 *
2362 * spp_flags - These flags are used to control various features
2363 * on an association. The flag field may contain
2364 * zero or more of the following options.
2365 *
2366 * SPP_HB_ENABLE - Enable heartbeats on the
2367 * specified address. Note that if the address
2368 * field is empty all addresses for the association
2369 * have heartbeats enabled upon them.
2370 *
2371 * SPP_HB_DISABLE - Disable heartbeats on the
2372 * speicifed address. Note that if the address
2373 * field is empty all addresses for the association
2374 * will have their heartbeats disabled. Note also
2375 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2376 * mutually exclusive, only one of these two should
2377 * be specified. Enabling both fields will have
2378 * undetermined results.
2379 *
2380 * SPP_HB_DEMAND - Request a user initiated heartbeat
2381 * to be made immediately.
2382 *
2383 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2384 * heartbeat delayis to be set to the value of 0
2385 * milliseconds.
2386 *
2387 * SPP_PMTUD_ENABLE - This field will enable PMTU
2388 * discovery upon the specified address. Note that
2389 * if the address feild is empty then all addresses
2390 * on the association are effected.
2391 *
2392 * SPP_PMTUD_DISABLE - This field will disable PMTU
2393 * discovery upon the specified address. Note that
2394 * if the address feild is empty then all addresses
2395 * on the association are effected. Not also that
2396 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2397 * exclusive. Enabling both will have undetermined
2398 * results.
2399 *
2400 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2401 * on delayed sack. The time specified in spp_sackdelay
2402 * is used to specify the sack delay for this address. Note
2403 * that if spp_address is empty then all addresses will
2404 * enable delayed sack and take on the sack delay
2405 * value specified in spp_sackdelay.
2406 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2407 * off delayed sack. If the spp_address field is blank then
2408 * delayed sack is disabled for the entire association. Note
2409 * also that this field is mutually exclusive to
2410 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2411 * results.
2412 */
2413 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2414 struct sctp_transport *trans,
2415 struct sctp_association *asoc,
2416 struct sctp_sock *sp,
2417 int hb_change,
2418 int pmtud_change,
2419 int sackdelay_change)
2420 {
2421 int error;
2422
2423 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2424 struct net *net = sock_net(trans->asoc->base.sk);
2425
2426 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2427 if (error)
2428 return error;
2429 }
2430
2431 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2432 * this field is ignored. Note also that a value of zero indicates
2433 * the current setting should be left unchanged.
2434 */
2435 if (params->spp_flags & SPP_HB_ENABLE) {
2436
2437 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2438 * set. This lets us use 0 value when this flag
2439 * is set.
2440 */
2441 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2442 params->spp_hbinterval = 0;
2443
2444 if (params->spp_hbinterval ||
2445 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2446 if (trans) {
2447 trans->hbinterval =
2448 msecs_to_jiffies(params->spp_hbinterval);
2449 } else if (asoc) {
2450 asoc->hbinterval =
2451 msecs_to_jiffies(params->spp_hbinterval);
2452 } else {
2453 sp->hbinterval = params->spp_hbinterval;
2454 }
2455 }
2456 }
2457
2458 if (hb_change) {
2459 if (trans) {
2460 trans->param_flags =
2461 (trans->param_flags & ~SPP_HB) | hb_change;
2462 } else if (asoc) {
2463 asoc->param_flags =
2464 (asoc->param_flags & ~SPP_HB) | hb_change;
2465 } else {
2466 sp->param_flags =
2467 (sp->param_flags & ~SPP_HB) | hb_change;
2468 }
2469 }
2470
2471 /* When Path MTU discovery is disabled the value specified here will
2472 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2473 * include the flag SPP_PMTUD_DISABLE for this field to have any
2474 * effect).
2475 */
2476 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2477 if (trans) {
2478 trans->pathmtu = params->spp_pathmtu;
2479 sctp_assoc_sync_pmtu(asoc);
2480 } else if (asoc) {
2481 asoc->pathmtu = params->spp_pathmtu;
2482 } else {
2483 sp->pathmtu = params->spp_pathmtu;
2484 }
2485 }
2486
2487 if (pmtud_change) {
2488 if (trans) {
2489 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2490 (params->spp_flags & SPP_PMTUD_ENABLE);
2491 trans->param_flags =
2492 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2493 if (update) {
2494 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2495 sctp_assoc_sync_pmtu(asoc);
2496 }
2497 } else if (asoc) {
2498 asoc->param_flags =
2499 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2500 } else {
2501 sp->param_flags =
2502 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2503 }
2504 }
2505
2506 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2507 * value of this field is ignored. Note also that a value of zero
2508 * indicates the current setting should be left unchanged.
2509 */
2510 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2511 if (trans) {
2512 trans->sackdelay =
2513 msecs_to_jiffies(params->spp_sackdelay);
2514 } else if (asoc) {
2515 asoc->sackdelay =
2516 msecs_to_jiffies(params->spp_sackdelay);
2517 } else {
2518 sp->sackdelay = params->spp_sackdelay;
2519 }
2520 }
2521
2522 if (sackdelay_change) {
2523 if (trans) {
2524 trans->param_flags =
2525 (trans->param_flags & ~SPP_SACKDELAY) |
2526 sackdelay_change;
2527 } else if (asoc) {
2528 asoc->param_flags =
2529 (asoc->param_flags & ~SPP_SACKDELAY) |
2530 sackdelay_change;
2531 } else {
2532 sp->param_flags =
2533 (sp->param_flags & ~SPP_SACKDELAY) |
2534 sackdelay_change;
2535 }
2536 }
2537
2538 /* Note that a value of zero indicates the current setting should be
2539 left unchanged.
2540 */
2541 if (params->spp_pathmaxrxt) {
2542 if (trans) {
2543 trans->pathmaxrxt = params->spp_pathmaxrxt;
2544 } else if (asoc) {
2545 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2546 } else {
2547 sp->pathmaxrxt = params->spp_pathmaxrxt;
2548 }
2549 }
2550
2551 return 0;
2552 }
2553
2554 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2555 char __user *optval,
2556 unsigned int optlen)
2557 {
2558 struct sctp_paddrparams params;
2559 struct sctp_transport *trans = NULL;
2560 struct sctp_association *asoc = NULL;
2561 struct sctp_sock *sp = sctp_sk(sk);
2562 int error;
2563 int hb_change, pmtud_change, sackdelay_change;
2564
2565 if (optlen != sizeof(struct sctp_paddrparams))
2566 return -EINVAL;
2567
2568 if (copy_from_user(&params, optval, optlen))
2569 return -EFAULT;
2570
2571 /* Validate flags and value parameters. */
2572 hb_change = params.spp_flags & SPP_HB;
2573 pmtud_change = params.spp_flags & SPP_PMTUD;
2574 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2575
2576 if (hb_change == SPP_HB ||
2577 pmtud_change == SPP_PMTUD ||
2578 sackdelay_change == SPP_SACKDELAY ||
2579 params.spp_sackdelay > 500 ||
2580 (params.spp_pathmtu &&
2581 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2582 return -EINVAL;
2583
2584 /* If an address other than INADDR_ANY is specified, and
2585 * no transport is found, then the request is invalid.
2586 */
2587 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2588 trans = sctp_addr_id2transport(sk, &params.spp_address,
2589 params.spp_assoc_id);
2590 if (!trans)
2591 return -EINVAL;
2592 }
2593
2594 /* Get association, if assoc_id != 0 and the socket is a one
2595 * to many style socket, and an association was not found, then
2596 * the id was invalid.
2597 */
2598 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2599 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2600 return -EINVAL;
2601
2602 /* Heartbeat demand can only be sent on a transport or
2603 * association, but not a socket.
2604 */
2605 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2606 return -EINVAL;
2607
2608 /* Process parameters. */
2609 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2610 hb_change, pmtud_change,
2611 sackdelay_change);
2612
2613 if (error)
2614 return error;
2615
2616 /* If changes are for association, also apply parameters to each
2617 * transport.
2618 */
2619 if (!trans && asoc) {
2620 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2621 transports) {
2622 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2623 hb_change, pmtud_change,
2624 sackdelay_change);
2625 }
2626 }
2627
2628 return 0;
2629 }
2630
2631 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2632 {
2633 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2634 }
2635
2636 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2637 {
2638 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2639 }
2640
2641 /*
2642 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2643 *
2644 * This option will effect the way delayed acks are performed. This
2645 * option allows you to get or set the delayed ack time, in
2646 * milliseconds. It also allows changing the delayed ack frequency.
2647 * Changing the frequency to 1 disables the delayed sack algorithm. If
2648 * the assoc_id is 0, then this sets or gets the endpoints default
2649 * values. If the assoc_id field is non-zero, then the set or get
2650 * effects the specified association for the one to many model (the
2651 * assoc_id field is ignored by the one to one model). Note that if
2652 * sack_delay or sack_freq are 0 when setting this option, then the
2653 * current values will remain unchanged.
2654 *
2655 * struct sctp_sack_info {
2656 * sctp_assoc_t sack_assoc_id;
2657 * uint32_t sack_delay;
2658 * uint32_t sack_freq;
2659 * };
2660 *
2661 * sack_assoc_id - This parameter, indicates which association the user
2662 * is performing an action upon. Note that if this field's value is
2663 * zero then the endpoints default value is changed (effecting future
2664 * associations only).
2665 *
2666 * sack_delay - This parameter contains the number of milliseconds that
2667 * the user is requesting the delayed ACK timer be set to. Note that
2668 * this value is defined in the standard to be between 200 and 500
2669 * milliseconds.
2670 *
2671 * sack_freq - This parameter contains the number of packets that must
2672 * be received before a sack is sent without waiting for the delay
2673 * timer to expire. The default value for this is 2, setting this
2674 * value to 1 will disable the delayed sack algorithm.
2675 */
2676
2677 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2678 char __user *optval, unsigned int optlen)
2679 {
2680 struct sctp_sack_info params;
2681 struct sctp_transport *trans = NULL;
2682 struct sctp_association *asoc = NULL;
2683 struct sctp_sock *sp = sctp_sk(sk);
2684
2685 if (optlen == sizeof(struct sctp_sack_info)) {
2686 if (copy_from_user(&params, optval, optlen))
2687 return -EFAULT;
2688
2689 if (params.sack_delay == 0 && params.sack_freq == 0)
2690 return 0;
2691 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2692 pr_warn_ratelimited(DEPRECATED
2693 "%s (pid %d) "
2694 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2695 "Use struct sctp_sack_info instead\n",
2696 current->comm, task_pid_nr(current));
2697 if (copy_from_user(&params, optval, optlen))
2698 return -EFAULT;
2699
2700 if (params.sack_delay == 0)
2701 params.sack_freq = 1;
2702 else
2703 params.sack_freq = 0;
2704 } else
2705 return -EINVAL;
2706
2707 /* Validate value parameter. */
2708 if (params.sack_delay > 500)
2709 return -EINVAL;
2710
2711 /* Get association, if sack_assoc_id != 0 and the socket is a one
2712 * to many style socket, and an association was not found, then
2713 * the id was invalid.
2714 */
2715 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2716 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2717 return -EINVAL;
2718
2719 if (params.sack_delay) {
2720 if (asoc) {
2721 asoc->sackdelay =
2722 msecs_to_jiffies(params.sack_delay);
2723 asoc->param_flags =
2724 sctp_spp_sackdelay_enable(asoc->param_flags);
2725 } else {
2726 sp->sackdelay = params.sack_delay;
2727 sp->param_flags =
2728 sctp_spp_sackdelay_enable(sp->param_flags);
2729 }
2730 }
2731
2732 if (params.sack_freq == 1) {
2733 if (asoc) {
2734 asoc->param_flags =
2735 sctp_spp_sackdelay_disable(asoc->param_flags);
2736 } else {
2737 sp->param_flags =
2738 sctp_spp_sackdelay_disable(sp->param_flags);
2739 }
2740 } else if (params.sack_freq > 1) {
2741 if (asoc) {
2742 asoc->sackfreq = params.sack_freq;
2743 asoc->param_flags =
2744 sctp_spp_sackdelay_enable(asoc->param_flags);
2745 } else {
2746 sp->sackfreq = params.sack_freq;
2747 sp->param_flags =
2748 sctp_spp_sackdelay_enable(sp->param_flags);
2749 }
2750 }
2751
2752 /* If change is for association, also apply to each transport. */
2753 if (asoc) {
2754 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2755 transports) {
2756 if (params.sack_delay) {
2757 trans->sackdelay =
2758 msecs_to_jiffies(params.sack_delay);
2759 trans->param_flags =
2760 sctp_spp_sackdelay_enable(trans->param_flags);
2761 }
2762 if (params.sack_freq == 1) {
2763 trans->param_flags =
2764 sctp_spp_sackdelay_disable(trans->param_flags);
2765 } else if (params.sack_freq > 1) {
2766 trans->sackfreq = params.sack_freq;
2767 trans->param_flags =
2768 sctp_spp_sackdelay_enable(trans->param_flags);
2769 }
2770 }
2771 }
2772
2773 return 0;
2774 }
2775
2776 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2777 *
2778 * Applications can specify protocol parameters for the default association
2779 * initialization. The option name argument to setsockopt() and getsockopt()
2780 * is SCTP_INITMSG.
2781 *
2782 * Setting initialization parameters is effective only on an unconnected
2783 * socket (for UDP-style sockets only future associations are effected
2784 * by the change). With TCP-style sockets, this option is inherited by
2785 * sockets derived from a listener socket.
2786 */
2787 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2788 {
2789 struct sctp_initmsg sinit;
2790 struct sctp_sock *sp = sctp_sk(sk);
2791
2792 if (optlen != sizeof(struct sctp_initmsg))
2793 return -EINVAL;
2794 if (copy_from_user(&sinit, optval, optlen))
2795 return -EFAULT;
2796
2797 if (sinit.sinit_num_ostreams)
2798 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2799 if (sinit.sinit_max_instreams)
2800 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2801 if (sinit.sinit_max_attempts)
2802 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2803 if (sinit.sinit_max_init_timeo)
2804 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2805
2806 return 0;
2807 }
2808
2809 /*
2810 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2811 *
2812 * Applications that wish to use the sendto() system call may wish to
2813 * specify a default set of parameters that would normally be supplied
2814 * through the inclusion of ancillary data. This socket option allows
2815 * such an application to set the default sctp_sndrcvinfo structure.
2816 * The application that wishes to use this socket option simply passes
2817 * in to this call the sctp_sndrcvinfo structure defined in Section
2818 * 5.2.2) The input parameters accepted by this call include
2819 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2820 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2821 * to this call if the caller is using the UDP model.
2822 */
2823 static int sctp_setsockopt_default_send_param(struct sock *sk,
2824 char __user *optval,
2825 unsigned int optlen)
2826 {
2827 struct sctp_sock *sp = sctp_sk(sk);
2828 struct sctp_association *asoc;
2829 struct sctp_sndrcvinfo info;
2830
2831 if (optlen != sizeof(info))
2832 return -EINVAL;
2833 if (copy_from_user(&info, optval, optlen))
2834 return -EFAULT;
2835 if (info.sinfo_flags &
2836 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2837 SCTP_ABORT | SCTP_EOF))
2838 return -EINVAL;
2839
2840 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2841 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2842 return -EINVAL;
2843 if (asoc) {
2844 asoc->default_stream = info.sinfo_stream;
2845 asoc->default_flags = info.sinfo_flags;
2846 asoc->default_ppid = info.sinfo_ppid;
2847 asoc->default_context = info.sinfo_context;
2848 asoc->default_timetolive = info.sinfo_timetolive;
2849 } else {
2850 sp->default_stream = info.sinfo_stream;
2851 sp->default_flags = info.sinfo_flags;
2852 sp->default_ppid = info.sinfo_ppid;
2853 sp->default_context = info.sinfo_context;
2854 sp->default_timetolive = info.sinfo_timetolive;
2855 }
2856
2857 return 0;
2858 }
2859
2860 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2861 * (SCTP_DEFAULT_SNDINFO)
2862 */
2863 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2864 char __user *optval,
2865 unsigned int optlen)
2866 {
2867 struct sctp_sock *sp = sctp_sk(sk);
2868 struct sctp_association *asoc;
2869 struct sctp_sndinfo info;
2870
2871 if (optlen != sizeof(info))
2872 return -EINVAL;
2873 if (copy_from_user(&info, optval, optlen))
2874 return -EFAULT;
2875 if (info.snd_flags &
2876 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2877 SCTP_ABORT | SCTP_EOF))
2878 return -EINVAL;
2879
2880 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2881 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2882 return -EINVAL;
2883 if (asoc) {
2884 asoc->default_stream = info.snd_sid;
2885 asoc->default_flags = info.snd_flags;
2886 asoc->default_ppid = info.snd_ppid;
2887 asoc->default_context = info.snd_context;
2888 } else {
2889 sp->default_stream = info.snd_sid;
2890 sp->default_flags = info.snd_flags;
2891 sp->default_ppid = info.snd_ppid;
2892 sp->default_context = info.snd_context;
2893 }
2894
2895 return 0;
2896 }
2897
2898 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2899 *
2900 * Requests that the local SCTP stack use the enclosed peer address as
2901 * the association primary. The enclosed address must be one of the
2902 * association peer's addresses.
2903 */
2904 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2905 unsigned int optlen)
2906 {
2907 struct sctp_prim prim;
2908 struct sctp_transport *trans;
2909
2910 if (optlen != sizeof(struct sctp_prim))
2911 return -EINVAL;
2912
2913 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2914 return -EFAULT;
2915
2916 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2917 if (!trans)
2918 return -EINVAL;
2919
2920 sctp_assoc_set_primary(trans->asoc, trans);
2921
2922 return 0;
2923 }
2924
2925 /*
2926 * 7.1.5 SCTP_NODELAY
2927 *
2928 * Turn on/off any Nagle-like algorithm. This means that packets are
2929 * generally sent as soon as possible and no unnecessary delays are
2930 * introduced, at the cost of more packets in the network. Expects an
2931 * integer boolean flag.
2932 */
2933 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2934 unsigned int optlen)
2935 {
2936 int val;
2937
2938 if (optlen < sizeof(int))
2939 return -EINVAL;
2940 if (get_user(val, (int __user *)optval))
2941 return -EFAULT;
2942
2943 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2944 return 0;
2945 }
2946
2947 /*
2948 *
2949 * 7.1.1 SCTP_RTOINFO
2950 *
2951 * The protocol parameters used to initialize and bound retransmission
2952 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2953 * and modify these parameters.
2954 * All parameters are time values, in milliseconds. A value of 0, when
2955 * modifying the parameters, indicates that the current value should not
2956 * be changed.
2957 *
2958 */
2959 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2960 {
2961 struct sctp_rtoinfo rtoinfo;
2962 struct sctp_association *asoc;
2963 unsigned long rto_min, rto_max;
2964 struct sctp_sock *sp = sctp_sk(sk);
2965
2966 if (optlen != sizeof (struct sctp_rtoinfo))
2967 return -EINVAL;
2968
2969 if (copy_from_user(&rtoinfo, optval, optlen))
2970 return -EFAULT;
2971
2972 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2973
2974 /* Set the values to the specific association */
2975 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2976 return -EINVAL;
2977
2978 rto_max = rtoinfo.srto_max;
2979 rto_min = rtoinfo.srto_min;
2980
2981 if (rto_max)
2982 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2983 else
2984 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2985
2986 if (rto_min)
2987 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2988 else
2989 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2990
2991 if (rto_min > rto_max)
2992 return -EINVAL;
2993
2994 if (asoc) {
2995 if (rtoinfo.srto_initial != 0)
2996 asoc->rto_initial =
2997 msecs_to_jiffies(rtoinfo.srto_initial);
2998 asoc->rto_max = rto_max;
2999 asoc->rto_min = rto_min;
3000 } else {
3001 /* If there is no association or the association-id = 0
3002 * set the values to the endpoint.
3003 */
3004 if (rtoinfo.srto_initial != 0)
3005 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3006 sp->rtoinfo.srto_max = rto_max;
3007 sp->rtoinfo.srto_min = rto_min;
3008 }
3009
3010 return 0;
3011 }
3012
3013 /*
3014 *
3015 * 7.1.2 SCTP_ASSOCINFO
3016 *
3017 * This option is used to tune the maximum retransmission attempts
3018 * of the association.
3019 * Returns an error if the new association retransmission value is
3020 * greater than the sum of the retransmission value of the peer.
3021 * See [SCTP] for more information.
3022 *
3023 */
3024 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3025 {
3026
3027 struct sctp_assocparams assocparams;
3028 struct sctp_association *asoc;
3029
3030 if (optlen != sizeof(struct sctp_assocparams))
3031 return -EINVAL;
3032 if (copy_from_user(&assocparams, optval, optlen))
3033 return -EFAULT;
3034
3035 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3036
3037 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3038 return -EINVAL;
3039
3040 /* Set the values to the specific association */
3041 if (asoc) {
3042 if (assocparams.sasoc_asocmaxrxt != 0) {
3043 __u32 path_sum = 0;
3044 int paths = 0;
3045 struct sctp_transport *peer_addr;
3046
3047 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3048 transports) {
3049 path_sum += peer_addr->pathmaxrxt;
3050 paths++;
3051 }
3052
3053 /* Only validate asocmaxrxt if we have more than
3054 * one path/transport. We do this because path
3055 * retransmissions are only counted when we have more
3056 * then one path.
3057 */
3058 if (paths > 1 &&
3059 assocparams.sasoc_asocmaxrxt > path_sum)
3060 return -EINVAL;
3061
3062 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3063 }
3064
3065 if (assocparams.sasoc_cookie_life != 0)
3066 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3067 } else {
3068 /* Set the values to the endpoint */
3069 struct sctp_sock *sp = sctp_sk(sk);
3070
3071 if (assocparams.sasoc_asocmaxrxt != 0)
3072 sp->assocparams.sasoc_asocmaxrxt =
3073 assocparams.sasoc_asocmaxrxt;
3074 if (assocparams.sasoc_cookie_life != 0)
3075 sp->assocparams.sasoc_cookie_life =
3076 assocparams.sasoc_cookie_life;
3077 }
3078 return 0;
3079 }
3080
3081 /*
3082 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3083 *
3084 * This socket option is a boolean flag which turns on or off mapped V4
3085 * addresses. If this option is turned on and the socket is type
3086 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3087 * If this option is turned off, then no mapping will be done of V4
3088 * addresses and a user will receive both PF_INET6 and PF_INET type
3089 * addresses on the socket.
3090 */
3091 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3092 {
3093 int val;
3094 struct sctp_sock *sp = sctp_sk(sk);
3095
3096 if (optlen < sizeof(int))
3097 return -EINVAL;
3098 if (get_user(val, (int __user *)optval))
3099 return -EFAULT;
3100 if (val)
3101 sp->v4mapped = 1;
3102 else
3103 sp->v4mapped = 0;
3104
3105 return 0;
3106 }
3107
3108 /*
3109 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3110 * This option will get or set the maximum size to put in any outgoing
3111 * SCTP DATA chunk. If a message is larger than this size it will be
3112 * fragmented by SCTP into the specified size. Note that the underlying
3113 * SCTP implementation may fragment into smaller sized chunks when the
3114 * PMTU of the underlying association is smaller than the value set by
3115 * the user. The default value for this option is '0' which indicates
3116 * the user is NOT limiting fragmentation and only the PMTU will effect
3117 * SCTP's choice of DATA chunk size. Note also that values set larger
3118 * than the maximum size of an IP datagram will effectively let SCTP
3119 * control fragmentation (i.e. the same as setting this option to 0).
3120 *
3121 * The following structure is used to access and modify this parameter:
3122 *
3123 * struct sctp_assoc_value {
3124 * sctp_assoc_t assoc_id;
3125 * uint32_t assoc_value;
3126 * };
3127 *
3128 * assoc_id: This parameter is ignored for one-to-one style sockets.
3129 * For one-to-many style sockets this parameter indicates which
3130 * association the user is performing an action upon. Note that if
3131 * this field's value is zero then the endpoints default value is
3132 * changed (effecting future associations only).
3133 * assoc_value: This parameter specifies the maximum size in bytes.
3134 */
3135 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3136 {
3137 struct sctp_sock *sp = sctp_sk(sk);
3138 struct sctp_assoc_value params;
3139 struct sctp_association *asoc;
3140 int val;
3141
3142 if (optlen == sizeof(int)) {
3143 pr_warn_ratelimited(DEPRECATED
3144 "%s (pid %d) "
3145 "Use of int in maxseg socket option.\n"
3146 "Use struct sctp_assoc_value instead\n",
3147 current->comm, task_pid_nr(current));
3148 if (copy_from_user(&val, optval, optlen))
3149 return -EFAULT;
3150 params.assoc_id = 0;
3151 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3152 if (copy_from_user(&params, optval, optlen))
3153 return -EFAULT;
3154 val = params.assoc_value;
3155 } else {
3156 return -EINVAL;
3157 }
3158
3159 if (val) {
3160 int min_len, max_len;
3161
3162 min_len = SCTP_DEFAULT_MINSEGMENT - sp->pf->af->net_header_len;
3163 min_len -= sizeof(struct sctphdr) +
3164 sizeof(struct sctp_data_chunk);
3165
3166 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk);
3167
3168 if (val < min_len || val > max_len)
3169 return -EINVAL;
3170 }
3171
3172 asoc = sctp_id2assoc(sk, params.assoc_id);
3173 if (asoc) {
3174 if (val == 0) {
3175 val = asoc->pathmtu - sp->pf->af->net_header_len;
3176 val -= sizeof(struct sctphdr) +
3177 sizeof(struct sctp_data_chunk);
3178 }
3179 asoc->user_frag = val;
3180 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3181 } else {
3182 if (params.assoc_id && sctp_style(sk, UDP))
3183 return -EINVAL;
3184 sp->user_frag = val;
3185 }
3186
3187 return 0;
3188 }
3189
3190
3191 /*
3192 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3193 *
3194 * Requests that the peer mark the enclosed address as the association
3195 * primary. The enclosed address must be one of the association's
3196 * locally bound addresses. The following structure is used to make a
3197 * set primary request:
3198 */
3199 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3200 unsigned int optlen)
3201 {
3202 struct net *net = sock_net(sk);
3203 struct sctp_sock *sp;
3204 struct sctp_association *asoc = NULL;
3205 struct sctp_setpeerprim prim;
3206 struct sctp_chunk *chunk;
3207 struct sctp_af *af;
3208 int err;
3209
3210 sp = sctp_sk(sk);
3211
3212 if (!net->sctp.addip_enable)
3213 return -EPERM;
3214
3215 if (optlen != sizeof(struct sctp_setpeerprim))
3216 return -EINVAL;
3217
3218 if (copy_from_user(&prim, optval, optlen))
3219 return -EFAULT;
3220
3221 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3222 if (!asoc)
3223 return -EINVAL;
3224
3225 if (!asoc->peer.asconf_capable)
3226 return -EPERM;
3227
3228 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3229 return -EPERM;
3230
3231 if (!sctp_state(asoc, ESTABLISHED))
3232 return -ENOTCONN;
3233
3234 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3235 if (!af)
3236 return -EINVAL;
3237
3238 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3239 return -EADDRNOTAVAIL;
3240
3241 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3242 return -EADDRNOTAVAIL;
3243
3244 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3245 chunk = sctp_make_asconf_set_prim(asoc,
3246 (union sctp_addr *)&prim.sspp_addr);
3247 if (!chunk)
3248 return -ENOMEM;
3249
3250 err = sctp_send_asconf(asoc, chunk);
3251
3252 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3253
3254 return err;
3255 }
3256
3257 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3258 unsigned int optlen)
3259 {
3260 struct sctp_setadaptation adaptation;
3261
3262 if (optlen != sizeof(struct sctp_setadaptation))
3263 return -EINVAL;
3264 if (copy_from_user(&adaptation, optval, optlen))
3265 return -EFAULT;
3266
3267 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3268
3269 return 0;
3270 }
3271
3272 /*
3273 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3274 *
3275 * The context field in the sctp_sndrcvinfo structure is normally only
3276 * used when a failed message is retrieved holding the value that was
3277 * sent down on the actual send call. This option allows the setting of
3278 * a default context on an association basis that will be received on
3279 * reading messages from the peer. This is especially helpful in the
3280 * one-2-many model for an application to keep some reference to an
3281 * internal state machine that is processing messages on the
3282 * association. Note that the setting of this value only effects
3283 * received messages from the peer and does not effect the value that is
3284 * saved with outbound messages.
3285 */
3286 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3287 unsigned int optlen)
3288 {
3289 struct sctp_assoc_value params;
3290 struct sctp_sock *sp;
3291 struct sctp_association *asoc;
3292
3293 if (optlen != sizeof(struct sctp_assoc_value))
3294 return -EINVAL;
3295 if (copy_from_user(&params, optval, optlen))
3296 return -EFAULT;
3297
3298 sp = sctp_sk(sk);
3299
3300 if (params.assoc_id != 0) {
3301 asoc = sctp_id2assoc(sk, params.assoc_id);
3302 if (!asoc)
3303 return -EINVAL;
3304 asoc->default_rcv_context = params.assoc_value;
3305 } else {
3306 sp->default_rcv_context = params.assoc_value;
3307 }
3308
3309 return 0;
3310 }
3311
3312 /*
3313 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3314 *
3315 * This options will at a minimum specify if the implementation is doing
3316 * fragmented interleave. Fragmented interleave, for a one to many
3317 * socket, is when subsequent calls to receive a message may return
3318 * parts of messages from different associations. Some implementations
3319 * may allow you to turn this value on or off. If so, when turned off,
3320 * no fragment interleave will occur (which will cause a head of line
3321 * blocking amongst multiple associations sharing the same one to many
3322 * socket). When this option is turned on, then each receive call may
3323 * come from a different association (thus the user must receive data
3324 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3325 * association each receive belongs to.
3326 *
3327 * This option takes a boolean value. A non-zero value indicates that
3328 * fragmented interleave is on. A value of zero indicates that
3329 * fragmented interleave is off.
3330 *
3331 * Note that it is important that an implementation that allows this
3332 * option to be turned on, have it off by default. Otherwise an unaware
3333 * application using the one to many model may become confused and act
3334 * incorrectly.
3335 */
3336 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3337 char __user *optval,
3338 unsigned int optlen)
3339 {
3340 int val;
3341
3342 if (optlen != sizeof(int))
3343 return -EINVAL;
3344 if (get_user(val, (int __user *)optval))
3345 return -EFAULT;
3346
3347 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3348
3349 return 0;
3350 }
3351
3352 /*
3353 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3354 * (SCTP_PARTIAL_DELIVERY_POINT)
3355 *
3356 * This option will set or get the SCTP partial delivery point. This
3357 * point is the size of a message where the partial delivery API will be
3358 * invoked to help free up rwnd space for the peer. Setting this to a
3359 * lower value will cause partial deliveries to happen more often. The
3360 * calls argument is an integer that sets or gets the partial delivery
3361 * point. Note also that the call will fail if the user attempts to set
3362 * this value larger than the socket receive buffer size.
3363 *
3364 * Note that any single message having a length smaller than or equal to
3365 * the SCTP partial delivery point will be delivered in one single read
3366 * call as long as the user provided buffer is large enough to hold the
3367 * message.
3368 */
3369 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3370 char __user *optval,
3371 unsigned int optlen)
3372 {
3373 u32 val;
3374
3375 if (optlen != sizeof(u32))
3376 return -EINVAL;
3377 if (get_user(val, (int __user *)optval))
3378 return -EFAULT;
3379
3380 /* Note: We double the receive buffer from what the user sets
3381 * it to be, also initial rwnd is based on rcvbuf/2.
3382 */
3383 if (val > (sk->sk_rcvbuf >> 1))
3384 return -EINVAL;
3385
3386 sctp_sk(sk)->pd_point = val;
3387
3388 return 0; /* is this the right error code? */
3389 }
3390
3391 /*
3392 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3393 *
3394 * This option will allow a user to change the maximum burst of packets
3395 * that can be emitted by this association. Note that the default value
3396 * is 4, and some implementations may restrict this setting so that it
3397 * can only be lowered.
3398 *
3399 * NOTE: This text doesn't seem right. Do this on a socket basis with
3400 * future associations inheriting the socket value.
3401 */
3402 static int sctp_setsockopt_maxburst(struct sock *sk,
3403 char __user *optval,
3404 unsigned int optlen)
3405 {
3406 struct sctp_assoc_value params;
3407 struct sctp_sock *sp;
3408 struct sctp_association *asoc;
3409 int val;
3410 int assoc_id = 0;
3411
3412 if (optlen == sizeof(int)) {
3413 pr_warn_ratelimited(DEPRECATED
3414 "%s (pid %d) "
3415 "Use of int in max_burst socket option deprecated.\n"
3416 "Use struct sctp_assoc_value instead\n",
3417 current->comm, task_pid_nr(current));
3418 if (copy_from_user(&val, optval, optlen))
3419 return -EFAULT;
3420 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3421 if (copy_from_user(&params, optval, optlen))
3422 return -EFAULT;
3423 val = params.assoc_value;
3424 assoc_id = params.assoc_id;
3425 } else
3426 return -EINVAL;
3427
3428 sp = sctp_sk(sk);
3429
3430 if (assoc_id != 0) {
3431 asoc = sctp_id2assoc(sk, assoc_id);
3432 if (!asoc)
3433 return -EINVAL;
3434 asoc->max_burst = val;
3435 } else
3436 sp->max_burst = val;
3437
3438 return 0;
3439 }
3440
3441 /*
3442 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3443 *
3444 * This set option adds a chunk type that the user is requesting to be
3445 * received only in an authenticated way. Changes to the list of chunks
3446 * will only effect future associations on the socket.
3447 */
3448 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3449 char __user *optval,
3450 unsigned int optlen)
3451 {
3452 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3453 struct sctp_authchunk val;
3454
3455 if (!ep->auth_enable)
3456 return -EACCES;
3457
3458 if (optlen != sizeof(struct sctp_authchunk))
3459 return -EINVAL;
3460 if (copy_from_user(&val, optval, optlen))
3461 return -EFAULT;
3462
3463 switch (val.sauth_chunk) {
3464 case SCTP_CID_INIT:
3465 case SCTP_CID_INIT_ACK:
3466 case SCTP_CID_SHUTDOWN_COMPLETE:
3467 case SCTP_CID_AUTH:
3468 return -EINVAL;
3469 }
3470
3471 /* add this chunk id to the endpoint */
3472 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3473 }
3474
3475 /*
3476 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3477 *
3478 * This option gets or sets the list of HMAC algorithms that the local
3479 * endpoint requires the peer to use.
3480 */
3481 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3482 char __user *optval,
3483 unsigned int optlen)
3484 {
3485 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3486 struct sctp_hmacalgo *hmacs;
3487 u32 idents;
3488 int err;
3489
3490 if (!ep->auth_enable)
3491 return -EACCES;
3492
3493 if (optlen < sizeof(struct sctp_hmacalgo))
3494 return -EINVAL;
3495 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3496 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3497
3498 hmacs = memdup_user(optval, optlen);
3499 if (IS_ERR(hmacs))
3500 return PTR_ERR(hmacs);
3501
3502 idents = hmacs->shmac_num_idents;
3503 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3504 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3505 err = -EINVAL;
3506 goto out;
3507 }
3508
3509 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3510 out:
3511 kfree(hmacs);
3512 return err;
3513 }
3514
3515 /*
3516 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3517 *
3518 * This option will set a shared secret key which is used to build an
3519 * association shared key.
3520 */
3521 static int sctp_setsockopt_auth_key(struct sock *sk,
3522 char __user *optval,
3523 unsigned int optlen)
3524 {
3525 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3526 struct sctp_authkey *authkey;
3527 struct sctp_association *asoc;
3528 int ret;
3529
3530 if (!ep->auth_enable)
3531 return -EACCES;
3532
3533 if (optlen <= sizeof(struct sctp_authkey))
3534 return -EINVAL;
3535 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3536 * this.
3537 */
3538 optlen = min_t(unsigned int, optlen, USHRT_MAX +
3539 sizeof(struct sctp_authkey));
3540
3541 authkey = memdup_user(optval, optlen);
3542 if (IS_ERR(authkey))
3543 return PTR_ERR(authkey);
3544
3545 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3546 ret = -EINVAL;
3547 goto out;
3548 }
3549
3550 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3551 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3552 ret = -EINVAL;
3553 goto out;
3554 }
3555
3556 ret = sctp_auth_set_key(ep, asoc, authkey);
3557 out:
3558 kzfree(authkey);
3559 return ret;
3560 }
3561
3562 /*
3563 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3564 *
3565 * This option will get or set the active shared key to be used to build
3566 * the association shared key.
3567 */
3568 static int sctp_setsockopt_active_key(struct sock *sk,
3569 char __user *optval,
3570 unsigned int optlen)
3571 {
3572 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3573 struct sctp_authkeyid val;
3574 struct sctp_association *asoc;
3575
3576 if (!ep->auth_enable)
3577 return -EACCES;
3578
3579 if (optlen != sizeof(struct sctp_authkeyid))
3580 return -EINVAL;
3581 if (copy_from_user(&val, optval, optlen))
3582 return -EFAULT;
3583
3584 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3585 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3586 return -EINVAL;
3587
3588 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3589 }
3590
3591 /*
3592 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3593 *
3594 * This set option will delete a shared secret key from use.
3595 */
3596 static int sctp_setsockopt_del_key(struct sock *sk,
3597 char __user *optval,
3598 unsigned int optlen)
3599 {
3600 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3601 struct sctp_authkeyid val;
3602 struct sctp_association *asoc;
3603
3604 if (!ep->auth_enable)
3605 return -EACCES;
3606
3607 if (optlen != sizeof(struct sctp_authkeyid))
3608 return -EINVAL;
3609 if (copy_from_user(&val, optval, optlen))
3610 return -EFAULT;
3611
3612 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3613 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3614 return -EINVAL;
3615
3616 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3617
3618 }
3619
3620 /*
3621 * 8.1.23 SCTP_AUTO_ASCONF
3622 *
3623 * This option will enable or disable the use of the automatic generation of
3624 * ASCONF chunks to add and delete addresses to an existing association. Note
3625 * that this option has two caveats namely: a) it only affects sockets that
3626 * are bound to all addresses available to the SCTP stack, and b) the system
3627 * administrator may have an overriding control that turns the ASCONF feature
3628 * off no matter what setting the socket option may have.
3629 * This option expects an integer boolean flag, where a non-zero value turns on
3630 * the option, and a zero value turns off the option.
3631 * Note. In this implementation, socket operation overrides default parameter
3632 * being set by sysctl as well as FreeBSD implementation
3633 */
3634 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3635 unsigned int optlen)
3636 {
3637 int val;
3638 struct sctp_sock *sp = sctp_sk(sk);
3639
3640 if (optlen < sizeof(int))
3641 return -EINVAL;
3642 if (get_user(val, (int __user *)optval))
3643 return -EFAULT;
3644 if (!sctp_is_ep_boundall(sk) && val)
3645 return -EINVAL;
3646 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3647 return 0;
3648
3649 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3650 if (val == 0 && sp->do_auto_asconf) {
3651 list_del(&sp->auto_asconf_list);
3652 sp->do_auto_asconf = 0;
3653 } else if (val && !sp->do_auto_asconf) {
3654 list_add_tail(&sp->auto_asconf_list,
3655 &sock_net(sk)->sctp.auto_asconf_splist);
3656 sp->do_auto_asconf = 1;
3657 }
3658 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3659 return 0;
3660 }
3661
3662 /*
3663 * SCTP_PEER_ADDR_THLDS
3664 *
3665 * This option allows us to alter the partially failed threshold for one or all
3666 * transports in an association. See Section 6.1 of:
3667 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3668 */
3669 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3670 char __user *optval,
3671 unsigned int optlen)
3672 {
3673 struct sctp_paddrthlds val;
3674 struct sctp_transport *trans;
3675 struct sctp_association *asoc;
3676
3677 if (optlen < sizeof(struct sctp_paddrthlds))
3678 return -EINVAL;
3679 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3680 sizeof(struct sctp_paddrthlds)))
3681 return -EFAULT;
3682
3683
3684 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3685 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3686 if (!asoc)
3687 return -ENOENT;
3688 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3689 transports) {
3690 if (val.spt_pathmaxrxt)
3691 trans->pathmaxrxt = val.spt_pathmaxrxt;
3692 trans->pf_retrans = val.spt_pathpfthld;
3693 }
3694
3695 if (val.spt_pathmaxrxt)
3696 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3697 asoc->pf_retrans = val.spt_pathpfthld;
3698 } else {
3699 trans = sctp_addr_id2transport(sk, &val.spt_address,
3700 val.spt_assoc_id);
3701 if (!trans)
3702 return -ENOENT;
3703
3704 if (val.spt_pathmaxrxt)
3705 trans->pathmaxrxt = val.spt_pathmaxrxt;
3706 trans->pf_retrans = val.spt_pathpfthld;
3707 }
3708
3709 return 0;
3710 }
3711
3712 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3713 char __user *optval,
3714 unsigned int optlen)
3715 {
3716 int val;
3717
3718 if (optlen < sizeof(int))
3719 return -EINVAL;
3720 if (get_user(val, (int __user *) optval))
3721 return -EFAULT;
3722
3723 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3724
3725 return 0;
3726 }
3727
3728 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3729 char __user *optval,
3730 unsigned int optlen)
3731 {
3732 int val;
3733
3734 if (optlen < sizeof(int))
3735 return -EINVAL;
3736 if (get_user(val, (int __user *) optval))
3737 return -EFAULT;
3738
3739 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3740
3741 return 0;
3742 }
3743
3744 static int sctp_setsockopt_pr_supported(struct sock *sk,
3745 char __user *optval,
3746 unsigned int optlen)
3747 {
3748 struct sctp_assoc_value params;
3749
3750 if (optlen != sizeof(params))
3751 return -EINVAL;
3752
3753 if (copy_from_user(&params, optval, optlen))
3754 return -EFAULT;
3755
3756 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
3757
3758 return 0;
3759 }
3760
3761 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3762 char __user *optval,
3763 unsigned int optlen)
3764 {
3765 struct sctp_default_prinfo info;
3766 struct sctp_association *asoc;
3767 int retval = -EINVAL;
3768
3769 if (optlen != sizeof(info))
3770 goto out;
3771
3772 if (copy_from_user(&info, optval, sizeof(info))) {
3773 retval = -EFAULT;
3774 goto out;
3775 }
3776
3777 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3778 goto out;
3779
3780 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3781 info.pr_value = 0;
3782
3783 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3784 if (asoc) {
3785 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3786 asoc->default_timetolive = info.pr_value;
3787 } else if (!info.pr_assoc_id) {
3788 struct sctp_sock *sp = sctp_sk(sk);
3789
3790 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3791 sp->default_timetolive = info.pr_value;
3792 } else {
3793 goto out;
3794 }
3795
3796 retval = 0;
3797
3798 out:
3799 return retval;
3800 }
3801
3802 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
3803 char __user *optval,
3804 unsigned int optlen)
3805 {
3806 struct sctp_assoc_value params;
3807 struct sctp_association *asoc;
3808 int retval = -EINVAL;
3809
3810 if (optlen != sizeof(params))
3811 goto out;
3812
3813 if (copy_from_user(&params, optval, optlen)) {
3814 retval = -EFAULT;
3815 goto out;
3816 }
3817
3818 asoc = sctp_id2assoc(sk, params.assoc_id);
3819 if (asoc) {
3820 asoc->reconf_enable = !!params.assoc_value;
3821 } else if (!params.assoc_id) {
3822 struct sctp_sock *sp = sctp_sk(sk);
3823
3824 sp->ep->reconf_enable = !!params.assoc_value;
3825 } else {
3826 goto out;
3827 }
3828
3829 retval = 0;
3830
3831 out:
3832 return retval;
3833 }
3834
3835 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3836 char __user *optval,
3837 unsigned int optlen)
3838 {
3839 struct sctp_assoc_value params;
3840 struct sctp_association *asoc;
3841 int retval = -EINVAL;
3842
3843 if (optlen != sizeof(params))
3844 goto out;
3845
3846 if (copy_from_user(&params, optval, optlen)) {
3847 retval = -EFAULT;
3848 goto out;
3849 }
3850
3851 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3852 goto out;
3853
3854 asoc = sctp_id2assoc(sk, params.assoc_id);
3855 if (asoc) {
3856 asoc->strreset_enable = params.assoc_value;
3857 } else if (!params.assoc_id) {
3858 struct sctp_sock *sp = sctp_sk(sk);
3859
3860 sp->ep->strreset_enable = params.assoc_value;
3861 } else {
3862 goto out;
3863 }
3864
3865 retval = 0;
3866
3867 out:
3868 return retval;
3869 }
3870
3871 static int sctp_setsockopt_reset_streams(struct sock *sk,
3872 char __user *optval,
3873 unsigned int optlen)
3874 {
3875 struct sctp_reset_streams *params;
3876 struct sctp_association *asoc;
3877 int retval = -EINVAL;
3878
3879 if (optlen < sizeof(*params))
3880 return -EINVAL;
3881 /* srs_number_streams is u16, so optlen can't be bigger than this. */
3882 optlen = min_t(unsigned int, optlen, USHRT_MAX +
3883 sizeof(__u16) * sizeof(*params));
3884
3885 params = memdup_user(optval, optlen);
3886 if (IS_ERR(params))
3887 return PTR_ERR(params);
3888
3889 if (params->srs_number_streams * sizeof(__u16) >
3890 optlen - sizeof(*params))
3891 goto out;
3892
3893 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3894 if (!asoc)
3895 goto out;
3896
3897 retval = sctp_send_reset_streams(asoc, params);
3898
3899 out:
3900 kfree(params);
3901 return retval;
3902 }
3903
3904 static int sctp_setsockopt_reset_assoc(struct sock *sk,
3905 char __user *optval,
3906 unsigned int optlen)
3907 {
3908 struct sctp_association *asoc;
3909 sctp_assoc_t associd;
3910 int retval = -EINVAL;
3911
3912 if (optlen != sizeof(associd))
3913 goto out;
3914
3915 if (copy_from_user(&associd, optval, optlen)) {
3916 retval = -EFAULT;
3917 goto out;
3918 }
3919
3920 asoc = sctp_id2assoc(sk, associd);
3921 if (!asoc)
3922 goto out;
3923
3924 retval = sctp_send_reset_assoc(asoc);
3925
3926 out:
3927 return retval;
3928 }
3929
3930 static int sctp_setsockopt_add_streams(struct sock *sk,
3931 char __user *optval,
3932 unsigned int optlen)
3933 {
3934 struct sctp_association *asoc;
3935 struct sctp_add_streams params;
3936 int retval = -EINVAL;
3937
3938 if (optlen != sizeof(params))
3939 goto out;
3940
3941 if (copy_from_user(&params, optval, optlen)) {
3942 retval = -EFAULT;
3943 goto out;
3944 }
3945
3946 asoc = sctp_id2assoc(sk, params.sas_assoc_id);
3947 if (!asoc)
3948 goto out;
3949
3950 retval = sctp_send_add_streams(asoc, &params);
3951
3952 out:
3953 return retval;
3954 }
3955
3956 static int sctp_setsockopt_scheduler(struct sock *sk,
3957 char __user *optval,
3958 unsigned int optlen)
3959 {
3960 struct sctp_association *asoc;
3961 struct sctp_assoc_value params;
3962 int retval = -EINVAL;
3963
3964 if (optlen < sizeof(params))
3965 goto out;
3966
3967 optlen = sizeof(params);
3968 if (copy_from_user(&params, optval, optlen)) {
3969 retval = -EFAULT;
3970 goto out;
3971 }
3972
3973 if (params.assoc_value > SCTP_SS_MAX)
3974 goto out;
3975
3976 asoc = sctp_id2assoc(sk, params.assoc_id);
3977 if (!asoc)
3978 goto out;
3979
3980 retval = sctp_sched_set_sched(asoc, params.assoc_value);
3981
3982 out:
3983 return retval;
3984 }
3985
3986 static int sctp_setsockopt_scheduler_value(struct sock *sk,
3987 char __user *optval,
3988 unsigned int optlen)
3989 {
3990 struct sctp_association *asoc;
3991 struct sctp_stream_value params;
3992 int retval = -EINVAL;
3993
3994 if (optlen < sizeof(params))
3995 goto out;
3996
3997 optlen = sizeof(params);
3998 if (copy_from_user(&params, optval, optlen)) {
3999 retval = -EFAULT;
4000 goto out;
4001 }
4002
4003 asoc = sctp_id2assoc(sk, params.assoc_id);
4004 if (!asoc)
4005 goto out;
4006
4007 retval = sctp_sched_set_value(asoc, params.stream_id,
4008 params.stream_value, GFP_KERNEL);
4009
4010 out:
4011 return retval;
4012 }
4013
4014 /* API 6.2 setsockopt(), getsockopt()
4015 *
4016 * Applications use setsockopt() and getsockopt() to set or retrieve
4017 * socket options. Socket options are used to change the default
4018 * behavior of sockets calls. They are described in Section 7.
4019 *
4020 * The syntax is:
4021 *
4022 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4023 * int __user *optlen);
4024 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4025 * int optlen);
4026 *
4027 * sd - the socket descript.
4028 * level - set to IPPROTO_SCTP for all SCTP options.
4029 * optname - the option name.
4030 * optval - the buffer to store the value of the option.
4031 * optlen - the size of the buffer.
4032 */
4033 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4034 char __user *optval, unsigned int optlen)
4035 {
4036 int retval = 0;
4037
4038 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4039
4040 /* I can hardly begin to describe how wrong this is. This is
4041 * so broken as to be worse than useless. The API draft
4042 * REALLY is NOT helpful here... I am not convinced that the
4043 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4044 * are at all well-founded.
4045 */
4046 if (level != SOL_SCTP) {
4047 struct sctp_af *af = sctp_sk(sk)->pf->af;
4048 retval = af->setsockopt(sk, level, optname, optval, optlen);
4049 goto out_nounlock;
4050 }
4051
4052 lock_sock(sk);
4053
4054 switch (optname) {
4055 case SCTP_SOCKOPT_BINDX_ADD:
4056 /* 'optlen' is the size of the addresses buffer. */
4057 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4058 optlen, SCTP_BINDX_ADD_ADDR);
4059 break;
4060
4061 case SCTP_SOCKOPT_BINDX_REM:
4062 /* 'optlen' is the size of the addresses buffer. */
4063 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4064 optlen, SCTP_BINDX_REM_ADDR);
4065 break;
4066
4067 case SCTP_SOCKOPT_CONNECTX_OLD:
4068 /* 'optlen' is the size of the addresses buffer. */
4069 retval = sctp_setsockopt_connectx_old(sk,
4070 (struct sockaddr __user *)optval,
4071 optlen);
4072 break;
4073
4074 case SCTP_SOCKOPT_CONNECTX:
4075 /* 'optlen' is the size of the addresses buffer. */
4076 retval = sctp_setsockopt_connectx(sk,
4077 (struct sockaddr __user *)optval,
4078 optlen);
4079 break;
4080
4081 case SCTP_DISABLE_FRAGMENTS:
4082 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4083 break;
4084
4085 case SCTP_EVENTS:
4086 retval = sctp_setsockopt_events(sk, optval, optlen);
4087 break;
4088
4089 case SCTP_AUTOCLOSE:
4090 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4091 break;
4092
4093 case SCTP_PEER_ADDR_PARAMS:
4094 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4095 break;
4096
4097 case SCTP_DELAYED_SACK:
4098 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4099 break;
4100 case SCTP_PARTIAL_DELIVERY_POINT:
4101 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4102 break;
4103
4104 case SCTP_INITMSG:
4105 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4106 break;
4107 case SCTP_DEFAULT_SEND_PARAM:
4108 retval = sctp_setsockopt_default_send_param(sk, optval,
4109 optlen);
4110 break;
4111 case SCTP_DEFAULT_SNDINFO:
4112 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4113 break;
4114 case SCTP_PRIMARY_ADDR:
4115 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4116 break;
4117 case SCTP_SET_PEER_PRIMARY_ADDR:
4118 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4119 break;
4120 case SCTP_NODELAY:
4121 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4122 break;
4123 case SCTP_RTOINFO:
4124 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4125 break;
4126 case SCTP_ASSOCINFO:
4127 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4128 break;
4129 case SCTP_I_WANT_MAPPED_V4_ADDR:
4130 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4131 break;
4132 case SCTP_MAXSEG:
4133 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4134 break;
4135 case SCTP_ADAPTATION_LAYER:
4136 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4137 break;
4138 case SCTP_CONTEXT:
4139 retval = sctp_setsockopt_context(sk, optval, optlen);
4140 break;
4141 case SCTP_FRAGMENT_INTERLEAVE:
4142 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4143 break;
4144 case SCTP_MAX_BURST:
4145 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4146 break;
4147 case SCTP_AUTH_CHUNK:
4148 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4149 break;
4150 case SCTP_HMAC_IDENT:
4151 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4152 break;
4153 case SCTP_AUTH_KEY:
4154 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4155 break;
4156 case SCTP_AUTH_ACTIVE_KEY:
4157 retval = sctp_setsockopt_active_key(sk, optval, optlen);
4158 break;
4159 case SCTP_AUTH_DELETE_KEY:
4160 retval = sctp_setsockopt_del_key(sk, optval, optlen);
4161 break;
4162 case SCTP_AUTO_ASCONF:
4163 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4164 break;
4165 case SCTP_PEER_ADDR_THLDS:
4166 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4167 break;
4168 case SCTP_RECVRCVINFO:
4169 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4170 break;
4171 case SCTP_RECVNXTINFO:
4172 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4173 break;
4174 case SCTP_PR_SUPPORTED:
4175 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4176 break;
4177 case SCTP_DEFAULT_PRINFO:
4178 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4179 break;
4180 case SCTP_RECONFIG_SUPPORTED:
4181 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4182 break;
4183 case SCTP_ENABLE_STREAM_RESET:
4184 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4185 break;
4186 case SCTP_RESET_STREAMS:
4187 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4188 break;
4189 case SCTP_RESET_ASSOC:
4190 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4191 break;
4192 case SCTP_ADD_STREAMS:
4193 retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4194 break;
4195 case SCTP_STREAM_SCHEDULER:
4196 retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4197 break;
4198 case SCTP_STREAM_SCHEDULER_VALUE:
4199 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4200 break;
4201 default:
4202 retval = -ENOPROTOOPT;
4203 break;
4204 }
4205
4206 release_sock(sk);
4207
4208 out_nounlock:
4209 return retval;
4210 }
4211
4212 /* API 3.1.6 connect() - UDP Style Syntax
4213 *
4214 * An application may use the connect() call in the UDP model to initiate an
4215 * association without sending data.
4216 *
4217 * The syntax is:
4218 *
4219 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4220 *
4221 * sd: the socket descriptor to have a new association added to.
4222 *
4223 * nam: the address structure (either struct sockaddr_in or struct
4224 * sockaddr_in6 defined in RFC2553 [7]).
4225 *
4226 * len: the size of the address.
4227 */
4228 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4229 int addr_len, int flags)
4230 {
4231 struct sctp_af *af;
4232 int err = -EINVAL;
4233
4234 lock_sock(sk);
4235 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4236 addr, addr_len);
4237
4238 /* Validate addr_len before calling common connect/connectx routine. */
4239 af = sctp_get_af_specific(addr->sa_family);
4240 if (af && addr_len >= af->sockaddr_len)
4241 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4242
4243 release_sock(sk);
4244 return err;
4245 }
4246
4247 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4248 int addr_len, int flags)
4249 {
4250 if (addr_len < sizeof(uaddr->sa_family))
4251 return -EINVAL;
4252
4253 if (uaddr->sa_family == AF_UNSPEC)
4254 return -EOPNOTSUPP;
4255
4256 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4257 }
4258
4259 /* FIXME: Write comments. */
4260 static int sctp_disconnect(struct sock *sk, int flags)
4261 {
4262 return -EOPNOTSUPP; /* STUB */
4263 }
4264
4265 /* 4.1.4 accept() - TCP Style Syntax
4266 *
4267 * Applications use accept() call to remove an established SCTP
4268 * association from the accept queue of the endpoint. A new socket
4269 * descriptor will be returned from accept() to represent the newly
4270 * formed association.
4271 */
4272 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4273 {
4274 struct sctp_sock *sp;
4275 struct sctp_endpoint *ep;
4276 struct sock *newsk = NULL;
4277 struct sctp_association *asoc;
4278 long timeo;
4279 int error = 0;
4280
4281 lock_sock(sk);
4282
4283 sp = sctp_sk(sk);
4284 ep = sp->ep;
4285
4286 if (!sctp_style(sk, TCP)) {
4287 error = -EOPNOTSUPP;
4288 goto out;
4289 }
4290
4291 if (!sctp_sstate(sk, LISTENING)) {
4292 error = -EINVAL;
4293 goto out;
4294 }
4295
4296 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4297
4298 error = sctp_wait_for_accept(sk, timeo);
4299 if (error)
4300 goto out;
4301
4302 /* We treat the list of associations on the endpoint as the accept
4303 * queue and pick the first association on the list.
4304 */
4305 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4306
4307 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4308 if (!newsk) {
4309 error = -ENOMEM;
4310 goto out;
4311 }
4312
4313 /* Populate the fields of the newsk from the oldsk and migrate the
4314 * asoc to the newsk.
4315 */
4316 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4317
4318 out:
4319 release_sock(sk);
4320 *err = error;
4321 return newsk;
4322 }
4323
4324 /* The SCTP ioctl handler. */
4325 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4326 {
4327 int rc = -ENOTCONN;
4328
4329 lock_sock(sk);
4330
4331 /*
4332 * SEQPACKET-style sockets in LISTENING state are valid, for
4333 * SCTP, so only discard TCP-style sockets in LISTENING state.
4334 */
4335 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4336 goto out;
4337
4338 switch (cmd) {
4339 case SIOCINQ: {
4340 struct sk_buff *skb;
4341 unsigned int amount = 0;
4342
4343 skb = skb_peek(&sk->sk_receive_queue);
4344 if (skb != NULL) {
4345 /*
4346 * We will only return the amount of this packet since
4347 * that is all that will be read.
4348 */
4349 amount = skb->len;
4350 }
4351 rc = put_user(amount, (int __user *)arg);
4352 break;
4353 }
4354 default:
4355 rc = -ENOIOCTLCMD;
4356 break;
4357 }
4358 out:
4359 release_sock(sk);
4360 return rc;
4361 }
4362
4363 /* This is the function which gets called during socket creation to
4364 * initialized the SCTP-specific portion of the sock.
4365 * The sock structure should already be zero-filled memory.
4366 */
4367 static int sctp_init_sock(struct sock *sk)
4368 {
4369 struct net *net = sock_net(sk);
4370 struct sctp_sock *sp;
4371
4372 pr_debug("%s: sk:%p\n", __func__, sk);
4373
4374 sp = sctp_sk(sk);
4375
4376 /* Initialize the SCTP per socket area. */
4377 switch (sk->sk_type) {
4378 case SOCK_SEQPACKET:
4379 sp->type = SCTP_SOCKET_UDP;
4380 break;
4381 case SOCK_STREAM:
4382 sp->type = SCTP_SOCKET_TCP;
4383 break;
4384 default:
4385 return -ESOCKTNOSUPPORT;
4386 }
4387
4388 sk->sk_gso_type = SKB_GSO_SCTP;
4389
4390 /* Initialize default send parameters. These parameters can be
4391 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4392 */
4393 sp->default_stream = 0;
4394 sp->default_ppid = 0;
4395 sp->default_flags = 0;
4396 sp->default_context = 0;
4397 sp->default_timetolive = 0;
4398
4399 sp->default_rcv_context = 0;
4400 sp->max_burst = net->sctp.max_burst;
4401
4402 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4403
4404 /* Initialize default setup parameters. These parameters
4405 * can be modified with the SCTP_INITMSG socket option or
4406 * overridden by the SCTP_INIT CMSG.
4407 */
4408 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4409 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4410 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4411 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4412
4413 /* Initialize default RTO related parameters. These parameters can
4414 * be modified for with the SCTP_RTOINFO socket option.
4415 */
4416 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4417 sp->rtoinfo.srto_max = net->sctp.rto_max;
4418 sp->rtoinfo.srto_min = net->sctp.rto_min;
4419
4420 /* Initialize default association related parameters. These parameters
4421 * can be modified with the SCTP_ASSOCINFO socket option.
4422 */
4423 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4424 sp->assocparams.sasoc_number_peer_destinations = 0;
4425 sp->assocparams.sasoc_peer_rwnd = 0;
4426 sp->assocparams.sasoc_local_rwnd = 0;
4427 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4428
4429 /* Initialize default event subscriptions. By default, all the
4430 * options are off.
4431 */
4432 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4433
4434 /* Default Peer Address Parameters. These defaults can
4435 * be modified via SCTP_PEER_ADDR_PARAMS
4436 */
4437 sp->hbinterval = net->sctp.hb_interval;
4438 sp->pathmaxrxt = net->sctp.max_retrans_path;
4439 sp->pathmtu = 0; /* allow default discovery */
4440 sp->sackdelay = net->sctp.sack_timeout;
4441 sp->sackfreq = 2;
4442 sp->param_flags = SPP_HB_ENABLE |
4443 SPP_PMTUD_ENABLE |
4444 SPP_SACKDELAY_ENABLE;
4445
4446 /* If enabled no SCTP message fragmentation will be performed.
4447 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4448 */
4449 sp->disable_fragments = 0;
4450
4451 /* Enable Nagle algorithm by default. */
4452 sp->nodelay = 0;
4453
4454 sp->recvrcvinfo = 0;
4455 sp->recvnxtinfo = 0;
4456
4457 /* Enable by default. */
4458 sp->v4mapped = 1;
4459
4460 /* Auto-close idle associations after the configured
4461 * number of seconds. A value of 0 disables this
4462 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4463 * for UDP-style sockets only.
4464 */
4465 sp->autoclose = 0;
4466
4467 /* User specified fragmentation limit. */
4468 sp->user_frag = 0;
4469
4470 sp->adaptation_ind = 0;
4471
4472 sp->pf = sctp_get_pf_specific(sk->sk_family);
4473
4474 /* Control variables for partial data delivery. */
4475 atomic_set(&sp->pd_mode, 0);
4476 skb_queue_head_init(&sp->pd_lobby);
4477 sp->frag_interleave = 0;
4478
4479 /* Create a per socket endpoint structure. Even if we
4480 * change the data structure relationships, this may still
4481 * be useful for storing pre-connect address information.
4482 */
4483 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4484 if (!sp->ep)
4485 return -ENOMEM;
4486
4487 sp->hmac = NULL;
4488
4489 sk->sk_destruct = sctp_destruct_sock;
4490
4491 SCTP_DBG_OBJCNT_INC(sock);
4492
4493 local_bh_disable();
4494 sk_sockets_allocated_inc(sk);
4495 sock_prot_inuse_add(net, sk->sk_prot, 1);
4496
4497 /* Nothing can fail after this block, otherwise
4498 * sctp_destroy_sock() will be called without addr_wq_lock held
4499 */
4500 if (net->sctp.default_auto_asconf) {
4501 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4502 list_add_tail(&sp->auto_asconf_list,
4503 &net->sctp.auto_asconf_splist);
4504 sp->do_auto_asconf = 1;
4505 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4506 } else {
4507 sp->do_auto_asconf = 0;
4508 }
4509
4510 local_bh_enable();
4511
4512 return 0;
4513 }
4514
4515 /* Cleanup any SCTP per socket resources. Must be called with
4516 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4517 */
4518 static void sctp_destroy_sock(struct sock *sk)
4519 {
4520 struct sctp_sock *sp;
4521
4522 pr_debug("%s: sk:%p\n", __func__, sk);
4523
4524 /* Release our hold on the endpoint. */
4525 sp = sctp_sk(sk);
4526 /* This could happen during socket init, thus we bail out
4527 * early, since the rest of the below is not setup either.
4528 */
4529 if (sp->ep == NULL)
4530 return;
4531
4532 if (sp->do_auto_asconf) {
4533 sp->do_auto_asconf = 0;
4534 list_del(&sp->auto_asconf_list);
4535 }
4536 sctp_endpoint_free(sp->ep);
4537 local_bh_disable();
4538 sk_sockets_allocated_dec(sk);
4539 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4540 local_bh_enable();
4541 }
4542
4543 /* Triggered when there are no references on the socket anymore */
4544 static void sctp_destruct_sock(struct sock *sk)
4545 {
4546 struct sctp_sock *sp = sctp_sk(sk);
4547
4548 /* Free up the HMAC transform. */
4549 crypto_free_shash(sp->hmac);
4550
4551 inet_sock_destruct(sk);
4552 }
4553
4554 /* API 4.1.7 shutdown() - TCP Style Syntax
4555 * int shutdown(int socket, int how);
4556 *
4557 * sd - the socket descriptor of the association to be closed.
4558 * how - Specifies the type of shutdown. The values are
4559 * as follows:
4560 * SHUT_RD
4561 * Disables further receive operations. No SCTP
4562 * protocol action is taken.
4563 * SHUT_WR
4564 * Disables further send operations, and initiates
4565 * the SCTP shutdown sequence.
4566 * SHUT_RDWR
4567 * Disables further send and receive operations
4568 * and initiates the SCTP shutdown sequence.
4569 */
4570 static void sctp_shutdown(struct sock *sk, int how)
4571 {
4572 struct net *net = sock_net(sk);
4573 struct sctp_endpoint *ep;
4574
4575 if (!sctp_style(sk, TCP))
4576 return;
4577
4578 ep = sctp_sk(sk)->ep;
4579 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4580 struct sctp_association *asoc;
4581
4582 sk->sk_state = SCTP_SS_CLOSING;
4583 asoc = list_entry(ep->asocs.next,
4584 struct sctp_association, asocs);
4585 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4586 }
4587 }
4588
4589 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4590 struct sctp_info *info)
4591 {
4592 struct sctp_transport *prim;
4593 struct list_head *pos;
4594 int mask;
4595
4596 memset(info, 0, sizeof(*info));
4597 if (!asoc) {
4598 struct sctp_sock *sp = sctp_sk(sk);
4599
4600 info->sctpi_s_autoclose = sp->autoclose;
4601 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4602 info->sctpi_s_pd_point = sp->pd_point;
4603 info->sctpi_s_nodelay = sp->nodelay;
4604 info->sctpi_s_disable_fragments = sp->disable_fragments;
4605 info->sctpi_s_v4mapped = sp->v4mapped;
4606 info->sctpi_s_frag_interleave = sp->frag_interleave;
4607 info->sctpi_s_type = sp->type;
4608
4609 return 0;
4610 }
4611
4612 info->sctpi_tag = asoc->c.my_vtag;
4613 info->sctpi_state = asoc->state;
4614 info->sctpi_rwnd = asoc->a_rwnd;
4615 info->sctpi_unackdata = asoc->unack_data;
4616 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4617 info->sctpi_instrms = asoc->stream.incnt;
4618 info->sctpi_outstrms = asoc->stream.outcnt;
4619 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4620 info->sctpi_inqueue++;
4621 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4622 info->sctpi_outqueue++;
4623 info->sctpi_overall_error = asoc->overall_error_count;
4624 info->sctpi_max_burst = asoc->max_burst;
4625 info->sctpi_maxseg = asoc->frag_point;
4626 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4627 info->sctpi_peer_tag = asoc->c.peer_vtag;
4628
4629 mask = asoc->peer.ecn_capable << 1;
4630 mask = (mask | asoc->peer.ipv4_address) << 1;
4631 mask = (mask | asoc->peer.ipv6_address) << 1;
4632 mask = (mask | asoc->peer.hostname_address) << 1;
4633 mask = (mask | asoc->peer.asconf_capable) << 1;
4634 mask = (mask | asoc->peer.prsctp_capable) << 1;
4635 mask = (mask | asoc->peer.auth_capable);
4636 info->sctpi_peer_capable = mask;
4637 mask = asoc->peer.sack_needed << 1;
4638 mask = (mask | asoc->peer.sack_generation) << 1;
4639 mask = (mask | asoc->peer.zero_window_announced);
4640 info->sctpi_peer_sack = mask;
4641
4642 info->sctpi_isacks = asoc->stats.isacks;
4643 info->sctpi_osacks = asoc->stats.osacks;
4644 info->sctpi_opackets = asoc->stats.opackets;
4645 info->sctpi_ipackets = asoc->stats.ipackets;
4646 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4647 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4648 info->sctpi_idupchunks = asoc->stats.idupchunks;
4649 info->sctpi_gapcnt = asoc->stats.gapcnt;
4650 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4651 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4652 info->sctpi_oodchunks = asoc->stats.oodchunks;
4653 info->sctpi_iodchunks = asoc->stats.iodchunks;
4654 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4655 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4656
4657 prim = asoc->peer.primary_path;
4658 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4659 info->sctpi_p_state = prim->state;
4660 info->sctpi_p_cwnd = prim->cwnd;
4661 info->sctpi_p_srtt = prim->srtt;
4662 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4663 info->sctpi_p_hbinterval = prim->hbinterval;
4664 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4665 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4666 info->sctpi_p_ssthresh = prim->ssthresh;
4667 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4668 info->sctpi_p_flight_size = prim->flight_size;
4669 info->sctpi_p_error = prim->error_count;
4670
4671 return 0;
4672 }
4673 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4674
4675 /* use callback to avoid exporting the core structure */
4676 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4677 {
4678 int err;
4679
4680 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4681
4682 err = rhashtable_walk_start(iter);
4683 if (err && err != -EAGAIN) {
4684 rhashtable_walk_stop(iter);
4685 rhashtable_walk_exit(iter);
4686 return err;
4687 }
4688
4689 return 0;
4690 }
4691
4692 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4693 {
4694 rhashtable_walk_stop(iter);
4695 rhashtable_walk_exit(iter);
4696 }
4697
4698 struct sctp_transport *sctp_transport_get_next(struct net *net,
4699 struct rhashtable_iter *iter)
4700 {
4701 struct sctp_transport *t;
4702
4703 t = rhashtable_walk_next(iter);
4704 for (; t; t = rhashtable_walk_next(iter)) {
4705 if (IS_ERR(t)) {
4706 if (PTR_ERR(t) == -EAGAIN)
4707 continue;
4708 break;
4709 }
4710
4711 if (!sctp_transport_hold(t))
4712 continue;
4713
4714 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4715 t->asoc->peer.primary_path == t)
4716 break;
4717
4718 sctp_transport_put(t);
4719 }
4720
4721 return t;
4722 }
4723
4724 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4725 struct rhashtable_iter *iter,
4726 int pos)
4727 {
4728 struct sctp_transport *t;
4729
4730 if (!pos)
4731 return SEQ_START_TOKEN;
4732
4733 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
4734 if (!--pos)
4735 break;
4736 sctp_transport_put(t);
4737 }
4738
4739 return t;
4740 }
4741
4742 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4743 void *p) {
4744 int err = 0;
4745 int hash = 0;
4746 struct sctp_ep_common *epb;
4747 struct sctp_hashbucket *head;
4748
4749 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4750 hash++, head++) {
4751 read_lock_bh(&head->lock);
4752 sctp_for_each_hentry(epb, &head->chain) {
4753 err = cb(sctp_ep(epb), p);
4754 if (err)
4755 break;
4756 }
4757 read_unlock_bh(&head->lock);
4758 }
4759
4760 return err;
4761 }
4762 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4763
4764 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4765 struct net *net,
4766 const union sctp_addr *laddr,
4767 const union sctp_addr *paddr, void *p)
4768 {
4769 struct sctp_transport *transport;
4770 int err;
4771
4772 rcu_read_lock();
4773 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4774 rcu_read_unlock();
4775 if (!transport)
4776 return -ENOENT;
4777
4778 err = cb(transport, p);
4779 sctp_transport_put(transport);
4780
4781 return err;
4782 }
4783 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4784
4785 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4786 int (*cb_done)(struct sctp_transport *, void *),
4787 struct net *net, int *pos, void *p) {
4788 struct rhashtable_iter hti;
4789 struct sctp_transport *tsp;
4790 int ret;
4791
4792 again:
4793 ret = sctp_transport_walk_start(&hti);
4794 if (ret)
4795 return ret;
4796
4797 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
4798 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
4799 ret = cb(tsp, p);
4800 if (ret)
4801 break;
4802 (*pos)++;
4803 sctp_transport_put(tsp);
4804 }
4805 sctp_transport_walk_stop(&hti);
4806
4807 if (ret) {
4808 if (cb_done && !cb_done(tsp, p)) {
4809 (*pos)++;
4810 sctp_transport_put(tsp);
4811 goto again;
4812 }
4813 sctp_transport_put(tsp);
4814 }
4815
4816 return ret;
4817 }
4818 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4819
4820 /* 7.2.1 Association Status (SCTP_STATUS)
4821
4822 * Applications can retrieve current status information about an
4823 * association, including association state, peer receiver window size,
4824 * number of unacked data chunks, and number of data chunks pending
4825 * receipt. This information is read-only.
4826 */
4827 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4828 char __user *optval,
4829 int __user *optlen)
4830 {
4831 struct sctp_status status;
4832 struct sctp_association *asoc = NULL;
4833 struct sctp_transport *transport;
4834 sctp_assoc_t associd;
4835 int retval = 0;
4836
4837 if (len < sizeof(status)) {
4838 retval = -EINVAL;
4839 goto out;
4840 }
4841
4842 len = sizeof(status);
4843 if (copy_from_user(&status, optval, len)) {
4844 retval = -EFAULT;
4845 goto out;
4846 }
4847
4848 associd = status.sstat_assoc_id;
4849 asoc = sctp_id2assoc(sk, associd);
4850 if (!asoc) {
4851 retval = -EINVAL;
4852 goto out;
4853 }
4854
4855 transport = asoc->peer.primary_path;
4856
4857 status.sstat_assoc_id = sctp_assoc2id(asoc);
4858 status.sstat_state = sctp_assoc_to_state(asoc);
4859 status.sstat_rwnd = asoc->peer.rwnd;
4860 status.sstat_unackdata = asoc->unack_data;
4861
4862 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4863 status.sstat_instrms = asoc->stream.incnt;
4864 status.sstat_outstrms = asoc->stream.outcnt;
4865 status.sstat_fragmentation_point = asoc->frag_point;
4866 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4867 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4868 transport->af_specific->sockaddr_len);
4869 /* Map ipv4 address into v4-mapped-on-v6 address. */
4870 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4871 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4872 status.sstat_primary.spinfo_state = transport->state;
4873 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4874 status.sstat_primary.spinfo_srtt = transport->srtt;
4875 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4876 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4877
4878 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4879 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4880
4881 if (put_user(len, optlen)) {
4882 retval = -EFAULT;
4883 goto out;
4884 }
4885
4886 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4887 __func__, len, status.sstat_state, status.sstat_rwnd,
4888 status.sstat_assoc_id);
4889
4890 if (copy_to_user(optval, &status, len)) {
4891 retval = -EFAULT;
4892 goto out;
4893 }
4894
4895 out:
4896 return retval;
4897 }
4898
4899
4900 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4901 *
4902 * Applications can retrieve information about a specific peer address
4903 * of an association, including its reachability state, congestion
4904 * window, and retransmission timer values. This information is
4905 * read-only.
4906 */
4907 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4908 char __user *optval,
4909 int __user *optlen)
4910 {
4911 struct sctp_paddrinfo pinfo;
4912 struct sctp_transport *transport;
4913 int retval = 0;
4914
4915 if (len < sizeof(pinfo)) {
4916 retval = -EINVAL;
4917 goto out;
4918 }
4919
4920 len = sizeof(pinfo);
4921 if (copy_from_user(&pinfo, optval, len)) {
4922 retval = -EFAULT;
4923 goto out;
4924 }
4925
4926 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4927 pinfo.spinfo_assoc_id);
4928 if (!transport)
4929 return -EINVAL;
4930
4931 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4932 pinfo.spinfo_state = transport->state;
4933 pinfo.spinfo_cwnd = transport->cwnd;
4934 pinfo.spinfo_srtt = transport->srtt;
4935 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4936 pinfo.spinfo_mtu = transport->pathmtu;
4937
4938 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4939 pinfo.spinfo_state = SCTP_ACTIVE;
4940
4941 if (put_user(len, optlen)) {
4942 retval = -EFAULT;
4943 goto out;
4944 }
4945
4946 if (copy_to_user(optval, &pinfo, len)) {
4947 retval = -EFAULT;
4948 goto out;
4949 }
4950
4951 out:
4952 return retval;
4953 }
4954
4955 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4956 *
4957 * This option is a on/off flag. If enabled no SCTP message
4958 * fragmentation will be performed. Instead if a message being sent
4959 * exceeds the current PMTU size, the message will NOT be sent and
4960 * instead a error will be indicated to the user.
4961 */
4962 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4963 char __user *optval, int __user *optlen)
4964 {
4965 int val;
4966
4967 if (len < sizeof(int))
4968 return -EINVAL;
4969
4970 len = sizeof(int);
4971 val = (sctp_sk(sk)->disable_fragments == 1);
4972 if (put_user(len, optlen))
4973 return -EFAULT;
4974 if (copy_to_user(optval, &val, len))
4975 return -EFAULT;
4976 return 0;
4977 }
4978
4979 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4980 *
4981 * This socket option is used to specify various notifications and
4982 * ancillary data the user wishes to receive.
4983 */
4984 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4985 int __user *optlen)
4986 {
4987 if (len == 0)
4988 return -EINVAL;
4989 if (len > sizeof(struct sctp_event_subscribe))
4990 len = sizeof(struct sctp_event_subscribe);
4991 if (put_user(len, optlen))
4992 return -EFAULT;
4993 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4994 return -EFAULT;
4995 return 0;
4996 }
4997
4998 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4999 *
5000 * This socket option is applicable to the UDP-style socket only. When
5001 * set it will cause associations that are idle for more than the
5002 * specified number of seconds to automatically close. An association
5003 * being idle is defined an association that has NOT sent or received
5004 * user data. The special value of '0' indicates that no automatic
5005 * close of any associations should be performed. The option expects an
5006 * integer defining the number of seconds of idle time before an
5007 * association is closed.
5008 */
5009 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5010 {
5011 /* Applicable to UDP-style socket only */
5012 if (sctp_style(sk, TCP))
5013 return -EOPNOTSUPP;
5014 if (len < sizeof(int))
5015 return -EINVAL;
5016 len = sizeof(int);
5017 if (put_user(len, optlen))
5018 return -EFAULT;
5019 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
5020 return -EFAULT;
5021 return 0;
5022 }
5023
5024 /* Helper routine to branch off an association to a new socket. */
5025 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5026 {
5027 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5028 struct sctp_sock *sp = sctp_sk(sk);
5029 struct socket *sock;
5030 int err = 0;
5031
5032 /* Do not peel off from one netns to another one. */
5033 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5034 return -EINVAL;
5035
5036 if (!asoc)
5037 return -EINVAL;
5038
5039 /* An association cannot be branched off from an already peeled-off
5040 * socket, nor is this supported for tcp style sockets.
5041 */
5042 if (!sctp_style(sk, UDP))
5043 return -EINVAL;
5044
5045 /* Create a new socket. */
5046 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5047 if (err < 0)
5048 return err;
5049
5050 sctp_copy_sock(sock->sk, sk, asoc);
5051
5052 /* Make peeled-off sockets more like 1-1 accepted sockets.
5053 * Set the daddr and initialize id to something more random
5054 */
5055 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5056
5057 /* Populate the fields of the newsk from the oldsk and migrate the
5058 * asoc to the newsk.
5059 */
5060 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5061
5062 *sockp = sock;
5063
5064 return err;
5065 }
5066 EXPORT_SYMBOL(sctp_do_peeloff);
5067
5068 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5069 struct file **newfile, unsigned flags)
5070 {
5071 struct socket *newsock;
5072 int retval;
5073
5074 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5075 if (retval < 0)
5076 goto out;
5077
5078 /* Map the socket to an unused fd that can be returned to the user. */
5079 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5080 if (retval < 0) {
5081 sock_release(newsock);
5082 goto out;
5083 }
5084
5085 *newfile = sock_alloc_file(newsock, 0, NULL);
5086 if (IS_ERR(*newfile)) {
5087 put_unused_fd(retval);
5088 retval = PTR_ERR(*newfile);
5089 *newfile = NULL;
5090 return retval;
5091 }
5092
5093 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5094 retval);
5095
5096 peeloff->sd = retval;
5097
5098 if (flags & SOCK_NONBLOCK)
5099 (*newfile)->f_flags |= O_NONBLOCK;
5100 out:
5101 return retval;
5102 }
5103
5104 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5105 {
5106 sctp_peeloff_arg_t peeloff;
5107 struct file *newfile = NULL;
5108 int retval = 0;
5109
5110 if (len < sizeof(sctp_peeloff_arg_t))
5111 return -EINVAL;
5112 len = sizeof(sctp_peeloff_arg_t);
5113 if (copy_from_user(&peeloff, optval, len))
5114 return -EFAULT;
5115
5116 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5117 if (retval < 0)
5118 goto out;
5119
5120 /* Return the fd mapped to the new socket. */
5121 if (put_user(len, optlen)) {
5122 fput(newfile);
5123 put_unused_fd(retval);
5124 return -EFAULT;
5125 }
5126
5127 if (copy_to_user(optval, &peeloff, len)) {
5128 fput(newfile);
5129 put_unused_fd(retval);
5130 return -EFAULT;
5131 }
5132 fd_install(retval, newfile);
5133 out:
5134 return retval;
5135 }
5136
5137 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5138 char __user *optval, int __user *optlen)
5139 {
5140 sctp_peeloff_flags_arg_t peeloff;
5141 struct file *newfile = NULL;
5142 int retval = 0;
5143
5144 if (len < sizeof(sctp_peeloff_flags_arg_t))
5145 return -EINVAL;
5146 len = sizeof(sctp_peeloff_flags_arg_t);
5147 if (copy_from_user(&peeloff, optval, len))
5148 return -EFAULT;
5149
5150 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5151 &newfile, peeloff.flags);
5152 if (retval < 0)
5153 goto out;
5154
5155 /* Return the fd mapped to the new socket. */
5156 if (put_user(len, optlen)) {
5157 fput(newfile);
5158 put_unused_fd(retval);
5159 return -EFAULT;
5160 }
5161
5162 if (copy_to_user(optval, &peeloff, len)) {
5163 fput(newfile);
5164 put_unused_fd(retval);
5165 return -EFAULT;
5166 }
5167 fd_install(retval, newfile);
5168 out:
5169 return retval;
5170 }
5171
5172 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5173 *
5174 * Applications can enable or disable heartbeats for any peer address of
5175 * an association, modify an address's heartbeat interval, force a
5176 * heartbeat to be sent immediately, and adjust the address's maximum
5177 * number of retransmissions sent before an address is considered
5178 * unreachable. The following structure is used to access and modify an
5179 * address's parameters:
5180 *
5181 * struct sctp_paddrparams {
5182 * sctp_assoc_t spp_assoc_id;
5183 * struct sockaddr_storage spp_address;
5184 * uint32_t spp_hbinterval;
5185 * uint16_t spp_pathmaxrxt;
5186 * uint32_t spp_pathmtu;
5187 * uint32_t spp_sackdelay;
5188 * uint32_t spp_flags;
5189 * };
5190 *
5191 * spp_assoc_id - (one-to-many style socket) This is filled in the
5192 * application, and identifies the association for
5193 * this query.
5194 * spp_address - This specifies which address is of interest.
5195 * spp_hbinterval - This contains the value of the heartbeat interval,
5196 * in milliseconds. If a value of zero
5197 * is present in this field then no changes are to
5198 * be made to this parameter.
5199 * spp_pathmaxrxt - This contains the maximum number of
5200 * retransmissions before this address shall be
5201 * considered unreachable. If a value of zero
5202 * is present in this field then no changes are to
5203 * be made to this parameter.
5204 * spp_pathmtu - When Path MTU discovery is disabled the value
5205 * specified here will be the "fixed" path mtu.
5206 * Note that if the spp_address field is empty
5207 * then all associations on this address will
5208 * have this fixed path mtu set upon them.
5209 *
5210 * spp_sackdelay - When delayed sack is enabled, this value specifies
5211 * the number of milliseconds that sacks will be delayed
5212 * for. This value will apply to all addresses of an
5213 * association if the spp_address field is empty. Note
5214 * also, that if delayed sack is enabled and this
5215 * value is set to 0, no change is made to the last
5216 * recorded delayed sack timer value.
5217 *
5218 * spp_flags - These flags are used to control various features
5219 * on an association. The flag field may contain
5220 * zero or more of the following options.
5221 *
5222 * SPP_HB_ENABLE - Enable heartbeats on the
5223 * specified address. Note that if the address
5224 * field is empty all addresses for the association
5225 * have heartbeats enabled upon them.
5226 *
5227 * SPP_HB_DISABLE - Disable heartbeats on the
5228 * speicifed address. Note that if the address
5229 * field is empty all addresses for the association
5230 * will have their heartbeats disabled. Note also
5231 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5232 * mutually exclusive, only one of these two should
5233 * be specified. Enabling both fields will have
5234 * undetermined results.
5235 *
5236 * SPP_HB_DEMAND - Request a user initiated heartbeat
5237 * to be made immediately.
5238 *
5239 * SPP_PMTUD_ENABLE - This field will enable PMTU
5240 * discovery upon the specified address. Note that
5241 * if the address feild is empty then all addresses
5242 * on the association are effected.
5243 *
5244 * SPP_PMTUD_DISABLE - This field will disable PMTU
5245 * discovery upon the specified address. Note that
5246 * if the address feild is empty then all addresses
5247 * on the association are effected. Not also that
5248 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5249 * exclusive. Enabling both will have undetermined
5250 * results.
5251 *
5252 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5253 * on delayed sack. The time specified in spp_sackdelay
5254 * is used to specify the sack delay for this address. Note
5255 * that if spp_address is empty then all addresses will
5256 * enable delayed sack and take on the sack delay
5257 * value specified in spp_sackdelay.
5258 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5259 * off delayed sack. If the spp_address field is blank then
5260 * delayed sack is disabled for the entire association. Note
5261 * also that this field is mutually exclusive to
5262 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5263 * results.
5264 */
5265 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5266 char __user *optval, int __user *optlen)
5267 {
5268 struct sctp_paddrparams params;
5269 struct sctp_transport *trans = NULL;
5270 struct sctp_association *asoc = NULL;
5271 struct sctp_sock *sp = sctp_sk(sk);
5272
5273 if (len < sizeof(struct sctp_paddrparams))
5274 return -EINVAL;
5275 len = sizeof(struct sctp_paddrparams);
5276 if (copy_from_user(&params, optval, len))
5277 return -EFAULT;
5278
5279 /* If an address other than INADDR_ANY is specified, and
5280 * no transport is found, then the request is invalid.
5281 */
5282 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5283 trans = sctp_addr_id2transport(sk, &params.spp_address,
5284 params.spp_assoc_id);
5285 if (!trans) {
5286 pr_debug("%s: failed no transport\n", __func__);
5287 return -EINVAL;
5288 }
5289 }
5290
5291 /* Get association, if assoc_id != 0 and the socket is a one
5292 * to many style socket, and an association was not found, then
5293 * the id was invalid.
5294 */
5295 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5296 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5297 pr_debug("%s: failed no association\n", __func__);
5298 return -EINVAL;
5299 }
5300
5301 if (trans) {
5302 /* Fetch transport values. */
5303 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5304 params.spp_pathmtu = trans->pathmtu;
5305 params.spp_pathmaxrxt = trans->pathmaxrxt;
5306 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5307
5308 /*draft-11 doesn't say what to return in spp_flags*/
5309 params.spp_flags = trans->param_flags;
5310 } else if (asoc) {
5311 /* Fetch association values. */
5312 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5313 params.spp_pathmtu = asoc->pathmtu;
5314 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5315 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5316
5317 /*draft-11 doesn't say what to return in spp_flags*/
5318 params.spp_flags = asoc->param_flags;
5319 } else {
5320 /* Fetch socket values. */
5321 params.spp_hbinterval = sp->hbinterval;
5322 params.spp_pathmtu = sp->pathmtu;
5323 params.spp_sackdelay = sp->sackdelay;
5324 params.spp_pathmaxrxt = sp->pathmaxrxt;
5325
5326 /*draft-11 doesn't say what to return in spp_flags*/
5327 params.spp_flags = sp->param_flags;
5328 }
5329
5330 if (copy_to_user(optval, &params, len))
5331 return -EFAULT;
5332
5333 if (put_user(len, optlen))
5334 return -EFAULT;
5335
5336 return 0;
5337 }
5338
5339 /*
5340 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5341 *
5342 * This option will effect the way delayed acks are performed. This
5343 * option allows you to get or set the delayed ack time, in
5344 * milliseconds. It also allows changing the delayed ack frequency.
5345 * Changing the frequency to 1 disables the delayed sack algorithm. If
5346 * the assoc_id is 0, then this sets or gets the endpoints default
5347 * values. If the assoc_id field is non-zero, then the set or get
5348 * effects the specified association for the one to many model (the
5349 * assoc_id field is ignored by the one to one model). Note that if
5350 * sack_delay or sack_freq are 0 when setting this option, then the
5351 * current values will remain unchanged.
5352 *
5353 * struct sctp_sack_info {
5354 * sctp_assoc_t sack_assoc_id;
5355 * uint32_t sack_delay;
5356 * uint32_t sack_freq;
5357 * };
5358 *
5359 * sack_assoc_id - This parameter, indicates which association the user
5360 * is performing an action upon. Note that if this field's value is
5361 * zero then the endpoints default value is changed (effecting future
5362 * associations only).
5363 *
5364 * sack_delay - This parameter contains the number of milliseconds that
5365 * the user is requesting the delayed ACK timer be set to. Note that
5366 * this value is defined in the standard to be between 200 and 500
5367 * milliseconds.
5368 *
5369 * sack_freq - This parameter contains the number of packets that must
5370 * be received before a sack is sent without waiting for the delay
5371 * timer to expire. The default value for this is 2, setting this
5372 * value to 1 will disable the delayed sack algorithm.
5373 */
5374 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5375 char __user *optval,
5376 int __user *optlen)
5377 {
5378 struct sctp_sack_info params;
5379 struct sctp_association *asoc = NULL;
5380 struct sctp_sock *sp = sctp_sk(sk);
5381
5382 if (len >= sizeof(struct sctp_sack_info)) {
5383 len = sizeof(struct sctp_sack_info);
5384
5385 if (copy_from_user(&params, optval, len))
5386 return -EFAULT;
5387 } else if (len == sizeof(struct sctp_assoc_value)) {
5388 pr_warn_ratelimited(DEPRECATED
5389 "%s (pid %d) "
5390 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5391 "Use struct sctp_sack_info instead\n",
5392 current->comm, task_pid_nr(current));
5393 if (copy_from_user(&params, optval, len))
5394 return -EFAULT;
5395 } else
5396 return -EINVAL;
5397
5398 /* Get association, if sack_assoc_id != 0 and the socket is a one
5399 * to many style socket, and an association was not found, then
5400 * the id was invalid.
5401 */
5402 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5403 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5404 return -EINVAL;
5405
5406 if (asoc) {
5407 /* Fetch association values. */
5408 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5409 params.sack_delay = jiffies_to_msecs(
5410 asoc->sackdelay);
5411 params.sack_freq = asoc->sackfreq;
5412
5413 } else {
5414 params.sack_delay = 0;
5415 params.sack_freq = 1;
5416 }
5417 } else {
5418 /* Fetch socket values. */
5419 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5420 params.sack_delay = sp->sackdelay;
5421 params.sack_freq = sp->sackfreq;
5422 } else {
5423 params.sack_delay = 0;
5424 params.sack_freq = 1;
5425 }
5426 }
5427
5428 if (copy_to_user(optval, &params, len))
5429 return -EFAULT;
5430
5431 if (put_user(len, optlen))
5432 return -EFAULT;
5433
5434 return 0;
5435 }
5436
5437 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5438 *
5439 * Applications can specify protocol parameters for the default association
5440 * initialization. The option name argument to setsockopt() and getsockopt()
5441 * is SCTP_INITMSG.
5442 *
5443 * Setting initialization parameters is effective only on an unconnected
5444 * socket (for UDP-style sockets only future associations are effected
5445 * by the change). With TCP-style sockets, this option is inherited by
5446 * sockets derived from a listener socket.
5447 */
5448 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5449 {
5450 if (len < sizeof(struct sctp_initmsg))
5451 return -EINVAL;
5452 len = sizeof(struct sctp_initmsg);
5453 if (put_user(len, optlen))
5454 return -EFAULT;
5455 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5456 return -EFAULT;
5457 return 0;
5458 }
5459
5460
5461 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5462 char __user *optval, int __user *optlen)
5463 {
5464 struct sctp_association *asoc;
5465 int cnt = 0;
5466 struct sctp_getaddrs getaddrs;
5467 struct sctp_transport *from;
5468 void __user *to;
5469 union sctp_addr temp;
5470 struct sctp_sock *sp = sctp_sk(sk);
5471 int addrlen;
5472 size_t space_left;
5473 int bytes_copied;
5474
5475 if (len < sizeof(struct sctp_getaddrs))
5476 return -EINVAL;
5477
5478 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5479 return -EFAULT;
5480
5481 /* For UDP-style sockets, id specifies the association to query. */
5482 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5483 if (!asoc)
5484 return -EINVAL;
5485
5486 to = optval + offsetof(struct sctp_getaddrs, addrs);
5487 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5488
5489 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5490 transports) {
5491 memcpy(&temp, &from->ipaddr, sizeof(temp));
5492 addrlen = sctp_get_pf_specific(sk->sk_family)
5493 ->addr_to_user(sp, &temp);
5494 if (space_left < addrlen)
5495 return -ENOMEM;
5496 if (copy_to_user(to, &temp, addrlen))
5497 return -EFAULT;
5498 to += addrlen;
5499 cnt++;
5500 space_left -= addrlen;
5501 }
5502
5503 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5504 return -EFAULT;
5505 bytes_copied = ((char __user *)to) - optval;
5506 if (put_user(bytes_copied, optlen))
5507 return -EFAULT;
5508
5509 return 0;
5510 }
5511
5512 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5513 size_t space_left, int *bytes_copied)
5514 {
5515 struct sctp_sockaddr_entry *addr;
5516 union sctp_addr temp;
5517 int cnt = 0;
5518 int addrlen;
5519 struct net *net = sock_net(sk);
5520
5521 rcu_read_lock();
5522 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5523 if (!addr->valid)
5524 continue;
5525
5526 if ((PF_INET == sk->sk_family) &&
5527 (AF_INET6 == addr->a.sa.sa_family))
5528 continue;
5529 if ((PF_INET6 == sk->sk_family) &&
5530 inet_v6_ipv6only(sk) &&
5531 (AF_INET == addr->a.sa.sa_family))
5532 continue;
5533 memcpy(&temp, &addr->a, sizeof(temp));
5534 if (!temp.v4.sin_port)
5535 temp.v4.sin_port = htons(port);
5536
5537 addrlen = sctp_get_pf_specific(sk->sk_family)
5538 ->addr_to_user(sctp_sk(sk), &temp);
5539
5540 if (space_left < addrlen) {
5541 cnt = -ENOMEM;
5542 break;
5543 }
5544 memcpy(to, &temp, addrlen);
5545
5546 to += addrlen;
5547 cnt++;
5548 space_left -= addrlen;
5549 *bytes_copied += addrlen;
5550 }
5551 rcu_read_unlock();
5552
5553 return cnt;
5554 }
5555
5556
5557 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5558 char __user *optval, int __user *optlen)
5559 {
5560 struct sctp_bind_addr *bp;
5561 struct sctp_association *asoc;
5562 int cnt = 0;
5563 struct sctp_getaddrs getaddrs;
5564 struct sctp_sockaddr_entry *addr;
5565 void __user *to;
5566 union sctp_addr temp;
5567 struct sctp_sock *sp = sctp_sk(sk);
5568 int addrlen;
5569 int err = 0;
5570 size_t space_left;
5571 int bytes_copied = 0;
5572 void *addrs;
5573 void *buf;
5574
5575 if (len < sizeof(struct sctp_getaddrs))
5576 return -EINVAL;
5577
5578 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5579 return -EFAULT;
5580
5581 /*
5582 * For UDP-style sockets, id specifies the association to query.
5583 * If the id field is set to the value '0' then the locally bound
5584 * addresses are returned without regard to any particular
5585 * association.
5586 */
5587 if (0 == getaddrs.assoc_id) {
5588 bp = &sctp_sk(sk)->ep->base.bind_addr;
5589 } else {
5590 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5591 if (!asoc)
5592 return -EINVAL;
5593 bp = &asoc->base.bind_addr;
5594 }
5595
5596 to = optval + offsetof(struct sctp_getaddrs, addrs);
5597 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5598
5599 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5600 if (!addrs)
5601 return -ENOMEM;
5602
5603 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5604 * addresses from the global local address list.
5605 */
5606 if (sctp_list_single_entry(&bp->address_list)) {
5607 addr = list_entry(bp->address_list.next,
5608 struct sctp_sockaddr_entry, list);
5609 if (sctp_is_any(sk, &addr->a)) {
5610 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5611 space_left, &bytes_copied);
5612 if (cnt < 0) {
5613 err = cnt;
5614 goto out;
5615 }
5616 goto copy_getaddrs;
5617 }
5618 }
5619
5620 buf = addrs;
5621 /* Protection on the bound address list is not needed since
5622 * in the socket option context we hold a socket lock and
5623 * thus the bound address list can't change.
5624 */
5625 list_for_each_entry(addr, &bp->address_list, list) {
5626 memcpy(&temp, &addr->a, sizeof(temp));
5627 addrlen = sctp_get_pf_specific(sk->sk_family)
5628 ->addr_to_user(sp, &temp);
5629 if (space_left < addrlen) {
5630 err = -ENOMEM; /*fixme: right error?*/
5631 goto out;
5632 }
5633 memcpy(buf, &temp, addrlen);
5634 buf += addrlen;
5635 bytes_copied += addrlen;
5636 cnt++;
5637 space_left -= addrlen;
5638 }
5639
5640 copy_getaddrs:
5641 if (copy_to_user(to, addrs, bytes_copied)) {
5642 err = -EFAULT;
5643 goto out;
5644 }
5645 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5646 err = -EFAULT;
5647 goto out;
5648 }
5649 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
5650 * but we can't change it anymore.
5651 */
5652 if (put_user(bytes_copied, optlen))
5653 err = -EFAULT;
5654 out:
5655 kfree(addrs);
5656 return err;
5657 }
5658
5659 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5660 *
5661 * Requests that the local SCTP stack use the enclosed peer address as
5662 * the association primary. The enclosed address must be one of the
5663 * association peer's addresses.
5664 */
5665 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5666 char __user *optval, int __user *optlen)
5667 {
5668 struct sctp_prim prim;
5669 struct sctp_association *asoc;
5670 struct sctp_sock *sp = sctp_sk(sk);
5671
5672 if (len < sizeof(struct sctp_prim))
5673 return -EINVAL;
5674
5675 len = sizeof(struct sctp_prim);
5676
5677 if (copy_from_user(&prim, optval, len))
5678 return -EFAULT;
5679
5680 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5681 if (!asoc)
5682 return -EINVAL;
5683
5684 if (!asoc->peer.primary_path)
5685 return -ENOTCONN;
5686
5687 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5688 asoc->peer.primary_path->af_specific->sockaddr_len);
5689
5690 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5691 (union sctp_addr *)&prim.ssp_addr);
5692
5693 if (put_user(len, optlen))
5694 return -EFAULT;
5695 if (copy_to_user(optval, &prim, len))
5696 return -EFAULT;
5697
5698 return 0;
5699 }
5700
5701 /*
5702 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5703 *
5704 * Requests that the local endpoint set the specified Adaptation Layer
5705 * Indication parameter for all future INIT and INIT-ACK exchanges.
5706 */
5707 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5708 char __user *optval, int __user *optlen)
5709 {
5710 struct sctp_setadaptation adaptation;
5711
5712 if (len < sizeof(struct sctp_setadaptation))
5713 return -EINVAL;
5714
5715 len = sizeof(struct sctp_setadaptation);
5716
5717 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5718
5719 if (put_user(len, optlen))
5720 return -EFAULT;
5721 if (copy_to_user(optval, &adaptation, len))
5722 return -EFAULT;
5723
5724 return 0;
5725 }
5726
5727 /*
5728 *
5729 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5730 *
5731 * Applications that wish to use the sendto() system call may wish to
5732 * specify a default set of parameters that would normally be supplied
5733 * through the inclusion of ancillary data. This socket option allows
5734 * such an application to set the default sctp_sndrcvinfo structure.
5735
5736
5737 * The application that wishes to use this socket option simply passes
5738 * in to this call the sctp_sndrcvinfo structure defined in Section
5739 * 5.2.2) The input parameters accepted by this call include
5740 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5741 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5742 * to this call if the caller is using the UDP model.
5743 *
5744 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5745 */
5746 static int sctp_getsockopt_default_send_param(struct sock *sk,
5747 int len, char __user *optval,
5748 int __user *optlen)
5749 {
5750 struct sctp_sock *sp = sctp_sk(sk);
5751 struct sctp_association *asoc;
5752 struct sctp_sndrcvinfo info;
5753
5754 if (len < sizeof(info))
5755 return -EINVAL;
5756
5757 len = sizeof(info);
5758
5759 if (copy_from_user(&info, optval, len))
5760 return -EFAULT;
5761
5762 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5763 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5764 return -EINVAL;
5765 if (asoc) {
5766 info.sinfo_stream = asoc->default_stream;
5767 info.sinfo_flags = asoc->default_flags;
5768 info.sinfo_ppid = asoc->default_ppid;
5769 info.sinfo_context = asoc->default_context;
5770 info.sinfo_timetolive = asoc->default_timetolive;
5771 } else {
5772 info.sinfo_stream = sp->default_stream;
5773 info.sinfo_flags = sp->default_flags;
5774 info.sinfo_ppid = sp->default_ppid;
5775 info.sinfo_context = sp->default_context;
5776 info.sinfo_timetolive = sp->default_timetolive;
5777 }
5778
5779 if (put_user(len, optlen))
5780 return -EFAULT;
5781 if (copy_to_user(optval, &info, len))
5782 return -EFAULT;
5783
5784 return 0;
5785 }
5786
5787 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5788 * (SCTP_DEFAULT_SNDINFO)
5789 */
5790 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5791 char __user *optval,
5792 int __user *optlen)
5793 {
5794 struct sctp_sock *sp = sctp_sk(sk);
5795 struct sctp_association *asoc;
5796 struct sctp_sndinfo info;
5797
5798 if (len < sizeof(info))
5799 return -EINVAL;
5800
5801 len = sizeof(info);
5802
5803 if (copy_from_user(&info, optval, len))
5804 return -EFAULT;
5805
5806 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5807 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5808 return -EINVAL;
5809 if (asoc) {
5810 info.snd_sid = asoc->default_stream;
5811 info.snd_flags = asoc->default_flags;
5812 info.snd_ppid = asoc->default_ppid;
5813 info.snd_context = asoc->default_context;
5814 } else {
5815 info.snd_sid = sp->default_stream;
5816 info.snd_flags = sp->default_flags;
5817 info.snd_ppid = sp->default_ppid;
5818 info.snd_context = sp->default_context;
5819 }
5820
5821 if (put_user(len, optlen))
5822 return -EFAULT;
5823 if (copy_to_user(optval, &info, len))
5824 return -EFAULT;
5825
5826 return 0;
5827 }
5828
5829 /*
5830 *
5831 * 7.1.5 SCTP_NODELAY
5832 *
5833 * Turn on/off any Nagle-like algorithm. This means that packets are
5834 * generally sent as soon as possible and no unnecessary delays are
5835 * introduced, at the cost of more packets in the network. Expects an
5836 * integer boolean flag.
5837 */
5838
5839 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5840 char __user *optval, int __user *optlen)
5841 {
5842 int val;
5843
5844 if (len < sizeof(int))
5845 return -EINVAL;
5846
5847 len = sizeof(int);
5848 val = (sctp_sk(sk)->nodelay == 1);
5849 if (put_user(len, optlen))
5850 return -EFAULT;
5851 if (copy_to_user(optval, &val, len))
5852 return -EFAULT;
5853 return 0;
5854 }
5855
5856 /*
5857 *
5858 * 7.1.1 SCTP_RTOINFO
5859 *
5860 * The protocol parameters used to initialize and bound retransmission
5861 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5862 * and modify these parameters.
5863 * All parameters are time values, in milliseconds. A value of 0, when
5864 * modifying the parameters, indicates that the current value should not
5865 * be changed.
5866 *
5867 */
5868 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5869 char __user *optval,
5870 int __user *optlen) {
5871 struct sctp_rtoinfo rtoinfo;
5872 struct sctp_association *asoc;
5873
5874 if (len < sizeof (struct sctp_rtoinfo))
5875 return -EINVAL;
5876
5877 len = sizeof(struct sctp_rtoinfo);
5878
5879 if (copy_from_user(&rtoinfo, optval, len))
5880 return -EFAULT;
5881
5882 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5883
5884 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5885 return -EINVAL;
5886
5887 /* Values corresponding to the specific association. */
5888 if (asoc) {
5889 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5890 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5891 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5892 } else {
5893 /* Values corresponding to the endpoint. */
5894 struct sctp_sock *sp = sctp_sk(sk);
5895
5896 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5897 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5898 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5899 }
5900
5901 if (put_user(len, optlen))
5902 return -EFAULT;
5903
5904 if (copy_to_user(optval, &rtoinfo, len))
5905 return -EFAULT;
5906
5907 return 0;
5908 }
5909
5910 /*
5911 *
5912 * 7.1.2 SCTP_ASSOCINFO
5913 *
5914 * This option is used to tune the maximum retransmission attempts
5915 * of the association.
5916 * Returns an error if the new association retransmission value is
5917 * greater than the sum of the retransmission value of the peer.
5918 * See [SCTP] for more information.
5919 *
5920 */
5921 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5922 char __user *optval,
5923 int __user *optlen)
5924 {
5925
5926 struct sctp_assocparams assocparams;
5927 struct sctp_association *asoc;
5928 struct list_head *pos;
5929 int cnt = 0;
5930
5931 if (len < sizeof (struct sctp_assocparams))
5932 return -EINVAL;
5933
5934 len = sizeof(struct sctp_assocparams);
5935
5936 if (copy_from_user(&assocparams, optval, len))
5937 return -EFAULT;
5938
5939 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5940
5941 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5942 return -EINVAL;
5943
5944 /* Values correspoinding to the specific association */
5945 if (asoc) {
5946 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5947 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5948 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5949 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5950
5951 list_for_each(pos, &asoc->peer.transport_addr_list) {
5952 cnt++;
5953 }
5954
5955 assocparams.sasoc_number_peer_destinations = cnt;
5956 } else {
5957 /* Values corresponding to the endpoint */
5958 struct sctp_sock *sp = sctp_sk(sk);
5959
5960 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5961 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5962 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5963 assocparams.sasoc_cookie_life =
5964 sp->assocparams.sasoc_cookie_life;
5965 assocparams.sasoc_number_peer_destinations =
5966 sp->assocparams.
5967 sasoc_number_peer_destinations;
5968 }
5969
5970 if (put_user(len, optlen))
5971 return -EFAULT;
5972
5973 if (copy_to_user(optval, &assocparams, len))
5974 return -EFAULT;
5975
5976 return 0;
5977 }
5978
5979 /*
5980 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5981 *
5982 * This socket option is a boolean flag which turns on or off mapped V4
5983 * addresses. If this option is turned on and the socket is type
5984 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5985 * If this option is turned off, then no mapping will be done of V4
5986 * addresses and a user will receive both PF_INET6 and PF_INET type
5987 * addresses on the socket.
5988 */
5989 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5990 char __user *optval, int __user *optlen)
5991 {
5992 int val;
5993 struct sctp_sock *sp = sctp_sk(sk);
5994
5995 if (len < sizeof(int))
5996 return -EINVAL;
5997
5998 len = sizeof(int);
5999 val = sp->v4mapped;
6000 if (put_user(len, optlen))
6001 return -EFAULT;
6002 if (copy_to_user(optval, &val, len))
6003 return -EFAULT;
6004
6005 return 0;
6006 }
6007
6008 /*
6009 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6010 * (chapter and verse is quoted at sctp_setsockopt_context())
6011 */
6012 static int sctp_getsockopt_context(struct sock *sk, int len,
6013 char __user *optval, int __user *optlen)
6014 {
6015 struct sctp_assoc_value params;
6016 struct sctp_sock *sp;
6017 struct sctp_association *asoc;
6018
6019 if (len < sizeof(struct sctp_assoc_value))
6020 return -EINVAL;
6021
6022 len = sizeof(struct sctp_assoc_value);
6023
6024 if (copy_from_user(&params, optval, len))
6025 return -EFAULT;
6026
6027 sp = sctp_sk(sk);
6028
6029 if (params.assoc_id != 0) {
6030 asoc = sctp_id2assoc(sk, params.assoc_id);
6031 if (!asoc)
6032 return -EINVAL;
6033 params.assoc_value = asoc->default_rcv_context;
6034 } else {
6035 params.assoc_value = sp->default_rcv_context;
6036 }
6037
6038 if (put_user(len, optlen))
6039 return -EFAULT;
6040 if (copy_to_user(optval, &params, len))
6041 return -EFAULT;
6042
6043 return 0;
6044 }
6045
6046 /*
6047 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6048 * This option will get or set the maximum size to put in any outgoing
6049 * SCTP DATA chunk. If a message is larger than this size it will be
6050 * fragmented by SCTP into the specified size. Note that the underlying
6051 * SCTP implementation may fragment into smaller sized chunks when the
6052 * PMTU of the underlying association is smaller than the value set by
6053 * the user. The default value for this option is '0' which indicates
6054 * the user is NOT limiting fragmentation and only the PMTU will effect
6055 * SCTP's choice of DATA chunk size. Note also that values set larger
6056 * than the maximum size of an IP datagram will effectively let SCTP
6057 * control fragmentation (i.e. the same as setting this option to 0).
6058 *
6059 * The following structure is used to access and modify this parameter:
6060 *
6061 * struct sctp_assoc_value {
6062 * sctp_assoc_t assoc_id;
6063 * uint32_t assoc_value;
6064 * };
6065 *
6066 * assoc_id: This parameter is ignored for one-to-one style sockets.
6067 * For one-to-many style sockets this parameter indicates which
6068 * association the user is performing an action upon. Note that if
6069 * this field's value is zero then the endpoints default value is
6070 * changed (effecting future associations only).
6071 * assoc_value: This parameter specifies the maximum size in bytes.
6072 */
6073 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6074 char __user *optval, int __user *optlen)
6075 {
6076 struct sctp_assoc_value params;
6077 struct sctp_association *asoc;
6078
6079 if (len == sizeof(int)) {
6080 pr_warn_ratelimited(DEPRECATED
6081 "%s (pid %d) "
6082 "Use of int in maxseg socket option.\n"
6083 "Use struct sctp_assoc_value instead\n",
6084 current->comm, task_pid_nr(current));
6085 params.assoc_id = 0;
6086 } else if (len >= sizeof(struct sctp_assoc_value)) {
6087 len = sizeof(struct sctp_assoc_value);
6088 if (copy_from_user(&params, optval, len))
6089 return -EFAULT;
6090 } else
6091 return -EINVAL;
6092
6093 asoc = sctp_id2assoc(sk, params.assoc_id);
6094 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6095 return -EINVAL;
6096
6097 if (asoc)
6098 params.assoc_value = asoc->frag_point;
6099 else
6100 params.assoc_value = sctp_sk(sk)->user_frag;
6101
6102 if (put_user(len, optlen))
6103 return -EFAULT;
6104 if (len == sizeof(int)) {
6105 if (copy_to_user(optval, &params.assoc_value, len))
6106 return -EFAULT;
6107 } else {
6108 if (copy_to_user(optval, &params, len))
6109 return -EFAULT;
6110 }
6111
6112 return 0;
6113 }
6114
6115 /*
6116 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6117 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6118 */
6119 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6120 char __user *optval, int __user *optlen)
6121 {
6122 int val;
6123
6124 if (len < sizeof(int))
6125 return -EINVAL;
6126
6127 len = sizeof(int);
6128
6129 val = sctp_sk(sk)->frag_interleave;
6130 if (put_user(len, optlen))
6131 return -EFAULT;
6132 if (copy_to_user(optval, &val, len))
6133 return -EFAULT;
6134
6135 return 0;
6136 }
6137
6138 /*
6139 * 7.1.25. Set or Get the sctp partial delivery point
6140 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6141 */
6142 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6143 char __user *optval,
6144 int __user *optlen)
6145 {
6146 u32 val;
6147
6148 if (len < sizeof(u32))
6149 return -EINVAL;
6150
6151 len = sizeof(u32);
6152
6153 val = sctp_sk(sk)->pd_point;
6154 if (put_user(len, optlen))
6155 return -EFAULT;
6156 if (copy_to_user(optval, &val, len))
6157 return -EFAULT;
6158
6159 return 0;
6160 }
6161
6162 /*
6163 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6164 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6165 */
6166 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6167 char __user *optval,
6168 int __user *optlen)
6169 {
6170 struct sctp_assoc_value params;
6171 struct sctp_sock *sp;
6172 struct sctp_association *asoc;
6173
6174 if (len == sizeof(int)) {
6175 pr_warn_ratelimited(DEPRECATED
6176 "%s (pid %d) "
6177 "Use of int in max_burst socket option.\n"
6178 "Use struct sctp_assoc_value instead\n",
6179 current->comm, task_pid_nr(current));
6180 params.assoc_id = 0;
6181 } else if (len >= sizeof(struct sctp_assoc_value)) {
6182 len = sizeof(struct sctp_assoc_value);
6183 if (copy_from_user(&params, optval, len))
6184 return -EFAULT;
6185 } else
6186 return -EINVAL;
6187
6188 sp = sctp_sk(sk);
6189
6190 if (params.assoc_id != 0) {
6191 asoc = sctp_id2assoc(sk, params.assoc_id);
6192 if (!asoc)
6193 return -EINVAL;
6194 params.assoc_value = asoc->max_burst;
6195 } else
6196 params.assoc_value = sp->max_burst;
6197
6198 if (len == sizeof(int)) {
6199 if (copy_to_user(optval, &params.assoc_value, len))
6200 return -EFAULT;
6201 } else {
6202 if (copy_to_user(optval, &params, len))
6203 return -EFAULT;
6204 }
6205
6206 return 0;
6207
6208 }
6209
6210 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6211 char __user *optval, int __user *optlen)
6212 {
6213 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6214 struct sctp_hmacalgo __user *p = (void __user *)optval;
6215 struct sctp_hmac_algo_param *hmacs;
6216 __u16 data_len = 0;
6217 u32 num_idents;
6218 int i;
6219
6220 if (!ep->auth_enable)
6221 return -EACCES;
6222
6223 hmacs = ep->auth_hmacs_list;
6224 data_len = ntohs(hmacs->param_hdr.length) -
6225 sizeof(struct sctp_paramhdr);
6226
6227 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6228 return -EINVAL;
6229
6230 len = sizeof(struct sctp_hmacalgo) + data_len;
6231 num_idents = data_len / sizeof(u16);
6232
6233 if (put_user(len, optlen))
6234 return -EFAULT;
6235 if (put_user(num_idents, &p->shmac_num_idents))
6236 return -EFAULT;
6237 for (i = 0; i < num_idents; i++) {
6238 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6239
6240 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6241 return -EFAULT;
6242 }
6243 return 0;
6244 }
6245
6246 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6247 char __user *optval, int __user *optlen)
6248 {
6249 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6250 struct sctp_authkeyid val;
6251 struct sctp_association *asoc;
6252
6253 if (!ep->auth_enable)
6254 return -EACCES;
6255
6256 if (len < sizeof(struct sctp_authkeyid))
6257 return -EINVAL;
6258
6259 len = sizeof(struct sctp_authkeyid);
6260 if (copy_from_user(&val, optval, len))
6261 return -EFAULT;
6262
6263 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6264 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6265 return -EINVAL;
6266
6267 if (asoc)
6268 val.scact_keynumber = asoc->active_key_id;
6269 else
6270 val.scact_keynumber = ep->active_key_id;
6271
6272 if (put_user(len, optlen))
6273 return -EFAULT;
6274 if (copy_to_user(optval, &val, len))
6275 return -EFAULT;
6276
6277 return 0;
6278 }
6279
6280 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6281 char __user *optval, int __user *optlen)
6282 {
6283 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6284 struct sctp_authchunks __user *p = (void __user *)optval;
6285 struct sctp_authchunks val;
6286 struct sctp_association *asoc;
6287 struct sctp_chunks_param *ch;
6288 u32 num_chunks = 0;
6289 char __user *to;
6290
6291 if (!ep->auth_enable)
6292 return -EACCES;
6293
6294 if (len < sizeof(struct sctp_authchunks))
6295 return -EINVAL;
6296
6297 if (copy_from_user(&val, optval, sizeof(val)))
6298 return -EFAULT;
6299
6300 to = p->gauth_chunks;
6301 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6302 if (!asoc)
6303 return -EINVAL;
6304
6305 ch = asoc->peer.peer_chunks;
6306 if (!ch)
6307 goto num;
6308
6309 /* See if the user provided enough room for all the data */
6310 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6311 if (len < num_chunks)
6312 return -EINVAL;
6313
6314 if (copy_to_user(to, ch->chunks, num_chunks))
6315 return -EFAULT;
6316 num:
6317 len = sizeof(struct sctp_authchunks) + num_chunks;
6318 if (put_user(len, optlen))
6319 return -EFAULT;
6320 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6321 return -EFAULT;
6322 return 0;
6323 }
6324
6325 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6326 char __user *optval, int __user *optlen)
6327 {
6328 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6329 struct sctp_authchunks __user *p = (void __user *)optval;
6330 struct sctp_authchunks val;
6331 struct sctp_association *asoc;
6332 struct sctp_chunks_param *ch;
6333 u32 num_chunks = 0;
6334 char __user *to;
6335
6336 if (!ep->auth_enable)
6337 return -EACCES;
6338
6339 if (len < sizeof(struct sctp_authchunks))
6340 return -EINVAL;
6341
6342 if (copy_from_user(&val, optval, sizeof(val)))
6343 return -EFAULT;
6344
6345 to = p->gauth_chunks;
6346 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6347 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6348 return -EINVAL;
6349
6350 if (asoc)
6351 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6352 else
6353 ch = ep->auth_chunk_list;
6354
6355 if (!ch)
6356 goto num;
6357
6358 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6359 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6360 return -EINVAL;
6361
6362 if (copy_to_user(to, ch->chunks, num_chunks))
6363 return -EFAULT;
6364 num:
6365 len = sizeof(struct sctp_authchunks) + num_chunks;
6366 if (put_user(len, optlen))
6367 return -EFAULT;
6368 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6369 return -EFAULT;
6370
6371 return 0;
6372 }
6373
6374 /*
6375 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6376 * This option gets the current number of associations that are attached
6377 * to a one-to-many style socket. The option value is an uint32_t.
6378 */
6379 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6380 char __user *optval, int __user *optlen)
6381 {
6382 struct sctp_sock *sp = sctp_sk(sk);
6383 struct sctp_association *asoc;
6384 u32 val = 0;
6385
6386 if (sctp_style(sk, TCP))
6387 return -EOPNOTSUPP;
6388
6389 if (len < sizeof(u32))
6390 return -EINVAL;
6391
6392 len = sizeof(u32);
6393
6394 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6395 val++;
6396 }
6397
6398 if (put_user(len, optlen))
6399 return -EFAULT;
6400 if (copy_to_user(optval, &val, len))
6401 return -EFAULT;
6402
6403 return 0;
6404 }
6405
6406 /*
6407 * 8.1.23 SCTP_AUTO_ASCONF
6408 * See the corresponding setsockopt entry as description
6409 */
6410 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6411 char __user *optval, int __user *optlen)
6412 {
6413 int val = 0;
6414
6415 if (len < sizeof(int))
6416 return -EINVAL;
6417
6418 len = sizeof(int);
6419 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6420 val = 1;
6421 if (put_user(len, optlen))
6422 return -EFAULT;
6423 if (copy_to_user(optval, &val, len))
6424 return -EFAULT;
6425 return 0;
6426 }
6427
6428 /*
6429 * 8.2.6. Get the Current Identifiers of Associations
6430 * (SCTP_GET_ASSOC_ID_LIST)
6431 *
6432 * This option gets the current list of SCTP association identifiers of
6433 * the SCTP associations handled by a one-to-many style socket.
6434 */
6435 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6436 char __user *optval, int __user *optlen)
6437 {
6438 struct sctp_sock *sp = sctp_sk(sk);
6439 struct sctp_association *asoc;
6440 struct sctp_assoc_ids *ids;
6441 u32 num = 0;
6442
6443 if (sctp_style(sk, TCP))
6444 return -EOPNOTSUPP;
6445
6446 if (len < sizeof(struct sctp_assoc_ids))
6447 return -EINVAL;
6448
6449 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6450 num++;
6451 }
6452
6453 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6454 return -EINVAL;
6455
6456 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6457
6458 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6459 if (unlikely(!ids))
6460 return -ENOMEM;
6461
6462 ids->gaids_number_of_ids = num;
6463 num = 0;
6464 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6465 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6466 }
6467
6468 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6469 kfree(ids);
6470 return -EFAULT;
6471 }
6472
6473 kfree(ids);
6474 return 0;
6475 }
6476
6477 /*
6478 * SCTP_PEER_ADDR_THLDS
6479 *
6480 * This option allows us to fetch the partially failed threshold for one or all
6481 * transports in an association. See Section 6.1 of:
6482 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6483 */
6484 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6485 char __user *optval,
6486 int len,
6487 int __user *optlen)
6488 {
6489 struct sctp_paddrthlds val;
6490 struct sctp_transport *trans;
6491 struct sctp_association *asoc;
6492
6493 if (len < sizeof(struct sctp_paddrthlds))
6494 return -EINVAL;
6495 len = sizeof(struct sctp_paddrthlds);
6496 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6497 return -EFAULT;
6498
6499 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6500 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6501 if (!asoc)
6502 return -ENOENT;
6503
6504 val.spt_pathpfthld = asoc->pf_retrans;
6505 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6506 } else {
6507 trans = sctp_addr_id2transport(sk, &val.spt_address,
6508 val.spt_assoc_id);
6509 if (!trans)
6510 return -ENOENT;
6511
6512 val.spt_pathmaxrxt = trans->pathmaxrxt;
6513 val.spt_pathpfthld = trans->pf_retrans;
6514 }
6515
6516 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6517 return -EFAULT;
6518
6519 return 0;
6520 }
6521
6522 /*
6523 * SCTP_GET_ASSOC_STATS
6524 *
6525 * This option retrieves local per endpoint statistics. It is modeled
6526 * after OpenSolaris' implementation
6527 */
6528 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6529 char __user *optval,
6530 int __user *optlen)
6531 {
6532 struct sctp_assoc_stats sas;
6533 struct sctp_association *asoc = NULL;
6534
6535 /* User must provide at least the assoc id */
6536 if (len < sizeof(sctp_assoc_t))
6537 return -EINVAL;
6538
6539 /* Allow the struct to grow and fill in as much as possible */
6540 len = min_t(size_t, len, sizeof(sas));
6541
6542 if (copy_from_user(&sas, optval, len))
6543 return -EFAULT;
6544
6545 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6546 if (!asoc)
6547 return -EINVAL;
6548
6549 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6550 sas.sas_gapcnt = asoc->stats.gapcnt;
6551 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6552 sas.sas_osacks = asoc->stats.osacks;
6553 sas.sas_isacks = asoc->stats.isacks;
6554 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6555 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6556 sas.sas_oodchunks = asoc->stats.oodchunks;
6557 sas.sas_iodchunks = asoc->stats.iodchunks;
6558 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6559 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6560 sas.sas_idupchunks = asoc->stats.idupchunks;
6561 sas.sas_opackets = asoc->stats.opackets;
6562 sas.sas_ipackets = asoc->stats.ipackets;
6563
6564 /* New high max rto observed, will return 0 if not a single
6565 * RTO update took place. obs_rto_ipaddr will be bogus
6566 * in such a case
6567 */
6568 sas.sas_maxrto = asoc->stats.max_obs_rto;
6569 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6570 sizeof(struct sockaddr_storage));
6571
6572 /* Mark beginning of a new observation period */
6573 asoc->stats.max_obs_rto = asoc->rto_min;
6574
6575 if (put_user(len, optlen))
6576 return -EFAULT;
6577
6578 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6579
6580 if (copy_to_user(optval, &sas, len))
6581 return -EFAULT;
6582
6583 return 0;
6584 }
6585
6586 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6587 char __user *optval,
6588 int __user *optlen)
6589 {
6590 int val = 0;
6591
6592 if (len < sizeof(int))
6593 return -EINVAL;
6594
6595 len = sizeof(int);
6596 if (sctp_sk(sk)->recvrcvinfo)
6597 val = 1;
6598 if (put_user(len, optlen))
6599 return -EFAULT;
6600 if (copy_to_user(optval, &val, len))
6601 return -EFAULT;
6602
6603 return 0;
6604 }
6605
6606 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6607 char __user *optval,
6608 int __user *optlen)
6609 {
6610 int val = 0;
6611
6612 if (len < sizeof(int))
6613 return -EINVAL;
6614
6615 len = sizeof(int);
6616 if (sctp_sk(sk)->recvnxtinfo)
6617 val = 1;
6618 if (put_user(len, optlen))
6619 return -EFAULT;
6620 if (copy_to_user(optval, &val, len))
6621 return -EFAULT;
6622
6623 return 0;
6624 }
6625
6626 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6627 char __user *optval,
6628 int __user *optlen)
6629 {
6630 struct sctp_assoc_value params;
6631 struct sctp_association *asoc;
6632 int retval = -EFAULT;
6633
6634 if (len < sizeof(params)) {
6635 retval = -EINVAL;
6636 goto out;
6637 }
6638
6639 len = sizeof(params);
6640 if (copy_from_user(&params, optval, len))
6641 goto out;
6642
6643 asoc = sctp_id2assoc(sk, params.assoc_id);
6644 if (asoc) {
6645 params.assoc_value = asoc->prsctp_enable;
6646 } else if (!params.assoc_id) {
6647 struct sctp_sock *sp = sctp_sk(sk);
6648
6649 params.assoc_value = sp->ep->prsctp_enable;
6650 } else {
6651 retval = -EINVAL;
6652 goto out;
6653 }
6654
6655 if (put_user(len, optlen))
6656 goto out;
6657
6658 if (copy_to_user(optval, &params, len))
6659 goto out;
6660
6661 retval = 0;
6662
6663 out:
6664 return retval;
6665 }
6666
6667 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6668 char __user *optval,
6669 int __user *optlen)
6670 {
6671 struct sctp_default_prinfo info;
6672 struct sctp_association *asoc;
6673 int retval = -EFAULT;
6674
6675 if (len < sizeof(info)) {
6676 retval = -EINVAL;
6677 goto out;
6678 }
6679
6680 len = sizeof(info);
6681 if (copy_from_user(&info, optval, len))
6682 goto out;
6683
6684 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6685 if (asoc) {
6686 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6687 info.pr_value = asoc->default_timetolive;
6688 } else if (!info.pr_assoc_id) {
6689 struct sctp_sock *sp = sctp_sk(sk);
6690
6691 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6692 info.pr_value = sp->default_timetolive;
6693 } else {
6694 retval = -EINVAL;
6695 goto out;
6696 }
6697
6698 if (put_user(len, optlen))
6699 goto out;
6700
6701 if (copy_to_user(optval, &info, len))
6702 goto out;
6703
6704 retval = 0;
6705
6706 out:
6707 return retval;
6708 }
6709
6710 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6711 char __user *optval,
6712 int __user *optlen)
6713 {
6714 struct sctp_prstatus params;
6715 struct sctp_association *asoc;
6716 int policy;
6717 int retval = -EINVAL;
6718
6719 if (len < sizeof(params))
6720 goto out;
6721
6722 len = sizeof(params);
6723 if (copy_from_user(&params, optval, len)) {
6724 retval = -EFAULT;
6725 goto out;
6726 }
6727
6728 policy = params.sprstat_policy;
6729 if (policy & ~SCTP_PR_SCTP_MASK)
6730 goto out;
6731
6732 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6733 if (!asoc)
6734 goto out;
6735
6736 if (policy == SCTP_PR_SCTP_NONE) {
6737 params.sprstat_abandoned_unsent = 0;
6738 params.sprstat_abandoned_sent = 0;
6739 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6740 params.sprstat_abandoned_unsent +=
6741 asoc->abandoned_unsent[policy];
6742 params.sprstat_abandoned_sent +=
6743 asoc->abandoned_sent[policy];
6744 }
6745 } else {
6746 params.sprstat_abandoned_unsent =
6747 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6748 params.sprstat_abandoned_sent =
6749 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6750 }
6751
6752 if (put_user(len, optlen)) {
6753 retval = -EFAULT;
6754 goto out;
6755 }
6756
6757 if (copy_to_user(optval, &params, len)) {
6758 retval = -EFAULT;
6759 goto out;
6760 }
6761
6762 retval = 0;
6763
6764 out:
6765 return retval;
6766 }
6767
6768 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
6769 char __user *optval,
6770 int __user *optlen)
6771 {
6772 struct sctp_stream_out_ext *streamoute;
6773 struct sctp_association *asoc;
6774 struct sctp_prstatus params;
6775 int retval = -EINVAL;
6776 int policy;
6777
6778 if (len < sizeof(params))
6779 goto out;
6780
6781 len = sizeof(params);
6782 if (copy_from_user(&params, optval, len)) {
6783 retval = -EFAULT;
6784 goto out;
6785 }
6786
6787 policy = params.sprstat_policy;
6788 if (policy & ~SCTP_PR_SCTP_MASK)
6789 goto out;
6790
6791 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6792 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
6793 goto out;
6794
6795 streamoute = asoc->stream.out[params.sprstat_sid].ext;
6796 if (!streamoute) {
6797 /* Not allocated yet, means all stats are 0 */
6798 params.sprstat_abandoned_unsent = 0;
6799 params.sprstat_abandoned_sent = 0;
6800 retval = 0;
6801 goto out;
6802 }
6803
6804 if (policy == SCTP_PR_SCTP_NONE) {
6805 params.sprstat_abandoned_unsent = 0;
6806 params.sprstat_abandoned_sent = 0;
6807 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6808 params.sprstat_abandoned_unsent +=
6809 streamoute->abandoned_unsent[policy];
6810 params.sprstat_abandoned_sent +=
6811 streamoute->abandoned_sent[policy];
6812 }
6813 } else {
6814 params.sprstat_abandoned_unsent =
6815 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6816 params.sprstat_abandoned_sent =
6817 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
6818 }
6819
6820 if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
6821 retval = -EFAULT;
6822 goto out;
6823 }
6824
6825 retval = 0;
6826
6827 out:
6828 return retval;
6829 }
6830
6831 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
6832 char __user *optval,
6833 int __user *optlen)
6834 {
6835 struct sctp_assoc_value params;
6836 struct sctp_association *asoc;
6837 int retval = -EFAULT;
6838
6839 if (len < sizeof(params)) {
6840 retval = -EINVAL;
6841 goto out;
6842 }
6843
6844 len = sizeof(params);
6845 if (copy_from_user(&params, optval, len))
6846 goto out;
6847
6848 asoc = sctp_id2assoc(sk, params.assoc_id);
6849 if (asoc) {
6850 params.assoc_value = asoc->reconf_enable;
6851 } else if (!params.assoc_id) {
6852 struct sctp_sock *sp = sctp_sk(sk);
6853
6854 params.assoc_value = sp->ep->reconf_enable;
6855 } else {
6856 retval = -EINVAL;
6857 goto out;
6858 }
6859
6860 if (put_user(len, optlen))
6861 goto out;
6862
6863 if (copy_to_user(optval, &params, len))
6864 goto out;
6865
6866 retval = 0;
6867
6868 out:
6869 return retval;
6870 }
6871
6872 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6873 char __user *optval,
6874 int __user *optlen)
6875 {
6876 struct sctp_assoc_value params;
6877 struct sctp_association *asoc;
6878 int retval = -EFAULT;
6879
6880 if (len < sizeof(params)) {
6881 retval = -EINVAL;
6882 goto out;
6883 }
6884
6885 len = sizeof(params);
6886 if (copy_from_user(&params, optval, len))
6887 goto out;
6888
6889 asoc = sctp_id2assoc(sk, params.assoc_id);
6890 if (asoc) {
6891 params.assoc_value = asoc->strreset_enable;
6892 } else if (!params.assoc_id) {
6893 struct sctp_sock *sp = sctp_sk(sk);
6894
6895 params.assoc_value = sp->ep->strreset_enable;
6896 } else {
6897 retval = -EINVAL;
6898 goto out;
6899 }
6900
6901 if (put_user(len, optlen))
6902 goto out;
6903
6904 if (copy_to_user(optval, &params, len))
6905 goto out;
6906
6907 retval = 0;
6908
6909 out:
6910 return retval;
6911 }
6912
6913 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
6914 char __user *optval,
6915 int __user *optlen)
6916 {
6917 struct sctp_assoc_value params;
6918 struct sctp_association *asoc;
6919 int retval = -EFAULT;
6920
6921 if (len < sizeof(params)) {
6922 retval = -EINVAL;
6923 goto out;
6924 }
6925
6926 len = sizeof(params);
6927 if (copy_from_user(&params, optval, len))
6928 goto out;
6929
6930 asoc = sctp_id2assoc(sk, params.assoc_id);
6931 if (!asoc) {
6932 retval = -EINVAL;
6933 goto out;
6934 }
6935
6936 params.assoc_value = sctp_sched_get_sched(asoc);
6937
6938 if (put_user(len, optlen))
6939 goto out;
6940
6941 if (copy_to_user(optval, &params, len))
6942 goto out;
6943
6944 retval = 0;
6945
6946 out:
6947 return retval;
6948 }
6949
6950 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
6951 char __user *optval,
6952 int __user *optlen)
6953 {
6954 struct sctp_stream_value params;
6955 struct sctp_association *asoc;
6956 int retval = -EFAULT;
6957
6958 if (len < sizeof(params)) {
6959 retval = -EINVAL;
6960 goto out;
6961 }
6962
6963 len = sizeof(params);
6964 if (copy_from_user(&params, optval, len))
6965 goto out;
6966
6967 asoc = sctp_id2assoc(sk, params.assoc_id);
6968 if (!asoc) {
6969 retval = -EINVAL;
6970 goto out;
6971 }
6972
6973 retval = sctp_sched_get_value(asoc, params.stream_id,
6974 &params.stream_value);
6975 if (retval)
6976 goto out;
6977
6978 if (put_user(len, optlen)) {
6979 retval = -EFAULT;
6980 goto out;
6981 }
6982
6983 if (copy_to_user(optval, &params, len)) {
6984 retval = -EFAULT;
6985 goto out;
6986 }
6987
6988 out:
6989 return retval;
6990 }
6991
6992 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6993 char __user *optval, int __user *optlen)
6994 {
6995 int retval = 0;
6996 int len;
6997
6998 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6999
7000 /* I can hardly begin to describe how wrong this is. This is
7001 * so broken as to be worse than useless. The API draft
7002 * REALLY is NOT helpful here... I am not convinced that the
7003 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7004 * are at all well-founded.
7005 */
7006 if (level != SOL_SCTP) {
7007 struct sctp_af *af = sctp_sk(sk)->pf->af;
7008
7009 retval = af->getsockopt(sk, level, optname, optval, optlen);
7010 return retval;
7011 }
7012
7013 if (get_user(len, optlen))
7014 return -EFAULT;
7015
7016 if (len < 0)
7017 return -EINVAL;
7018
7019 lock_sock(sk);
7020
7021 switch (optname) {
7022 case SCTP_STATUS:
7023 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7024 break;
7025 case SCTP_DISABLE_FRAGMENTS:
7026 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7027 optlen);
7028 break;
7029 case SCTP_EVENTS:
7030 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7031 break;
7032 case SCTP_AUTOCLOSE:
7033 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7034 break;
7035 case SCTP_SOCKOPT_PEELOFF:
7036 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7037 break;
7038 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7039 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7040 break;
7041 case SCTP_PEER_ADDR_PARAMS:
7042 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7043 optlen);
7044 break;
7045 case SCTP_DELAYED_SACK:
7046 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7047 optlen);
7048 break;
7049 case SCTP_INITMSG:
7050 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7051 break;
7052 case SCTP_GET_PEER_ADDRS:
7053 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7054 optlen);
7055 break;
7056 case SCTP_GET_LOCAL_ADDRS:
7057 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7058 optlen);
7059 break;
7060 case SCTP_SOCKOPT_CONNECTX3:
7061 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7062 break;
7063 case SCTP_DEFAULT_SEND_PARAM:
7064 retval = sctp_getsockopt_default_send_param(sk, len,
7065 optval, optlen);
7066 break;
7067 case SCTP_DEFAULT_SNDINFO:
7068 retval = sctp_getsockopt_default_sndinfo(sk, len,
7069 optval, optlen);
7070 break;
7071 case SCTP_PRIMARY_ADDR:
7072 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7073 break;
7074 case SCTP_NODELAY:
7075 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7076 break;
7077 case SCTP_RTOINFO:
7078 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7079 break;
7080 case SCTP_ASSOCINFO:
7081 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7082 break;
7083 case SCTP_I_WANT_MAPPED_V4_ADDR:
7084 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7085 break;
7086 case SCTP_MAXSEG:
7087 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7088 break;
7089 case SCTP_GET_PEER_ADDR_INFO:
7090 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7091 optlen);
7092 break;
7093 case SCTP_ADAPTATION_LAYER:
7094 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7095 optlen);
7096 break;
7097 case SCTP_CONTEXT:
7098 retval = sctp_getsockopt_context(sk, len, optval, optlen);
7099 break;
7100 case SCTP_FRAGMENT_INTERLEAVE:
7101 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7102 optlen);
7103 break;
7104 case SCTP_PARTIAL_DELIVERY_POINT:
7105 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7106 optlen);
7107 break;
7108 case SCTP_MAX_BURST:
7109 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7110 break;
7111 case SCTP_AUTH_KEY:
7112 case SCTP_AUTH_CHUNK:
7113 case SCTP_AUTH_DELETE_KEY:
7114 retval = -EOPNOTSUPP;
7115 break;
7116 case SCTP_HMAC_IDENT:
7117 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7118 break;
7119 case SCTP_AUTH_ACTIVE_KEY:
7120 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7121 break;
7122 case SCTP_PEER_AUTH_CHUNKS:
7123 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7124 optlen);
7125 break;
7126 case SCTP_LOCAL_AUTH_CHUNKS:
7127 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7128 optlen);
7129 break;
7130 case SCTP_GET_ASSOC_NUMBER:
7131 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7132 break;
7133 case SCTP_GET_ASSOC_ID_LIST:
7134 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7135 break;
7136 case SCTP_AUTO_ASCONF:
7137 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7138 break;
7139 case SCTP_PEER_ADDR_THLDS:
7140 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7141 break;
7142 case SCTP_GET_ASSOC_STATS:
7143 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7144 break;
7145 case SCTP_RECVRCVINFO:
7146 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7147 break;
7148 case SCTP_RECVNXTINFO:
7149 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7150 break;
7151 case SCTP_PR_SUPPORTED:
7152 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7153 break;
7154 case SCTP_DEFAULT_PRINFO:
7155 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7156 optlen);
7157 break;
7158 case SCTP_PR_ASSOC_STATUS:
7159 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7160 optlen);
7161 break;
7162 case SCTP_PR_STREAM_STATUS:
7163 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7164 optlen);
7165 break;
7166 case SCTP_RECONFIG_SUPPORTED:
7167 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7168 optlen);
7169 break;
7170 case SCTP_ENABLE_STREAM_RESET:
7171 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7172 optlen);
7173 break;
7174 case SCTP_STREAM_SCHEDULER:
7175 retval = sctp_getsockopt_scheduler(sk, len, optval,
7176 optlen);
7177 break;
7178 case SCTP_STREAM_SCHEDULER_VALUE:
7179 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7180 optlen);
7181 break;
7182 default:
7183 retval = -ENOPROTOOPT;
7184 break;
7185 }
7186
7187 release_sock(sk);
7188 return retval;
7189 }
7190
7191 static int sctp_hash(struct sock *sk)
7192 {
7193 /* STUB */
7194 return 0;
7195 }
7196
7197 static void sctp_unhash(struct sock *sk)
7198 {
7199 /* STUB */
7200 }
7201
7202 /* Check if port is acceptable. Possibly find first available port.
7203 *
7204 * The port hash table (contained in the 'global' SCTP protocol storage
7205 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7206 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7207 * list (the list number is the port number hashed out, so as you
7208 * would expect from a hash function, all the ports in a given list have
7209 * such a number that hashes out to the same list number; you were
7210 * expecting that, right?); so each list has a set of ports, with a
7211 * link to the socket (struct sock) that uses it, the port number and
7212 * a fastreuse flag (FIXME: NPI ipg).
7213 */
7214 static struct sctp_bind_bucket *sctp_bucket_create(
7215 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7216
7217 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7218 {
7219 struct sctp_bind_hashbucket *head; /* hash list */
7220 struct sctp_bind_bucket *pp;
7221 unsigned short snum;
7222 int ret;
7223
7224 snum = ntohs(addr->v4.sin_port);
7225
7226 pr_debug("%s: begins, snum:%d\n", __func__, snum);
7227
7228 local_bh_disable();
7229
7230 if (snum == 0) {
7231 /* Search for an available port. */
7232 int low, high, remaining, index;
7233 unsigned int rover;
7234 struct net *net = sock_net(sk);
7235
7236 inet_get_local_port_range(net, &low, &high);
7237 remaining = (high - low) + 1;
7238 rover = prandom_u32() % remaining + low;
7239
7240 do {
7241 rover++;
7242 if ((rover < low) || (rover > high))
7243 rover = low;
7244 if (inet_is_local_reserved_port(net, rover))
7245 continue;
7246 index = sctp_phashfn(sock_net(sk), rover);
7247 head = &sctp_port_hashtable[index];
7248 spin_lock(&head->lock);
7249 sctp_for_each_hentry(pp, &head->chain)
7250 if ((pp->port == rover) &&
7251 net_eq(sock_net(sk), pp->net))
7252 goto next;
7253 break;
7254 next:
7255 spin_unlock(&head->lock);
7256 } while (--remaining > 0);
7257
7258 /* Exhausted local port range during search? */
7259 ret = 1;
7260 if (remaining <= 0)
7261 goto fail;
7262
7263 /* OK, here is the one we will use. HEAD (the port
7264 * hash table list entry) is non-NULL and we hold it's
7265 * mutex.
7266 */
7267 snum = rover;
7268 } else {
7269 /* We are given an specific port number; we verify
7270 * that it is not being used. If it is used, we will
7271 * exahust the search in the hash list corresponding
7272 * to the port number (snum) - we detect that with the
7273 * port iterator, pp being NULL.
7274 */
7275 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7276 spin_lock(&head->lock);
7277 sctp_for_each_hentry(pp, &head->chain) {
7278 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7279 goto pp_found;
7280 }
7281 }
7282 pp = NULL;
7283 goto pp_not_found;
7284 pp_found:
7285 if (!hlist_empty(&pp->owner)) {
7286 /* We had a port hash table hit - there is an
7287 * available port (pp != NULL) and it is being
7288 * used by other socket (pp->owner not empty); that other
7289 * socket is going to be sk2.
7290 */
7291 int reuse = sk->sk_reuse;
7292 struct sock *sk2;
7293
7294 pr_debug("%s: found a possible match\n", __func__);
7295
7296 if (pp->fastreuse && sk->sk_reuse &&
7297 sk->sk_state != SCTP_SS_LISTENING)
7298 goto success;
7299
7300 /* Run through the list of sockets bound to the port
7301 * (pp->port) [via the pointers bind_next and
7302 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7303 * we get the endpoint they describe and run through
7304 * the endpoint's list of IP (v4 or v6) addresses,
7305 * comparing each of the addresses with the address of
7306 * the socket sk. If we find a match, then that means
7307 * that this port/socket (sk) combination are already
7308 * in an endpoint.
7309 */
7310 sk_for_each_bound(sk2, &pp->owner) {
7311 struct sctp_endpoint *ep2;
7312 ep2 = sctp_sk(sk2)->ep;
7313
7314 if (sk == sk2 ||
7315 (reuse && sk2->sk_reuse &&
7316 sk2->sk_state != SCTP_SS_LISTENING))
7317 continue;
7318
7319 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7320 sctp_sk(sk2), sctp_sk(sk))) {
7321 ret = (long)sk2;
7322 goto fail_unlock;
7323 }
7324 }
7325
7326 pr_debug("%s: found a match\n", __func__);
7327 }
7328 pp_not_found:
7329 /* If there was a hash table miss, create a new port. */
7330 ret = 1;
7331 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7332 goto fail_unlock;
7333
7334 /* In either case (hit or miss), make sure fastreuse is 1 only
7335 * if sk->sk_reuse is too (that is, if the caller requested
7336 * SO_REUSEADDR on this socket -sk-).
7337 */
7338 if (hlist_empty(&pp->owner)) {
7339 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
7340 pp->fastreuse = 1;
7341 else
7342 pp->fastreuse = 0;
7343 } else if (pp->fastreuse &&
7344 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
7345 pp->fastreuse = 0;
7346
7347 /* We are set, so fill up all the data in the hash table
7348 * entry, tie the socket list information with the rest of the
7349 * sockets FIXME: Blurry, NPI (ipg).
7350 */
7351 success:
7352 if (!sctp_sk(sk)->bind_hash) {
7353 inet_sk(sk)->inet_num = snum;
7354 sk_add_bind_node(sk, &pp->owner);
7355 sctp_sk(sk)->bind_hash = pp;
7356 }
7357 ret = 0;
7358
7359 fail_unlock:
7360 spin_unlock(&head->lock);
7361
7362 fail:
7363 local_bh_enable();
7364 return ret;
7365 }
7366
7367 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
7368 * port is requested.
7369 */
7370 static int sctp_get_port(struct sock *sk, unsigned short snum)
7371 {
7372 union sctp_addr addr;
7373 struct sctp_af *af = sctp_sk(sk)->pf->af;
7374
7375 /* Set up a dummy address struct from the sk. */
7376 af->from_sk(&addr, sk);
7377 addr.v4.sin_port = htons(snum);
7378
7379 /* Note: sk->sk_num gets filled in if ephemeral port request. */
7380 return !!sctp_get_port_local(sk, &addr);
7381 }
7382
7383 /*
7384 * Move a socket to LISTENING state.
7385 */
7386 static int sctp_listen_start(struct sock *sk, int backlog)
7387 {
7388 struct sctp_sock *sp = sctp_sk(sk);
7389 struct sctp_endpoint *ep = sp->ep;
7390 struct crypto_shash *tfm = NULL;
7391 char alg[32];
7392
7393 /* Allocate HMAC for generating cookie. */
7394 if (!sp->hmac && sp->sctp_hmac_alg) {
7395 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7396 tfm = crypto_alloc_shash(alg, 0, 0);
7397 if (IS_ERR(tfm)) {
7398 net_info_ratelimited("failed to load transform for %s: %ld\n",
7399 sp->sctp_hmac_alg, PTR_ERR(tfm));
7400 return -ENOSYS;
7401 }
7402 sctp_sk(sk)->hmac = tfm;
7403 }
7404
7405 /*
7406 * If a bind() or sctp_bindx() is not called prior to a listen()
7407 * call that allows new associations to be accepted, the system
7408 * picks an ephemeral port and will choose an address set equivalent
7409 * to binding with a wildcard address.
7410 *
7411 * This is not currently spelled out in the SCTP sockets
7412 * extensions draft, but follows the practice as seen in TCP
7413 * sockets.
7414 *
7415 */
7416 sk->sk_state = SCTP_SS_LISTENING;
7417 if (!ep->base.bind_addr.port) {
7418 if (sctp_autobind(sk))
7419 return -EAGAIN;
7420 } else {
7421 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7422 sk->sk_state = SCTP_SS_CLOSED;
7423 return -EADDRINUSE;
7424 }
7425 }
7426
7427 sk->sk_max_ack_backlog = backlog;
7428 sctp_hash_endpoint(ep);
7429 return 0;
7430 }
7431
7432 /*
7433 * 4.1.3 / 5.1.3 listen()
7434 *
7435 * By default, new associations are not accepted for UDP style sockets.
7436 * An application uses listen() to mark a socket as being able to
7437 * accept new associations.
7438 *
7439 * On TCP style sockets, applications use listen() to ready the SCTP
7440 * endpoint for accepting inbound associations.
7441 *
7442 * On both types of endpoints a backlog of '0' disables listening.
7443 *
7444 * Move a socket to LISTENING state.
7445 */
7446 int sctp_inet_listen(struct socket *sock, int backlog)
7447 {
7448 struct sock *sk = sock->sk;
7449 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7450 int err = -EINVAL;
7451
7452 if (unlikely(backlog < 0))
7453 return err;
7454
7455 lock_sock(sk);
7456
7457 /* Peeled-off sockets are not allowed to listen(). */
7458 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7459 goto out;
7460
7461 if (sock->state != SS_UNCONNECTED)
7462 goto out;
7463
7464 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7465 goto out;
7466
7467 /* If backlog is zero, disable listening. */
7468 if (!backlog) {
7469 if (sctp_sstate(sk, CLOSED))
7470 goto out;
7471
7472 err = 0;
7473 sctp_unhash_endpoint(ep);
7474 sk->sk_state = SCTP_SS_CLOSED;
7475 if (sk->sk_reuse)
7476 sctp_sk(sk)->bind_hash->fastreuse = 1;
7477 goto out;
7478 }
7479
7480 /* If we are already listening, just update the backlog */
7481 if (sctp_sstate(sk, LISTENING))
7482 sk->sk_max_ack_backlog = backlog;
7483 else {
7484 err = sctp_listen_start(sk, backlog);
7485 if (err)
7486 goto out;
7487 }
7488
7489 err = 0;
7490 out:
7491 release_sock(sk);
7492 return err;
7493 }
7494
7495 /*
7496 * This function is done by modeling the current datagram_poll() and the
7497 * tcp_poll(). Note that, based on these implementations, we don't
7498 * lock the socket in this function, even though it seems that,
7499 * ideally, locking or some other mechanisms can be used to ensure
7500 * the integrity of the counters (sndbuf and wmem_alloc) used
7501 * in this place. We assume that we don't need locks either until proven
7502 * otherwise.
7503 *
7504 * Another thing to note is that we include the Async I/O support
7505 * here, again, by modeling the current TCP/UDP code. We don't have
7506 * a good way to test with it yet.
7507 */
7508 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7509 {
7510 struct sock *sk = sock->sk;
7511 struct sctp_sock *sp = sctp_sk(sk);
7512 unsigned int mask;
7513
7514 poll_wait(file, sk_sleep(sk), wait);
7515
7516 sock_rps_record_flow(sk);
7517
7518 /* A TCP-style listening socket becomes readable when the accept queue
7519 * is not empty.
7520 */
7521 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7522 return (!list_empty(&sp->ep->asocs)) ?
7523 (POLLIN | POLLRDNORM) : 0;
7524
7525 mask = 0;
7526
7527 /* Is there any exceptional events? */
7528 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
7529 mask |= POLLERR |
7530 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7531 if (sk->sk_shutdown & RCV_SHUTDOWN)
7532 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7533 if (sk->sk_shutdown == SHUTDOWN_MASK)
7534 mask |= POLLHUP;
7535
7536 /* Is it readable? Reconsider this code with TCP-style support. */
7537 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
7538 mask |= POLLIN | POLLRDNORM;
7539
7540 /* The association is either gone or not ready. */
7541 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7542 return mask;
7543
7544 /* Is it writable? */
7545 if (sctp_writeable(sk)) {
7546 mask |= POLLOUT | POLLWRNORM;
7547 } else {
7548 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7549 /*
7550 * Since the socket is not locked, the buffer
7551 * might be made available after the writeable check and
7552 * before the bit is set. This could cause a lost I/O
7553 * signal. tcp_poll() has a race breaker for this race
7554 * condition. Based on their implementation, we put
7555 * in the following code to cover it as well.
7556 */
7557 if (sctp_writeable(sk))
7558 mask |= POLLOUT | POLLWRNORM;
7559 }
7560 return mask;
7561 }
7562
7563 /********************************************************************
7564 * 2nd Level Abstractions
7565 ********************************************************************/
7566
7567 static struct sctp_bind_bucket *sctp_bucket_create(
7568 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7569 {
7570 struct sctp_bind_bucket *pp;
7571
7572 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7573 if (pp) {
7574 SCTP_DBG_OBJCNT_INC(bind_bucket);
7575 pp->port = snum;
7576 pp->fastreuse = 0;
7577 INIT_HLIST_HEAD(&pp->owner);
7578 pp->net = net;
7579 hlist_add_head(&pp->node, &head->chain);
7580 }
7581 return pp;
7582 }
7583
7584 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7585 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7586 {
7587 if (pp && hlist_empty(&pp->owner)) {
7588 __hlist_del(&pp->node);
7589 kmem_cache_free(sctp_bucket_cachep, pp);
7590 SCTP_DBG_OBJCNT_DEC(bind_bucket);
7591 }
7592 }
7593
7594 /* Release this socket's reference to a local port. */
7595 static inline void __sctp_put_port(struct sock *sk)
7596 {
7597 struct sctp_bind_hashbucket *head =
7598 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7599 inet_sk(sk)->inet_num)];
7600 struct sctp_bind_bucket *pp;
7601
7602 spin_lock(&head->lock);
7603 pp = sctp_sk(sk)->bind_hash;
7604 __sk_del_bind_node(sk);
7605 sctp_sk(sk)->bind_hash = NULL;
7606 inet_sk(sk)->inet_num = 0;
7607 sctp_bucket_destroy(pp);
7608 spin_unlock(&head->lock);
7609 }
7610
7611 void sctp_put_port(struct sock *sk)
7612 {
7613 local_bh_disable();
7614 __sctp_put_port(sk);
7615 local_bh_enable();
7616 }
7617
7618 /*
7619 * The system picks an ephemeral port and choose an address set equivalent
7620 * to binding with a wildcard address.
7621 * One of those addresses will be the primary address for the association.
7622 * This automatically enables the multihoming capability of SCTP.
7623 */
7624 static int sctp_autobind(struct sock *sk)
7625 {
7626 union sctp_addr autoaddr;
7627 struct sctp_af *af;
7628 __be16 port;
7629
7630 /* Initialize a local sockaddr structure to INADDR_ANY. */
7631 af = sctp_sk(sk)->pf->af;
7632
7633 port = htons(inet_sk(sk)->inet_num);
7634 af->inaddr_any(&autoaddr, port);
7635
7636 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7637 }
7638
7639 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7640 *
7641 * From RFC 2292
7642 * 4.2 The cmsghdr Structure *
7643 *
7644 * When ancillary data is sent or received, any number of ancillary data
7645 * objects can be specified by the msg_control and msg_controllen members of
7646 * the msghdr structure, because each object is preceded by
7647 * a cmsghdr structure defining the object's length (the cmsg_len member).
7648 * Historically Berkeley-derived implementations have passed only one object
7649 * at a time, but this API allows multiple objects to be
7650 * passed in a single call to sendmsg() or recvmsg(). The following example
7651 * shows two ancillary data objects in a control buffer.
7652 *
7653 * |<--------------------------- msg_controllen -------------------------->|
7654 * | |
7655 *
7656 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7657 *
7658 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7659 * | | |
7660 *
7661 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7662 *
7663 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7664 * | | | | |
7665 *
7666 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7667 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7668 *
7669 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7670 *
7671 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7672 * ^
7673 * |
7674 *
7675 * msg_control
7676 * points here
7677 */
7678 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
7679 {
7680 struct msghdr *my_msg = (struct msghdr *)msg;
7681 struct cmsghdr *cmsg;
7682
7683 for_each_cmsghdr(cmsg, my_msg) {
7684 if (!CMSG_OK(my_msg, cmsg))
7685 return -EINVAL;
7686
7687 /* Should we parse this header or ignore? */
7688 if (cmsg->cmsg_level != IPPROTO_SCTP)
7689 continue;
7690
7691 /* Strictly check lengths following example in SCM code. */
7692 switch (cmsg->cmsg_type) {
7693 case SCTP_INIT:
7694 /* SCTP Socket API Extension
7695 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7696 *
7697 * This cmsghdr structure provides information for
7698 * initializing new SCTP associations with sendmsg().
7699 * The SCTP_INITMSG socket option uses this same data
7700 * structure. This structure is not used for
7701 * recvmsg().
7702 *
7703 * cmsg_level cmsg_type cmsg_data[]
7704 * ------------ ------------ ----------------------
7705 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7706 */
7707 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7708 return -EINVAL;
7709
7710 cmsgs->init = CMSG_DATA(cmsg);
7711 break;
7712
7713 case SCTP_SNDRCV:
7714 /* SCTP Socket API Extension
7715 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7716 *
7717 * This cmsghdr structure specifies SCTP options for
7718 * sendmsg() and describes SCTP header information
7719 * about a received message through recvmsg().
7720 *
7721 * cmsg_level cmsg_type cmsg_data[]
7722 * ------------ ------------ ----------------------
7723 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7724 */
7725 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7726 return -EINVAL;
7727
7728 cmsgs->srinfo = CMSG_DATA(cmsg);
7729
7730 if (cmsgs->srinfo->sinfo_flags &
7731 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7732 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7733 SCTP_ABORT | SCTP_EOF))
7734 return -EINVAL;
7735 break;
7736
7737 case SCTP_SNDINFO:
7738 /* SCTP Socket API Extension
7739 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7740 *
7741 * This cmsghdr structure specifies SCTP options for
7742 * sendmsg(). This structure and SCTP_RCVINFO replaces
7743 * SCTP_SNDRCV which has been deprecated.
7744 *
7745 * cmsg_level cmsg_type cmsg_data[]
7746 * ------------ ------------ ---------------------
7747 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7748 */
7749 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7750 return -EINVAL;
7751
7752 cmsgs->sinfo = CMSG_DATA(cmsg);
7753
7754 if (cmsgs->sinfo->snd_flags &
7755 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7756 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7757 SCTP_ABORT | SCTP_EOF))
7758 return -EINVAL;
7759 break;
7760 default:
7761 return -EINVAL;
7762 }
7763 }
7764
7765 return 0;
7766 }
7767
7768 /*
7769 * Wait for a packet..
7770 * Note: This function is the same function as in core/datagram.c
7771 * with a few modifications to make lksctp work.
7772 */
7773 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7774 {
7775 int error;
7776 DEFINE_WAIT(wait);
7777
7778 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7779
7780 /* Socket errors? */
7781 error = sock_error(sk);
7782 if (error)
7783 goto out;
7784
7785 if (!skb_queue_empty(&sk->sk_receive_queue))
7786 goto ready;
7787
7788 /* Socket shut down? */
7789 if (sk->sk_shutdown & RCV_SHUTDOWN)
7790 goto out;
7791
7792 /* Sequenced packets can come disconnected. If so we report the
7793 * problem.
7794 */
7795 error = -ENOTCONN;
7796
7797 /* Is there a good reason to think that we may receive some data? */
7798 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7799 goto out;
7800
7801 /* Handle signals. */
7802 if (signal_pending(current))
7803 goto interrupted;
7804
7805 /* Let another process have a go. Since we are going to sleep
7806 * anyway. Note: This may cause odd behaviors if the message
7807 * does not fit in the user's buffer, but this seems to be the
7808 * only way to honor MSG_DONTWAIT realistically.
7809 */
7810 release_sock(sk);
7811 *timeo_p = schedule_timeout(*timeo_p);
7812 lock_sock(sk);
7813
7814 ready:
7815 finish_wait(sk_sleep(sk), &wait);
7816 return 0;
7817
7818 interrupted:
7819 error = sock_intr_errno(*timeo_p);
7820
7821 out:
7822 finish_wait(sk_sleep(sk), &wait);
7823 *err = error;
7824 return error;
7825 }
7826
7827 /* Receive a datagram.
7828 * Note: This is pretty much the same routine as in core/datagram.c
7829 * with a few changes to make lksctp work.
7830 */
7831 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7832 int noblock, int *err)
7833 {
7834 int error;
7835 struct sk_buff *skb;
7836 long timeo;
7837
7838 timeo = sock_rcvtimeo(sk, noblock);
7839
7840 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7841 MAX_SCHEDULE_TIMEOUT);
7842
7843 do {
7844 /* Again only user level code calls this function,
7845 * so nothing interrupt level
7846 * will suddenly eat the receive_queue.
7847 *
7848 * Look at current nfs client by the way...
7849 * However, this function was correct in any case. 8)
7850 */
7851 if (flags & MSG_PEEK) {
7852 skb = skb_peek(&sk->sk_receive_queue);
7853 if (skb)
7854 refcount_inc(&skb->users);
7855 } else {
7856 skb = __skb_dequeue(&sk->sk_receive_queue);
7857 }
7858
7859 if (skb)
7860 return skb;
7861
7862 /* Caller is allowed not to check sk->sk_err before calling. */
7863 error = sock_error(sk);
7864 if (error)
7865 goto no_packet;
7866
7867 if (sk->sk_shutdown & RCV_SHUTDOWN)
7868 break;
7869
7870 if (sk_can_busy_loop(sk)) {
7871 sk_busy_loop(sk, noblock);
7872
7873 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
7874 continue;
7875 }
7876
7877 /* User doesn't want to wait. */
7878 error = -EAGAIN;
7879 if (!timeo)
7880 goto no_packet;
7881 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7882
7883 return NULL;
7884
7885 no_packet:
7886 *err = error;
7887 return NULL;
7888 }
7889
7890 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7891 static void __sctp_write_space(struct sctp_association *asoc)
7892 {
7893 struct sock *sk = asoc->base.sk;
7894
7895 if (sctp_wspace(asoc) <= 0)
7896 return;
7897
7898 if (waitqueue_active(&asoc->wait))
7899 wake_up_interruptible(&asoc->wait);
7900
7901 if (sctp_writeable(sk)) {
7902 struct socket_wq *wq;
7903
7904 rcu_read_lock();
7905 wq = rcu_dereference(sk->sk_wq);
7906 if (wq) {
7907 if (waitqueue_active(&wq->wait))
7908 wake_up_interruptible(&wq->wait);
7909
7910 /* Note that we try to include the Async I/O support
7911 * here by modeling from the current TCP/UDP code.
7912 * We have not tested with it yet.
7913 */
7914 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7915 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7916 }
7917 rcu_read_unlock();
7918 }
7919 }
7920
7921 static void sctp_wake_up_waiters(struct sock *sk,
7922 struct sctp_association *asoc)
7923 {
7924 struct sctp_association *tmp = asoc;
7925
7926 /* We do accounting for the sndbuf space per association,
7927 * so we only need to wake our own association.
7928 */
7929 if (asoc->ep->sndbuf_policy)
7930 return __sctp_write_space(asoc);
7931
7932 /* If association goes down and is just flushing its
7933 * outq, then just normally notify others.
7934 */
7935 if (asoc->base.dead)
7936 return sctp_write_space(sk);
7937
7938 /* Accounting for the sndbuf space is per socket, so we
7939 * need to wake up others, try to be fair and in case of
7940 * other associations, let them have a go first instead
7941 * of just doing a sctp_write_space() call.
7942 *
7943 * Note that we reach sctp_wake_up_waiters() only when
7944 * associations free up queued chunks, thus we are under
7945 * lock and the list of associations on a socket is
7946 * guaranteed not to change.
7947 */
7948 for (tmp = list_next_entry(tmp, asocs); 1;
7949 tmp = list_next_entry(tmp, asocs)) {
7950 /* Manually skip the head element. */
7951 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7952 continue;
7953 /* Wake up association. */
7954 __sctp_write_space(tmp);
7955 /* We've reached the end. */
7956 if (tmp == asoc)
7957 break;
7958 }
7959 }
7960
7961 /* Do accounting for the sndbuf space.
7962 * Decrement the used sndbuf space of the corresponding association by the
7963 * data size which was just transmitted(freed).
7964 */
7965 static void sctp_wfree(struct sk_buff *skb)
7966 {
7967 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7968 struct sctp_association *asoc = chunk->asoc;
7969 struct sock *sk = asoc->base.sk;
7970
7971 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7972 sizeof(struct sk_buff) +
7973 sizeof(struct sctp_chunk);
7974
7975 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc));
7976
7977 /*
7978 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7979 */
7980 sk->sk_wmem_queued -= skb->truesize;
7981 sk_mem_uncharge(sk, skb->truesize);
7982
7983 sock_wfree(skb);
7984 sctp_wake_up_waiters(sk, asoc);
7985
7986 sctp_association_put(asoc);
7987 }
7988
7989 /* Do accounting for the receive space on the socket.
7990 * Accounting for the association is done in ulpevent.c
7991 * We set this as a destructor for the cloned data skbs so that
7992 * accounting is done at the correct time.
7993 */
7994 void sctp_sock_rfree(struct sk_buff *skb)
7995 {
7996 struct sock *sk = skb->sk;
7997 struct sctp_ulpevent *event = sctp_skb2event(skb);
7998
7999 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8000
8001 /*
8002 * Mimic the behavior of sock_rfree
8003 */
8004 sk_mem_uncharge(sk, event->rmem_len);
8005 }
8006
8007
8008 /* Helper function to wait for space in the sndbuf. */
8009 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8010 size_t msg_len)
8011 {
8012 struct sock *sk = asoc->base.sk;
8013 long current_timeo = *timeo_p;
8014 DEFINE_WAIT(wait);
8015 int err = 0;
8016
8017 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8018 *timeo_p, msg_len);
8019
8020 /* Increment the association's refcnt. */
8021 sctp_association_hold(asoc);
8022
8023 /* Wait on the association specific sndbuf space. */
8024 for (;;) {
8025 prepare_to_wait_exclusive(&asoc->wait, &wait,
8026 TASK_INTERRUPTIBLE);
8027 if (asoc->base.dead)
8028 goto do_dead;
8029 if (!*timeo_p)
8030 goto do_nonblock;
8031 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8032 goto do_error;
8033 if (signal_pending(current))
8034 goto do_interrupted;
8035 if (sk_under_memory_pressure(sk))
8036 sk_mem_reclaim(sk);
8037 if ((int)msg_len <= sctp_wspace(asoc) &&
8038 sk_wmem_schedule(sk, msg_len))
8039 break;
8040
8041 /* Let another process have a go. Since we are going
8042 * to sleep anyway.
8043 */
8044 release_sock(sk);
8045 current_timeo = schedule_timeout(current_timeo);
8046 lock_sock(sk);
8047 if (sk != asoc->base.sk)
8048 goto do_error;
8049
8050 *timeo_p = current_timeo;
8051 }
8052
8053 out:
8054 finish_wait(&asoc->wait, &wait);
8055
8056 /* Release the association's refcnt. */
8057 sctp_association_put(asoc);
8058
8059 return err;
8060
8061 do_dead:
8062 err = -ESRCH;
8063 goto out;
8064
8065 do_error:
8066 err = -EPIPE;
8067 goto out;
8068
8069 do_interrupted:
8070 err = sock_intr_errno(*timeo_p);
8071 goto out;
8072
8073 do_nonblock:
8074 err = -EAGAIN;
8075 goto out;
8076 }
8077
8078 void sctp_data_ready(struct sock *sk)
8079 {
8080 struct socket_wq *wq;
8081
8082 rcu_read_lock();
8083 wq = rcu_dereference(sk->sk_wq);
8084 if (skwq_has_sleeper(wq))
8085 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
8086 POLLRDNORM | POLLRDBAND);
8087 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8088 rcu_read_unlock();
8089 }
8090
8091 /* If socket sndbuf has changed, wake up all per association waiters. */
8092 void sctp_write_space(struct sock *sk)
8093 {
8094 struct sctp_association *asoc;
8095
8096 /* Wake up the tasks in each wait queue. */
8097 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8098 __sctp_write_space(asoc);
8099 }
8100 }
8101
8102 /* Is there any sndbuf space available on the socket?
8103 *
8104 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8105 * associations on the same socket. For a UDP-style socket with
8106 * multiple associations, it is possible for it to be "unwriteable"
8107 * prematurely. I assume that this is acceptable because
8108 * a premature "unwriteable" is better than an accidental "writeable" which
8109 * would cause an unwanted block under certain circumstances. For the 1-1
8110 * UDP-style sockets or TCP-style sockets, this code should work.
8111 * - Daisy
8112 */
8113 static bool sctp_writeable(struct sock *sk)
8114 {
8115 return sk->sk_sndbuf > sk->sk_wmem_queued;
8116 }
8117
8118 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8119 * returns immediately with EINPROGRESS.
8120 */
8121 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8122 {
8123 struct sock *sk = asoc->base.sk;
8124 int err = 0;
8125 long current_timeo = *timeo_p;
8126 DEFINE_WAIT(wait);
8127
8128 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8129
8130 /* Increment the association's refcnt. */
8131 sctp_association_hold(asoc);
8132
8133 for (;;) {
8134 prepare_to_wait_exclusive(&asoc->wait, &wait,
8135 TASK_INTERRUPTIBLE);
8136 if (!*timeo_p)
8137 goto do_nonblock;
8138 if (sk->sk_shutdown & RCV_SHUTDOWN)
8139 break;
8140 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8141 asoc->base.dead)
8142 goto do_error;
8143 if (signal_pending(current))
8144 goto do_interrupted;
8145
8146 if (sctp_state(asoc, ESTABLISHED))
8147 break;
8148
8149 /* Let another process have a go. Since we are going
8150 * to sleep anyway.
8151 */
8152 release_sock(sk);
8153 current_timeo = schedule_timeout(current_timeo);
8154 lock_sock(sk);
8155
8156 *timeo_p = current_timeo;
8157 }
8158
8159 out:
8160 finish_wait(&asoc->wait, &wait);
8161
8162 /* Release the association's refcnt. */
8163 sctp_association_put(asoc);
8164
8165 return err;
8166
8167 do_error:
8168 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8169 err = -ETIMEDOUT;
8170 else
8171 err = -ECONNREFUSED;
8172 goto out;
8173
8174 do_interrupted:
8175 err = sock_intr_errno(*timeo_p);
8176 goto out;
8177
8178 do_nonblock:
8179 err = -EINPROGRESS;
8180 goto out;
8181 }
8182
8183 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8184 {
8185 struct sctp_endpoint *ep;
8186 int err = 0;
8187 DEFINE_WAIT(wait);
8188
8189 ep = sctp_sk(sk)->ep;
8190
8191
8192 for (;;) {
8193 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8194 TASK_INTERRUPTIBLE);
8195
8196 if (list_empty(&ep->asocs)) {
8197 release_sock(sk);
8198 timeo = schedule_timeout(timeo);
8199 lock_sock(sk);
8200 }
8201
8202 err = -EINVAL;
8203 if (!sctp_sstate(sk, LISTENING))
8204 break;
8205
8206 err = 0;
8207 if (!list_empty(&ep->asocs))
8208 break;
8209
8210 err = sock_intr_errno(timeo);
8211 if (signal_pending(current))
8212 break;
8213
8214 err = -EAGAIN;
8215 if (!timeo)
8216 break;
8217 }
8218
8219 finish_wait(sk_sleep(sk), &wait);
8220
8221 return err;
8222 }
8223
8224 static void sctp_wait_for_close(struct sock *sk, long timeout)
8225 {
8226 DEFINE_WAIT(wait);
8227
8228 do {
8229 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8230 if (list_empty(&sctp_sk(sk)->ep->asocs))
8231 break;
8232 release_sock(sk);
8233 timeout = schedule_timeout(timeout);
8234 lock_sock(sk);
8235 } while (!signal_pending(current) && timeout);
8236
8237 finish_wait(sk_sleep(sk), &wait);
8238 }
8239
8240 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8241 {
8242 struct sk_buff *frag;
8243
8244 if (!skb->data_len)
8245 goto done;
8246
8247 /* Don't forget the fragments. */
8248 skb_walk_frags(skb, frag)
8249 sctp_skb_set_owner_r_frag(frag, sk);
8250
8251 done:
8252 sctp_skb_set_owner_r(skb, sk);
8253 }
8254
8255 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8256 struct sctp_association *asoc)
8257 {
8258 struct inet_sock *inet = inet_sk(sk);
8259 struct inet_sock *newinet;
8260
8261 newsk->sk_type = sk->sk_type;
8262 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8263 newsk->sk_flags = sk->sk_flags;
8264 newsk->sk_tsflags = sk->sk_tsflags;
8265 newsk->sk_no_check_tx = sk->sk_no_check_tx;
8266 newsk->sk_no_check_rx = sk->sk_no_check_rx;
8267 newsk->sk_reuse = sk->sk_reuse;
8268
8269 newsk->sk_shutdown = sk->sk_shutdown;
8270 newsk->sk_destruct = sctp_destruct_sock;
8271 newsk->sk_family = sk->sk_family;
8272 newsk->sk_protocol = IPPROTO_SCTP;
8273 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8274 newsk->sk_sndbuf = sk->sk_sndbuf;
8275 newsk->sk_rcvbuf = sk->sk_rcvbuf;
8276 newsk->sk_lingertime = sk->sk_lingertime;
8277 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8278 newsk->sk_sndtimeo = sk->sk_sndtimeo;
8279 newsk->sk_rxhash = sk->sk_rxhash;
8280
8281 newinet = inet_sk(newsk);
8282
8283 /* Initialize sk's sport, dport, rcv_saddr and daddr for
8284 * getsockname() and getpeername()
8285 */
8286 newinet->inet_sport = inet->inet_sport;
8287 newinet->inet_saddr = inet->inet_saddr;
8288 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8289 newinet->inet_dport = htons(asoc->peer.port);
8290 newinet->pmtudisc = inet->pmtudisc;
8291 newinet->inet_id = prandom_u32();
8292
8293 newinet->uc_ttl = inet->uc_ttl;
8294 newinet->mc_loop = 1;
8295 newinet->mc_ttl = 1;
8296 newinet->mc_index = 0;
8297 newinet->mc_list = NULL;
8298
8299 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8300 net_enable_timestamp();
8301
8302 security_sk_clone(sk, newsk);
8303 }
8304
8305 static inline void sctp_copy_descendant(struct sock *sk_to,
8306 const struct sock *sk_from)
8307 {
8308 int ancestor_size = sizeof(struct inet_sock) +
8309 sizeof(struct sctp_sock) -
8310 offsetof(struct sctp_sock, auto_asconf_list);
8311
8312 if (sk_from->sk_family == PF_INET6)
8313 ancestor_size += sizeof(struct ipv6_pinfo);
8314
8315 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8316 }
8317
8318 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8319 * and its messages to the newsk.
8320 */
8321 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8322 struct sctp_association *assoc,
8323 enum sctp_socket_type type)
8324 {
8325 struct sctp_sock *oldsp = sctp_sk(oldsk);
8326 struct sctp_sock *newsp = sctp_sk(newsk);
8327 struct sctp_bind_bucket *pp; /* hash list port iterator */
8328 struct sctp_endpoint *newep = newsp->ep;
8329 struct sk_buff *skb, *tmp;
8330 struct sctp_ulpevent *event;
8331 struct sctp_bind_hashbucket *head;
8332
8333 /* Migrate socket buffer sizes and all the socket level options to the
8334 * new socket.
8335 */
8336 newsk->sk_sndbuf = oldsk->sk_sndbuf;
8337 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8338 /* Brute force copy old sctp opt. */
8339 sctp_copy_descendant(newsk, oldsk);
8340
8341 /* Restore the ep value that was overwritten with the above structure
8342 * copy.
8343 */
8344 newsp->ep = newep;
8345 newsp->hmac = NULL;
8346
8347 /* Hook this new socket in to the bind_hash list. */
8348 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8349 inet_sk(oldsk)->inet_num)];
8350 spin_lock_bh(&head->lock);
8351 pp = sctp_sk(oldsk)->bind_hash;
8352 sk_add_bind_node(newsk, &pp->owner);
8353 sctp_sk(newsk)->bind_hash = pp;
8354 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8355 spin_unlock_bh(&head->lock);
8356
8357 /* Copy the bind_addr list from the original endpoint to the new
8358 * endpoint so that we can handle restarts properly
8359 */
8360 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8361 &oldsp->ep->base.bind_addr, GFP_KERNEL);
8362
8363 /* Move any messages in the old socket's receive queue that are for the
8364 * peeled off association to the new socket's receive queue.
8365 */
8366 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8367 event = sctp_skb2event(skb);
8368 if (event->asoc == assoc) {
8369 __skb_unlink(skb, &oldsk->sk_receive_queue);
8370 __skb_queue_tail(&newsk->sk_receive_queue, skb);
8371 sctp_skb_set_owner_r_frag(skb, newsk);
8372 }
8373 }
8374
8375 /* Clean up any messages pending delivery due to partial
8376 * delivery. Three cases:
8377 * 1) No partial deliver; no work.
8378 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8379 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8380 */
8381 skb_queue_head_init(&newsp->pd_lobby);
8382 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8383
8384 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8385 struct sk_buff_head *queue;
8386
8387 /* Decide which queue to move pd_lobby skbs to. */
8388 if (assoc->ulpq.pd_mode) {
8389 queue = &newsp->pd_lobby;
8390 } else
8391 queue = &newsk->sk_receive_queue;
8392
8393 /* Walk through the pd_lobby, looking for skbs that
8394 * need moved to the new socket.
8395 */
8396 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8397 event = sctp_skb2event(skb);
8398 if (event->asoc == assoc) {
8399 __skb_unlink(skb, &oldsp->pd_lobby);
8400 __skb_queue_tail(queue, skb);
8401 sctp_skb_set_owner_r_frag(skb, newsk);
8402 }
8403 }
8404
8405 /* Clear up any skbs waiting for the partial
8406 * delivery to finish.
8407 */
8408 if (assoc->ulpq.pd_mode)
8409 sctp_clear_pd(oldsk, NULL);
8410
8411 }
8412
8413 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
8414 sctp_skb_set_owner_r_frag(skb, newsk);
8415
8416 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
8417 sctp_skb_set_owner_r_frag(skb, newsk);
8418
8419 /* Set the type of socket to indicate that it is peeled off from the
8420 * original UDP-style socket or created with the accept() call on a
8421 * TCP-style socket..
8422 */
8423 newsp->type = type;
8424
8425 /* Mark the new socket "in-use" by the user so that any packets
8426 * that may arrive on the association after we've moved it are
8427 * queued to the backlog. This prevents a potential race between
8428 * backlog processing on the old socket and new-packet processing
8429 * on the new socket.
8430 *
8431 * The caller has just allocated newsk so we can guarantee that other
8432 * paths won't try to lock it and then oldsk.
8433 */
8434 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8435 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8436 sctp_assoc_migrate(assoc, newsk);
8437 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8438
8439 /* If the association on the newsk is already closed before accept()
8440 * is called, set RCV_SHUTDOWN flag.
8441 */
8442 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8443 newsk->sk_state = SCTP_SS_CLOSED;
8444 newsk->sk_shutdown |= RCV_SHUTDOWN;
8445 } else {
8446 newsk->sk_state = SCTP_SS_ESTABLISHED;
8447 }
8448
8449 release_sock(newsk);
8450 }
8451
8452
8453 /* This proto struct describes the ULP interface for SCTP. */
8454 struct proto sctp_prot = {
8455 .name = "SCTP",
8456 .owner = THIS_MODULE,
8457 .close = sctp_close,
8458 .disconnect = sctp_disconnect,
8459 .accept = sctp_accept,
8460 .ioctl = sctp_ioctl,
8461 .init = sctp_init_sock,
8462 .destroy = sctp_destroy_sock,
8463 .shutdown = sctp_shutdown,
8464 .setsockopt = sctp_setsockopt,
8465 .getsockopt = sctp_getsockopt,
8466 .sendmsg = sctp_sendmsg,
8467 .recvmsg = sctp_recvmsg,
8468 .bind = sctp_bind,
8469 .backlog_rcv = sctp_backlog_rcv,
8470 .hash = sctp_hash,
8471 .unhash = sctp_unhash,
8472 .no_autobind = true,
8473 .obj_size = sizeof(struct sctp_sock),
8474 .sysctl_mem = sysctl_sctp_mem,
8475 .sysctl_rmem = sysctl_sctp_rmem,
8476 .sysctl_wmem = sysctl_sctp_wmem,
8477 .memory_pressure = &sctp_memory_pressure,
8478 .enter_memory_pressure = sctp_enter_memory_pressure,
8479 .memory_allocated = &sctp_memory_allocated,
8480 .sockets_allocated = &sctp_sockets_allocated,
8481 };
8482
8483 #if IS_ENABLED(CONFIG_IPV6)
8484
8485 #include <net/transp_v6.h>
8486 static void sctp_v6_destroy_sock(struct sock *sk)
8487 {
8488 sctp_destroy_sock(sk);
8489 inet6_destroy_sock(sk);
8490 }
8491
8492 struct proto sctpv6_prot = {
8493 .name = "SCTPv6",
8494 .owner = THIS_MODULE,
8495 .close = sctp_close,
8496 .disconnect = sctp_disconnect,
8497 .accept = sctp_accept,
8498 .ioctl = sctp_ioctl,
8499 .init = sctp_init_sock,
8500 .destroy = sctp_v6_destroy_sock,
8501 .shutdown = sctp_shutdown,
8502 .setsockopt = sctp_setsockopt,
8503 .getsockopt = sctp_getsockopt,
8504 .sendmsg = sctp_sendmsg,
8505 .recvmsg = sctp_recvmsg,
8506 .bind = sctp_bind,
8507 .backlog_rcv = sctp_backlog_rcv,
8508 .hash = sctp_hash,
8509 .unhash = sctp_unhash,
8510 .no_autobind = true,
8511 .obj_size = sizeof(struct sctp6_sock),
8512 .sysctl_mem = sysctl_sctp_mem,
8513 .sysctl_rmem = sysctl_sctp_rmem,
8514 .sysctl_wmem = sysctl_sctp_wmem,
8515 .memory_pressure = &sctp_memory_pressure,
8516 .enter_memory_pressure = sctp_enter_memory_pressure,
8517 .memory_allocated = &sctp_memory_allocated,
8518 .sockets_allocated = &sctp_sockets_allocated,
8519 };
8520 #endif /* IS_ENABLED(CONFIG_IPV6) */