]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/socket.c
Clocklib: Fix SA1111 clock name mess.
[mirror_ubuntu-artful-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
118
119 static void sctp_enter_memory_pressure(void)
120 {
121 sctp_memory_pressure = 1;
122 }
123
124
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 int amt;
129
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
142 }
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
145 }
146 return amt;
147 }
148
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
152 *
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
157 */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
162
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
165
166 skb_set_owner_w(chunk->skb, sk);
167
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
175
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
179 }
180
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
184 {
185 struct sctp_af *af;
186
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
191
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
195
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
198
199 return 0;
200 }
201
202 /* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
204 */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 struct sctp_association *asoc = NULL;
208
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
214 */
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
217
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
223 }
224
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
228
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
232
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
235
236 return asoc;
237 }
238
239 /* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
242 */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
246 {
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
250
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
254
255 if (!addr_asoc)
256 return NULL;
257
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
261
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
264
265 return transport;
266 }
267
268 /* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
270 *
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
272 *
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
277 */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 int retval = 0;
281
282 sctp_lock_sock(sk);
283
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
286
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
293
294 sctp_release_sock(sk);
295
296 return retval;
297 }
298
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
304 {
305 struct sctp_af *af;
306
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
310
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314
315 /* If we get this far, af is valid. */
316 af = sctp_get_af_specific(addr->sa.sa_family);
317
318 if (len < af->sockaddr_len)
319 return NULL;
320
321 return af;
322 }
323
324 /* Bind a local address either to an endpoint or to an association. */
325 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
326 {
327 struct sctp_sock *sp = sctp_sk(sk);
328 struct sctp_endpoint *ep = sp->ep;
329 struct sctp_bind_addr *bp = &ep->base.bind_addr;
330 struct sctp_af *af;
331 unsigned short snum;
332 int ret = 0;
333
334 /* Common sockaddr verification. */
335 af = sctp_sockaddr_af(sp, addr, len);
336 if (!af) {
337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
338 sk, addr, len);
339 return -EINVAL;
340 }
341
342 snum = ntohs(addr->v4.sin_port);
343
344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
345 ", port: %d, new port: %d, len: %d)\n",
346 sk,
347 addr,
348 bp->port, snum,
349 len);
350
351 /* PF specific bind() address verification. */
352 if (!sp->pf->bind_verify(sp, addr))
353 return -EADDRNOTAVAIL;
354
355 /* We must either be unbound, or bind to the same port.
356 * It's OK to allow 0 ports if we are already bound.
357 * We'll just inhert an already bound port in this case
358 */
359 if (bp->port) {
360 if (!snum)
361 snum = bp->port;
362 else if (snum != bp->port) {
363 SCTP_DEBUG_PRINTK("sctp_do_bind:"
364 " New port %d does not match existing port "
365 "%d.\n", snum, bp->port);
366 return -EINVAL;
367 }
368 }
369
370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
371 return -EACCES;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 if (ret == (long) sk) {
380 /* This endpoint has a conflicting address. */
381 return -EINVAL;
382 } else {
383 return -EADDRINUSE;
384 }
385 }
386
387 /* Refresh ephemeral port. */
388 if (!bp->port)
389 bp->port = inet_sk(sk)->num;
390
391 /* Add the address to the bind address list.
392 * Use GFP_ATOMIC since BHs will be disabled.
393 */
394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
399 af->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403 }
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415 static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417 {
418 int retval = 0;
419
420 /* If there is an outstanding ASCONF chunk, queue it for later
421 * transmission.
422 */
423 if (asoc->addip_last_asconf) {
424 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 goto out;
426 }
427
428 /* Hold the chunk until an ASCONF_ACK is received. */
429 sctp_chunk_hold(chunk);
430 retval = sctp_primitive_ASCONF(asoc, chunk);
431 if (retval)
432 sctp_chunk_free(chunk);
433 else
434 asoc->addip_last_asconf = chunk;
435
436 out:
437 return retval;
438 }
439
440 /* Add a list of addresses as bind addresses to local endpoint or
441 * association.
442 *
443 * Basically run through each address specified in the addrs/addrcnt
444 * array/length pair, determine if it is IPv6 or IPv4 and call
445 * sctp_do_bind() on it.
446 *
447 * If any of them fails, then the operation will be reversed and the
448 * ones that were added will be removed.
449 *
450 * Only sctp_setsockopt_bindx() is supposed to call this function.
451 */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 int cnt;
455 int retval = 0;
456 void *addr_buf;
457 struct sockaddr *sa_addr;
458 struct sctp_af *af;
459
460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
461 sk, addrs, addrcnt);
462
463 addr_buf = addrs;
464 for (cnt = 0; cnt < addrcnt; cnt++) {
465 /* The list may contain either IPv4 or IPv6 address;
466 * determine the address length for walking thru the list.
467 */
468 sa_addr = (struct sockaddr *)addr_buf;
469 af = sctp_get_af_specific(sa_addr->sa_family);
470 if (!af) {
471 retval = -EINVAL;
472 goto err_bindx_add;
473 }
474
475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 af->sockaddr_len);
477
478 addr_buf += af->sockaddr_len;
479
480 err_bindx_add:
481 if (retval < 0) {
482 /* Failed. Cleanup the ones that have been added */
483 if (cnt > 0)
484 sctp_bindx_rem(sk, addrs, cnt);
485 return retval;
486 }
487 }
488
489 return retval;
490 }
491
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493 * associations that are part of the endpoint indicating that a list of local
494 * addresses are added to the endpoint.
495 *
496 * If any of the addresses is already in the bind address list of the
497 * association, we do not send the chunk for that association. But it will not
498 * affect other associations.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
502 static int sctp_send_asconf_add_ip(struct sock *sk,
503 struct sockaddr *addrs,
504 int addrcnt)
505 {
506 struct sctp_sock *sp;
507 struct sctp_endpoint *ep;
508 struct sctp_association *asoc;
509 struct sctp_bind_addr *bp;
510 struct sctp_chunk *chunk;
511 struct sctp_sockaddr_entry *laddr;
512 union sctp_addr *addr;
513 union sctp_addr saveaddr;
514 void *addr_buf;
515 struct sctp_af *af;
516 struct list_head *p;
517 int i;
518 int retval = 0;
519
520 if (!sctp_addip_enable)
521 return retval;
522
523 sp = sctp_sk(sk);
524 ep = sp->ep;
525
526 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
527 __func__, sk, addrs, addrcnt);
528
529 list_for_each_entry(asoc, &ep->asocs, asocs) {
530
531 if (!asoc->peer.asconf_capable)
532 continue;
533
534 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 continue;
536
537 if (!sctp_state(asoc, ESTABLISHED))
538 continue;
539
540 /* Check if any address in the packed array of addresses is
541 * in the bind address list of the association. If so,
542 * do not send the asconf chunk to its peer, but continue with
543 * other associations.
544 */
545 addr_buf = addrs;
546 for (i = 0; i < addrcnt; i++) {
547 addr = (union sctp_addr *)addr_buf;
548 af = sctp_get_af_specific(addr->v4.sin_family);
549 if (!af) {
550 retval = -EINVAL;
551 goto out;
552 }
553
554 if (sctp_assoc_lookup_laddr(asoc, addr))
555 break;
556
557 addr_buf += af->sockaddr_len;
558 }
559 if (i < addrcnt)
560 continue;
561
562 /* Use the first valid address in bind addr list of
563 * association as Address Parameter of ASCONF CHUNK.
564 */
565 bp = &asoc->base.bind_addr;
566 p = bp->address_list.next;
567 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 addrcnt, SCTP_PARAM_ADD_IP);
570 if (!chunk) {
571 retval = -ENOMEM;
572 goto out;
573 }
574
575 retval = sctp_send_asconf(asoc, chunk);
576 if (retval)
577 goto out;
578
579 /* Add the new addresses to the bind address list with
580 * use_as_src set to 0.
581 */
582 addr_buf = addrs;
583 for (i = 0; i < addrcnt; i++) {
584 addr = (union sctp_addr *)addr_buf;
585 af = sctp_get_af_specific(addr->v4.sin_family);
586 memcpy(&saveaddr, addr, af->sockaddr_len);
587 retval = sctp_add_bind_addr(bp, &saveaddr,
588 SCTP_ADDR_NEW, GFP_ATOMIC);
589 addr_buf += af->sockaddr_len;
590 }
591 }
592
593 out:
594 return retval;
595 }
596
597 /* Remove a list of addresses from bind addresses list. Do not remove the
598 * last address.
599 *
600 * Basically run through each address specified in the addrs/addrcnt
601 * array/length pair, determine if it is IPv6 or IPv4 and call
602 * sctp_del_bind() on it.
603 *
604 * If any of them fails, then the operation will be reversed and the
605 * ones that were removed will be added back.
606 *
607 * At least one address has to be left; if only one address is
608 * available, the operation will return -EBUSY.
609 *
610 * Only sctp_setsockopt_bindx() is supposed to call this function.
611 */
612 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
613 {
614 struct sctp_sock *sp = sctp_sk(sk);
615 struct sctp_endpoint *ep = sp->ep;
616 int cnt;
617 struct sctp_bind_addr *bp = &ep->base.bind_addr;
618 int retval = 0;
619 void *addr_buf;
620 union sctp_addr *sa_addr;
621 struct sctp_af *af;
622
623 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
624 sk, addrs, addrcnt);
625
626 addr_buf = addrs;
627 for (cnt = 0; cnt < addrcnt; cnt++) {
628 /* If the bind address list is empty or if there is only one
629 * bind address, there is nothing more to be removed (we need
630 * at least one address here).
631 */
632 if (list_empty(&bp->address_list) ||
633 (sctp_list_single_entry(&bp->address_list))) {
634 retval = -EBUSY;
635 goto err_bindx_rem;
636 }
637
638 sa_addr = (union sctp_addr *)addr_buf;
639 af = sctp_get_af_specific(sa_addr->sa.sa_family);
640 if (!af) {
641 retval = -EINVAL;
642 goto err_bindx_rem;
643 }
644
645 if (!af->addr_valid(sa_addr, sp, NULL)) {
646 retval = -EADDRNOTAVAIL;
647 goto err_bindx_rem;
648 }
649
650 if (sa_addr->v4.sin_port != htons(bp->port)) {
651 retval = -EINVAL;
652 goto err_bindx_rem;
653 }
654
655 /* FIXME - There is probably a need to check if sk->sk_saddr and
656 * sk->sk_rcv_addr are currently set to one of the addresses to
657 * be removed. This is something which needs to be looked into
658 * when we are fixing the outstanding issues with multi-homing
659 * socket routing and failover schemes. Refer to comments in
660 * sctp_do_bind(). -daisy
661 */
662 retval = sctp_del_bind_addr(bp, sa_addr);
663
664 addr_buf += af->sockaddr_len;
665 err_bindx_rem:
666 if (retval < 0) {
667 /* Failed. Add the ones that has been removed back */
668 if (cnt > 0)
669 sctp_bindx_add(sk, addrs, cnt);
670 return retval;
671 }
672 }
673
674 return retval;
675 }
676
677 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
678 * the associations that are part of the endpoint indicating that a list of
679 * local addresses are removed from the endpoint.
680 *
681 * If any of the addresses is already in the bind address list of the
682 * association, we do not send the chunk for that association. But it will not
683 * affect other associations.
684 *
685 * Only sctp_setsockopt_bindx() is supposed to call this function.
686 */
687 static int sctp_send_asconf_del_ip(struct sock *sk,
688 struct sockaddr *addrs,
689 int addrcnt)
690 {
691 struct sctp_sock *sp;
692 struct sctp_endpoint *ep;
693 struct sctp_association *asoc;
694 struct sctp_transport *transport;
695 struct sctp_bind_addr *bp;
696 struct sctp_chunk *chunk;
697 union sctp_addr *laddr;
698 void *addr_buf;
699 struct sctp_af *af;
700 struct sctp_sockaddr_entry *saddr;
701 int i;
702 int retval = 0;
703
704 if (!sctp_addip_enable)
705 return retval;
706
707 sp = sctp_sk(sk);
708 ep = sp->ep;
709
710 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
711 __func__, sk, addrs, addrcnt);
712
713 list_for_each_entry(asoc, &ep->asocs, asocs) {
714
715 if (!asoc->peer.asconf_capable)
716 continue;
717
718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
719 continue;
720
721 if (!sctp_state(asoc, ESTABLISHED))
722 continue;
723
724 /* Check if any address in the packed array of addresses is
725 * not present in the bind address list of the association.
726 * If so, do not send the asconf chunk to its peer, but
727 * continue with other associations.
728 */
729 addr_buf = addrs;
730 for (i = 0; i < addrcnt; i++) {
731 laddr = (union sctp_addr *)addr_buf;
732 af = sctp_get_af_specific(laddr->v4.sin_family);
733 if (!af) {
734 retval = -EINVAL;
735 goto out;
736 }
737
738 if (!sctp_assoc_lookup_laddr(asoc, laddr))
739 break;
740
741 addr_buf += af->sockaddr_len;
742 }
743 if (i < addrcnt)
744 continue;
745
746 /* Find one address in the association's bind address list
747 * that is not in the packed array of addresses. This is to
748 * make sure that we do not delete all the addresses in the
749 * association.
750 */
751 bp = &asoc->base.bind_addr;
752 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
753 addrcnt, sp);
754 if (!laddr)
755 continue;
756
757 /* We do not need RCU protection throughout this loop
758 * because this is done under a socket lock from the
759 * setsockopt call.
760 */
761 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
762 SCTP_PARAM_DEL_IP);
763 if (!chunk) {
764 retval = -ENOMEM;
765 goto out;
766 }
767
768 /* Reset use_as_src flag for the addresses in the bind address
769 * list that are to be deleted.
770 */
771 addr_buf = addrs;
772 for (i = 0; i < addrcnt; i++) {
773 laddr = (union sctp_addr *)addr_buf;
774 af = sctp_get_af_specific(laddr->v4.sin_family);
775 list_for_each_entry(saddr, &bp->address_list, list) {
776 if (sctp_cmp_addr_exact(&saddr->a, laddr))
777 saddr->state = SCTP_ADDR_DEL;
778 }
779 addr_buf += af->sockaddr_len;
780 }
781
782 /* Update the route and saddr entries for all the transports
783 * as some of the addresses in the bind address list are
784 * about to be deleted and cannot be used as source addresses.
785 */
786 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
787 transports) {
788 dst_release(transport->dst);
789 sctp_transport_route(transport, NULL,
790 sctp_sk(asoc->base.sk));
791 }
792
793 retval = sctp_send_asconf(asoc, chunk);
794 }
795 out:
796 return retval;
797 }
798
799 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
800 *
801 * API 8.1
802 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
803 * int flags);
804 *
805 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
806 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
807 * or IPv6 addresses.
808 *
809 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
810 * Section 3.1.2 for this usage.
811 *
812 * addrs is a pointer to an array of one or more socket addresses. Each
813 * address is contained in its appropriate structure (i.e. struct
814 * sockaddr_in or struct sockaddr_in6) the family of the address type
815 * must be used to distinguish the address length (note that this
816 * representation is termed a "packed array" of addresses). The caller
817 * specifies the number of addresses in the array with addrcnt.
818 *
819 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
820 * -1, and sets errno to the appropriate error code.
821 *
822 * For SCTP, the port given in each socket address must be the same, or
823 * sctp_bindx() will fail, setting errno to EINVAL.
824 *
825 * The flags parameter is formed from the bitwise OR of zero or more of
826 * the following currently defined flags:
827 *
828 * SCTP_BINDX_ADD_ADDR
829 *
830 * SCTP_BINDX_REM_ADDR
831 *
832 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
833 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
834 * addresses from the association. The two flags are mutually exclusive;
835 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
836 * not remove all addresses from an association; sctp_bindx() will
837 * reject such an attempt with EINVAL.
838 *
839 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
840 * additional addresses with an endpoint after calling bind(). Or use
841 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
842 * socket is associated with so that no new association accepted will be
843 * associated with those addresses. If the endpoint supports dynamic
844 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
845 * endpoint to send the appropriate message to the peer to change the
846 * peers address lists.
847 *
848 * Adding and removing addresses from a connected association is
849 * optional functionality. Implementations that do not support this
850 * functionality should return EOPNOTSUPP.
851 *
852 * Basically do nothing but copying the addresses from user to kernel
853 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
854 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
855 * from userspace.
856 *
857 * We don't use copy_from_user() for optimization: we first do the
858 * sanity checks (buffer size -fast- and access check-healthy
859 * pointer); if all of those succeed, then we can alloc the memory
860 * (expensive operation) needed to copy the data to kernel. Then we do
861 * the copying without checking the user space area
862 * (__copy_from_user()).
863 *
864 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
865 * it.
866 *
867 * sk The sk of the socket
868 * addrs The pointer to the addresses in user land
869 * addrssize Size of the addrs buffer
870 * op Operation to perform (add or remove, see the flags of
871 * sctp_bindx)
872 *
873 * Returns 0 if ok, <0 errno code on error.
874 */
875 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
876 struct sockaddr __user *addrs,
877 int addrs_size, int op)
878 {
879 struct sockaddr *kaddrs;
880 int err;
881 int addrcnt = 0;
882 int walk_size = 0;
883 struct sockaddr *sa_addr;
884 void *addr_buf;
885 struct sctp_af *af;
886
887 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
888 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
889
890 if (unlikely(addrs_size <= 0))
891 return -EINVAL;
892
893 /* Check the user passed a healthy pointer. */
894 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
895 return -EFAULT;
896
897 /* Alloc space for the address array in kernel memory. */
898 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
899 if (unlikely(!kaddrs))
900 return -ENOMEM;
901
902 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
903 kfree(kaddrs);
904 return -EFAULT;
905 }
906
907 /* Walk through the addrs buffer and count the number of addresses. */
908 addr_buf = kaddrs;
909 while (walk_size < addrs_size) {
910 sa_addr = (struct sockaddr *)addr_buf;
911 af = sctp_get_af_specific(sa_addr->sa_family);
912
913 /* If the address family is not supported or if this address
914 * causes the address buffer to overflow return EINVAL.
915 */
916 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
917 kfree(kaddrs);
918 return -EINVAL;
919 }
920 addrcnt++;
921 addr_buf += af->sockaddr_len;
922 walk_size += af->sockaddr_len;
923 }
924
925 /* Do the work. */
926 switch (op) {
927 case SCTP_BINDX_ADD_ADDR:
928 err = sctp_bindx_add(sk, kaddrs, addrcnt);
929 if (err)
930 goto out;
931 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
932 break;
933
934 case SCTP_BINDX_REM_ADDR:
935 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
936 if (err)
937 goto out;
938 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
939 break;
940
941 default:
942 err = -EINVAL;
943 break;
944 }
945
946 out:
947 kfree(kaddrs);
948
949 return err;
950 }
951
952 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
953 *
954 * Common routine for handling connect() and sctp_connectx().
955 * Connect will come in with just a single address.
956 */
957 static int __sctp_connect(struct sock* sk,
958 struct sockaddr *kaddrs,
959 int addrs_size)
960 {
961 struct sctp_sock *sp;
962 struct sctp_endpoint *ep;
963 struct sctp_association *asoc = NULL;
964 struct sctp_association *asoc2;
965 struct sctp_transport *transport;
966 union sctp_addr to;
967 struct sctp_af *af;
968 sctp_scope_t scope;
969 long timeo;
970 int err = 0;
971 int addrcnt = 0;
972 int walk_size = 0;
973 union sctp_addr *sa_addr = NULL;
974 void *addr_buf;
975 unsigned short port;
976 unsigned int f_flags = 0;
977
978 sp = sctp_sk(sk);
979 ep = sp->ep;
980
981 /* connect() cannot be done on a socket that is already in ESTABLISHED
982 * state - UDP-style peeled off socket or a TCP-style socket that
983 * is already connected.
984 * It cannot be done even on a TCP-style listening socket.
985 */
986 if (sctp_sstate(sk, ESTABLISHED) ||
987 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
988 err = -EISCONN;
989 goto out_free;
990 }
991
992 /* Walk through the addrs buffer and count the number of addresses. */
993 addr_buf = kaddrs;
994 while (walk_size < addrs_size) {
995 sa_addr = (union sctp_addr *)addr_buf;
996 af = sctp_get_af_specific(sa_addr->sa.sa_family);
997 port = ntohs(sa_addr->v4.sin_port);
998
999 /* If the address family is not supported or if this address
1000 * causes the address buffer to overflow return EINVAL.
1001 */
1002 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 err = -EINVAL;
1004 goto out_free;
1005 }
1006
1007 /* Save current address so we can work with it */
1008 memcpy(&to, sa_addr, af->sockaddr_len);
1009
1010 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1011 if (err)
1012 goto out_free;
1013
1014 /* Make sure the destination port is correctly set
1015 * in all addresses.
1016 */
1017 if (asoc && asoc->peer.port && asoc->peer.port != port)
1018 goto out_free;
1019
1020
1021 /* Check if there already is a matching association on the
1022 * endpoint (other than the one created here).
1023 */
1024 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1025 if (asoc2 && asoc2 != asoc) {
1026 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1027 err = -EISCONN;
1028 else
1029 err = -EALREADY;
1030 goto out_free;
1031 }
1032
1033 /* If we could not find a matching association on the endpoint,
1034 * make sure that there is no peeled-off association matching
1035 * the peer address even on another socket.
1036 */
1037 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1038 err = -EADDRNOTAVAIL;
1039 goto out_free;
1040 }
1041
1042 if (!asoc) {
1043 /* If a bind() or sctp_bindx() is not called prior to
1044 * an sctp_connectx() call, the system picks an
1045 * ephemeral port and will choose an address set
1046 * equivalent to binding with a wildcard address.
1047 */
1048 if (!ep->base.bind_addr.port) {
1049 if (sctp_autobind(sk)) {
1050 err = -EAGAIN;
1051 goto out_free;
1052 }
1053 } else {
1054 /*
1055 * If an unprivileged user inherits a 1-many
1056 * style socket with open associations on a
1057 * privileged port, it MAY be permitted to
1058 * accept new associations, but it SHOULD NOT
1059 * be permitted to open new associations.
1060 */
1061 if (ep->base.bind_addr.port < PROT_SOCK &&
1062 !capable(CAP_NET_BIND_SERVICE)) {
1063 err = -EACCES;
1064 goto out_free;
1065 }
1066 }
1067
1068 scope = sctp_scope(&to);
1069 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1070 if (!asoc) {
1071 err = -ENOMEM;
1072 goto out_free;
1073 }
1074 }
1075
1076 /* Prime the peer's transport structures. */
1077 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1078 SCTP_UNKNOWN);
1079 if (!transport) {
1080 err = -ENOMEM;
1081 goto out_free;
1082 }
1083
1084 addrcnt++;
1085 addr_buf += af->sockaddr_len;
1086 walk_size += af->sockaddr_len;
1087 }
1088
1089 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1090 if (err < 0) {
1091 goto out_free;
1092 }
1093
1094 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1095 if (err < 0) {
1096 goto out_free;
1097 }
1098
1099 /* Initialize sk's dport and daddr for getpeername() */
1100 inet_sk(sk)->dport = htons(asoc->peer.port);
1101 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1102 af->to_sk_daddr(sa_addr, sk);
1103 sk->sk_err = 0;
1104
1105 /* in-kernel sockets don't generally have a file allocated to them
1106 * if all they do is call sock_create_kern().
1107 */
1108 if (sk->sk_socket->file)
1109 f_flags = sk->sk_socket->file->f_flags;
1110
1111 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1112
1113 err = sctp_wait_for_connect(asoc, &timeo);
1114
1115 /* Don't free association on exit. */
1116 asoc = NULL;
1117
1118 out_free:
1119
1120 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1121 " kaddrs: %p err: %d\n",
1122 asoc, kaddrs, err);
1123 if (asoc)
1124 sctp_association_free(asoc);
1125 return err;
1126 }
1127
1128 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1129 *
1130 * API 8.9
1131 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1132 *
1133 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1134 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1135 * or IPv6 addresses.
1136 *
1137 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1138 * Section 3.1.2 for this usage.
1139 *
1140 * addrs is a pointer to an array of one or more socket addresses. Each
1141 * address is contained in its appropriate structure (i.e. struct
1142 * sockaddr_in or struct sockaddr_in6) the family of the address type
1143 * must be used to distengish the address length (note that this
1144 * representation is termed a "packed array" of addresses). The caller
1145 * specifies the number of addresses in the array with addrcnt.
1146 *
1147 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1148 * -1, and sets errno to the appropriate error code.
1149 *
1150 * For SCTP, the port given in each socket address must be the same, or
1151 * sctp_connectx() will fail, setting errno to EINVAL.
1152 *
1153 * An application can use sctp_connectx to initiate an association with
1154 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1155 * allows a caller to specify multiple addresses at which a peer can be
1156 * reached. The way the SCTP stack uses the list of addresses to set up
1157 * the association is implementation dependant. This function only
1158 * specifies that the stack will try to make use of all the addresses in
1159 * the list when needed.
1160 *
1161 * Note that the list of addresses passed in is only used for setting up
1162 * the association. It does not necessarily equal the set of addresses
1163 * the peer uses for the resulting association. If the caller wants to
1164 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1165 * retrieve them after the association has been set up.
1166 *
1167 * Basically do nothing but copying the addresses from user to kernel
1168 * land and invoking either sctp_connectx(). This is used for tunneling
1169 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1170 *
1171 * We don't use copy_from_user() for optimization: we first do the
1172 * sanity checks (buffer size -fast- and access check-healthy
1173 * pointer); if all of those succeed, then we can alloc the memory
1174 * (expensive operation) needed to copy the data to kernel. Then we do
1175 * the copying without checking the user space area
1176 * (__copy_from_user()).
1177 *
1178 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1179 * it.
1180 *
1181 * sk The sk of the socket
1182 * addrs The pointer to the addresses in user land
1183 * addrssize Size of the addrs buffer
1184 *
1185 * Returns 0 if ok, <0 errno code on error.
1186 */
1187 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1188 struct sockaddr __user *addrs,
1189 int addrs_size)
1190 {
1191 int err = 0;
1192 struct sockaddr *kaddrs;
1193
1194 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1195 __func__, sk, addrs, addrs_size);
1196
1197 if (unlikely(addrs_size <= 0))
1198 return -EINVAL;
1199
1200 /* Check the user passed a healthy pointer. */
1201 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1202 return -EFAULT;
1203
1204 /* Alloc space for the address array in kernel memory. */
1205 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1206 if (unlikely(!kaddrs))
1207 return -ENOMEM;
1208
1209 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1210 err = -EFAULT;
1211 } else {
1212 err = __sctp_connect(sk, kaddrs, addrs_size);
1213 }
1214
1215 kfree(kaddrs);
1216 return err;
1217 }
1218
1219 /* API 3.1.4 close() - UDP Style Syntax
1220 * Applications use close() to perform graceful shutdown (as described in
1221 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1222 * by a UDP-style socket.
1223 *
1224 * The syntax is
1225 *
1226 * ret = close(int sd);
1227 *
1228 * sd - the socket descriptor of the associations to be closed.
1229 *
1230 * To gracefully shutdown a specific association represented by the
1231 * UDP-style socket, an application should use the sendmsg() call,
1232 * passing no user data, but including the appropriate flag in the
1233 * ancillary data (see Section xxxx).
1234 *
1235 * If sd in the close() call is a branched-off socket representing only
1236 * one association, the shutdown is performed on that association only.
1237 *
1238 * 4.1.6 close() - TCP Style Syntax
1239 *
1240 * Applications use close() to gracefully close down an association.
1241 *
1242 * The syntax is:
1243 *
1244 * int close(int sd);
1245 *
1246 * sd - the socket descriptor of the association to be closed.
1247 *
1248 * After an application calls close() on a socket descriptor, no further
1249 * socket operations will succeed on that descriptor.
1250 *
1251 * API 7.1.4 SO_LINGER
1252 *
1253 * An application using the TCP-style socket can use this option to
1254 * perform the SCTP ABORT primitive. The linger option structure is:
1255 *
1256 * struct linger {
1257 * int l_onoff; // option on/off
1258 * int l_linger; // linger time
1259 * };
1260 *
1261 * To enable the option, set l_onoff to 1. If the l_linger value is set
1262 * to 0, calling close() is the same as the ABORT primitive. If the
1263 * value is set to a negative value, the setsockopt() call will return
1264 * an error. If the value is set to a positive value linger_time, the
1265 * close() can be blocked for at most linger_time ms. If the graceful
1266 * shutdown phase does not finish during this period, close() will
1267 * return but the graceful shutdown phase continues in the system.
1268 */
1269 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1270 {
1271 struct sctp_endpoint *ep;
1272 struct sctp_association *asoc;
1273 struct list_head *pos, *temp;
1274
1275 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1276
1277 sctp_lock_sock(sk);
1278 sk->sk_shutdown = SHUTDOWN_MASK;
1279
1280 ep = sctp_sk(sk)->ep;
1281
1282 /* Walk all associations on an endpoint. */
1283 list_for_each_safe(pos, temp, &ep->asocs) {
1284 asoc = list_entry(pos, struct sctp_association, asocs);
1285
1286 if (sctp_style(sk, TCP)) {
1287 /* A closed association can still be in the list if
1288 * it belongs to a TCP-style listening socket that is
1289 * not yet accepted. If so, free it. If not, send an
1290 * ABORT or SHUTDOWN based on the linger options.
1291 */
1292 if (sctp_state(asoc, CLOSED)) {
1293 sctp_unhash_established(asoc);
1294 sctp_association_free(asoc);
1295 continue;
1296 }
1297 }
1298
1299 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1300 struct sctp_chunk *chunk;
1301
1302 chunk = sctp_make_abort_user(asoc, NULL, 0);
1303 if (chunk)
1304 sctp_primitive_ABORT(asoc, chunk);
1305 } else
1306 sctp_primitive_SHUTDOWN(asoc, NULL);
1307 }
1308
1309 /* Clean up any skbs sitting on the receive queue. */
1310 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1311 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1312
1313 /* On a TCP-style socket, block for at most linger_time if set. */
1314 if (sctp_style(sk, TCP) && timeout)
1315 sctp_wait_for_close(sk, timeout);
1316
1317 /* This will run the backlog queue. */
1318 sctp_release_sock(sk);
1319
1320 /* Supposedly, no process has access to the socket, but
1321 * the net layers still may.
1322 */
1323 sctp_local_bh_disable();
1324 sctp_bh_lock_sock(sk);
1325
1326 /* Hold the sock, since sk_common_release() will put sock_put()
1327 * and we have just a little more cleanup.
1328 */
1329 sock_hold(sk);
1330 sk_common_release(sk);
1331
1332 sctp_bh_unlock_sock(sk);
1333 sctp_local_bh_enable();
1334
1335 sock_put(sk);
1336
1337 SCTP_DBG_OBJCNT_DEC(sock);
1338 }
1339
1340 /* Handle EPIPE error. */
1341 static int sctp_error(struct sock *sk, int flags, int err)
1342 {
1343 if (err == -EPIPE)
1344 err = sock_error(sk) ? : -EPIPE;
1345 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1346 send_sig(SIGPIPE, current, 0);
1347 return err;
1348 }
1349
1350 /* API 3.1.3 sendmsg() - UDP Style Syntax
1351 *
1352 * An application uses sendmsg() and recvmsg() calls to transmit data to
1353 * and receive data from its peer.
1354 *
1355 * ssize_t sendmsg(int socket, const struct msghdr *message,
1356 * int flags);
1357 *
1358 * socket - the socket descriptor of the endpoint.
1359 * message - pointer to the msghdr structure which contains a single
1360 * user message and possibly some ancillary data.
1361 *
1362 * See Section 5 for complete description of the data
1363 * structures.
1364 *
1365 * flags - flags sent or received with the user message, see Section
1366 * 5 for complete description of the flags.
1367 *
1368 * Note: This function could use a rewrite especially when explicit
1369 * connect support comes in.
1370 */
1371 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1372
1373 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1374
1375 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1376 struct msghdr *msg, size_t msg_len)
1377 {
1378 struct sctp_sock *sp;
1379 struct sctp_endpoint *ep;
1380 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1381 struct sctp_transport *transport, *chunk_tp;
1382 struct sctp_chunk *chunk;
1383 union sctp_addr to;
1384 struct sockaddr *msg_name = NULL;
1385 struct sctp_sndrcvinfo default_sinfo = { 0 };
1386 struct sctp_sndrcvinfo *sinfo;
1387 struct sctp_initmsg *sinit;
1388 sctp_assoc_t associd = 0;
1389 sctp_cmsgs_t cmsgs = { NULL };
1390 int err;
1391 sctp_scope_t scope;
1392 long timeo;
1393 __u16 sinfo_flags = 0;
1394 struct sctp_datamsg *datamsg;
1395 int msg_flags = msg->msg_flags;
1396
1397 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1398 sk, msg, msg_len);
1399
1400 err = 0;
1401 sp = sctp_sk(sk);
1402 ep = sp->ep;
1403
1404 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1405
1406 /* We cannot send a message over a TCP-style listening socket. */
1407 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1408 err = -EPIPE;
1409 goto out_nounlock;
1410 }
1411
1412 /* Parse out the SCTP CMSGs. */
1413 err = sctp_msghdr_parse(msg, &cmsgs);
1414
1415 if (err) {
1416 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1417 goto out_nounlock;
1418 }
1419
1420 /* Fetch the destination address for this packet. This
1421 * address only selects the association--it is not necessarily
1422 * the address we will send to.
1423 * For a peeled-off socket, msg_name is ignored.
1424 */
1425 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1426 int msg_namelen = msg->msg_namelen;
1427
1428 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1429 msg_namelen);
1430 if (err)
1431 return err;
1432
1433 if (msg_namelen > sizeof(to))
1434 msg_namelen = sizeof(to);
1435 memcpy(&to, msg->msg_name, msg_namelen);
1436 msg_name = msg->msg_name;
1437 }
1438
1439 sinfo = cmsgs.info;
1440 sinit = cmsgs.init;
1441
1442 /* Did the user specify SNDRCVINFO? */
1443 if (sinfo) {
1444 sinfo_flags = sinfo->sinfo_flags;
1445 associd = sinfo->sinfo_assoc_id;
1446 }
1447
1448 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1449 msg_len, sinfo_flags);
1450
1451 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1452 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1453 err = -EINVAL;
1454 goto out_nounlock;
1455 }
1456
1457 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1458 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1459 * If SCTP_ABORT is set, the message length could be non zero with
1460 * the msg_iov set to the user abort reason.
1461 */
1462 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1463 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1464 err = -EINVAL;
1465 goto out_nounlock;
1466 }
1467
1468 /* If SCTP_ADDR_OVER is set, there must be an address
1469 * specified in msg_name.
1470 */
1471 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1472 err = -EINVAL;
1473 goto out_nounlock;
1474 }
1475
1476 transport = NULL;
1477
1478 SCTP_DEBUG_PRINTK("About to look up association.\n");
1479
1480 sctp_lock_sock(sk);
1481
1482 /* If a msg_name has been specified, assume this is to be used. */
1483 if (msg_name) {
1484 /* Look for a matching association on the endpoint. */
1485 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1486 if (!asoc) {
1487 /* If we could not find a matching association on the
1488 * endpoint, make sure that it is not a TCP-style
1489 * socket that already has an association or there is
1490 * no peeled-off association on another socket.
1491 */
1492 if ((sctp_style(sk, TCP) &&
1493 sctp_sstate(sk, ESTABLISHED)) ||
1494 sctp_endpoint_is_peeled_off(ep, &to)) {
1495 err = -EADDRNOTAVAIL;
1496 goto out_unlock;
1497 }
1498 }
1499 } else {
1500 asoc = sctp_id2assoc(sk, associd);
1501 if (!asoc) {
1502 err = -EPIPE;
1503 goto out_unlock;
1504 }
1505 }
1506
1507 if (asoc) {
1508 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1509
1510 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1511 * socket that has an association in CLOSED state. This can
1512 * happen when an accepted socket has an association that is
1513 * already CLOSED.
1514 */
1515 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1516 err = -EPIPE;
1517 goto out_unlock;
1518 }
1519
1520 if (sinfo_flags & SCTP_EOF) {
1521 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1522 asoc);
1523 sctp_primitive_SHUTDOWN(asoc, NULL);
1524 err = 0;
1525 goto out_unlock;
1526 }
1527 if (sinfo_flags & SCTP_ABORT) {
1528
1529 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1530 if (!chunk) {
1531 err = -ENOMEM;
1532 goto out_unlock;
1533 }
1534
1535 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1536 sctp_primitive_ABORT(asoc, chunk);
1537 err = 0;
1538 goto out_unlock;
1539 }
1540 }
1541
1542 /* Do we need to create the association? */
1543 if (!asoc) {
1544 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1545
1546 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1547 err = -EINVAL;
1548 goto out_unlock;
1549 }
1550
1551 /* Check for invalid stream against the stream counts,
1552 * either the default or the user specified stream counts.
1553 */
1554 if (sinfo) {
1555 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1556 /* Check against the defaults. */
1557 if (sinfo->sinfo_stream >=
1558 sp->initmsg.sinit_num_ostreams) {
1559 err = -EINVAL;
1560 goto out_unlock;
1561 }
1562 } else {
1563 /* Check against the requested. */
1564 if (sinfo->sinfo_stream >=
1565 sinit->sinit_num_ostreams) {
1566 err = -EINVAL;
1567 goto out_unlock;
1568 }
1569 }
1570 }
1571
1572 /*
1573 * API 3.1.2 bind() - UDP Style Syntax
1574 * If a bind() or sctp_bindx() is not called prior to a
1575 * sendmsg() call that initiates a new association, the
1576 * system picks an ephemeral port and will choose an address
1577 * set equivalent to binding with a wildcard address.
1578 */
1579 if (!ep->base.bind_addr.port) {
1580 if (sctp_autobind(sk)) {
1581 err = -EAGAIN;
1582 goto out_unlock;
1583 }
1584 } else {
1585 /*
1586 * If an unprivileged user inherits a one-to-many
1587 * style socket with open associations on a privileged
1588 * port, it MAY be permitted to accept new associations,
1589 * but it SHOULD NOT be permitted to open new
1590 * associations.
1591 */
1592 if (ep->base.bind_addr.port < PROT_SOCK &&
1593 !capable(CAP_NET_BIND_SERVICE)) {
1594 err = -EACCES;
1595 goto out_unlock;
1596 }
1597 }
1598
1599 scope = sctp_scope(&to);
1600 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1601 if (!new_asoc) {
1602 err = -ENOMEM;
1603 goto out_unlock;
1604 }
1605 asoc = new_asoc;
1606
1607 /* If the SCTP_INIT ancillary data is specified, set all
1608 * the association init values accordingly.
1609 */
1610 if (sinit) {
1611 if (sinit->sinit_num_ostreams) {
1612 asoc->c.sinit_num_ostreams =
1613 sinit->sinit_num_ostreams;
1614 }
1615 if (sinit->sinit_max_instreams) {
1616 asoc->c.sinit_max_instreams =
1617 sinit->sinit_max_instreams;
1618 }
1619 if (sinit->sinit_max_attempts) {
1620 asoc->max_init_attempts
1621 = sinit->sinit_max_attempts;
1622 }
1623 if (sinit->sinit_max_init_timeo) {
1624 asoc->max_init_timeo =
1625 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1626 }
1627 }
1628
1629 /* Prime the peer's transport structures. */
1630 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1631 if (!transport) {
1632 err = -ENOMEM;
1633 goto out_free;
1634 }
1635 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1636 if (err < 0) {
1637 err = -ENOMEM;
1638 goto out_free;
1639 }
1640 }
1641
1642 /* ASSERT: we have a valid association at this point. */
1643 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1644
1645 if (!sinfo) {
1646 /* If the user didn't specify SNDRCVINFO, make up one with
1647 * some defaults.
1648 */
1649 default_sinfo.sinfo_stream = asoc->default_stream;
1650 default_sinfo.sinfo_flags = asoc->default_flags;
1651 default_sinfo.sinfo_ppid = asoc->default_ppid;
1652 default_sinfo.sinfo_context = asoc->default_context;
1653 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1654 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1655 sinfo = &default_sinfo;
1656 }
1657
1658 /* API 7.1.7, the sndbuf size per association bounds the
1659 * maximum size of data that can be sent in a single send call.
1660 */
1661 if (msg_len > sk->sk_sndbuf) {
1662 err = -EMSGSIZE;
1663 goto out_free;
1664 }
1665
1666 if (asoc->pmtu_pending)
1667 sctp_assoc_pending_pmtu(asoc);
1668
1669 /* If fragmentation is disabled and the message length exceeds the
1670 * association fragmentation point, return EMSGSIZE. The I-D
1671 * does not specify what this error is, but this looks like
1672 * a great fit.
1673 */
1674 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1675 err = -EMSGSIZE;
1676 goto out_free;
1677 }
1678
1679 if (sinfo) {
1680 /* Check for invalid stream. */
1681 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1682 err = -EINVAL;
1683 goto out_free;
1684 }
1685 }
1686
1687 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1688 if (!sctp_wspace(asoc)) {
1689 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1690 if (err)
1691 goto out_free;
1692 }
1693
1694 /* If an address is passed with the sendto/sendmsg call, it is used
1695 * to override the primary destination address in the TCP model, or
1696 * when SCTP_ADDR_OVER flag is set in the UDP model.
1697 */
1698 if ((sctp_style(sk, TCP) && msg_name) ||
1699 (sinfo_flags & SCTP_ADDR_OVER)) {
1700 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1701 if (!chunk_tp) {
1702 err = -EINVAL;
1703 goto out_free;
1704 }
1705 } else
1706 chunk_tp = NULL;
1707
1708 /* Auto-connect, if we aren't connected already. */
1709 if (sctp_state(asoc, CLOSED)) {
1710 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1711 if (err < 0)
1712 goto out_free;
1713 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1714 }
1715
1716 /* Break the message into multiple chunks of maximum size. */
1717 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1718 if (!datamsg) {
1719 err = -ENOMEM;
1720 goto out_free;
1721 }
1722
1723 /* Now send the (possibly) fragmented message. */
1724 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1725 sctp_chunk_hold(chunk);
1726
1727 /* Do accounting for the write space. */
1728 sctp_set_owner_w(chunk);
1729
1730 chunk->transport = chunk_tp;
1731
1732 /* Send it to the lower layers. Note: all chunks
1733 * must either fail or succeed. The lower layer
1734 * works that way today. Keep it that way or this
1735 * breaks.
1736 */
1737 err = sctp_primitive_SEND(asoc, chunk);
1738 /* Did the lower layer accept the chunk? */
1739 if (err)
1740 sctp_chunk_free(chunk);
1741 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1742 }
1743
1744 sctp_datamsg_put(datamsg);
1745 if (err)
1746 goto out_free;
1747 else
1748 err = msg_len;
1749
1750 /* If we are already past ASSOCIATE, the lower
1751 * layers are responsible for association cleanup.
1752 */
1753 goto out_unlock;
1754
1755 out_free:
1756 if (new_asoc)
1757 sctp_association_free(asoc);
1758 out_unlock:
1759 sctp_release_sock(sk);
1760
1761 out_nounlock:
1762 return sctp_error(sk, msg_flags, err);
1763
1764 #if 0
1765 do_sock_err:
1766 if (msg_len)
1767 err = msg_len;
1768 else
1769 err = sock_error(sk);
1770 goto out;
1771
1772 do_interrupted:
1773 if (msg_len)
1774 err = msg_len;
1775 goto out;
1776 #endif /* 0 */
1777 }
1778
1779 /* This is an extended version of skb_pull() that removes the data from the
1780 * start of a skb even when data is spread across the list of skb's in the
1781 * frag_list. len specifies the total amount of data that needs to be removed.
1782 * when 'len' bytes could be removed from the skb, it returns 0.
1783 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1784 * could not be removed.
1785 */
1786 static int sctp_skb_pull(struct sk_buff *skb, int len)
1787 {
1788 struct sk_buff *list;
1789 int skb_len = skb_headlen(skb);
1790 int rlen;
1791
1792 if (len <= skb_len) {
1793 __skb_pull(skb, len);
1794 return 0;
1795 }
1796 len -= skb_len;
1797 __skb_pull(skb, skb_len);
1798
1799 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1800 rlen = sctp_skb_pull(list, len);
1801 skb->len -= (len-rlen);
1802 skb->data_len -= (len-rlen);
1803
1804 if (!rlen)
1805 return 0;
1806
1807 len = rlen;
1808 }
1809
1810 return len;
1811 }
1812
1813 /* API 3.1.3 recvmsg() - UDP Style Syntax
1814 *
1815 * ssize_t recvmsg(int socket, struct msghdr *message,
1816 * int flags);
1817 *
1818 * socket - the socket descriptor of the endpoint.
1819 * message - pointer to the msghdr structure which contains a single
1820 * user message and possibly some ancillary data.
1821 *
1822 * See Section 5 for complete description of the data
1823 * structures.
1824 *
1825 * flags - flags sent or received with the user message, see Section
1826 * 5 for complete description of the flags.
1827 */
1828 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1829
1830 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1831 struct msghdr *msg, size_t len, int noblock,
1832 int flags, int *addr_len)
1833 {
1834 struct sctp_ulpevent *event = NULL;
1835 struct sctp_sock *sp = sctp_sk(sk);
1836 struct sk_buff *skb;
1837 int copied;
1838 int err = 0;
1839 int skb_len;
1840
1841 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1842 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1843 "len", len, "knoblauch", noblock,
1844 "flags", flags, "addr_len", addr_len);
1845
1846 sctp_lock_sock(sk);
1847
1848 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1849 err = -ENOTCONN;
1850 goto out;
1851 }
1852
1853 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1854 if (!skb)
1855 goto out;
1856
1857 /* Get the total length of the skb including any skb's in the
1858 * frag_list.
1859 */
1860 skb_len = skb->len;
1861
1862 copied = skb_len;
1863 if (copied > len)
1864 copied = len;
1865
1866 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1867
1868 event = sctp_skb2event(skb);
1869
1870 if (err)
1871 goto out_free;
1872
1873 sock_recv_timestamp(msg, sk, skb);
1874 if (sctp_ulpevent_is_notification(event)) {
1875 msg->msg_flags |= MSG_NOTIFICATION;
1876 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1877 } else {
1878 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1879 }
1880
1881 /* Check if we allow SCTP_SNDRCVINFO. */
1882 if (sp->subscribe.sctp_data_io_event)
1883 sctp_ulpevent_read_sndrcvinfo(event, msg);
1884 #if 0
1885 /* FIXME: we should be calling IP/IPv6 layers. */
1886 if (sk->sk_protinfo.af_inet.cmsg_flags)
1887 ip_cmsg_recv(msg, skb);
1888 #endif
1889
1890 err = copied;
1891
1892 /* If skb's length exceeds the user's buffer, update the skb and
1893 * push it back to the receive_queue so that the next call to
1894 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1895 */
1896 if (skb_len > copied) {
1897 msg->msg_flags &= ~MSG_EOR;
1898 if (flags & MSG_PEEK)
1899 goto out_free;
1900 sctp_skb_pull(skb, copied);
1901 skb_queue_head(&sk->sk_receive_queue, skb);
1902
1903 /* When only partial message is copied to the user, increase
1904 * rwnd by that amount. If all the data in the skb is read,
1905 * rwnd is updated when the event is freed.
1906 */
1907 if (!sctp_ulpevent_is_notification(event))
1908 sctp_assoc_rwnd_increase(event->asoc, copied);
1909 goto out;
1910 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1911 (event->msg_flags & MSG_EOR))
1912 msg->msg_flags |= MSG_EOR;
1913 else
1914 msg->msg_flags &= ~MSG_EOR;
1915
1916 out_free:
1917 if (flags & MSG_PEEK) {
1918 /* Release the skb reference acquired after peeking the skb in
1919 * sctp_skb_recv_datagram().
1920 */
1921 kfree_skb(skb);
1922 } else {
1923 /* Free the event which includes releasing the reference to
1924 * the owner of the skb, freeing the skb and updating the
1925 * rwnd.
1926 */
1927 sctp_ulpevent_free(event);
1928 }
1929 out:
1930 sctp_release_sock(sk);
1931 return err;
1932 }
1933
1934 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1935 *
1936 * This option is a on/off flag. If enabled no SCTP message
1937 * fragmentation will be performed. Instead if a message being sent
1938 * exceeds the current PMTU size, the message will NOT be sent and
1939 * instead a error will be indicated to the user.
1940 */
1941 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1942 char __user *optval, int optlen)
1943 {
1944 int val;
1945
1946 if (optlen < sizeof(int))
1947 return -EINVAL;
1948
1949 if (get_user(val, (int __user *)optval))
1950 return -EFAULT;
1951
1952 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1953
1954 return 0;
1955 }
1956
1957 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1958 int optlen)
1959 {
1960 if (optlen > sizeof(struct sctp_event_subscribe))
1961 return -EINVAL;
1962 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1963 return -EFAULT;
1964 return 0;
1965 }
1966
1967 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1968 *
1969 * This socket option is applicable to the UDP-style socket only. When
1970 * set it will cause associations that are idle for more than the
1971 * specified number of seconds to automatically close. An association
1972 * being idle is defined an association that has NOT sent or received
1973 * user data. The special value of '0' indicates that no automatic
1974 * close of any associations should be performed. The option expects an
1975 * integer defining the number of seconds of idle time before an
1976 * association is closed.
1977 */
1978 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1979 int optlen)
1980 {
1981 struct sctp_sock *sp = sctp_sk(sk);
1982
1983 /* Applicable to UDP-style socket only */
1984 if (sctp_style(sk, TCP))
1985 return -EOPNOTSUPP;
1986 if (optlen != sizeof(int))
1987 return -EINVAL;
1988 if (copy_from_user(&sp->autoclose, optval, optlen))
1989 return -EFAULT;
1990
1991 return 0;
1992 }
1993
1994 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1995 *
1996 * Applications can enable or disable heartbeats for any peer address of
1997 * an association, modify an address's heartbeat interval, force a
1998 * heartbeat to be sent immediately, and adjust the address's maximum
1999 * number of retransmissions sent before an address is considered
2000 * unreachable. The following structure is used to access and modify an
2001 * address's parameters:
2002 *
2003 * struct sctp_paddrparams {
2004 * sctp_assoc_t spp_assoc_id;
2005 * struct sockaddr_storage spp_address;
2006 * uint32_t spp_hbinterval;
2007 * uint16_t spp_pathmaxrxt;
2008 * uint32_t spp_pathmtu;
2009 * uint32_t spp_sackdelay;
2010 * uint32_t spp_flags;
2011 * };
2012 *
2013 * spp_assoc_id - (one-to-many style socket) This is filled in the
2014 * application, and identifies the association for
2015 * this query.
2016 * spp_address - This specifies which address is of interest.
2017 * spp_hbinterval - This contains the value of the heartbeat interval,
2018 * in milliseconds. If a value of zero
2019 * is present in this field then no changes are to
2020 * be made to this parameter.
2021 * spp_pathmaxrxt - This contains the maximum number of
2022 * retransmissions before this address shall be
2023 * considered unreachable. If a value of zero
2024 * is present in this field then no changes are to
2025 * be made to this parameter.
2026 * spp_pathmtu - When Path MTU discovery is disabled the value
2027 * specified here will be the "fixed" path mtu.
2028 * Note that if the spp_address field is empty
2029 * then all associations on this address will
2030 * have this fixed path mtu set upon them.
2031 *
2032 * spp_sackdelay - When delayed sack is enabled, this value specifies
2033 * the number of milliseconds that sacks will be delayed
2034 * for. This value will apply to all addresses of an
2035 * association if the spp_address field is empty. Note
2036 * also, that if delayed sack is enabled and this
2037 * value is set to 0, no change is made to the last
2038 * recorded delayed sack timer value.
2039 *
2040 * spp_flags - These flags are used to control various features
2041 * on an association. The flag field may contain
2042 * zero or more of the following options.
2043 *
2044 * SPP_HB_ENABLE - Enable heartbeats on the
2045 * specified address. Note that if the address
2046 * field is empty all addresses for the association
2047 * have heartbeats enabled upon them.
2048 *
2049 * SPP_HB_DISABLE - Disable heartbeats on the
2050 * speicifed address. Note that if the address
2051 * field is empty all addresses for the association
2052 * will have their heartbeats disabled. Note also
2053 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2054 * mutually exclusive, only one of these two should
2055 * be specified. Enabling both fields will have
2056 * undetermined results.
2057 *
2058 * SPP_HB_DEMAND - Request a user initiated heartbeat
2059 * to be made immediately.
2060 *
2061 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2062 * heartbeat delayis to be set to the value of 0
2063 * milliseconds.
2064 *
2065 * SPP_PMTUD_ENABLE - This field will enable PMTU
2066 * discovery upon the specified address. Note that
2067 * if the address feild is empty then all addresses
2068 * on the association are effected.
2069 *
2070 * SPP_PMTUD_DISABLE - This field will disable PMTU
2071 * discovery upon the specified address. Note that
2072 * if the address feild is empty then all addresses
2073 * on the association are effected. Not also that
2074 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2075 * exclusive. Enabling both will have undetermined
2076 * results.
2077 *
2078 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2079 * on delayed sack. The time specified in spp_sackdelay
2080 * is used to specify the sack delay for this address. Note
2081 * that if spp_address is empty then all addresses will
2082 * enable delayed sack and take on the sack delay
2083 * value specified in spp_sackdelay.
2084 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2085 * off delayed sack. If the spp_address field is blank then
2086 * delayed sack is disabled for the entire association. Note
2087 * also that this field is mutually exclusive to
2088 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2089 * results.
2090 */
2091 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2092 struct sctp_transport *trans,
2093 struct sctp_association *asoc,
2094 struct sctp_sock *sp,
2095 int hb_change,
2096 int pmtud_change,
2097 int sackdelay_change)
2098 {
2099 int error;
2100
2101 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2102 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2103 if (error)
2104 return error;
2105 }
2106
2107 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2108 * this field is ignored. Note also that a value of zero indicates
2109 * the current setting should be left unchanged.
2110 */
2111 if (params->spp_flags & SPP_HB_ENABLE) {
2112
2113 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2114 * set. This lets us use 0 value when this flag
2115 * is set.
2116 */
2117 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2118 params->spp_hbinterval = 0;
2119
2120 if (params->spp_hbinterval ||
2121 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2122 if (trans) {
2123 trans->hbinterval =
2124 msecs_to_jiffies(params->spp_hbinterval);
2125 } else if (asoc) {
2126 asoc->hbinterval =
2127 msecs_to_jiffies(params->spp_hbinterval);
2128 } else {
2129 sp->hbinterval = params->spp_hbinterval;
2130 }
2131 }
2132 }
2133
2134 if (hb_change) {
2135 if (trans) {
2136 trans->param_flags =
2137 (trans->param_flags & ~SPP_HB) | hb_change;
2138 } else if (asoc) {
2139 asoc->param_flags =
2140 (asoc->param_flags & ~SPP_HB) | hb_change;
2141 } else {
2142 sp->param_flags =
2143 (sp->param_flags & ~SPP_HB) | hb_change;
2144 }
2145 }
2146
2147 /* When Path MTU discovery is disabled the value specified here will
2148 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2149 * include the flag SPP_PMTUD_DISABLE for this field to have any
2150 * effect).
2151 */
2152 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2153 if (trans) {
2154 trans->pathmtu = params->spp_pathmtu;
2155 sctp_assoc_sync_pmtu(asoc);
2156 } else if (asoc) {
2157 asoc->pathmtu = params->spp_pathmtu;
2158 sctp_frag_point(sp, params->spp_pathmtu);
2159 } else {
2160 sp->pathmtu = params->spp_pathmtu;
2161 }
2162 }
2163
2164 if (pmtud_change) {
2165 if (trans) {
2166 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2167 (params->spp_flags & SPP_PMTUD_ENABLE);
2168 trans->param_flags =
2169 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2170 if (update) {
2171 sctp_transport_pmtu(trans);
2172 sctp_assoc_sync_pmtu(asoc);
2173 }
2174 } else if (asoc) {
2175 asoc->param_flags =
2176 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2177 } else {
2178 sp->param_flags =
2179 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2180 }
2181 }
2182
2183 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2184 * value of this field is ignored. Note also that a value of zero
2185 * indicates the current setting should be left unchanged.
2186 */
2187 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2188 if (trans) {
2189 trans->sackdelay =
2190 msecs_to_jiffies(params->spp_sackdelay);
2191 } else if (asoc) {
2192 asoc->sackdelay =
2193 msecs_to_jiffies(params->spp_sackdelay);
2194 } else {
2195 sp->sackdelay = params->spp_sackdelay;
2196 }
2197 }
2198
2199 if (sackdelay_change) {
2200 if (trans) {
2201 trans->param_flags =
2202 (trans->param_flags & ~SPP_SACKDELAY) |
2203 sackdelay_change;
2204 } else if (asoc) {
2205 asoc->param_flags =
2206 (asoc->param_flags & ~SPP_SACKDELAY) |
2207 sackdelay_change;
2208 } else {
2209 sp->param_flags =
2210 (sp->param_flags & ~SPP_SACKDELAY) |
2211 sackdelay_change;
2212 }
2213 }
2214
2215 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2216 * of this field is ignored. Note also that a value of zero
2217 * indicates the current setting should be left unchanged.
2218 */
2219 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2220 if (trans) {
2221 trans->pathmaxrxt = params->spp_pathmaxrxt;
2222 } else if (asoc) {
2223 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2224 } else {
2225 sp->pathmaxrxt = params->spp_pathmaxrxt;
2226 }
2227 }
2228
2229 return 0;
2230 }
2231
2232 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2233 char __user *optval, int optlen)
2234 {
2235 struct sctp_paddrparams params;
2236 struct sctp_transport *trans = NULL;
2237 struct sctp_association *asoc = NULL;
2238 struct sctp_sock *sp = sctp_sk(sk);
2239 int error;
2240 int hb_change, pmtud_change, sackdelay_change;
2241
2242 if (optlen != sizeof(struct sctp_paddrparams))
2243 return - EINVAL;
2244
2245 if (copy_from_user(&params, optval, optlen))
2246 return -EFAULT;
2247
2248 /* Validate flags and value parameters. */
2249 hb_change = params.spp_flags & SPP_HB;
2250 pmtud_change = params.spp_flags & SPP_PMTUD;
2251 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2252
2253 if (hb_change == SPP_HB ||
2254 pmtud_change == SPP_PMTUD ||
2255 sackdelay_change == SPP_SACKDELAY ||
2256 params.spp_sackdelay > 500 ||
2257 (params.spp_pathmtu
2258 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2259 return -EINVAL;
2260
2261 /* If an address other than INADDR_ANY is specified, and
2262 * no transport is found, then the request is invalid.
2263 */
2264 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2265 trans = sctp_addr_id2transport(sk, &params.spp_address,
2266 params.spp_assoc_id);
2267 if (!trans)
2268 return -EINVAL;
2269 }
2270
2271 /* Get association, if assoc_id != 0 and the socket is a one
2272 * to many style socket, and an association was not found, then
2273 * the id was invalid.
2274 */
2275 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2276 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2277 return -EINVAL;
2278
2279 /* Heartbeat demand can only be sent on a transport or
2280 * association, but not a socket.
2281 */
2282 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2283 return -EINVAL;
2284
2285 /* Process parameters. */
2286 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2287 hb_change, pmtud_change,
2288 sackdelay_change);
2289
2290 if (error)
2291 return error;
2292
2293 /* If changes are for association, also apply parameters to each
2294 * transport.
2295 */
2296 if (!trans && asoc) {
2297 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2298 transports) {
2299 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2300 hb_change, pmtud_change,
2301 sackdelay_change);
2302 }
2303 }
2304
2305 return 0;
2306 }
2307
2308 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2309 *
2310 * This options will get or set the delayed ack timer. The time is set
2311 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2312 * endpoints default delayed ack timer value. If the assoc_id field is
2313 * non-zero, then the set or get effects the specified association.
2314 *
2315 * struct sctp_assoc_value {
2316 * sctp_assoc_t assoc_id;
2317 * uint32_t assoc_value;
2318 * };
2319 *
2320 * assoc_id - This parameter, indicates which association the
2321 * user is preforming an action upon. Note that if
2322 * this field's value is zero then the endpoints
2323 * default value is changed (effecting future
2324 * associations only).
2325 *
2326 * assoc_value - This parameter contains the number of milliseconds
2327 * that the user is requesting the delayed ACK timer
2328 * be set to. Note that this value is defined in
2329 * the standard to be between 200 and 500 milliseconds.
2330 *
2331 * Note: a value of zero will leave the value alone,
2332 * but disable SACK delay. A non-zero value will also
2333 * enable SACK delay.
2334 */
2335
2336 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2337 char __user *optval, int optlen)
2338 {
2339 struct sctp_assoc_value params;
2340 struct sctp_transport *trans = NULL;
2341 struct sctp_association *asoc = NULL;
2342 struct sctp_sock *sp = sctp_sk(sk);
2343
2344 if (optlen != sizeof(struct sctp_assoc_value))
2345 return - EINVAL;
2346
2347 if (copy_from_user(&params, optval, optlen))
2348 return -EFAULT;
2349
2350 /* Validate value parameter. */
2351 if (params.assoc_value > 500)
2352 return -EINVAL;
2353
2354 /* Get association, if assoc_id != 0 and the socket is a one
2355 * to many style socket, and an association was not found, then
2356 * the id was invalid.
2357 */
2358 asoc = sctp_id2assoc(sk, params.assoc_id);
2359 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2360 return -EINVAL;
2361
2362 if (params.assoc_value) {
2363 if (asoc) {
2364 asoc->sackdelay =
2365 msecs_to_jiffies(params.assoc_value);
2366 asoc->param_flags =
2367 (asoc->param_flags & ~SPP_SACKDELAY) |
2368 SPP_SACKDELAY_ENABLE;
2369 } else {
2370 sp->sackdelay = params.assoc_value;
2371 sp->param_flags =
2372 (sp->param_flags & ~SPP_SACKDELAY) |
2373 SPP_SACKDELAY_ENABLE;
2374 }
2375 } else {
2376 if (asoc) {
2377 asoc->param_flags =
2378 (asoc->param_flags & ~SPP_SACKDELAY) |
2379 SPP_SACKDELAY_DISABLE;
2380 } else {
2381 sp->param_flags =
2382 (sp->param_flags & ~SPP_SACKDELAY) |
2383 SPP_SACKDELAY_DISABLE;
2384 }
2385 }
2386
2387 /* If change is for association, also apply to each transport. */
2388 if (asoc) {
2389 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2390 transports) {
2391 if (params.assoc_value) {
2392 trans->sackdelay =
2393 msecs_to_jiffies(params.assoc_value);
2394 trans->param_flags =
2395 (trans->param_flags & ~SPP_SACKDELAY) |
2396 SPP_SACKDELAY_ENABLE;
2397 } else {
2398 trans->param_flags =
2399 (trans->param_flags & ~SPP_SACKDELAY) |
2400 SPP_SACKDELAY_DISABLE;
2401 }
2402 }
2403 }
2404
2405 return 0;
2406 }
2407
2408 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2409 *
2410 * Applications can specify protocol parameters for the default association
2411 * initialization. The option name argument to setsockopt() and getsockopt()
2412 * is SCTP_INITMSG.
2413 *
2414 * Setting initialization parameters is effective only on an unconnected
2415 * socket (for UDP-style sockets only future associations are effected
2416 * by the change). With TCP-style sockets, this option is inherited by
2417 * sockets derived from a listener socket.
2418 */
2419 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2420 {
2421 struct sctp_initmsg sinit;
2422 struct sctp_sock *sp = sctp_sk(sk);
2423
2424 if (optlen != sizeof(struct sctp_initmsg))
2425 return -EINVAL;
2426 if (copy_from_user(&sinit, optval, optlen))
2427 return -EFAULT;
2428
2429 if (sinit.sinit_num_ostreams)
2430 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2431 if (sinit.sinit_max_instreams)
2432 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2433 if (sinit.sinit_max_attempts)
2434 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2435 if (sinit.sinit_max_init_timeo)
2436 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2437
2438 return 0;
2439 }
2440
2441 /*
2442 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2443 *
2444 * Applications that wish to use the sendto() system call may wish to
2445 * specify a default set of parameters that would normally be supplied
2446 * through the inclusion of ancillary data. This socket option allows
2447 * such an application to set the default sctp_sndrcvinfo structure.
2448 * The application that wishes to use this socket option simply passes
2449 * in to this call the sctp_sndrcvinfo structure defined in Section
2450 * 5.2.2) The input parameters accepted by this call include
2451 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2452 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2453 * to this call if the caller is using the UDP model.
2454 */
2455 static int sctp_setsockopt_default_send_param(struct sock *sk,
2456 char __user *optval, int optlen)
2457 {
2458 struct sctp_sndrcvinfo info;
2459 struct sctp_association *asoc;
2460 struct sctp_sock *sp = sctp_sk(sk);
2461
2462 if (optlen != sizeof(struct sctp_sndrcvinfo))
2463 return -EINVAL;
2464 if (copy_from_user(&info, optval, optlen))
2465 return -EFAULT;
2466
2467 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2468 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2469 return -EINVAL;
2470
2471 if (asoc) {
2472 asoc->default_stream = info.sinfo_stream;
2473 asoc->default_flags = info.sinfo_flags;
2474 asoc->default_ppid = info.sinfo_ppid;
2475 asoc->default_context = info.sinfo_context;
2476 asoc->default_timetolive = info.sinfo_timetolive;
2477 } else {
2478 sp->default_stream = info.sinfo_stream;
2479 sp->default_flags = info.sinfo_flags;
2480 sp->default_ppid = info.sinfo_ppid;
2481 sp->default_context = info.sinfo_context;
2482 sp->default_timetolive = info.sinfo_timetolive;
2483 }
2484
2485 return 0;
2486 }
2487
2488 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2489 *
2490 * Requests that the local SCTP stack use the enclosed peer address as
2491 * the association primary. The enclosed address must be one of the
2492 * association peer's addresses.
2493 */
2494 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2495 int optlen)
2496 {
2497 struct sctp_prim prim;
2498 struct sctp_transport *trans;
2499
2500 if (optlen != sizeof(struct sctp_prim))
2501 return -EINVAL;
2502
2503 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2504 return -EFAULT;
2505
2506 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2507 if (!trans)
2508 return -EINVAL;
2509
2510 sctp_assoc_set_primary(trans->asoc, trans);
2511
2512 return 0;
2513 }
2514
2515 /*
2516 * 7.1.5 SCTP_NODELAY
2517 *
2518 * Turn on/off any Nagle-like algorithm. This means that packets are
2519 * generally sent as soon as possible and no unnecessary delays are
2520 * introduced, at the cost of more packets in the network. Expects an
2521 * integer boolean flag.
2522 */
2523 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2524 int optlen)
2525 {
2526 int val;
2527
2528 if (optlen < sizeof(int))
2529 return -EINVAL;
2530 if (get_user(val, (int __user *)optval))
2531 return -EFAULT;
2532
2533 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2534 return 0;
2535 }
2536
2537 /*
2538 *
2539 * 7.1.1 SCTP_RTOINFO
2540 *
2541 * The protocol parameters used to initialize and bound retransmission
2542 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2543 * and modify these parameters.
2544 * All parameters are time values, in milliseconds. A value of 0, when
2545 * modifying the parameters, indicates that the current value should not
2546 * be changed.
2547 *
2548 */
2549 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2550 struct sctp_rtoinfo rtoinfo;
2551 struct sctp_association *asoc;
2552
2553 if (optlen != sizeof (struct sctp_rtoinfo))
2554 return -EINVAL;
2555
2556 if (copy_from_user(&rtoinfo, optval, optlen))
2557 return -EFAULT;
2558
2559 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2560
2561 /* Set the values to the specific association */
2562 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2563 return -EINVAL;
2564
2565 if (asoc) {
2566 if (rtoinfo.srto_initial != 0)
2567 asoc->rto_initial =
2568 msecs_to_jiffies(rtoinfo.srto_initial);
2569 if (rtoinfo.srto_max != 0)
2570 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2571 if (rtoinfo.srto_min != 0)
2572 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2573 } else {
2574 /* If there is no association or the association-id = 0
2575 * set the values to the endpoint.
2576 */
2577 struct sctp_sock *sp = sctp_sk(sk);
2578
2579 if (rtoinfo.srto_initial != 0)
2580 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2581 if (rtoinfo.srto_max != 0)
2582 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2583 if (rtoinfo.srto_min != 0)
2584 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2585 }
2586
2587 return 0;
2588 }
2589
2590 /*
2591 *
2592 * 7.1.2 SCTP_ASSOCINFO
2593 *
2594 * This option is used to tune the maximum retransmission attempts
2595 * of the association.
2596 * Returns an error if the new association retransmission value is
2597 * greater than the sum of the retransmission value of the peer.
2598 * See [SCTP] for more information.
2599 *
2600 */
2601 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2602 {
2603
2604 struct sctp_assocparams assocparams;
2605 struct sctp_association *asoc;
2606
2607 if (optlen != sizeof(struct sctp_assocparams))
2608 return -EINVAL;
2609 if (copy_from_user(&assocparams, optval, optlen))
2610 return -EFAULT;
2611
2612 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2613
2614 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2615 return -EINVAL;
2616
2617 /* Set the values to the specific association */
2618 if (asoc) {
2619 if (assocparams.sasoc_asocmaxrxt != 0) {
2620 __u32 path_sum = 0;
2621 int paths = 0;
2622 struct sctp_transport *peer_addr;
2623
2624 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2625 transports) {
2626 path_sum += peer_addr->pathmaxrxt;
2627 paths++;
2628 }
2629
2630 /* Only validate asocmaxrxt if we have more then
2631 * one path/transport. We do this because path
2632 * retransmissions are only counted when we have more
2633 * then one path.
2634 */
2635 if (paths > 1 &&
2636 assocparams.sasoc_asocmaxrxt > path_sum)
2637 return -EINVAL;
2638
2639 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2640 }
2641
2642 if (assocparams.sasoc_cookie_life != 0) {
2643 asoc->cookie_life.tv_sec =
2644 assocparams.sasoc_cookie_life / 1000;
2645 asoc->cookie_life.tv_usec =
2646 (assocparams.sasoc_cookie_life % 1000)
2647 * 1000;
2648 }
2649 } else {
2650 /* Set the values to the endpoint */
2651 struct sctp_sock *sp = sctp_sk(sk);
2652
2653 if (assocparams.sasoc_asocmaxrxt != 0)
2654 sp->assocparams.sasoc_asocmaxrxt =
2655 assocparams.sasoc_asocmaxrxt;
2656 if (assocparams.sasoc_cookie_life != 0)
2657 sp->assocparams.sasoc_cookie_life =
2658 assocparams.sasoc_cookie_life;
2659 }
2660 return 0;
2661 }
2662
2663 /*
2664 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2665 *
2666 * This socket option is a boolean flag which turns on or off mapped V4
2667 * addresses. If this option is turned on and the socket is type
2668 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2669 * If this option is turned off, then no mapping will be done of V4
2670 * addresses and a user will receive both PF_INET6 and PF_INET type
2671 * addresses on the socket.
2672 */
2673 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2674 {
2675 int val;
2676 struct sctp_sock *sp = sctp_sk(sk);
2677
2678 if (optlen < sizeof(int))
2679 return -EINVAL;
2680 if (get_user(val, (int __user *)optval))
2681 return -EFAULT;
2682 if (val)
2683 sp->v4mapped = 1;
2684 else
2685 sp->v4mapped = 0;
2686
2687 return 0;
2688 }
2689
2690 /*
2691 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2692 *
2693 * This socket option specifies the maximum size to put in any outgoing
2694 * SCTP chunk. If a message is larger than this size it will be
2695 * fragmented by SCTP into the specified size. Note that the underlying
2696 * SCTP implementation may fragment into smaller sized chunks when the
2697 * PMTU of the underlying association is smaller than the value set by
2698 * the user.
2699 */
2700 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2701 {
2702 struct sctp_association *asoc;
2703 struct sctp_sock *sp = sctp_sk(sk);
2704 int val;
2705
2706 if (optlen < sizeof(int))
2707 return -EINVAL;
2708 if (get_user(val, (int __user *)optval))
2709 return -EFAULT;
2710 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2711 return -EINVAL;
2712 sp->user_frag = val;
2713
2714 /* Update the frag_point of the existing associations. */
2715 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2716 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2717 }
2718
2719 return 0;
2720 }
2721
2722
2723 /*
2724 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2725 *
2726 * Requests that the peer mark the enclosed address as the association
2727 * primary. The enclosed address must be one of the association's
2728 * locally bound addresses. The following structure is used to make a
2729 * set primary request:
2730 */
2731 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2732 int optlen)
2733 {
2734 struct sctp_sock *sp;
2735 struct sctp_endpoint *ep;
2736 struct sctp_association *asoc = NULL;
2737 struct sctp_setpeerprim prim;
2738 struct sctp_chunk *chunk;
2739 int err;
2740
2741 sp = sctp_sk(sk);
2742 ep = sp->ep;
2743
2744 if (!sctp_addip_enable)
2745 return -EPERM;
2746
2747 if (optlen != sizeof(struct sctp_setpeerprim))
2748 return -EINVAL;
2749
2750 if (copy_from_user(&prim, optval, optlen))
2751 return -EFAULT;
2752
2753 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2754 if (!asoc)
2755 return -EINVAL;
2756
2757 if (!asoc->peer.asconf_capable)
2758 return -EPERM;
2759
2760 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2761 return -EPERM;
2762
2763 if (!sctp_state(asoc, ESTABLISHED))
2764 return -ENOTCONN;
2765
2766 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2767 return -EADDRNOTAVAIL;
2768
2769 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2770 chunk = sctp_make_asconf_set_prim(asoc,
2771 (union sctp_addr *)&prim.sspp_addr);
2772 if (!chunk)
2773 return -ENOMEM;
2774
2775 err = sctp_send_asconf(asoc, chunk);
2776
2777 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2778
2779 return err;
2780 }
2781
2782 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2783 int optlen)
2784 {
2785 struct sctp_setadaptation adaptation;
2786
2787 if (optlen != sizeof(struct sctp_setadaptation))
2788 return -EINVAL;
2789 if (copy_from_user(&adaptation, optval, optlen))
2790 return -EFAULT;
2791
2792 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2793
2794 return 0;
2795 }
2796
2797 /*
2798 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2799 *
2800 * The context field in the sctp_sndrcvinfo structure is normally only
2801 * used when a failed message is retrieved holding the value that was
2802 * sent down on the actual send call. This option allows the setting of
2803 * a default context on an association basis that will be received on
2804 * reading messages from the peer. This is especially helpful in the
2805 * one-2-many model for an application to keep some reference to an
2806 * internal state machine that is processing messages on the
2807 * association. Note that the setting of this value only effects
2808 * received messages from the peer and does not effect the value that is
2809 * saved with outbound messages.
2810 */
2811 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2812 int optlen)
2813 {
2814 struct sctp_assoc_value params;
2815 struct sctp_sock *sp;
2816 struct sctp_association *asoc;
2817
2818 if (optlen != sizeof(struct sctp_assoc_value))
2819 return -EINVAL;
2820 if (copy_from_user(&params, optval, optlen))
2821 return -EFAULT;
2822
2823 sp = sctp_sk(sk);
2824
2825 if (params.assoc_id != 0) {
2826 asoc = sctp_id2assoc(sk, params.assoc_id);
2827 if (!asoc)
2828 return -EINVAL;
2829 asoc->default_rcv_context = params.assoc_value;
2830 } else {
2831 sp->default_rcv_context = params.assoc_value;
2832 }
2833
2834 return 0;
2835 }
2836
2837 /*
2838 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2839 *
2840 * This options will at a minimum specify if the implementation is doing
2841 * fragmented interleave. Fragmented interleave, for a one to many
2842 * socket, is when subsequent calls to receive a message may return
2843 * parts of messages from different associations. Some implementations
2844 * may allow you to turn this value on or off. If so, when turned off,
2845 * no fragment interleave will occur (which will cause a head of line
2846 * blocking amongst multiple associations sharing the same one to many
2847 * socket). When this option is turned on, then each receive call may
2848 * come from a different association (thus the user must receive data
2849 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2850 * association each receive belongs to.
2851 *
2852 * This option takes a boolean value. A non-zero value indicates that
2853 * fragmented interleave is on. A value of zero indicates that
2854 * fragmented interleave is off.
2855 *
2856 * Note that it is important that an implementation that allows this
2857 * option to be turned on, have it off by default. Otherwise an unaware
2858 * application using the one to many model may become confused and act
2859 * incorrectly.
2860 */
2861 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2862 char __user *optval,
2863 int optlen)
2864 {
2865 int val;
2866
2867 if (optlen != sizeof(int))
2868 return -EINVAL;
2869 if (get_user(val, (int __user *)optval))
2870 return -EFAULT;
2871
2872 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2873
2874 return 0;
2875 }
2876
2877 /*
2878 * 7.1.25. Set or Get the sctp partial delivery point
2879 * (SCTP_PARTIAL_DELIVERY_POINT)
2880 * This option will set or get the SCTP partial delivery point. This
2881 * point is the size of a message where the partial delivery API will be
2882 * invoked to help free up rwnd space for the peer. Setting this to a
2883 * lower value will cause partial delivery's to happen more often. The
2884 * calls argument is an integer that sets or gets the partial delivery
2885 * point.
2886 */
2887 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2888 char __user *optval,
2889 int optlen)
2890 {
2891 u32 val;
2892
2893 if (optlen != sizeof(u32))
2894 return -EINVAL;
2895 if (get_user(val, (int __user *)optval))
2896 return -EFAULT;
2897
2898 sctp_sk(sk)->pd_point = val;
2899
2900 return 0; /* is this the right error code? */
2901 }
2902
2903 /*
2904 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
2905 *
2906 * This option will allow a user to change the maximum burst of packets
2907 * that can be emitted by this association. Note that the default value
2908 * is 4, and some implementations may restrict this setting so that it
2909 * can only be lowered.
2910 *
2911 * NOTE: This text doesn't seem right. Do this on a socket basis with
2912 * future associations inheriting the socket value.
2913 */
2914 static int sctp_setsockopt_maxburst(struct sock *sk,
2915 char __user *optval,
2916 int optlen)
2917 {
2918 struct sctp_assoc_value params;
2919 struct sctp_sock *sp;
2920 struct sctp_association *asoc;
2921 int val;
2922 int assoc_id = 0;
2923
2924 if (optlen < sizeof(int))
2925 return -EINVAL;
2926
2927 if (optlen == sizeof(int)) {
2928 printk(KERN_WARNING
2929 "SCTP: Use of int in max_burst socket option deprecated\n");
2930 printk(KERN_WARNING
2931 "SCTP: Use struct sctp_assoc_value instead\n");
2932 if (copy_from_user(&val, optval, optlen))
2933 return -EFAULT;
2934 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2935 if (copy_from_user(&params, optval, optlen))
2936 return -EFAULT;
2937 val = params.assoc_value;
2938 assoc_id = params.assoc_id;
2939 } else
2940 return -EINVAL;
2941
2942 sp = sctp_sk(sk);
2943
2944 if (assoc_id != 0) {
2945 asoc = sctp_id2assoc(sk, assoc_id);
2946 if (!asoc)
2947 return -EINVAL;
2948 asoc->max_burst = val;
2949 } else
2950 sp->max_burst = val;
2951
2952 return 0;
2953 }
2954
2955 /*
2956 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
2957 *
2958 * This set option adds a chunk type that the user is requesting to be
2959 * received only in an authenticated way. Changes to the list of chunks
2960 * will only effect future associations on the socket.
2961 */
2962 static int sctp_setsockopt_auth_chunk(struct sock *sk,
2963 char __user *optval,
2964 int optlen)
2965 {
2966 struct sctp_authchunk val;
2967
2968 if (optlen != sizeof(struct sctp_authchunk))
2969 return -EINVAL;
2970 if (copy_from_user(&val, optval, optlen))
2971 return -EFAULT;
2972
2973 switch (val.sauth_chunk) {
2974 case SCTP_CID_INIT:
2975 case SCTP_CID_INIT_ACK:
2976 case SCTP_CID_SHUTDOWN_COMPLETE:
2977 case SCTP_CID_AUTH:
2978 return -EINVAL;
2979 }
2980
2981 /* add this chunk id to the endpoint */
2982 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
2983 }
2984
2985 /*
2986 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
2987 *
2988 * This option gets or sets the list of HMAC algorithms that the local
2989 * endpoint requires the peer to use.
2990 */
2991 static int sctp_setsockopt_hmac_ident(struct sock *sk,
2992 char __user *optval,
2993 int optlen)
2994 {
2995 struct sctp_hmacalgo *hmacs;
2996 int err;
2997
2998 if (optlen < sizeof(struct sctp_hmacalgo))
2999 return -EINVAL;
3000
3001 hmacs = kmalloc(optlen, GFP_KERNEL);
3002 if (!hmacs)
3003 return -ENOMEM;
3004
3005 if (copy_from_user(hmacs, optval, optlen)) {
3006 err = -EFAULT;
3007 goto out;
3008 }
3009
3010 if (hmacs->shmac_num_idents == 0 ||
3011 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) {
3012 err = -EINVAL;
3013 goto out;
3014 }
3015
3016 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3017 out:
3018 kfree(hmacs);
3019 return err;
3020 }
3021
3022 /*
3023 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3024 *
3025 * This option will set a shared secret key which is used to build an
3026 * association shared key.
3027 */
3028 static int sctp_setsockopt_auth_key(struct sock *sk,
3029 char __user *optval,
3030 int optlen)
3031 {
3032 struct sctp_authkey *authkey;
3033 struct sctp_association *asoc;
3034 int ret;
3035
3036 if (optlen <= sizeof(struct sctp_authkey))
3037 return -EINVAL;
3038
3039 authkey = kmalloc(optlen, GFP_KERNEL);
3040 if (!authkey)
3041 return -ENOMEM;
3042
3043 if (copy_from_user(authkey, optval, optlen)) {
3044 ret = -EFAULT;
3045 goto out;
3046 }
3047
3048 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3049 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3050 ret = -EINVAL;
3051 goto out;
3052 }
3053
3054 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3055 out:
3056 kfree(authkey);
3057 return ret;
3058 }
3059
3060 /*
3061 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3062 *
3063 * This option will get or set the active shared key to be used to build
3064 * the association shared key.
3065 */
3066 static int sctp_setsockopt_active_key(struct sock *sk,
3067 char __user *optval,
3068 int optlen)
3069 {
3070 struct sctp_authkeyid val;
3071 struct sctp_association *asoc;
3072
3073 if (optlen != sizeof(struct sctp_authkeyid))
3074 return -EINVAL;
3075 if (copy_from_user(&val, optval, optlen))
3076 return -EFAULT;
3077
3078 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3079 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3080 return -EINVAL;
3081
3082 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3083 val.scact_keynumber);
3084 }
3085
3086 /*
3087 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3088 *
3089 * This set option will delete a shared secret key from use.
3090 */
3091 static int sctp_setsockopt_del_key(struct sock *sk,
3092 char __user *optval,
3093 int optlen)
3094 {
3095 struct sctp_authkeyid val;
3096 struct sctp_association *asoc;
3097
3098 if (optlen != sizeof(struct sctp_authkeyid))
3099 return -EINVAL;
3100 if (copy_from_user(&val, optval, optlen))
3101 return -EFAULT;
3102
3103 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3104 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3105 return -EINVAL;
3106
3107 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3108 val.scact_keynumber);
3109
3110 }
3111
3112
3113 /* API 6.2 setsockopt(), getsockopt()
3114 *
3115 * Applications use setsockopt() and getsockopt() to set or retrieve
3116 * socket options. Socket options are used to change the default
3117 * behavior of sockets calls. They are described in Section 7.
3118 *
3119 * The syntax is:
3120 *
3121 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3122 * int __user *optlen);
3123 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3124 * int optlen);
3125 *
3126 * sd - the socket descript.
3127 * level - set to IPPROTO_SCTP for all SCTP options.
3128 * optname - the option name.
3129 * optval - the buffer to store the value of the option.
3130 * optlen - the size of the buffer.
3131 */
3132 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3133 char __user *optval, int optlen)
3134 {
3135 int retval = 0;
3136
3137 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3138 sk, optname);
3139
3140 /* I can hardly begin to describe how wrong this is. This is
3141 * so broken as to be worse than useless. The API draft
3142 * REALLY is NOT helpful here... I am not convinced that the
3143 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3144 * are at all well-founded.
3145 */
3146 if (level != SOL_SCTP) {
3147 struct sctp_af *af = sctp_sk(sk)->pf->af;
3148 retval = af->setsockopt(sk, level, optname, optval, optlen);
3149 goto out_nounlock;
3150 }
3151
3152 sctp_lock_sock(sk);
3153
3154 switch (optname) {
3155 case SCTP_SOCKOPT_BINDX_ADD:
3156 /* 'optlen' is the size of the addresses buffer. */
3157 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3158 optlen, SCTP_BINDX_ADD_ADDR);
3159 break;
3160
3161 case SCTP_SOCKOPT_BINDX_REM:
3162 /* 'optlen' is the size of the addresses buffer. */
3163 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3164 optlen, SCTP_BINDX_REM_ADDR);
3165 break;
3166
3167 case SCTP_SOCKOPT_CONNECTX:
3168 /* 'optlen' is the size of the addresses buffer. */
3169 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3170 optlen);
3171 break;
3172
3173 case SCTP_DISABLE_FRAGMENTS:
3174 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3175 break;
3176
3177 case SCTP_EVENTS:
3178 retval = sctp_setsockopt_events(sk, optval, optlen);
3179 break;
3180
3181 case SCTP_AUTOCLOSE:
3182 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3183 break;
3184
3185 case SCTP_PEER_ADDR_PARAMS:
3186 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3187 break;
3188
3189 case SCTP_DELAYED_ACK_TIME:
3190 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3191 break;
3192 case SCTP_PARTIAL_DELIVERY_POINT:
3193 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3194 break;
3195
3196 case SCTP_INITMSG:
3197 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3198 break;
3199 case SCTP_DEFAULT_SEND_PARAM:
3200 retval = sctp_setsockopt_default_send_param(sk, optval,
3201 optlen);
3202 break;
3203 case SCTP_PRIMARY_ADDR:
3204 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3205 break;
3206 case SCTP_SET_PEER_PRIMARY_ADDR:
3207 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3208 break;
3209 case SCTP_NODELAY:
3210 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3211 break;
3212 case SCTP_RTOINFO:
3213 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3214 break;
3215 case SCTP_ASSOCINFO:
3216 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3217 break;
3218 case SCTP_I_WANT_MAPPED_V4_ADDR:
3219 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3220 break;
3221 case SCTP_MAXSEG:
3222 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3223 break;
3224 case SCTP_ADAPTATION_LAYER:
3225 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3226 break;
3227 case SCTP_CONTEXT:
3228 retval = sctp_setsockopt_context(sk, optval, optlen);
3229 break;
3230 case SCTP_FRAGMENT_INTERLEAVE:
3231 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3232 break;
3233 case SCTP_MAX_BURST:
3234 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3235 break;
3236 case SCTP_AUTH_CHUNK:
3237 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3238 break;
3239 case SCTP_HMAC_IDENT:
3240 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3241 break;
3242 case SCTP_AUTH_KEY:
3243 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3244 break;
3245 case SCTP_AUTH_ACTIVE_KEY:
3246 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3247 break;
3248 case SCTP_AUTH_DELETE_KEY:
3249 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3250 break;
3251 default:
3252 retval = -ENOPROTOOPT;
3253 break;
3254 }
3255
3256 sctp_release_sock(sk);
3257
3258 out_nounlock:
3259 return retval;
3260 }
3261
3262 /* API 3.1.6 connect() - UDP Style Syntax
3263 *
3264 * An application may use the connect() call in the UDP model to initiate an
3265 * association without sending data.
3266 *
3267 * The syntax is:
3268 *
3269 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3270 *
3271 * sd: the socket descriptor to have a new association added to.
3272 *
3273 * nam: the address structure (either struct sockaddr_in or struct
3274 * sockaddr_in6 defined in RFC2553 [7]).
3275 *
3276 * len: the size of the address.
3277 */
3278 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3279 int addr_len)
3280 {
3281 int err = 0;
3282 struct sctp_af *af;
3283
3284 sctp_lock_sock(sk);
3285
3286 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3287 __func__, sk, addr, addr_len);
3288
3289 /* Validate addr_len before calling common connect/connectx routine. */
3290 af = sctp_get_af_specific(addr->sa_family);
3291 if (!af || addr_len < af->sockaddr_len) {
3292 err = -EINVAL;
3293 } else {
3294 /* Pass correct addr len to common routine (so it knows there
3295 * is only one address being passed.
3296 */
3297 err = __sctp_connect(sk, addr, af->sockaddr_len);
3298 }
3299
3300 sctp_release_sock(sk);
3301 return err;
3302 }
3303
3304 /* FIXME: Write comments. */
3305 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3306 {
3307 return -EOPNOTSUPP; /* STUB */
3308 }
3309
3310 /* 4.1.4 accept() - TCP Style Syntax
3311 *
3312 * Applications use accept() call to remove an established SCTP
3313 * association from the accept queue of the endpoint. A new socket
3314 * descriptor will be returned from accept() to represent the newly
3315 * formed association.
3316 */
3317 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3318 {
3319 struct sctp_sock *sp;
3320 struct sctp_endpoint *ep;
3321 struct sock *newsk = NULL;
3322 struct sctp_association *asoc;
3323 long timeo;
3324 int error = 0;
3325
3326 sctp_lock_sock(sk);
3327
3328 sp = sctp_sk(sk);
3329 ep = sp->ep;
3330
3331 if (!sctp_style(sk, TCP)) {
3332 error = -EOPNOTSUPP;
3333 goto out;
3334 }
3335
3336 if (!sctp_sstate(sk, LISTENING)) {
3337 error = -EINVAL;
3338 goto out;
3339 }
3340
3341 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3342
3343 error = sctp_wait_for_accept(sk, timeo);
3344 if (error)
3345 goto out;
3346
3347 /* We treat the list of associations on the endpoint as the accept
3348 * queue and pick the first association on the list.
3349 */
3350 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3351
3352 newsk = sp->pf->create_accept_sk(sk, asoc);
3353 if (!newsk) {
3354 error = -ENOMEM;
3355 goto out;
3356 }
3357
3358 /* Populate the fields of the newsk from the oldsk and migrate the
3359 * asoc to the newsk.
3360 */
3361 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3362
3363 out:
3364 sctp_release_sock(sk);
3365 *err = error;
3366 return newsk;
3367 }
3368
3369 /* The SCTP ioctl handler. */
3370 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3371 {
3372 return -ENOIOCTLCMD;
3373 }
3374
3375 /* This is the function which gets called during socket creation to
3376 * initialized the SCTP-specific portion of the sock.
3377 * The sock structure should already be zero-filled memory.
3378 */
3379 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3380 {
3381 struct sctp_endpoint *ep;
3382 struct sctp_sock *sp;
3383
3384 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3385
3386 sp = sctp_sk(sk);
3387
3388 /* Initialize the SCTP per socket area. */
3389 switch (sk->sk_type) {
3390 case SOCK_SEQPACKET:
3391 sp->type = SCTP_SOCKET_UDP;
3392 break;
3393 case SOCK_STREAM:
3394 sp->type = SCTP_SOCKET_TCP;
3395 break;
3396 default:
3397 return -ESOCKTNOSUPPORT;
3398 }
3399
3400 /* Initialize default send parameters. These parameters can be
3401 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3402 */
3403 sp->default_stream = 0;
3404 sp->default_ppid = 0;
3405 sp->default_flags = 0;
3406 sp->default_context = 0;
3407 sp->default_timetolive = 0;
3408
3409 sp->default_rcv_context = 0;
3410 sp->max_burst = sctp_max_burst;
3411
3412 /* Initialize default setup parameters. These parameters
3413 * can be modified with the SCTP_INITMSG socket option or
3414 * overridden by the SCTP_INIT CMSG.
3415 */
3416 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3417 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3418 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3419 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3420
3421 /* Initialize default RTO related parameters. These parameters can
3422 * be modified for with the SCTP_RTOINFO socket option.
3423 */
3424 sp->rtoinfo.srto_initial = sctp_rto_initial;
3425 sp->rtoinfo.srto_max = sctp_rto_max;
3426 sp->rtoinfo.srto_min = sctp_rto_min;
3427
3428 /* Initialize default association related parameters. These parameters
3429 * can be modified with the SCTP_ASSOCINFO socket option.
3430 */
3431 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3432 sp->assocparams.sasoc_number_peer_destinations = 0;
3433 sp->assocparams.sasoc_peer_rwnd = 0;
3434 sp->assocparams.sasoc_local_rwnd = 0;
3435 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3436
3437 /* Initialize default event subscriptions. By default, all the
3438 * options are off.
3439 */
3440 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3441
3442 /* Default Peer Address Parameters. These defaults can
3443 * be modified via SCTP_PEER_ADDR_PARAMS
3444 */
3445 sp->hbinterval = sctp_hb_interval;
3446 sp->pathmaxrxt = sctp_max_retrans_path;
3447 sp->pathmtu = 0; // allow default discovery
3448 sp->sackdelay = sctp_sack_timeout;
3449 sp->param_flags = SPP_HB_ENABLE |
3450 SPP_PMTUD_ENABLE |
3451 SPP_SACKDELAY_ENABLE;
3452
3453 /* If enabled no SCTP message fragmentation will be performed.
3454 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3455 */
3456 sp->disable_fragments = 0;
3457
3458 /* Enable Nagle algorithm by default. */
3459 sp->nodelay = 0;
3460
3461 /* Enable by default. */
3462 sp->v4mapped = 1;
3463
3464 /* Auto-close idle associations after the configured
3465 * number of seconds. A value of 0 disables this
3466 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3467 * for UDP-style sockets only.
3468 */
3469 sp->autoclose = 0;
3470
3471 /* User specified fragmentation limit. */
3472 sp->user_frag = 0;
3473
3474 sp->adaptation_ind = 0;
3475
3476 sp->pf = sctp_get_pf_specific(sk->sk_family);
3477
3478 /* Control variables for partial data delivery. */
3479 atomic_set(&sp->pd_mode, 0);
3480 skb_queue_head_init(&sp->pd_lobby);
3481 sp->frag_interleave = 0;
3482
3483 /* Create a per socket endpoint structure. Even if we
3484 * change the data structure relationships, this may still
3485 * be useful for storing pre-connect address information.
3486 */
3487 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3488 if (!ep)
3489 return -ENOMEM;
3490
3491 sp->ep = ep;
3492 sp->hmac = NULL;
3493
3494 SCTP_DBG_OBJCNT_INC(sock);
3495 atomic_inc(&sctp_sockets_allocated);
3496 return 0;
3497 }
3498
3499 /* Cleanup any SCTP per socket resources. */
3500 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3501 {
3502 struct sctp_endpoint *ep;
3503
3504 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3505
3506 /* Release our hold on the endpoint. */
3507 ep = sctp_sk(sk)->ep;
3508 sctp_endpoint_free(ep);
3509 atomic_dec(&sctp_sockets_allocated);
3510 return 0;
3511 }
3512
3513 /* API 4.1.7 shutdown() - TCP Style Syntax
3514 * int shutdown(int socket, int how);
3515 *
3516 * sd - the socket descriptor of the association to be closed.
3517 * how - Specifies the type of shutdown. The values are
3518 * as follows:
3519 * SHUT_RD
3520 * Disables further receive operations. No SCTP
3521 * protocol action is taken.
3522 * SHUT_WR
3523 * Disables further send operations, and initiates
3524 * the SCTP shutdown sequence.
3525 * SHUT_RDWR
3526 * Disables further send and receive operations
3527 * and initiates the SCTP shutdown sequence.
3528 */
3529 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3530 {
3531 struct sctp_endpoint *ep;
3532 struct sctp_association *asoc;
3533
3534 if (!sctp_style(sk, TCP))
3535 return;
3536
3537 if (how & SEND_SHUTDOWN) {
3538 ep = sctp_sk(sk)->ep;
3539 if (!list_empty(&ep->asocs)) {
3540 asoc = list_entry(ep->asocs.next,
3541 struct sctp_association, asocs);
3542 sctp_primitive_SHUTDOWN(asoc, NULL);
3543 }
3544 }
3545 }
3546
3547 /* 7.2.1 Association Status (SCTP_STATUS)
3548
3549 * Applications can retrieve current status information about an
3550 * association, including association state, peer receiver window size,
3551 * number of unacked data chunks, and number of data chunks pending
3552 * receipt. This information is read-only.
3553 */
3554 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3555 char __user *optval,
3556 int __user *optlen)
3557 {
3558 struct sctp_status status;
3559 struct sctp_association *asoc = NULL;
3560 struct sctp_transport *transport;
3561 sctp_assoc_t associd;
3562 int retval = 0;
3563
3564 if (len < sizeof(status)) {
3565 retval = -EINVAL;
3566 goto out;
3567 }
3568
3569 len = sizeof(status);
3570 if (copy_from_user(&status, optval, len)) {
3571 retval = -EFAULT;
3572 goto out;
3573 }
3574
3575 associd = status.sstat_assoc_id;
3576 asoc = sctp_id2assoc(sk, associd);
3577 if (!asoc) {
3578 retval = -EINVAL;
3579 goto out;
3580 }
3581
3582 transport = asoc->peer.primary_path;
3583
3584 status.sstat_assoc_id = sctp_assoc2id(asoc);
3585 status.sstat_state = asoc->state;
3586 status.sstat_rwnd = asoc->peer.rwnd;
3587 status.sstat_unackdata = asoc->unack_data;
3588
3589 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3590 status.sstat_instrms = asoc->c.sinit_max_instreams;
3591 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3592 status.sstat_fragmentation_point = asoc->frag_point;
3593 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3594 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3595 transport->af_specific->sockaddr_len);
3596 /* Map ipv4 address into v4-mapped-on-v6 address. */
3597 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3598 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3599 status.sstat_primary.spinfo_state = transport->state;
3600 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3601 status.sstat_primary.spinfo_srtt = transport->srtt;
3602 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3603 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3604
3605 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3606 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3607
3608 if (put_user(len, optlen)) {
3609 retval = -EFAULT;
3610 goto out;
3611 }
3612
3613 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3614 len, status.sstat_state, status.sstat_rwnd,
3615 status.sstat_assoc_id);
3616
3617 if (copy_to_user(optval, &status, len)) {
3618 retval = -EFAULT;
3619 goto out;
3620 }
3621
3622 out:
3623 return (retval);
3624 }
3625
3626
3627 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3628 *
3629 * Applications can retrieve information about a specific peer address
3630 * of an association, including its reachability state, congestion
3631 * window, and retransmission timer values. This information is
3632 * read-only.
3633 */
3634 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3635 char __user *optval,
3636 int __user *optlen)
3637 {
3638 struct sctp_paddrinfo pinfo;
3639 struct sctp_transport *transport;
3640 int retval = 0;
3641
3642 if (len < sizeof(pinfo)) {
3643 retval = -EINVAL;
3644 goto out;
3645 }
3646
3647 len = sizeof(pinfo);
3648 if (copy_from_user(&pinfo, optval, len)) {
3649 retval = -EFAULT;
3650 goto out;
3651 }
3652
3653 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3654 pinfo.spinfo_assoc_id);
3655 if (!transport)
3656 return -EINVAL;
3657
3658 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3659 pinfo.spinfo_state = transport->state;
3660 pinfo.spinfo_cwnd = transport->cwnd;
3661 pinfo.spinfo_srtt = transport->srtt;
3662 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3663 pinfo.spinfo_mtu = transport->pathmtu;
3664
3665 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3666 pinfo.spinfo_state = SCTP_ACTIVE;
3667
3668 if (put_user(len, optlen)) {
3669 retval = -EFAULT;
3670 goto out;
3671 }
3672
3673 if (copy_to_user(optval, &pinfo, len)) {
3674 retval = -EFAULT;
3675 goto out;
3676 }
3677
3678 out:
3679 return (retval);
3680 }
3681
3682 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3683 *
3684 * This option is a on/off flag. If enabled no SCTP message
3685 * fragmentation will be performed. Instead if a message being sent
3686 * exceeds the current PMTU size, the message will NOT be sent and
3687 * instead a error will be indicated to the user.
3688 */
3689 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3690 char __user *optval, int __user *optlen)
3691 {
3692 int val;
3693
3694 if (len < sizeof(int))
3695 return -EINVAL;
3696
3697 len = sizeof(int);
3698 val = (sctp_sk(sk)->disable_fragments == 1);
3699 if (put_user(len, optlen))
3700 return -EFAULT;
3701 if (copy_to_user(optval, &val, len))
3702 return -EFAULT;
3703 return 0;
3704 }
3705
3706 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3707 *
3708 * This socket option is used to specify various notifications and
3709 * ancillary data the user wishes to receive.
3710 */
3711 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3712 int __user *optlen)
3713 {
3714 if (len < sizeof(struct sctp_event_subscribe))
3715 return -EINVAL;
3716 len = sizeof(struct sctp_event_subscribe);
3717 if (put_user(len, optlen))
3718 return -EFAULT;
3719 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3720 return -EFAULT;
3721 return 0;
3722 }
3723
3724 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3725 *
3726 * This socket option is applicable to the UDP-style socket only. When
3727 * set it will cause associations that are idle for more than the
3728 * specified number of seconds to automatically close. An association
3729 * being idle is defined an association that has NOT sent or received
3730 * user data. The special value of '0' indicates that no automatic
3731 * close of any associations should be performed. The option expects an
3732 * integer defining the number of seconds of idle time before an
3733 * association is closed.
3734 */
3735 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3736 {
3737 /* Applicable to UDP-style socket only */
3738 if (sctp_style(sk, TCP))
3739 return -EOPNOTSUPP;
3740 if (len < sizeof(int))
3741 return -EINVAL;
3742 len = sizeof(int);
3743 if (put_user(len, optlen))
3744 return -EFAULT;
3745 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3746 return -EFAULT;
3747 return 0;
3748 }
3749
3750 /* Helper routine to branch off an association to a new socket. */
3751 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3752 struct socket **sockp)
3753 {
3754 struct sock *sk = asoc->base.sk;
3755 struct socket *sock;
3756 struct inet_sock *inetsk;
3757 struct sctp_af *af;
3758 int err = 0;
3759
3760 /* An association cannot be branched off from an already peeled-off
3761 * socket, nor is this supported for tcp style sockets.
3762 */
3763 if (!sctp_style(sk, UDP))
3764 return -EINVAL;
3765
3766 /* Create a new socket. */
3767 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3768 if (err < 0)
3769 return err;
3770
3771 /* Populate the fields of the newsk from the oldsk and migrate the
3772 * asoc to the newsk.
3773 */
3774 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3775
3776 /* Make peeled-off sockets more like 1-1 accepted sockets.
3777 * Set the daddr and initialize id to something more random
3778 */
3779 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3780 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3781 inetsk = inet_sk(sock->sk);
3782 inetsk->id = asoc->next_tsn ^ jiffies;
3783
3784 *sockp = sock;
3785
3786 return err;
3787 }
3788
3789 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3790 {
3791 sctp_peeloff_arg_t peeloff;
3792 struct socket *newsock;
3793 int retval = 0;
3794 struct sctp_association *asoc;
3795
3796 if (len < sizeof(sctp_peeloff_arg_t))
3797 return -EINVAL;
3798 len = sizeof(sctp_peeloff_arg_t);
3799 if (copy_from_user(&peeloff, optval, len))
3800 return -EFAULT;
3801
3802 asoc = sctp_id2assoc(sk, peeloff.associd);
3803 if (!asoc) {
3804 retval = -EINVAL;
3805 goto out;
3806 }
3807
3808 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3809
3810 retval = sctp_do_peeloff(asoc, &newsock);
3811 if (retval < 0)
3812 goto out;
3813
3814 /* Map the socket to an unused fd that can be returned to the user. */
3815 retval = sock_map_fd(newsock);
3816 if (retval < 0) {
3817 sock_release(newsock);
3818 goto out;
3819 }
3820
3821 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3822 __func__, sk, asoc, newsock->sk, retval);
3823
3824 /* Return the fd mapped to the new socket. */
3825 peeloff.sd = retval;
3826 if (put_user(len, optlen))
3827 return -EFAULT;
3828 if (copy_to_user(optval, &peeloff, len))
3829 retval = -EFAULT;
3830
3831 out:
3832 return retval;
3833 }
3834
3835 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3836 *
3837 * Applications can enable or disable heartbeats for any peer address of
3838 * an association, modify an address's heartbeat interval, force a
3839 * heartbeat to be sent immediately, and adjust the address's maximum
3840 * number of retransmissions sent before an address is considered
3841 * unreachable. The following structure is used to access and modify an
3842 * address's parameters:
3843 *
3844 * struct sctp_paddrparams {
3845 * sctp_assoc_t spp_assoc_id;
3846 * struct sockaddr_storage spp_address;
3847 * uint32_t spp_hbinterval;
3848 * uint16_t spp_pathmaxrxt;
3849 * uint32_t spp_pathmtu;
3850 * uint32_t spp_sackdelay;
3851 * uint32_t spp_flags;
3852 * };
3853 *
3854 * spp_assoc_id - (one-to-many style socket) This is filled in the
3855 * application, and identifies the association for
3856 * this query.
3857 * spp_address - This specifies which address is of interest.
3858 * spp_hbinterval - This contains the value of the heartbeat interval,
3859 * in milliseconds. If a value of zero
3860 * is present in this field then no changes are to
3861 * be made to this parameter.
3862 * spp_pathmaxrxt - This contains the maximum number of
3863 * retransmissions before this address shall be
3864 * considered unreachable. If a value of zero
3865 * is present in this field then no changes are to
3866 * be made to this parameter.
3867 * spp_pathmtu - When Path MTU discovery is disabled the value
3868 * specified here will be the "fixed" path mtu.
3869 * Note that if the spp_address field is empty
3870 * then all associations on this address will
3871 * have this fixed path mtu set upon them.
3872 *
3873 * spp_sackdelay - When delayed sack is enabled, this value specifies
3874 * the number of milliseconds that sacks will be delayed
3875 * for. This value will apply to all addresses of an
3876 * association if the spp_address field is empty. Note
3877 * also, that if delayed sack is enabled and this
3878 * value is set to 0, no change is made to the last
3879 * recorded delayed sack timer value.
3880 *
3881 * spp_flags - These flags are used to control various features
3882 * on an association. The flag field may contain
3883 * zero or more of the following options.
3884 *
3885 * SPP_HB_ENABLE - Enable heartbeats on the
3886 * specified address. Note that if the address
3887 * field is empty all addresses for the association
3888 * have heartbeats enabled upon them.
3889 *
3890 * SPP_HB_DISABLE - Disable heartbeats on the
3891 * speicifed address. Note that if the address
3892 * field is empty all addresses for the association
3893 * will have their heartbeats disabled. Note also
3894 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3895 * mutually exclusive, only one of these two should
3896 * be specified. Enabling both fields will have
3897 * undetermined results.
3898 *
3899 * SPP_HB_DEMAND - Request a user initiated heartbeat
3900 * to be made immediately.
3901 *
3902 * SPP_PMTUD_ENABLE - This field will enable PMTU
3903 * discovery upon the specified address. Note that
3904 * if the address feild is empty then all addresses
3905 * on the association are effected.
3906 *
3907 * SPP_PMTUD_DISABLE - This field will disable PMTU
3908 * discovery upon the specified address. Note that
3909 * if the address feild is empty then all addresses
3910 * on the association are effected. Not also that
3911 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3912 * exclusive. Enabling both will have undetermined
3913 * results.
3914 *
3915 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3916 * on delayed sack. The time specified in spp_sackdelay
3917 * is used to specify the sack delay for this address. Note
3918 * that if spp_address is empty then all addresses will
3919 * enable delayed sack and take on the sack delay
3920 * value specified in spp_sackdelay.
3921 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3922 * off delayed sack. If the spp_address field is blank then
3923 * delayed sack is disabled for the entire association. Note
3924 * also that this field is mutually exclusive to
3925 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3926 * results.
3927 */
3928 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3929 char __user *optval, int __user *optlen)
3930 {
3931 struct sctp_paddrparams params;
3932 struct sctp_transport *trans = NULL;
3933 struct sctp_association *asoc = NULL;
3934 struct sctp_sock *sp = sctp_sk(sk);
3935
3936 if (len < sizeof(struct sctp_paddrparams))
3937 return -EINVAL;
3938 len = sizeof(struct sctp_paddrparams);
3939 if (copy_from_user(&params, optval, len))
3940 return -EFAULT;
3941
3942 /* If an address other than INADDR_ANY is specified, and
3943 * no transport is found, then the request is invalid.
3944 */
3945 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3946 trans = sctp_addr_id2transport(sk, &params.spp_address,
3947 params.spp_assoc_id);
3948 if (!trans) {
3949 SCTP_DEBUG_PRINTK("Failed no transport\n");
3950 return -EINVAL;
3951 }
3952 }
3953
3954 /* Get association, if assoc_id != 0 and the socket is a one
3955 * to many style socket, and an association was not found, then
3956 * the id was invalid.
3957 */
3958 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3959 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3960 SCTP_DEBUG_PRINTK("Failed no association\n");
3961 return -EINVAL;
3962 }
3963
3964 if (trans) {
3965 /* Fetch transport values. */
3966 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3967 params.spp_pathmtu = trans->pathmtu;
3968 params.spp_pathmaxrxt = trans->pathmaxrxt;
3969 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3970
3971 /*draft-11 doesn't say what to return in spp_flags*/
3972 params.spp_flags = trans->param_flags;
3973 } else if (asoc) {
3974 /* Fetch association values. */
3975 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3976 params.spp_pathmtu = asoc->pathmtu;
3977 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3978 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3979
3980 /*draft-11 doesn't say what to return in spp_flags*/
3981 params.spp_flags = asoc->param_flags;
3982 } else {
3983 /* Fetch socket values. */
3984 params.spp_hbinterval = sp->hbinterval;
3985 params.spp_pathmtu = sp->pathmtu;
3986 params.spp_sackdelay = sp->sackdelay;
3987 params.spp_pathmaxrxt = sp->pathmaxrxt;
3988
3989 /*draft-11 doesn't say what to return in spp_flags*/
3990 params.spp_flags = sp->param_flags;
3991 }
3992
3993 if (copy_to_user(optval, &params, len))
3994 return -EFAULT;
3995
3996 if (put_user(len, optlen))
3997 return -EFAULT;
3998
3999 return 0;
4000 }
4001
4002 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
4003 *
4004 * This options will get or set the delayed ack timer. The time is set
4005 * in milliseconds. If the assoc_id is 0, then this sets or gets the
4006 * endpoints default delayed ack timer value. If the assoc_id field is
4007 * non-zero, then the set or get effects the specified association.
4008 *
4009 * struct sctp_assoc_value {
4010 * sctp_assoc_t assoc_id;
4011 * uint32_t assoc_value;
4012 * };
4013 *
4014 * assoc_id - This parameter, indicates which association the
4015 * user is preforming an action upon. Note that if
4016 * this field's value is zero then the endpoints
4017 * default value is changed (effecting future
4018 * associations only).
4019 *
4020 * assoc_value - This parameter contains the number of milliseconds
4021 * that the user is requesting the delayed ACK timer
4022 * be set to. Note that this value is defined in
4023 * the standard to be between 200 and 500 milliseconds.
4024 *
4025 * Note: a value of zero will leave the value alone,
4026 * but disable SACK delay. A non-zero value will also
4027 * enable SACK delay.
4028 */
4029 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
4030 char __user *optval,
4031 int __user *optlen)
4032 {
4033 struct sctp_assoc_value params;
4034 struct sctp_association *asoc = NULL;
4035 struct sctp_sock *sp = sctp_sk(sk);
4036
4037 if (len < sizeof(struct sctp_assoc_value))
4038 return - EINVAL;
4039
4040 len = sizeof(struct sctp_assoc_value);
4041
4042 if (copy_from_user(&params, optval, len))
4043 return -EFAULT;
4044
4045 /* Get association, if assoc_id != 0 and the socket is a one
4046 * to many style socket, and an association was not found, then
4047 * the id was invalid.
4048 */
4049 asoc = sctp_id2assoc(sk, params.assoc_id);
4050 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4051 return -EINVAL;
4052
4053 if (asoc) {
4054 /* Fetch association values. */
4055 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
4056 params.assoc_value = jiffies_to_msecs(
4057 asoc->sackdelay);
4058 else
4059 params.assoc_value = 0;
4060 } else {
4061 /* Fetch socket values. */
4062 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
4063 params.assoc_value = sp->sackdelay;
4064 else
4065 params.assoc_value = 0;
4066 }
4067
4068 if (copy_to_user(optval, &params, len))
4069 return -EFAULT;
4070
4071 if (put_user(len, optlen))
4072 return -EFAULT;
4073
4074 return 0;
4075 }
4076
4077 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4078 *
4079 * Applications can specify protocol parameters for the default association
4080 * initialization. The option name argument to setsockopt() and getsockopt()
4081 * is SCTP_INITMSG.
4082 *
4083 * Setting initialization parameters is effective only on an unconnected
4084 * socket (for UDP-style sockets only future associations are effected
4085 * by the change). With TCP-style sockets, this option is inherited by
4086 * sockets derived from a listener socket.
4087 */
4088 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4089 {
4090 if (len < sizeof(struct sctp_initmsg))
4091 return -EINVAL;
4092 len = sizeof(struct sctp_initmsg);
4093 if (put_user(len, optlen))
4094 return -EFAULT;
4095 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4096 return -EFAULT;
4097 return 0;
4098 }
4099
4100 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4101 char __user *optval,
4102 int __user *optlen)
4103 {
4104 sctp_assoc_t id;
4105 struct sctp_association *asoc;
4106 struct list_head *pos;
4107 int cnt = 0;
4108
4109 if (len < sizeof(sctp_assoc_t))
4110 return -EINVAL;
4111
4112 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4113 return -EFAULT;
4114
4115 /* For UDP-style sockets, id specifies the association to query. */
4116 asoc = sctp_id2assoc(sk, id);
4117 if (!asoc)
4118 return -EINVAL;
4119
4120 list_for_each(pos, &asoc->peer.transport_addr_list) {
4121 cnt ++;
4122 }
4123
4124 return cnt;
4125 }
4126
4127 /*
4128 * Old API for getting list of peer addresses. Does not work for 32-bit
4129 * programs running on a 64-bit kernel
4130 */
4131 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4132 char __user *optval,
4133 int __user *optlen)
4134 {
4135 struct sctp_association *asoc;
4136 int cnt = 0;
4137 struct sctp_getaddrs_old getaddrs;
4138 struct sctp_transport *from;
4139 void __user *to;
4140 union sctp_addr temp;
4141 struct sctp_sock *sp = sctp_sk(sk);
4142 int addrlen;
4143
4144 if (len < sizeof(struct sctp_getaddrs_old))
4145 return -EINVAL;
4146
4147 len = sizeof(struct sctp_getaddrs_old);
4148
4149 if (copy_from_user(&getaddrs, optval, len))
4150 return -EFAULT;
4151
4152 if (getaddrs.addr_num <= 0) return -EINVAL;
4153
4154 /* For UDP-style sockets, id specifies the association to query. */
4155 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4156 if (!asoc)
4157 return -EINVAL;
4158
4159 to = (void __user *)getaddrs.addrs;
4160 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4161 transports) {
4162 memcpy(&temp, &from->ipaddr, sizeof(temp));
4163 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4164 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4165 if (copy_to_user(to, &temp, addrlen))
4166 return -EFAULT;
4167 to += addrlen ;
4168 cnt ++;
4169 if (cnt >= getaddrs.addr_num) break;
4170 }
4171 getaddrs.addr_num = cnt;
4172 if (put_user(len, optlen))
4173 return -EFAULT;
4174 if (copy_to_user(optval, &getaddrs, len))
4175 return -EFAULT;
4176
4177 return 0;
4178 }
4179
4180 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4181 char __user *optval, int __user *optlen)
4182 {
4183 struct sctp_association *asoc;
4184 int cnt = 0;
4185 struct sctp_getaddrs getaddrs;
4186 struct sctp_transport *from;
4187 void __user *to;
4188 union sctp_addr temp;
4189 struct sctp_sock *sp = sctp_sk(sk);
4190 int addrlen;
4191 size_t space_left;
4192 int bytes_copied;
4193
4194 if (len < sizeof(struct sctp_getaddrs))
4195 return -EINVAL;
4196
4197 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4198 return -EFAULT;
4199
4200 /* For UDP-style sockets, id specifies the association to query. */
4201 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4202 if (!asoc)
4203 return -EINVAL;
4204
4205 to = optval + offsetof(struct sctp_getaddrs,addrs);
4206 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4207
4208 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4209 transports) {
4210 memcpy(&temp, &from->ipaddr, sizeof(temp));
4211 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4212 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4213 if (space_left < addrlen)
4214 return -ENOMEM;
4215 if (copy_to_user(to, &temp, addrlen))
4216 return -EFAULT;
4217 to += addrlen;
4218 cnt++;
4219 space_left -= addrlen;
4220 }
4221
4222 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4223 return -EFAULT;
4224 bytes_copied = ((char __user *)to) - optval;
4225 if (put_user(bytes_copied, optlen))
4226 return -EFAULT;
4227
4228 return 0;
4229 }
4230
4231 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4232 char __user *optval,
4233 int __user *optlen)
4234 {
4235 sctp_assoc_t id;
4236 struct sctp_bind_addr *bp;
4237 struct sctp_association *asoc;
4238 struct sctp_sockaddr_entry *addr;
4239 int cnt = 0;
4240
4241 if (len < sizeof(sctp_assoc_t))
4242 return -EINVAL;
4243
4244 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4245 return -EFAULT;
4246
4247 /*
4248 * For UDP-style sockets, id specifies the association to query.
4249 * If the id field is set to the value '0' then the locally bound
4250 * addresses are returned without regard to any particular
4251 * association.
4252 */
4253 if (0 == id) {
4254 bp = &sctp_sk(sk)->ep->base.bind_addr;
4255 } else {
4256 asoc = sctp_id2assoc(sk, id);
4257 if (!asoc)
4258 return -EINVAL;
4259 bp = &asoc->base.bind_addr;
4260 }
4261
4262 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4263 * addresses from the global local address list.
4264 */
4265 if (sctp_list_single_entry(&bp->address_list)) {
4266 addr = list_entry(bp->address_list.next,
4267 struct sctp_sockaddr_entry, list);
4268 if (sctp_is_any(&addr->a)) {
4269 rcu_read_lock();
4270 list_for_each_entry_rcu(addr,
4271 &sctp_local_addr_list, list) {
4272 if (!addr->valid)
4273 continue;
4274
4275 if ((PF_INET == sk->sk_family) &&
4276 (AF_INET6 == addr->a.sa.sa_family))
4277 continue;
4278
4279 cnt++;
4280 }
4281 rcu_read_unlock();
4282 } else {
4283 cnt = 1;
4284 }
4285 goto done;
4286 }
4287
4288 /* Protection on the bound address list is not needed,
4289 * since in the socket option context we hold the socket lock,
4290 * so there is no way that the bound address list can change.
4291 */
4292 list_for_each_entry(addr, &bp->address_list, list) {
4293 cnt ++;
4294 }
4295 done:
4296 return cnt;
4297 }
4298
4299 /* Helper function that copies local addresses to user and returns the number
4300 * of addresses copied.
4301 */
4302 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4303 int max_addrs, void *to,
4304 int *bytes_copied)
4305 {
4306 struct sctp_sockaddr_entry *addr;
4307 union sctp_addr temp;
4308 int cnt = 0;
4309 int addrlen;
4310
4311 rcu_read_lock();
4312 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4313 if (!addr->valid)
4314 continue;
4315
4316 if ((PF_INET == sk->sk_family) &&
4317 (AF_INET6 == addr->a.sa.sa_family))
4318 continue;
4319 memcpy(&temp, &addr->a, sizeof(temp));
4320 if (!temp.v4.sin_port)
4321 temp.v4.sin_port = htons(port);
4322
4323 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4324 &temp);
4325 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4326 memcpy(to, &temp, addrlen);
4327
4328 to += addrlen;
4329 *bytes_copied += addrlen;
4330 cnt ++;
4331 if (cnt >= max_addrs) break;
4332 }
4333 rcu_read_unlock();
4334
4335 return cnt;
4336 }
4337
4338 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4339 size_t space_left, int *bytes_copied)
4340 {
4341 struct sctp_sockaddr_entry *addr;
4342 union sctp_addr temp;
4343 int cnt = 0;
4344 int addrlen;
4345
4346 rcu_read_lock();
4347 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4348 if (!addr->valid)
4349 continue;
4350
4351 if ((PF_INET == sk->sk_family) &&
4352 (AF_INET6 == addr->a.sa.sa_family))
4353 continue;
4354 memcpy(&temp, &addr->a, sizeof(temp));
4355 if (!temp.v4.sin_port)
4356 temp.v4.sin_port = htons(port);
4357
4358 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4359 &temp);
4360 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4361 if (space_left < addrlen) {
4362 cnt = -ENOMEM;
4363 break;
4364 }
4365 memcpy(to, &temp, addrlen);
4366
4367 to += addrlen;
4368 cnt ++;
4369 space_left -= addrlen;
4370 *bytes_copied += addrlen;
4371 }
4372 rcu_read_unlock();
4373
4374 return cnt;
4375 }
4376
4377 /* Old API for getting list of local addresses. Does not work for 32-bit
4378 * programs running on a 64-bit kernel
4379 */
4380 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4381 char __user *optval, int __user *optlen)
4382 {
4383 struct sctp_bind_addr *bp;
4384 struct sctp_association *asoc;
4385 int cnt = 0;
4386 struct sctp_getaddrs_old getaddrs;
4387 struct sctp_sockaddr_entry *addr;
4388 void __user *to;
4389 union sctp_addr temp;
4390 struct sctp_sock *sp = sctp_sk(sk);
4391 int addrlen;
4392 int err = 0;
4393 void *addrs;
4394 void *buf;
4395 int bytes_copied = 0;
4396
4397 if (len < sizeof(struct sctp_getaddrs_old))
4398 return -EINVAL;
4399
4400 len = sizeof(struct sctp_getaddrs_old);
4401 if (copy_from_user(&getaddrs, optval, len))
4402 return -EFAULT;
4403
4404 if (getaddrs.addr_num <= 0) return -EINVAL;
4405 /*
4406 * For UDP-style sockets, id specifies the association to query.
4407 * If the id field is set to the value '0' then the locally bound
4408 * addresses are returned without regard to any particular
4409 * association.
4410 */
4411 if (0 == getaddrs.assoc_id) {
4412 bp = &sctp_sk(sk)->ep->base.bind_addr;
4413 } else {
4414 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4415 if (!asoc)
4416 return -EINVAL;
4417 bp = &asoc->base.bind_addr;
4418 }
4419
4420 to = getaddrs.addrs;
4421
4422 /* Allocate space for a local instance of packed array to hold all
4423 * the data. We store addresses here first and then put write them
4424 * to the user in one shot.
4425 */
4426 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4427 GFP_KERNEL);
4428 if (!addrs)
4429 return -ENOMEM;
4430
4431 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4432 * addresses from the global local address list.
4433 */
4434 if (sctp_list_single_entry(&bp->address_list)) {
4435 addr = list_entry(bp->address_list.next,
4436 struct sctp_sockaddr_entry, list);
4437 if (sctp_is_any(&addr->a)) {
4438 cnt = sctp_copy_laddrs_old(sk, bp->port,
4439 getaddrs.addr_num,
4440 addrs, &bytes_copied);
4441 goto copy_getaddrs;
4442 }
4443 }
4444
4445 buf = addrs;
4446 /* Protection on the bound address list is not needed since
4447 * in the socket option context we hold a socket lock and
4448 * thus the bound address list can't change.
4449 */
4450 list_for_each_entry(addr, &bp->address_list, list) {
4451 memcpy(&temp, &addr->a, sizeof(temp));
4452 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4453 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4454 memcpy(buf, &temp, addrlen);
4455 buf += addrlen;
4456 bytes_copied += addrlen;
4457 cnt ++;
4458 if (cnt >= getaddrs.addr_num) break;
4459 }
4460
4461 copy_getaddrs:
4462 /* copy the entire address list into the user provided space */
4463 if (copy_to_user(to, addrs, bytes_copied)) {
4464 err = -EFAULT;
4465 goto error;
4466 }
4467
4468 /* copy the leading structure back to user */
4469 getaddrs.addr_num = cnt;
4470 if (copy_to_user(optval, &getaddrs, len))
4471 err = -EFAULT;
4472
4473 error:
4474 kfree(addrs);
4475 return err;
4476 }
4477
4478 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4479 char __user *optval, int __user *optlen)
4480 {
4481 struct sctp_bind_addr *bp;
4482 struct sctp_association *asoc;
4483 int cnt = 0;
4484 struct sctp_getaddrs getaddrs;
4485 struct sctp_sockaddr_entry *addr;
4486 void __user *to;
4487 union sctp_addr temp;
4488 struct sctp_sock *sp = sctp_sk(sk);
4489 int addrlen;
4490 int err = 0;
4491 size_t space_left;
4492 int bytes_copied = 0;
4493 void *addrs;
4494 void *buf;
4495
4496 if (len < sizeof(struct sctp_getaddrs))
4497 return -EINVAL;
4498
4499 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4500 return -EFAULT;
4501
4502 /*
4503 * For UDP-style sockets, id specifies the association to query.
4504 * If the id field is set to the value '0' then the locally bound
4505 * addresses are returned without regard to any particular
4506 * association.
4507 */
4508 if (0 == getaddrs.assoc_id) {
4509 bp = &sctp_sk(sk)->ep->base.bind_addr;
4510 } else {
4511 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4512 if (!asoc)
4513 return -EINVAL;
4514 bp = &asoc->base.bind_addr;
4515 }
4516
4517 to = optval + offsetof(struct sctp_getaddrs,addrs);
4518 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4519
4520 addrs = kmalloc(space_left, GFP_KERNEL);
4521 if (!addrs)
4522 return -ENOMEM;
4523
4524 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4525 * addresses from the global local address list.
4526 */
4527 if (sctp_list_single_entry(&bp->address_list)) {
4528 addr = list_entry(bp->address_list.next,
4529 struct sctp_sockaddr_entry, list);
4530 if (sctp_is_any(&addr->a)) {
4531 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4532 space_left, &bytes_copied);
4533 if (cnt < 0) {
4534 err = cnt;
4535 goto out;
4536 }
4537 goto copy_getaddrs;
4538 }
4539 }
4540
4541 buf = addrs;
4542 /* Protection on the bound address list is not needed since
4543 * in the socket option context we hold a socket lock and
4544 * thus the bound address list can't change.
4545 */
4546 list_for_each_entry(addr, &bp->address_list, list) {
4547 memcpy(&temp, &addr->a, sizeof(temp));
4548 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4549 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4550 if (space_left < addrlen) {
4551 err = -ENOMEM; /*fixme: right error?*/
4552 goto out;
4553 }
4554 memcpy(buf, &temp, addrlen);
4555 buf += addrlen;
4556 bytes_copied += addrlen;
4557 cnt ++;
4558 space_left -= addrlen;
4559 }
4560
4561 copy_getaddrs:
4562 if (copy_to_user(to, addrs, bytes_copied)) {
4563 err = -EFAULT;
4564 goto out;
4565 }
4566 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4567 err = -EFAULT;
4568 goto out;
4569 }
4570 if (put_user(bytes_copied, optlen))
4571 err = -EFAULT;
4572 out:
4573 kfree(addrs);
4574 return err;
4575 }
4576
4577 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4578 *
4579 * Requests that the local SCTP stack use the enclosed peer address as
4580 * the association primary. The enclosed address must be one of the
4581 * association peer's addresses.
4582 */
4583 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4584 char __user *optval, int __user *optlen)
4585 {
4586 struct sctp_prim prim;
4587 struct sctp_association *asoc;
4588 struct sctp_sock *sp = sctp_sk(sk);
4589
4590 if (len < sizeof(struct sctp_prim))
4591 return -EINVAL;
4592
4593 len = sizeof(struct sctp_prim);
4594
4595 if (copy_from_user(&prim, optval, len))
4596 return -EFAULT;
4597
4598 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4599 if (!asoc)
4600 return -EINVAL;
4601
4602 if (!asoc->peer.primary_path)
4603 return -ENOTCONN;
4604
4605 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4606 asoc->peer.primary_path->af_specific->sockaddr_len);
4607
4608 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4609 (union sctp_addr *)&prim.ssp_addr);
4610
4611 if (put_user(len, optlen))
4612 return -EFAULT;
4613 if (copy_to_user(optval, &prim, len))
4614 return -EFAULT;
4615
4616 return 0;
4617 }
4618
4619 /*
4620 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4621 *
4622 * Requests that the local endpoint set the specified Adaptation Layer
4623 * Indication parameter for all future INIT and INIT-ACK exchanges.
4624 */
4625 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4626 char __user *optval, int __user *optlen)
4627 {
4628 struct sctp_setadaptation adaptation;
4629
4630 if (len < sizeof(struct sctp_setadaptation))
4631 return -EINVAL;
4632
4633 len = sizeof(struct sctp_setadaptation);
4634
4635 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4636
4637 if (put_user(len, optlen))
4638 return -EFAULT;
4639 if (copy_to_user(optval, &adaptation, len))
4640 return -EFAULT;
4641
4642 return 0;
4643 }
4644
4645 /*
4646 *
4647 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4648 *
4649 * Applications that wish to use the sendto() system call may wish to
4650 * specify a default set of parameters that would normally be supplied
4651 * through the inclusion of ancillary data. This socket option allows
4652 * such an application to set the default sctp_sndrcvinfo structure.
4653
4654
4655 * The application that wishes to use this socket option simply passes
4656 * in to this call the sctp_sndrcvinfo structure defined in Section
4657 * 5.2.2) The input parameters accepted by this call include
4658 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4659 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4660 * to this call if the caller is using the UDP model.
4661 *
4662 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4663 */
4664 static int sctp_getsockopt_default_send_param(struct sock *sk,
4665 int len, char __user *optval,
4666 int __user *optlen)
4667 {
4668 struct sctp_sndrcvinfo info;
4669 struct sctp_association *asoc;
4670 struct sctp_sock *sp = sctp_sk(sk);
4671
4672 if (len < sizeof(struct sctp_sndrcvinfo))
4673 return -EINVAL;
4674
4675 len = sizeof(struct sctp_sndrcvinfo);
4676
4677 if (copy_from_user(&info, optval, len))
4678 return -EFAULT;
4679
4680 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4681 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4682 return -EINVAL;
4683
4684 if (asoc) {
4685 info.sinfo_stream = asoc->default_stream;
4686 info.sinfo_flags = asoc->default_flags;
4687 info.sinfo_ppid = asoc->default_ppid;
4688 info.sinfo_context = asoc->default_context;
4689 info.sinfo_timetolive = asoc->default_timetolive;
4690 } else {
4691 info.sinfo_stream = sp->default_stream;
4692 info.sinfo_flags = sp->default_flags;
4693 info.sinfo_ppid = sp->default_ppid;
4694 info.sinfo_context = sp->default_context;
4695 info.sinfo_timetolive = sp->default_timetolive;
4696 }
4697
4698 if (put_user(len, optlen))
4699 return -EFAULT;
4700 if (copy_to_user(optval, &info, len))
4701 return -EFAULT;
4702
4703 return 0;
4704 }
4705
4706 /*
4707 *
4708 * 7.1.5 SCTP_NODELAY
4709 *
4710 * Turn on/off any Nagle-like algorithm. This means that packets are
4711 * generally sent as soon as possible and no unnecessary delays are
4712 * introduced, at the cost of more packets in the network. Expects an
4713 * integer boolean flag.
4714 */
4715
4716 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4717 char __user *optval, int __user *optlen)
4718 {
4719 int val;
4720
4721 if (len < sizeof(int))
4722 return -EINVAL;
4723
4724 len = sizeof(int);
4725 val = (sctp_sk(sk)->nodelay == 1);
4726 if (put_user(len, optlen))
4727 return -EFAULT;
4728 if (copy_to_user(optval, &val, len))
4729 return -EFAULT;
4730 return 0;
4731 }
4732
4733 /*
4734 *
4735 * 7.1.1 SCTP_RTOINFO
4736 *
4737 * The protocol parameters used to initialize and bound retransmission
4738 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4739 * and modify these parameters.
4740 * All parameters are time values, in milliseconds. A value of 0, when
4741 * modifying the parameters, indicates that the current value should not
4742 * be changed.
4743 *
4744 */
4745 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4746 char __user *optval,
4747 int __user *optlen) {
4748 struct sctp_rtoinfo rtoinfo;
4749 struct sctp_association *asoc;
4750
4751 if (len < sizeof (struct sctp_rtoinfo))
4752 return -EINVAL;
4753
4754 len = sizeof(struct sctp_rtoinfo);
4755
4756 if (copy_from_user(&rtoinfo, optval, len))
4757 return -EFAULT;
4758
4759 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4760
4761 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4762 return -EINVAL;
4763
4764 /* Values corresponding to the specific association. */
4765 if (asoc) {
4766 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4767 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4768 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4769 } else {
4770 /* Values corresponding to the endpoint. */
4771 struct sctp_sock *sp = sctp_sk(sk);
4772
4773 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4774 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4775 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4776 }
4777
4778 if (put_user(len, optlen))
4779 return -EFAULT;
4780
4781 if (copy_to_user(optval, &rtoinfo, len))
4782 return -EFAULT;
4783
4784 return 0;
4785 }
4786
4787 /*
4788 *
4789 * 7.1.2 SCTP_ASSOCINFO
4790 *
4791 * This option is used to tune the maximum retransmission attempts
4792 * of the association.
4793 * Returns an error if the new association retransmission value is
4794 * greater than the sum of the retransmission value of the peer.
4795 * See [SCTP] for more information.
4796 *
4797 */
4798 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4799 char __user *optval,
4800 int __user *optlen)
4801 {
4802
4803 struct sctp_assocparams assocparams;
4804 struct sctp_association *asoc;
4805 struct list_head *pos;
4806 int cnt = 0;
4807
4808 if (len < sizeof (struct sctp_assocparams))
4809 return -EINVAL;
4810
4811 len = sizeof(struct sctp_assocparams);
4812
4813 if (copy_from_user(&assocparams, optval, len))
4814 return -EFAULT;
4815
4816 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4817
4818 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4819 return -EINVAL;
4820
4821 /* Values correspoinding to the specific association */
4822 if (asoc) {
4823 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4824 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4825 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4826 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4827 * 1000) +
4828 (asoc->cookie_life.tv_usec
4829 / 1000);
4830
4831 list_for_each(pos, &asoc->peer.transport_addr_list) {
4832 cnt ++;
4833 }
4834
4835 assocparams.sasoc_number_peer_destinations = cnt;
4836 } else {
4837 /* Values corresponding to the endpoint */
4838 struct sctp_sock *sp = sctp_sk(sk);
4839
4840 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4841 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4842 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4843 assocparams.sasoc_cookie_life =
4844 sp->assocparams.sasoc_cookie_life;
4845 assocparams.sasoc_number_peer_destinations =
4846 sp->assocparams.
4847 sasoc_number_peer_destinations;
4848 }
4849
4850 if (put_user(len, optlen))
4851 return -EFAULT;
4852
4853 if (copy_to_user(optval, &assocparams, len))
4854 return -EFAULT;
4855
4856 return 0;
4857 }
4858
4859 /*
4860 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4861 *
4862 * This socket option is a boolean flag which turns on or off mapped V4
4863 * addresses. If this option is turned on and the socket is type
4864 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4865 * If this option is turned off, then no mapping will be done of V4
4866 * addresses and a user will receive both PF_INET6 and PF_INET type
4867 * addresses on the socket.
4868 */
4869 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4870 char __user *optval, int __user *optlen)
4871 {
4872 int val;
4873 struct sctp_sock *sp = sctp_sk(sk);
4874
4875 if (len < sizeof(int))
4876 return -EINVAL;
4877
4878 len = sizeof(int);
4879 val = sp->v4mapped;
4880 if (put_user(len, optlen))
4881 return -EFAULT;
4882 if (copy_to_user(optval, &val, len))
4883 return -EFAULT;
4884
4885 return 0;
4886 }
4887
4888 /*
4889 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4890 * (chapter and verse is quoted at sctp_setsockopt_context())
4891 */
4892 static int sctp_getsockopt_context(struct sock *sk, int len,
4893 char __user *optval, int __user *optlen)
4894 {
4895 struct sctp_assoc_value params;
4896 struct sctp_sock *sp;
4897 struct sctp_association *asoc;
4898
4899 if (len < sizeof(struct sctp_assoc_value))
4900 return -EINVAL;
4901
4902 len = sizeof(struct sctp_assoc_value);
4903
4904 if (copy_from_user(&params, optval, len))
4905 return -EFAULT;
4906
4907 sp = sctp_sk(sk);
4908
4909 if (params.assoc_id != 0) {
4910 asoc = sctp_id2assoc(sk, params.assoc_id);
4911 if (!asoc)
4912 return -EINVAL;
4913 params.assoc_value = asoc->default_rcv_context;
4914 } else {
4915 params.assoc_value = sp->default_rcv_context;
4916 }
4917
4918 if (put_user(len, optlen))
4919 return -EFAULT;
4920 if (copy_to_user(optval, &params, len))
4921 return -EFAULT;
4922
4923 return 0;
4924 }
4925
4926 /*
4927 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4928 *
4929 * This socket option specifies the maximum size to put in any outgoing
4930 * SCTP chunk. If a message is larger than this size it will be
4931 * fragmented by SCTP into the specified size. Note that the underlying
4932 * SCTP implementation may fragment into smaller sized chunks when the
4933 * PMTU of the underlying association is smaller than the value set by
4934 * the user.
4935 */
4936 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4937 char __user *optval, int __user *optlen)
4938 {
4939 int val;
4940
4941 if (len < sizeof(int))
4942 return -EINVAL;
4943
4944 len = sizeof(int);
4945
4946 val = sctp_sk(sk)->user_frag;
4947 if (put_user(len, optlen))
4948 return -EFAULT;
4949 if (copy_to_user(optval, &val, len))
4950 return -EFAULT;
4951
4952 return 0;
4953 }
4954
4955 /*
4956 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4957 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4958 */
4959 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4960 char __user *optval, int __user *optlen)
4961 {
4962 int val;
4963
4964 if (len < sizeof(int))
4965 return -EINVAL;
4966
4967 len = sizeof(int);
4968
4969 val = sctp_sk(sk)->frag_interleave;
4970 if (put_user(len, optlen))
4971 return -EFAULT;
4972 if (copy_to_user(optval, &val, len))
4973 return -EFAULT;
4974
4975 return 0;
4976 }
4977
4978 /*
4979 * 7.1.25. Set or Get the sctp partial delivery point
4980 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4981 */
4982 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4983 char __user *optval,
4984 int __user *optlen)
4985 {
4986 u32 val;
4987
4988 if (len < sizeof(u32))
4989 return -EINVAL;
4990
4991 len = sizeof(u32);
4992
4993 val = sctp_sk(sk)->pd_point;
4994 if (put_user(len, optlen))
4995 return -EFAULT;
4996 if (copy_to_user(optval, &val, len))
4997 return -EFAULT;
4998
4999 return -ENOTSUPP;
5000 }
5001
5002 /*
5003 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5004 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5005 */
5006 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5007 char __user *optval,
5008 int __user *optlen)
5009 {
5010 struct sctp_assoc_value params;
5011 struct sctp_sock *sp;
5012 struct sctp_association *asoc;
5013
5014 if (len < sizeof(int))
5015 return -EINVAL;
5016
5017 if (len == sizeof(int)) {
5018 printk(KERN_WARNING
5019 "SCTP: Use of int in max_burst socket option deprecated\n");
5020 printk(KERN_WARNING
5021 "SCTP: Use struct sctp_assoc_value instead\n");
5022 params.assoc_id = 0;
5023 } else if (len == sizeof (struct sctp_assoc_value)) {
5024 if (copy_from_user(&params, optval, len))
5025 return -EFAULT;
5026 } else
5027 return -EINVAL;
5028
5029 sp = sctp_sk(sk);
5030
5031 if (params.assoc_id != 0) {
5032 asoc = sctp_id2assoc(sk, params.assoc_id);
5033 if (!asoc)
5034 return -EINVAL;
5035 params.assoc_value = asoc->max_burst;
5036 } else
5037 params.assoc_value = sp->max_burst;
5038
5039 if (len == sizeof(int)) {
5040 if (copy_to_user(optval, &params.assoc_value, len))
5041 return -EFAULT;
5042 } else {
5043 if (copy_to_user(optval, &params, len))
5044 return -EFAULT;
5045 }
5046
5047 return 0;
5048
5049 }
5050
5051 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5052 char __user *optval, int __user *optlen)
5053 {
5054 struct sctp_hmac_algo_param *hmacs;
5055 __u16 param_len;
5056
5057 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5058 param_len = ntohs(hmacs->param_hdr.length);
5059
5060 if (len < param_len)
5061 return -EINVAL;
5062 if (put_user(len, optlen))
5063 return -EFAULT;
5064 if (copy_to_user(optval, hmacs->hmac_ids, len))
5065 return -EFAULT;
5066
5067 return 0;
5068 }
5069
5070 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5071 char __user *optval, int __user *optlen)
5072 {
5073 struct sctp_authkeyid val;
5074 struct sctp_association *asoc;
5075
5076 if (len < sizeof(struct sctp_authkeyid))
5077 return -EINVAL;
5078 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5079 return -EFAULT;
5080
5081 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5082 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5083 return -EINVAL;
5084
5085 if (asoc)
5086 val.scact_keynumber = asoc->active_key_id;
5087 else
5088 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5089
5090 return 0;
5091 }
5092
5093 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5094 char __user *optval, int __user *optlen)
5095 {
5096 struct sctp_authchunks __user *p = (void __user *)optval;
5097 struct sctp_authchunks val;
5098 struct sctp_association *asoc;
5099 struct sctp_chunks_param *ch;
5100 u32 num_chunks;
5101 char __user *to;
5102
5103 if (len <= sizeof(struct sctp_authchunks))
5104 return -EINVAL;
5105
5106 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5107 return -EFAULT;
5108
5109 to = p->gauth_chunks;
5110 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5111 if (!asoc)
5112 return -EINVAL;
5113
5114 ch = asoc->peer.peer_chunks;
5115
5116 /* See if the user provided enough room for all the data */
5117 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5118 if (len < num_chunks)
5119 return -EINVAL;
5120
5121 len = num_chunks;
5122 if (put_user(len, optlen))
5123 return -EFAULT;
5124 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5125 return -EFAULT;
5126 if (copy_to_user(to, ch->chunks, len))
5127 return -EFAULT;
5128
5129 return 0;
5130 }
5131
5132 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5133 char __user *optval, int __user *optlen)
5134 {
5135 struct sctp_authchunks __user *p = (void __user *)optval;
5136 struct sctp_authchunks val;
5137 struct sctp_association *asoc;
5138 struct sctp_chunks_param *ch;
5139 u32 num_chunks;
5140 char __user *to;
5141
5142 if (len <= sizeof(struct sctp_authchunks))
5143 return -EINVAL;
5144
5145 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks)))
5146 return -EFAULT;
5147
5148 to = p->gauth_chunks;
5149 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5150 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5151 return -EINVAL;
5152
5153 if (asoc)
5154 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5155 else
5156 ch = sctp_sk(sk)->ep->auth_chunk_list;
5157
5158 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5159 if (len < num_chunks)
5160 return -EINVAL;
5161
5162 len = num_chunks;
5163 if (put_user(len, optlen))
5164 return -EFAULT;
5165 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5166 return -EFAULT;
5167 if (copy_to_user(to, ch->chunks, len))
5168 return -EFAULT;
5169
5170 return 0;
5171 }
5172
5173 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5174 char __user *optval, int __user *optlen)
5175 {
5176 int retval = 0;
5177 int len;
5178
5179 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5180 sk, optname);
5181
5182 /* I can hardly begin to describe how wrong this is. This is
5183 * so broken as to be worse than useless. The API draft
5184 * REALLY is NOT helpful here... I am not convinced that the
5185 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5186 * are at all well-founded.
5187 */
5188 if (level != SOL_SCTP) {
5189 struct sctp_af *af = sctp_sk(sk)->pf->af;
5190
5191 retval = af->getsockopt(sk, level, optname, optval, optlen);
5192 return retval;
5193 }
5194
5195 if (get_user(len, optlen))
5196 return -EFAULT;
5197
5198 sctp_lock_sock(sk);
5199
5200 switch (optname) {
5201 case SCTP_STATUS:
5202 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5203 break;
5204 case SCTP_DISABLE_FRAGMENTS:
5205 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5206 optlen);
5207 break;
5208 case SCTP_EVENTS:
5209 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5210 break;
5211 case SCTP_AUTOCLOSE:
5212 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5213 break;
5214 case SCTP_SOCKOPT_PEELOFF:
5215 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5216 break;
5217 case SCTP_PEER_ADDR_PARAMS:
5218 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5219 optlen);
5220 break;
5221 case SCTP_DELAYED_ACK_TIME:
5222 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
5223 optlen);
5224 break;
5225 case SCTP_INITMSG:
5226 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5227 break;
5228 case SCTP_GET_PEER_ADDRS_NUM_OLD:
5229 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5230 optlen);
5231 break;
5232 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5233 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5234 optlen);
5235 break;
5236 case SCTP_GET_PEER_ADDRS_OLD:
5237 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5238 optlen);
5239 break;
5240 case SCTP_GET_LOCAL_ADDRS_OLD:
5241 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5242 optlen);
5243 break;
5244 case SCTP_GET_PEER_ADDRS:
5245 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5246 optlen);
5247 break;
5248 case SCTP_GET_LOCAL_ADDRS:
5249 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5250 optlen);
5251 break;
5252 case SCTP_DEFAULT_SEND_PARAM:
5253 retval = sctp_getsockopt_default_send_param(sk, len,
5254 optval, optlen);
5255 break;
5256 case SCTP_PRIMARY_ADDR:
5257 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5258 break;
5259 case SCTP_NODELAY:
5260 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5261 break;
5262 case SCTP_RTOINFO:
5263 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5264 break;
5265 case SCTP_ASSOCINFO:
5266 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5267 break;
5268 case SCTP_I_WANT_MAPPED_V4_ADDR:
5269 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5270 break;
5271 case SCTP_MAXSEG:
5272 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5273 break;
5274 case SCTP_GET_PEER_ADDR_INFO:
5275 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5276 optlen);
5277 break;
5278 case SCTP_ADAPTATION_LAYER:
5279 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5280 optlen);
5281 break;
5282 case SCTP_CONTEXT:
5283 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5284 break;
5285 case SCTP_FRAGMENT_INTERLEAVE:
5286 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5287 optlen);
5288 break;
5289 case SCTP_PARTIAL_DELIVERY_POINT:
5290 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5291 optlen);
5292 break;
5293 case SCTP_MAX_BURST:
5294 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5295 break;
5296 case SCTP_AUTH_KEY:
5297 case SCTP_AUTH_CHUNK:
5298 case SCTP_AUTH_DELETE_KEY:
5299 retval = -EOPNOTSUPP;
5300 break;
5301 case SCTP_HMAC_IDENT:
5302 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5303 break;
5304 case SCTP_AUTH_ACTIVE_KEY:
5305 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5306 break;
5307 case SCTP_PEER_AUTH_CHUNKS:
5308 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5309 optlen);
5310 break;
5311 case SCTP_LOCAL_AUTH_CHUNKS:
5312 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5313 optlen);
5314 break;
5315 default:
5316 retval = -ENOPROTOOPT;
5317 break;
5318 }
5319
5320 sctp_release_sock(sk);
5321 return retval;
5322 }
5323
5324 static void sctp_hash(struct sock *sk)
5325 {
5326 /* STUB */
5327 }
5328
5329 static void sctp_unhash(struct sock *sk)
5330 {
5331 /* STUB */
5332 }
5333
5334 /* Check if port is acceptable. Possibly find first available port.
5335 *
5336 * The port hash table (contained in the 'global' SCTP protocol storage
5337 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5338 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5339 * list (the list number is the port number hashed out, so as you
5340 * would expect from a hash function, all the ports in a given list have
5341 * such a number that hashes out to the same list number; you were
5342 * expecting that, right?); so each list has a set of ports, with a
5343 * link to the socket (struct sock) that uses it, the port number and
5344 * a fastreuse flag (FIXME: NPI ipg).
5345 */
5346 static struct sctp_bind_bucket *sctp_bucket_create(
5347 struct sctp_bind_hashbucket *head, unsigned short snum);
5348
5349 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5350 {
5351 struct sctp_bind_hashbucket *head; /* hash list */
5352 struct sctp_bind_bucket *pp; /* hash list port iterator */
5353 struct hlist_node *node;
5354 unsigned short snum;
5355 int ret;
5356
5357 snum = ntohs(addr->v4.sin_port);
5358
5359 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5360 sctp_local_bh_disable();
5361
5362 if (snum == 0) {
5363 /* Search for an available port. */
5364 int low, high, remaining, index;
5365 unsigned int rover;
5366
5367 inet_get_local_port_range(&low, &high);
5368 remaining = (high - low) + 1;
5369 rover = net_random() % remaining + low;
5370
5371 do {
5372 rover++;
5373 if ((rover < low) || (rover > high))
5374 rover = low;
5375 index = sctp_phashfn(rover);
5376 head = &sctp_port_hashtable[index];
5377 sctp_spin_lock(&head->lock);
5378 sctp_for_each_hentry(pp, node, &head->chain)
5379 if (pp->port == rover)
5380 goto next;
5381 break;
5382 next:
5383 sctp_spin_unlock(&head->lock);
5384 } while (--remaining > 0);
5385
5386 /* Exhausted local port range during search? */
5387 ret = 1;
5388 if (remaining <= 0)
5389 goto fail;
5390
5391 /* OK, here is the one we will use. HEAD (the port
5392 * hash table list entry) is non-NULL and we hold it's
5393 * mutex.
5394 */
5395 snum = rover;
5396 } else {
5397 /* We are given an specific port number; we verify
5398 * that it is not being used. If it is used, we will
5399 * exahust the search in the hash list corresponding
5400 * to the port number (snum) - we detect that with the
5401 * port iterator, pp being NULL.
5402 */
5403 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5404 sctp_spin_lock(&head->lock);
5405 sctp_for_each_hentry(pp, node, &head->chain) {
5406 if (pp->port == snum)
5407 goto pp_found;
5408 }
5409 }
5410 pp = NULL;
5411 goto pp_not_found;
5412 pp_found:
5413 if (!hlist_empty(&pp->owner)) {
5414 /* We had a port hash table hit - there is an
5415 * available port (pp != NULL) and it is being
5416 * used by other socket (pp->owner not empty); that other
5417 * socket is going to be sk2.
5418 */
5419 int reuse = sk->sk_reuse;
5420 struct sock *sk2;
5421 struct hlist_node *node;
5422
5423 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5424 if (pp->fastreuse && sk->sk_reuse &&
5425 sk->sk_state != SCTP_SS_LISTENING)
5426 goto success;
5427
5428 /* Run through the list of sockets bound to the port
5429 * (pp->port) [via the pointers bind_next and
5430 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5431 * we get the endpoint they describe and run through
5432 * the endpoint's list of IP (v4 or v6) addresses,
5433 * comparing each of the addresses with the address of
5434 * the socket sk. If we find a match, then that means
5435 * that this port/socket (sk) combination are already
5436 * in an endpoint.
5437 */
5438 sk_for_each_bound(sk2, node, &pp->owner) {
5439 struct sctp_endpoint *ep2;
5440 ep2 = sctp_sk(sk2)->ep;
5441
5442 if (reuse && sk2->sk_reuse &&
5443 sk2->sk_state != SCTP_SS_LISTENING)
5444 continue;
5445
5446 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5447 sctp_sk(sk))) {
5448 ret = (long)sk2;
5449 goto fail_unlock;
5450 }
5451 }
5452 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5453 }
5454 pp_not_found:
5455 /* If there was a hash table miss, create a new port. */
5456 ret = 1;
5457 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5458 goto fail_unlock;
5459
5460 /* In either case (hit or miss), make sure fastreuse is 1 only
5461 * if sk->sk_reuse is too (that is, if the caller requested
5462 * SO_REUSEADDR on this socket -sk-).
5463 */
5464 if (hlist_empty(&pp->owner)) {
5465 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5466 pp->fastreuse = 1;
5467 else
5468 pp->fastreuse = 0;
5469 } else if (pp->fastreuse &&
5470 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5471 pp->fastreuse = 0;
5472
5473 /* We are set, so fill up all the data in the hash table
5474 * entry, tie the socket list information with the rest of the
5475 * sockets FIXME: Blurry, NPI (ipg).
5476 */
5477 success:
5478 if (!sctp_sk(sk)->bind_hash) {
5479 inet_sk(sk)->num = snum;
5480 sk_add_bind_node(sk, &pp->owner);
5481 sctp_sk(sk)->bind_hash = pp;
5482 }
5483 ret = 0;
5484
5485 fail_unlock:
5486 sctp_spin_unlock(&head->lock);
5487
5488 fail:
5489 sctp_local_bh_enable();
5490 return ret;
5491 }
5492
5493 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5494 * port is requested.
5495 */
5496 static int sctp_get_port(struct sock *sk, unsigned short snum)
5497 {
5498 long ret;
5499 union sctp_addr addr;
5500 struct sctp_af *af = sctp_sk(sk)->pf->af;
5501
5502 /* Set up a dummy address struct from the sk. */
5503 af->from_sk(&addr, sk);
5504 addr.v4.sin_port = htons(snum);
5505
5506 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5507 ret = sctp_get_port_local(sk, &addr);
5508
5509 return (ret ? 1 : 0);
5510 }
5511
5512 /*
5513 * 3.1.3 listen() - UDP Style Syntax
5514 *
5515 * By default, new associations are not accepted for UDP style sockets.
5516 * An application uses listen() to mark a socket as being able to
5517 * accept new associations.
5518 */
5519 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5520 {
5521 struct sctp_sock *sp = sctp_sk(sk);
5522 struct sctp_endpoint *ep = sp->ep;
5523
5524 /* Only UDP style sockets that are not peeled off are allowed to
5525 * listen().
5526 */
5527 if (!sctp_style(sk, UDP))
5528 return -EINVAL;
5529
5530 /* If backlog is zero, disable listening. */
5531 if (!backlog) {
5532 if (sctp_sstate(sk, CLOSED))
5533 return 0;
5534
5535 sctp_unhash_endpoint(ep);
5536 sk->sk_state = SCTP_SS_CLOSED;
5537 return 0;
5538 }
5539
5540 /* Return if we are already listening. */
5541 if (sctp_sstate(sk, LISTENING))
5542 return 0;
5543
5544 /*
5545 * If a bind() or sctp_bindx() is not called prior to a listen()
5546 * call that allows new associations to be accepted, the system
5547 * picks an ephemeral port and will choose an address set equivalent
5548 * to binding with a wildcard address.
5549 *
5550 * This is not currently spelled out in the SCTP sockets
5551 * extensions draft, but follows the practice as seen in TCP
5552 * sockets.
5553 *
5554 * Additionally, turn off fastreuse flag since we are not listening
5555 */
5556 sk->sk_state = SCTP_SS_LISTENING;
5557 if (!ep->base.bind_addr.port) {
5558 if (sctp_autobind(sk))
5559 return -EAGAIN;
5560 } else
5561 sctp_sk(sk)->bind_hash->fastreuse = 0;
5562
5563 sctp_hash_endpoint(ep);
5564 return 0;
5565 }
5566
5567 /*
5568 * 4.1.3 listen() - TCP Style Syntax
5569 *
5570 * Applications uses listen() to ready the SCTP endpoint for accepting
5571 * inbound associations.
5572 */
5573 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5574 {
5575 struct sctp_sock *sp = sctp_sk(sk);
5576 struct sctp_endpoint *ep = sp->ep;
5577
5578 /* If backlog is zero, disable listening. */
5579 if (!backlog) {
5580 if (sctp_sstate(sk, CLOSED))
5581 return 0;
5582
5583 sctp_unhash_endpoint(ep);
5584 sk->sk_state = SCTP_SS_CLOSED;
5585 return 0;
5586 }
5587
5588 if (sctp_sstate(sk, LISTENING))
5589 return 0;
5590
5591 /*
5592 * If a bind() or sctp_bindx() is not called prior to a listen()
5593 * call that allows new associations to be accepted, the system
5594 * picks an ephemeral port and will choose an address set equivalent
5595 * to binding with a wildcard address.
5596 *
5597 * This is not currently spelled out in the SCTP sockets
5598 * extensions draft, but follows the practice as seen in TCP
5599 * sockets.
5600 */
5601 sk->sk_state = SCTP_SS_LISTENING;
5602 if (!ep->base.bind_addr.port) {
5603 if (sctp_autobind(sk))
5604 return -EAGAIN;
5605 } else
5606 sctp_sk(sk)->bind_hash->fastreuse = 0;
5607
5608 sk->sk_max_ack_backlog = backlog;
5609 sctp_hash_endpoint(ep);
5610 return 0;
5611 }
5612
5613 /*
5614 * Move a socket to LISTENING state.
5615 */
5616 int sctp_inet_listen(struct socket *sock, int backlog)
5617 {
5618 struct sock *sk = sock->sk;
5619 struct crypto_hash *tfm = NULL;
5620 int err = -EINVAL;
5621
5622 if (unlikely(backlog < 0))
5623 goto out;
5624
5625 sctp_lock_sock(sk);
5626
5627 if (sock->state != SS_UNCONNECTED)
5628 goto out;
5629
5630 /* Allocate HMAC for generating cookie. */
5631 if (sctp_hmac_alg) {
5632 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5633 if (IS_ERR(tfm)) {
5634 if (net_ratelimit()) {
5635 printk(KERN_INFO
5636 "SCTP: failed to load transform for %s: %ld\n",
5637 sctp_hmac_alg, PTR_ERR(tfm));
5638 }
5639 err = -ENOSYS;
5640 goto out;
5641 }
5642 }
5643
5644 switch (sock->type) {
5645 case SOCK_SEQPACKET:
5646 err = sctp_seqpacket_listen(sk, backlog);
5647 break;
5648 case SOCK_STREAM:
5649 err = sctp_stream_listen(sk, backlog);
5650 break;
5651 default:
5652 break;
5653 }
5654
5655 if (err)
5656 goto cleanup;
5657
5658 /* Store away the transform reference. */
5659 sctp_sk(sk)->hmac = tfm;
5660 out:
5661 sctp_release_sock(sk);
5662 return err;
5663 cleanup:
5664 crypto_free_hash(tfm);
5665 goto out;
5666 }
5667
5668 /*
5669 * This function is done by modeling the current datagram_poll() and the
5670 * tcp_poll(). Note that, based on these implementations, we don't
5671 * lock the socket in this function, even though it seems that,
5672 * ideally, locking or some other mechanisms can be used to ensure
5673 * the integrity of the counters (sndbuf and wmem_alloc) used
5674 * in this place. We assume that we don't need locks either until proven
5675 * otherwise.
5676 *
5677 * Another thing to note is that we include the Async I/O support
5678 * here, again, by modeling the current TCP/UDP code. We don't have
5679 * a good way to test with it yet.
5680 */
5681 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5682 {
5683 struct sock *sk = sock->sk;
5684 struct sctp_sock *sp = sctp_sk(sk);
5685 unsigned int mask;
5686
5687 poll_wait(file, sk->sk_sleep, wait);
5688
5689 /* A TCP-style listening socket becomes readable when the accept queue
5690 * is not empty.
5691 */
5692 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5693 return (!list_empty(&sp->ep->asocs)) ?
5694 (POLLIN | POLLRDNORM) : 0;
5695
5696 mask = 0;
5697
5698 /* Is there any exceptional events? */
5699 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5700 mask |= POLLERR;
5701 if (sk->sk_shutdown & RCV_SHUTDOWN)
5702 mask |= POLLRDHUP;
5703 if (sk->sk_shutdown == SHUTDOWN_MASK)
5704 mask |= POLLHUP;
5705
5706 /* Is it readable? Reconsider this code with TCP-style support. */
5707 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5708 (sk->sk_shutdown & RCV_SHUTDOWN))
5709 mask |= POLLIN | POLLRDNORM;
5710
5711 /* The association is either gone or not ready. */
5712 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5713 return mask;
5714
5715 /* Is it writable? */
5716 if (sctp_writeable(sk)) {
5717 mask |= POLLOUT | POLLWRNORM;
5718 } else {
5719 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5720 /*
5721 * Since the socket is not locked, the buffer
5722 * might be made available after the writeable check and
5723 * before the bit is set. This could cause a lost I/O
5724 * signal. tcp_poll() has a race breaker for this race
5725 * condition. Based on their implementation, we put
5726 * in the following code to cover it as well.
5727 */
5728 if (sctp_writeable(sk))
5729 mask |= POLLOUT | POLLWRNORM;
5730 }
5731 return mask;
5732 }
5733
5734 /********************************************************************
5735 * 2nd Level Abstractions
5736 ********************************************************************/
5737
5738 static struct sctp_bind_bucket *sctp_bucket_create(
5739 struct sctp_bind_hashbucket *head, unsigned short snum)
5740 {
5741 struct sctp_bind_bucket *pp;
5742
5743 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5744 if (pp) {
5745 SCTP_DBG_OBJCNT_INC(bind_bucket);
5746 pp->port = snum;
5747 pp->fastreuse = 0;
5748 INIT_HLIST_HEAD(&pp->owner);
5749 hlist_add_head(&pp->node, &head->chain);
5750 }
5751 return pp;
5752 }
5753
5754 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5755 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5756 {
5757 if (pp && hlist_empty(&pp->owner)) {
5758 __hlist_del(&pp->node);
5759 kmem_cache_free(sctp_bucket_cachep, pp);
5760 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5761 }
5762 }
5763
5764 /* Release this socket's reference to a local port. */
5765 static inline void __sctp_put_port(struct sock *sk)
5766 {
5767 struct sctp_bind_hashbucket *head =
5768 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5769 struct sctp_bind_bucket *pp;
5770
5771 sctp_spin_lock(&head->lock);
5772 pp = sctp_sk(sk)->bind_hash;
5773 __sk_del_bind_node(sk);
5774 sctp_sk(sk)->bind_hash = NULL;
5775 inet_sk(sk)->num = 0;
5776 sctp_bucket_destroy(pp);
5777 sctp_spin_unlock(&head->lock);
5778 }
5779
5780 void sctp_put_port(struct sock *sk)
5781 {
5782 sctp_local_bh_disable();
5783 __sctp_put_port(sk);
5784 sctp_local_bh_enable();
5785 }
5786
5787 /*
5788 * The system picks an ephemeral port and choose an address set equivalent
5789 * to binding with a wildcard address.
5790 * One of those addresses will be the primary address for the association.
5791 * This automatically enables the multihoming capability of SCTP.
5792 */
5793 static int sctp_autobind(struct sock *sk)
5794 {
5795 union sctp_addr autoaddr;
5796 struct sctp_af *af;
5797 __be16 port;
5798
5799 /* Initialize a local sockaddr structure to INADDR_ANY. */
5800 af = sctp_sk(sk)->pf->af;
5801
5802 port = htons(inet_sk(sk)->num);
5803 af->inaddr_any(&autoaddr, port);
5804
5805 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5806 }
5807
5808 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5809 *
5810 * From RFC 2292
5811 * 4.2 The cmsghdr Structure *
5812 *
5813 * When ancillary data is sent or received, any number of ancillary data
5814 * objects can be specified by the msg_control and msg_controllen members of
5815 * the msghdr structure, because each object is preceded by
5816 * a cmsghdr structure defining the object's length (the cmsg_len member).
5817 * Historically Berkeley-derived implementations have passed only one object
5818 * at a time, but this API allows multiple objects to be
5819 * passed in a single call to sendmsg() or recvmsg(). The following example
5820 * shows two ancillary data objects in a control buffer.
5821 *
5822 * |<--------------------------- msg_controllen -------------------------->|
5823 * | |
5824 *
5825 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5826 *
5827 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5828 * | | |
5829 *
5830 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5831 *
5832 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5833 * | | | | |
5834 *
5835 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5836 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5837 *
5838 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5839 *
5840 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5841 * ^
5842 * |
5843 *
5844 * msg_control
5845 * points here
5846 */
5847 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5848 sctp_cmsgs_t *cmsgs)
5849 {
5850 struct cmsghdr *cmsg;
5851 struct msghdr *my_msg = (struct msghdr *)msg;
5852
5853 for (cmsg = CMSG_FIRSTHDR(msg);
5854 cmsg != NULL;
5855 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5856 if (!CMSG_OK(my_msg, cmsg))
5857 return -EINVAL;
5858
5859 /* Should we parse this header or ignore? */
5860 if (cmsg->cmsg_level != IPPROTO_SCTP)
5861 continue;
5862
5863 /* Strictly check lengths following example in SCM code. */
5864 switch (cmsg->cmsg_type) {
5865 case SCTP_INIT:
5866 /* SCTP Socket API Extension
5867 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5868 *
5869 * This cmsghdr structure provides information for
5870 * initializing new SCTP associations with sendmsg().
5871 * The SCTP_INITMSG socket option uses this same data
5872 * structure. This structure is not used for
5873 * recvmsg().
5874 *
5875 * cmsg_level cmsg_type cmsg_data[]
5876 * ------------ ------------ ----------------------
5877 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5878 */
5879 if (cmsg->cmsg_len !=
5880 CMSG_LEN(sizeof(struct sctp_initmsg)))
5881 return -EINVAL;
5882 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5883 break;
5884
5885 case SCTP_SNDRCV:
5886 /* SCTP Socket API Extension
5887 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5888 *
5889 * This cmsghdr structure specifies SCTP options for
5890 * sendmsg() and describes SCTP header information
5891 * about a received message through recvmsg().
5892 *
5893 * cmsg_level cmsg_type cmsg_data[]
5894 * ------------ ------------ ----------------------
5895 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5896 */
5897 if (cmsg->cmsg_len !=
5898 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5899 return -EINVAL;
5900
5901 cmsgs->info =
5902 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5903
5904 /* Minimally, validate the sinfo_flags. */
5905 if (cmsgs->info->sinfo_flags &
5906 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5907 SCTP_ABORT | SCTP_EOF))
5908 return -EINVAL;
5909 break;
5910
5911 default:
5912 return -EINVAL;
5913 }
5914 }
5915 return 0;
5916 }
5917
5918 /*
5919 * Wait for a packet..
5920 * Note: This function is the same function as in core/datagram.c
5921 * with a few modifications to make lksctp work.
5922 */
5923 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5924 {
5925 int error;
5926 DEFINE_WAIT(wait);
5927
5928 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5929
5930 /* Socket errors? */
5931 error = sock_error(sk);
5932 if (error)
5933 goto out;
5934
5935 if (!skb_queue_empty(&sk->sk_receive_queue))
5936 goto ready;
5937
5938 /* Socket shut down? */
5939 if (sk->sk_shutdown & RCV_SHUTDOWN)
5940 goto out;
5941
5942 /* Sequenced packets can come disconnected. If so we report the
5943 * problem.
5944 */
5945 error = -ENOTCONN;
5946
5947 /* Is there a good reason to think that we may receive some data? */
5948 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5949 goto out;
5950
5951 /* Handle signals. */
5952 if (signal_pending(current))
5953 goto interrupted;
5954
5955 /* Let another process have a go. Since we are going to sleep
5956 * anyway. Note: This may cause odd behaviors if the message
5957 * does not fit in the user's buffer, but this seems to be the
5958 * only way to honor MSG_DONTWAIT realistically.
5959 */
5960 sctp_release_sock(sk);
5961 *timeo_p = schedule_timeout(*timeo_p);
5962 sctp_lock_sock(sk);
5963
5964 ready:
5965 finish_wait(sk->sk_sleep, &wait);
5966 return 0;
5967
5968 interrupted:
5969 error = sock_intr_errno(*timeo_p);
5970
5971 out:
5972 finish_wait(sk->sk_sleep, &wait);
5973 *err = error;
5974 return error;
5975 }
5976
5977 /* Receive a datagram.
5978 * Note: This is pretty much the same routine as in core/datagram.c
5979 * with a few changes to make lksctp work.
5980 */
5981 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5982 int noblock, int *err)
5983 {
5984 int error;
5985 struct sk_buff *skb;
5986 long timeo;
5987
5988 timeo = sock_rcvtimeo(sk, noblock);
5989
5990 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5991 timeo, MAX_SCHEDULE_TIMEOUT);
5992
5993 do {
5994 /* Again only user level code calls this function,
5995 * so nothing interrupt level
5996 * will suddenly eat the receive_queue.
5997 *
5998 * Look at current nfs client by the way...
5999 * However, this function was corrent in any case. 8)
6000 */
6001 if (flags & MSG_PEEK) {
6002 spin_lock_bh(&sk->sk_receive_queue.lock);
6003 skb = skb_peek(&sk->sk_receive_queue);
6004 if (skb)
6005 atomic_inc(&skb->users);
6006 spin_unlock_bh(&sk->sk_receive_queue.lock);
6007 } else {
6008 skb = skb_dequeue(&sk->sk_receive_queue);
6009 }
6010
6011 if (skb)
6012 return skb;
6013
6014 /* Caller is allowed not to check sk->sk_err before calling. */
6015 error = sock_error(sk);
6016 if (error)
6017 goto no_packet;
6018
6019 if (sk->sk_shutdown & RCV_SHUTDOWN)
6020 break;
6021
6022 /* User doesn't want to wait. */
6023 error = -EAGAIN;
6024 if (!timeo)
6025 goto no_packet;
6026 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6027
6028 return NULL;
6029
6030 no_packet:
6031 *err = error;
6032 return NULL;
6033 }
6034
6035 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6036 static void __sctp_write_space(struct sctp_association *asoc)
6037 {
6038 struct sock *sk = asoc->base.sk;
6039 struct socket *sock = sk->sk_socket;
6040
6041 if ((sctp_wspace(asoc) > 0) && sock) {
6042 if (waitqueue_active(&asoc->wait))
6043 wake_up_interruptible(&asoc->wait);
6044
6045 if (sctp_writeable(sk)) {
6046 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6047 wake_up_interruptible(sk->sk_sleep);
6048
6049 /* Note that we try to include the Async I/O support
6050 * here by modeling from the current TCP/UDP code.
6051 * We have not tested with it yet.
6052 */
6053 if (sock->fasync_list &&
6054 !(sk->sk_shutdown & SEND_SHUTDOWN))
6055 sock_wake_async(sock,
6056 SOCK_WAKE_SPACE, POLL_OUT);
6057 }
6058 }
6059 }
6060
6061 /* Do accounting for the sndbuf space.
6062 * Decrement the used sndbuf space of the corresponding association by the
6063 * data size which was just transmitted(freed).
6064 */
6065 static void sctp_wfree(struct sk_buff *skb)
6066 {
6067 struct sctp_association *asoc;
6068 struct sctp_chunk *chunk;
6069 struct sock *sk;
6070
6071 /* Get the saved chunk pointer. */
6072 chunk = *((struct sctp_chunk **)(skb->cb));
6073 asoc = chunk->asoc;
6074 sk = asoc->base.sk;
6075 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6076 sizeof(struct sk_buff) +
6077 sizeof(struct sctp_chunk);
6078
6079 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6080
6081 /*
6082 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6083 */
6084 sk->sk_wmem_queued -= skb->truesize;
6085 sk_mem_uncharge(sk, skb->truesize);
6086
6087 sock_wfree(skb);
6088 __sctp_write_space(asoc);
6089
6090 sctp_association_put(asoc);
6091 }
6092
6093 /* Do accounting for the receive space on the socket.
6094 * Accounting for the association is done in ulpevent.c
6095 * We set this as a destructor for the cloned data skbs so that
6096 * accounting is done at the correct time.
6097 */
6098 void sctp_sock_rfree(struct sk_buff *skb)
6099 {
6100 struct sock *sk = skb->sk;
6101 struct sctp_ulpevent *event = sctp_skb2event(skb);
6102
6103 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6104
6105 /*
6106 * Mimic the behavior of sock_rfree
6107 */
6108 sk_mem_uncharge(sk, event->rmem_len);
6109 }
6110
6111
6112 /* Helper function to wait for space in the sndbuf. */
6113 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6114 size_t msg_len)
6115 {
6116 struct sock *sk = asoc->base.sk;
6117 int err = 0;
6118 long current_timeo = *timeo_p;
6119 DEFINE_WAIT(wait);
6120
6121 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6122 asoc, (long)(*timeo_p), msg_len);
6123
6124 /* Increment the association's refcnt. */
6125 sctp_association_hold(asoc);
6126
6127 /* Wait on the association specific sndbuf space. */
6128 for (;;) {
6129 prepare_to_wait_exclusive(&asoc->wait, &wait,
6130 TASK_INTERRUPTIBLE);
6131 if (!*timeo_p)
6132 goto do_nonblock;
6133 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6134 asoc->base.dead)
6135 goto do_error;
6136 if (signal_pending(current))
6137 goto do_interrupted;
6138 if (msg_len <= sctp_wspace(asoc))
6139 break;
6140
6141 /* Let another process have a go. Since we are going
6142 * to sleep anyway.
6143 */
6144 sctp_release_sock(sk);
6145 current_timeo = schedule_timeout(current_timeo);
6146 BUG_ON(sk != asoc->base.sk);
6147 sctp_lock_sock(sk);
6148
6149 *timeo_p = current_timeo;
6150 }
6151
6152 out:
6153 finish_wait(&asoc->wait, &wait);
6154
6155 /* Release the association's refcnt. */
6156 sctp_association_put(asoc);
6157
6158 return err;
6159
6160 do_error:
6161 err = -EPIPE;
6162 goto out;
6163
6164 do_interrupted:
6165 err = sock_intr_errno(*timeo_p);
6166 goto out;
6167
6168 do_nonblock:
6169 err = -EAGAIN;
6170 goto out;
6171 }
6172
6173 /* If socket sndbuf has changed, wake up all per association waiters. */
6174 void sctp_write_space(struct sock *sk)
6175 {
6176 struct sctp_association *asoc;
6177
6178 /* Wake up the tasks in each wait queue. */
6179 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6180 __sctp_write_space(asoc);
6181 }
6182 }
6183
6184 /* Is there any sndbuf space available on the socket?
6185 *
6186 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6187 * associations on the same socket. For a UDP-style socket with
6188 * multiple associations, it is possible for it to be "unwriteable"
6189 * prematurely. I assume that this is acceptable because
6190 * a premature "unwriteable" is better than an accidental "writeable" which
6191 * would cause an unwanted block under certain circumstances. For the 1-1
6192 * UDP-style sockets or TCP-style sockets, this code should work.
6193 * - Daisy
6194 */
6195 static int sctp_writeable(struct sock *sk)
6196 {
6197 int amt = 0;
6198
6199 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6200 if (amt < 0)
6201 amt = 0;
6202 return amt;
6203 }
6204
6205 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6206 * returns immediately with EINPROGRESS.
6207 */
6208 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6209 {
6210 struct sock *sk = asoc->base.sk;
6211 int err = 0;
6212 long current_timeo = *timeo_p;
6213 DEFINE_WAIT(wait);
6214
6215 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6216 (long)(*timeo_p));
6217
6218 /* Increment the association's refcnt. */
6219 sctp_association_hold(asoc);
6220
6221 for (;;) {
6222 prepare_to_wait_exclusive(&asoc->wait, &wait,
6223 TASK_INTERRUPTIBLE);
6224 if (!*timeo_p)
6225 goto do_nonblock;
6226 if (sk->sk_shutdown & RCV_SHUTDOWN)
6227 break;
6228 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6229 asoc->base.dead)
6230 goto do_error;
6231 if (signal_pending(current))
6232 goto do_interrupted;
6233
6234 if (sctp_state(asoc, ESTABLISHED))
6235 break;
6236
6237 /* Let another process have a go. Since we are going
6238 * to sleep anyway.
6239 */
6240 sctp_release_sock(sk);
6241 current_timeo = schedule_timeout(current_timeo);
6242 sctp_lock_sock(sk);
6243
6244 *timeo_p = current_timeo;
6245 }
6246
6247 out:
6248 finish_wait(&asoc->wait, &wait);
6249
6250 /* Release the association's refcnt. */
6251 sctp_association_put(asoc);
6252
6253 return err;
6254
6255 do_error:
6256 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6257 err = -ETIMEDOUT;
6258 else
6259 err = -ECONNREFUSED;
6260 goto out;
6261
6262 do_interrupted:
6263 err = sock_intr_errno(*timeo_p);
6264 goto out;
6265
6266 do_nonblock:
6267 err = -EINPROGRESS;
6268 goto out;
6269 }
6270
6271 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6272 {
6273 struct sctp_endpoint *ep;
6274 int err = 0;
6275 DEFINE_WAIT(wait);
6276
6277 ep = sctp_sk(sk)->ep;
6278
6279
6280 for (;;) {
6281 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6282 TASK_INTERRUPTIBLE);
6283
6284 if (list_empty(&ep->asocs)) {
6285 sctp_release_sock(sk);
6286 timeo = schedule_timeout(timeo);
6287 sctp_lock_sock(sk);
6288 }
6289
6290 err = -EINVAL;
6291 if (!sctp_sstate(sk, LISTENING))
6292 break;
6293
6294 err = 0;
6295 if (!list_empty(&ep->asocs))
6296 break;
6297
6298 err = sock_intr_errno(timeo);
6299 if (signal_pending(current))
6300 break;
6301
6302 err = -EAGAIN;
6303 if (!timeo)
6304 break;
6305 }
6306
6307 finish_wait(sk->sk_sleep, &wait);
6308
6309 return err;
6310 }
6311
6312 static void sctp_wait_for_close(struct sock *sk, long timeout)
6313 {
6314 DEFINE_WAIT(wait);
6315
6316 do {
6317 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6318 if (list_empty(&sctp_sk(sk)->ep->asocs))
6319 break;
6320 sctp_release_sock(sk);
6321 timeout = schedule_timeout(timeout);
6322 sctp_lock_sock(sk);
6323 } while (!signal_pending(current) && timeout);
6324
6325 finish_wait(sk->sk_sleep, &wait);
6326 }
6327
6328 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6329 {
6330 struct sk_buff *frag;
6331
6332 if (!skb->data_len)
6333 goto done;
6334
6335 /* Don't forget the fragments. */
6336 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6337 sctp_sock_rfree_frag(frag);
6338
6339 done:
6340 sctp_sock_rfree(skb);
6341 }
6342
6343 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6344 {
6345 struct sk_buff *frag;
6346
6347 if (!skb->data_len)
6348 goto done;
6349
6350 /* Don't forget the fragments. */
6351 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6352 sctp_skb_set_owner_r_frag(frag, sk);
6353
6354 done:
6355 sctp_skb_set_owner_r(skb, sk);
6356 }
6357
6358 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6359 * and its messages to the newsk.
6360 */
6361 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6362 struct sctp_association *assoc,
6363 sctp_socket_type_t type)
6364 {
6365 struct sctp_sock *oldsp = sctp_sk(oldsk);
6366 struct sctp_sock *newsp = sctp_sk(newsk);
6367 struct sctp_bind_bucket *pp; /* hash list port iterator */
6368 struct sctp_endpoint *newep = newsp->ep;
6369 struct sk_buff *skb, *tmp;
6370 struct sctp_ulpevent *event;
6371 struct sctp_bind_hashbucket *head;
6372
6373 /* Migrate socket buffer sizes and all the socket level options to the
6374 * new socket.
6375 */
6376 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6377 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6378 /* Brute force copy old sctp opt. */
6379 inet_sk_copy_descendant(newsk, oldsk);
6380
6381 /* Restore the ep value that was overwritten with the above structure
6382 * copy.
6383 */
6384 newsp->ep = newep;
6385 newsp->hmac = NULL;
6386
6387 /* Hook this new socket in to the bind_hash list. */
6388 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6389 sctp_local_bh_disable();
6390 sctp_spin_lock(&head->lock);
6391 pp = sctp_sk(oldsk)->bind_hash;
6392 sk_add_bind_node(newsk, &pp->owner);
6393 sctp_sk(newsk)->bind_hash = pp;
6394 inet_sk(newsk)->num = inet_sk(oldsk)->num;
6395 sctp_spin_unlock(&head->lock);
6396 sctp_local_bh_enable();
6397
6398 /* Copy the bind_addr list from the original endpoint to the new
6399 * endpoint so that we can handle restarts properly
6400 */
6401 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6402 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6403
6404 /* Move any messages in the old socket's receive queue that are for the
6405 * peeled off association to the new socket's receive queue.
6406 */
6407 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6408 event = sctp_skb2event(skb);
6409 if (event->asoc == assoc) {
6410 sctp_sock_rfree_frag(skb);
6411 __skb_unlink(skb, &oldsk->sk_receive_queue);
6412 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6413 sctp_skb_set_owner_r_frag(skb, newsk);
6414 }
6415 }
6416
6417 /* Clean up any messages pending delivery due to partial
6418 * delivery. Three cases:
6419 * 1) No partial deliver; no work.
6420 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6421 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6422 */
6423 skb_queue_head_init(&newsp->pd_lobby);
6424 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6425
6426 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6427 struct sk_buff_head *queue;
6428
6429 /* Decide which queue to move pd_lobby skbs to. */
6430 if (assoc->ulpq.pd_mode) {
6431 queue = &newsp->pd_lobby;
6432 } else
6433 queue = &newsk->sk_receive_queue;
6434
6435 /* Walk through the pd_lobby, looking for skbs that
6436 * need moved to the new socket.
6437 */
6438 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6439 event = sctp_skb2event(skb);
6440 if (event->asoc == assoc) {
6441 sctp_sock_rfree_frag(skb);
6442 __skb_unlink(skb, &oldsp->pd_lobby);
6443 __skb_queue_tail(queue, skb);
6444 sctp_skb_set_owner_r_frag(skb, newsk);
6445 }
6446 }
6447
6448 /* Clear up any skbs waiting for the partial
6449 * delivery to finish.
6450 */
6451 if (assoc->ulpq.pd_mode)
6452 sctp_clear_pd(oldsk, NULL);
6453
6454 }
6455
6456 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6457 sctp_sock_rfree_frag(skb);
6458 sctp_skb_set_owner_r_frag(skb, newsk);
6459 }
6460
6461 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6462 sctp_sock_rfree_frag(skb);
6463 sctp_skb_set_owner_r_frag(skb, newsk);
6464 }
6465
6466 /* Set the type of socket to indicate that it is peeled off from the
6467 * original UDP-style socket or created with the accept() call on a
6468 * TCP-style socket..
6469 */
6470 newsp->type = type;
6471
6472 /* Mark the new socket "in-use" by the user so that any packets
6473 * that may arrive on the association after we've moved it are
6474 * queued to the backlog. This prevents a potential race between
6475 * backlog processing on the old socket and new-packet processing
6476 * on the new socket.
6477 *
6478 * The caller has just allocated newsk so we can guarantee that other
6479 * paths won't try to lock it and then oldsk.
6480 */
6481 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6482 sctp_assoc_migrate(assoc, newsk);
6483
6484 /* If the association on the newsk is already closed before accept()
6485 * is called, set RCV_SHUTDOWN flag.
6486 */
6487 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6488 newsk->sk_shutdown |= RCV_SHUTDOWN;
6489
6490 newsk->sk_state = SCTP_SS_ESTABLISHED;
6491 sctp_release_sock(newsk);
6492 }
6493
6494
6495 /* This proto struct describes the ULP interface for SCTP. */
6496 struct proto sctp_prot = {
6497 .name = "SCTP",
6498 .owner = THIS_MODULE,
6499 .close = sctp_close,
6500 .connect = sctp_connect,
6501 .disconnect = sctp_disconnect,
6502 .accept = sctp_accept,
6503 .ioctl = sctp_ioctl,
6504 .init = sctp_init_sock,
6505 .destroy = sctp_destroy_sock,
6506 .shutdown = sctp_shutdown,
6507 .setsockopt = sctp_setsockopt,
6508 .getsockopt = sctp_getsockopt,
6509 .sendmsg = sctp_sendmsg,
6510 .recvmsg = sctp_recvmsg,
6511 .bind = sctp_bind,
6512 .backlog_rcv = sctp_backlog_rcv,
6513 .hash = sctp_hash,
6514 .unhash = sctp_unhash,
6515 .get_port = sctp_get_port,
6516 .obj_size = sizeof(struct sctp_sock),
6517 .sysctl_mem = sysctl_sctp_mem,
6518 .sysctl_rmem = sysctl_sctp_rmem,
6519 .sysctl_wmem = sysctl_sctp_wmem,
6520 .memory_pressure = &sctp_memory_pressure,
6521 .enter_memory_pressure = sctp_enter_memory_pressure,
6522 .memory_allocated = &sctp_memory_allocated,
6523 .sockets_allocated = &sctp_sockets_allocated,
6524 };
6525
6526 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6527
6528 struct proto sctpv6_prot = {
6529 .name = "SCTPv6",
6530 .owner = THIS_MODULE,
6531 .close = sctp_close,
6532 .connect = sctp_connect,
6533 .disconnect = sctp_disconnect,
6534 .accept = sctp_accept,
6535 .ioctl = sctp_ioctl,
6536 .init = sctp_init_sock,
6537 .destroy = sctp_destroy_sock,
6538 .shutdown = sctp_shutdown,
6539 .setsockopt = sctp_setsockopt,
6540 .getsockopt = sctp_getsockopt,
6541 .sendmsg = sctp_sendmsg,
6542 .recvmsg = sctp_recvmsg,
6543 .bind = sctp_bind,
6544 .backlog_rcv = sctp_backlog_rcv,
6545 .hash = sctp_hash,
6546 .unhash = sctp_unhash,
6547 .get_port = sctp_get_port,
6548 .obj_size = sizeof(struct sctp6_sock),
6549 .sysctl_mem = sysctl_sctp_mem,
6550 .sysctl_rmem = sysctl_sctp_rmem,
6551 .sysctl_wmem = sysctl_sctp_wmem,
6552 .memory_pressure = &sctp_memory_pressure,
6553 .enter_memory_pressure = sctp_enter_memory_pressure,
6554 .memory_allocated = &sctp_memory_allocated,
6555 .sockets_allocated = &sctp_sockets_allocated,
6556 };
6557 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */