]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sctp/socket.c
Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL;
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL;
251
252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256 }
257
258 /* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 addr, addr_len);
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL;
283
284 release_sock(sk);
285
286 return retval;
287 }
288
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294 {
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL;
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET6 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET, opt))
305 return NULL;
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL;
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL;
317
318 return af;
319 }
320
321 /* Bind a local address either to an endpoint or to an association. */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 __func__, sk, addr, len);
337 return -EINVAL;
338 }
339
340 snum = ntohs(addr->v4.sin_port);
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 __func__, sk, &addr->sa, bp->port, snum, len);
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "
358 "%d\n", __func__, snum, bp->port);
359 return -EINVAL;
360 }
361 }
362
363 if (snum && snum < PROT_SOCK &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 return -EACCES;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
390
391 /* Copy back into socket for getsockname() use. */
392 if (!ret) {
393 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
394 sp->pf->to_sk_saddr(addr, sk);
395 }
396
397 return ret;
398 }
399
400 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
401 *
402 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
403 * at any one time. If a sender, after sending an ASCONF chunk, decides
404 * it needs to transfer another ASCONF Chunk, it MUST wait until the
405 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
406 * subsequent ASCONF. Note this restriction binds each side, so at any
407 * time two ASCONF may be in-transit on any given association (one sent
408 * from each endpoint).
409 */
410 static int sctp_send_asconf(struct sctp_association *asoc,
411 struct sctp_chunk *chunk)
412 {
413 struct net *net = sock_net(asoc->base.sk);
414 int retval = 0;
415
416 /* If there is an outstanding ASCONF chunk, queue it for later
417 * transmission.
418 */
419 if (asoc->addip_last_asconf) {
420 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
421 goto out;
422 }
423
424 /* Hold the chunk until an ASCONF_ACK is received. */
425 sctp_chunk_hold(chunk);
426 retval = sctp_primitive_ASCONF(net, asoc, chunk);
427 if (retval)
428 sctp_chunk_free(chunk);
429 else
430 asoc->addip_last_asconf = chunk;
431
432 out:
433 return retval;
434 }
435
436 /* Add a list of addresses as bind addresses to local endpoint or
437 * association.
438 *
439 * Basically run through each address specified in the addrs/addrcnt
440 * array/length pair, determine if it is IPv6 or IPv4 and call
441 * sctp_do_bind() on it.
442 *
443 * If any of them fails, then the operation will be reversed and the
444 * ones that were added will be removed.
445 *
446 * Only sctp_setsockopt_bindx() is supposed to call this function.
447 */
448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
449 {
450 int cnt;
451 int retval = 0;
452 void *addr_buf;
453 struct sockaddr *sa_addr;
454 struct sctp_af *af;
455
456 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
457 addrs, addrcnt);
458
459 addr_buf = addrs;
460 for (cnt = 0; cnt < addrcnt; cnt++) {
461 /* The list may contain either IPv4 or IPv6 address;
462 * determine the address length for walking thru the list.
463 */
464 sa_addr = addr_buf;
465 af = sctp_get_af_specific(sa_addr->sa_family);
466 if (!af) {
467 retval = -EINVAL;
468 goto err_bindx_add;
469 }
470
471 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
472 af->sockaddr_len);
473
474 addr_buf += af->sockaddr_len;
475
476 err_bindx_add:
477 if (retval < 0) {
478 /* Failed. Cleanup the ones that have been added */
479 if (cnt > 0)
480 sctp_bindx_rem(sk, addrs, cnt);
481 return retval;
482 }
483 }
484
485 return retval;
486 }
487
488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
489 * associations that are part of the endpoint indicating that a list of local
490 * addresses are added to the endpoint.
491 *
492 * If any of the addresses is already in the bind address list of the
493 * association, we do not send the chunk for that association. But it will not
494 * affect other associations.
495 *
496 * Only sctp_setsockopt_bindx() is supposed to call this function.
497 */
498 static int sctp_send_asconf_add_ip(struct sock *sk,
499 struct sockaddr *addrs,
500 int addrcnt)
501 {
502 struct net *net = sock_net(sk);
503 struct sctp_sock *sp;
504 struct sctp_endpoint *ep;
505 struct sctp_association *asoc;
506 struct sctp_bind_addr *bp;
507 struct sctp_chunk *chunk;
508 struct sctp_sockaddr_entry *laddr;
509 union sctp_addr *addr;
510 union sctp_addr saveaddr;
511 void *addr_buf;
512 struct sctp_af *af;
513 struct list_head *p;
514 int i;
515 int retval = 0;
516
517 if (!net->sctp.addip_enable)
518 return retval;
519
520 sp = sctp_sk(sk);
521 ep = sp->ep;
522
523 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
524 __func__, sk, addrs, addrcnt);
525
526 list_for_each_entry(asoc, &ep->asocs, asocs) {
527 if (!asoc->peer.asconf_capable)
528 continue;
529
530 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
531 continue;
532
533 if (!sctp_state(asoc, ESTABLISHED))
534 continue;
535
536 /* Check if any address in the packed array of addresses is
537 * in the bind address list of the association. If so,
538 * do not send the asconf chunk to its peer, but continue with
539 * other associations.
540 */
541 addr_buf = addrs;
542 for (i = 0; i < addrcnt; i++) {
543 addr = addr_buf;
544 af = sctp_get_af_specific(addr->v4.sin_family);
545 if (!af) {
546 retval = -EINVAL;
547 goto out;
548 }
549
550 if (sctp_assoc_lookup_laddr(asoc, addr))
551 break;
552
553 addr_buf += af->sockaddr_len;
554 }
555 if (i < addrcnt)
556 continue;
557
558 /* Use the first valid address in bind addr list of
559 * association as Address Parameter of ASCONF CHUNK.
560 */
561 bp = &asoc->base.bind_addr;
562 p = bp->address_list.next;
563 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
564 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
565 addrcnt, SCTP_PARAM_ADD_IP);
566 if (!chunk) {
567 retval = -ENOMEM;
568 goto out;
569 }
570
571 /* Add the new addresses to the bind address list with
572 * use_as_src set to 0.
573 */
574 addr_buf = addrs;
575 for (i = 0; i < addrcnt; i++) {
576 addr = addr_buf;
577 af = sctp_get_af_specific(addr->v4.sin_family);
578 memcpy(&saveaddr, addr, af->sockaddr_len);
579 retval = sctp_add_bind_addr(bp, &saveaddr,
580 SCTP_ADDR_NEW, GFP_ATOMIC);
581 addr_buf += af->sockaddr_len;
582 }
583 if (asoc->src_out_of_asoc_ok) {
584 struct sctp_transport *trans;
585
586 list_for_each_entry(trans,
587 &asoc->peer.transport_addr_list, transports) {
588 /* Clear the source and route cache */
589 dst_release(trans->dst);
590 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
591 2*asoc->pathmtu, 4380));
592 trans->ssthresh = asoc->peer.i.a_rwnd;
593 trans->rto = asoc->rto_initial;
594 sctp_max_rto(asoc, trans);
595 trans->rtt = trans->srtt = trans->rttvar = 0;
596 sctp_transport_route(trans, NULL,
597 sctp_sk(asoc->base.sk));
598 }
599 }
600 retval = sctp_send_asconf(asoc, chunk);
601 }
602
603 out:
604 return retval;
605 }
606
607 /* Remove a list of addresses from bind addresses list. Do not remove the
608 * last address.
609 *
610 * Basically run through each address specified in the addrs/addrcnt
611 * array/length pair, determine if it is IPv6 or IPv4 and call
612 * sctp_del_bind() on it.
613 *
614 * If any of them fails, then the operation will be reversed and the
615 * ones that were removed will be added back.
616 *
617 * At least one address has to be left; if only one address is
618 * available, the operation will return -EBUSY.
619 *
620 * Only sctp_setsockopt_bindx() is supposed to call this function.
621 */
622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
623 {
624 struct sctp_sock *sp = sctp_sk(sk);
625 struct sctp_endpoint *ep = sp->ep;
626 int cnt;
627 struct sctp_bind_addr *bp = &ep->base.bind_addr;
628 int retval = 0;
629 void *addr_buf;
630 union sctp_addr *sa_addr;
631 struct sctp_af *af;
632
633 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
634 __func__, sk, addrs, addrcnt);
635
636 addr_buf = addrs;
637 for (cnt = 0; cnt < addrcnt; cnt++) {
638 /* If the bind address list is empty or if there is only one
639 * bind address, there is nothing more to be removed (we need
640 * at least one address here).
641 */
642 if (list_empty(&bp->address_list) ||
643 (sctp_list_single_entry(&bp->address_list))) {
644 retval = -EBUSY;
645 goto err_bindx_rem;
646 }
647
648 sa_addr = addr_buf;
649 af = sctp_get_af_specific(sa_addr->sa.sa_family);
650 if (!af) {
651 retval = -EINVAL;
652 goto err_bindx_rem;
653 }
654
655 if (!af->addr_valid(sa_addr, sp, NULL)) {
656 retval = -EADDRNOTAVAIL;
657 goto err_bindx_rem;
658 }
659
660 if (sa_addr->v4.sin_port &&
661 sa_addr->v4.sin_port != htons(bp->port)) {
662 retval = -EINVAL;
663 goto err_bindx_rem;
664 }
665
666 if (!sa_addr->v4.sin_port)
667 sa_addr->v4.sin_port = htons(bp->port);
668
669 /* FIXME - There is probably a need to check if sk->sk_saddr and
670 * sk->sk_rcv_addr are currently set to one of the addresses to
671 * be removed. This is something which needs to be looked into
672 * when we are fixing the outstanding issues with multi-homing
673 * socket routing and failover schemes. Refer to comments in
674 * sctp_do_bind(). -daisy
675 */
676 retval = sctp_del_bind_addr(bp, sa_addr);
677
678 addr_buf += af->sockaddr_len;
679 err_bindx_rem:
680 if (retval < 0) {
681 /* Failed. Add the ones that has been removed back */
682 if (cnt > 0)
683 sctp_bindx_add(sk, addrs, cnt);
684 return retval;
685 }
686 }
687
688 return retval;
689 }
690
691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
692 * the associations that are part of the endpoint indicating that a list of
693 * local addresses are removed from the endpoint.
694 *
695 * If any of the addresses is already in the bind address list of the
696 * association, we do not send the chunk for that association. But it will not
697 * affect other associations.
698 *
699 * Only sctp_setsockopt_bindx() is supposed to call this function.
700 */
701 static int sctp_send_asconf_del_ip(struct sock *sk,
702 struct sockaddr *addrs,
703 int addrcnt)
704 {
705 struct net *net = sock_net(sk);
706 struct sctp_sock *sp;
707 struct sctp_endpoint *ep;
708 struct sctp_association *asoc;
709 struct sctp_transport *transport;
710 struct sctp_bind_addr *bp;
711 struct sctp_chunk *chunk;
712 union sctp_addr *laddr;
713 void *addr_buf;
714 struct sctp_af *af;
715 struct sctp_sockaddr_entry *saddr;
716 int i;
717 int retval = 0;
718 int stored = 0;
719
720 chunk = NULL;
721 if (!net->sctp.addip_enable)
722 return retval;
723
724 sp = sctp_sk(sk);
725 ep = sp->ep;
726
727 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
728 __func__, sk, addrs, addrcnt);
729
730 list_for_each_entry(asoc, &ep->asocs, asocs) {
731
732 if (!asoc->peer.asconf_capable)
733 continue;
734
735 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
736 continue;
737
738 if (!sctp_state(asoc, ESTABLISHED))
739 continue;
740
741 /* Check if any address in the packed array of addresses is
742 * not present in the bind address list of the association.
743 * If so, do not send the asconf chunk to its peer, but
744 * continue with other associations.
745 */
746 addr_buf = addrs;
747 for (i = 0; i < addrcnt; i++) {
748 laddr = addr_buf;
749 af = sctp_get_af_specific(laddr->v4.sin_family);
750 if (!af) {
751 retval = -EINVAL;
752 goto out;
753 }
754
755 if (!sctp_assoc_lookup_laddr(asoc, laddr))
756 break;
757
758 addr_buf += af->sockaddr_len;
759 }
760 if (i < addrcnt)
761 continue;
762
763 /* Find one address in the association's bind address list
764 * that is not in the packed array of addresses. This is to
765 * make sure that we do not delete all the addresses in the
766 * association.
767 */
768 bp = &asoc->base.bind_addr;
769 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
770 addrcnt, sp);
771 if ((laddr == NULL) && (addrcnt == 1)) {
772 if (asoc->asconf_addr_del_pending)
773 continue;
774 asoc->asconf_addr_del_pending =
775 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
776 if (asoc->asconf_addr_del_pending == NULL) {
777 retval = -ENOMEM;
778 goto out;
779 }
780 asoc->asconf_addr_del_pending->sa.sa_family =
781 addrs->sa_family;
782 asoc->asconf_addr_del_pending->v4.sin_port =
783 htons(bp->port);
784 if (addrs->sa_family == AF_INET) {
785 struct sockaddr_in *sin;
786
787 sin = (struct sockaddr_in *)addrs;
788 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
789 } else if (addrs->sa_family == AF_INET6) {
790 struct sockaddr_in6 *sin6;
791
792 sin6 = (struct sockaddr_in6 *)addrs;
793 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
794 }
795
796 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
797 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
798 asoc->asconf_addr_del_pending);
799
800 asoc->src_out_of_asoc_ok = 1;
801 stored = 1;
802 goto skip_mkasconf;
803 }
804
805 if (laddr == NULL)
806 return -EINVAL;
807
808 /* We do not need RCU protection throughout this loop
809 * because this is done under a socket lock from the
810 * setsockopt call.
811 */
812 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
813 SCTP_PARAM_DEL_IP);
814 if (!chunk) {
815 retval = -ENOMEM;
816 goto out;
817 }
818
819 skip_mkasconf:
820 /* Reset use_as_src flag for the addresses in the bind address
821 * list that are to be deleted.
822 */
823 addr_buf = addrs;
824 for (i = 0; i < addrcnt; i++) {
825 laddr = addr_buf;
826 af = sctp_get_af_specific(laddr->v4.sin_family);
827 list_for_each_entry(saddr, &bp->address_list, list) {
828 if (sctp_cmp_addr_exact(&saddr->a, laddr))
829 saddr->state = SCTP_ADDR_DEL;
830 }
831 addr_buf += af->sockaddr_len;
832 }
833
834 /* Update the route and saddr entries for all the transports
835 * as some of the addresses in the bind address list are
836 * about to be deleted and cannot be used as source addresses.
837 */
838 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
839 transports) {
840 dst_release(transport->dst);
841 sctp_transport_route(transport, NULL,
842 sctp_sk(asoc->base.sk));
843 }
844
845 if (stored)
846 /* We don't need to transmit ASCONF */
847 continue;
848 retval = sctp_send_asconf(asoc, chunk);
849 }
850 out:
851 return retval;
852 }
853
854 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
856 {
857 struct sock *sk = sctp_opt2sk(sp);
858 union sctp_addr *addr;
859 struct sctp_af *af;
860
861 /* It is safe to write port space in caller. */
862 addr = &addrw->a;
863 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
864 af = sctp_get_af_specific(addr->sa.sa_family);
865 if (!af)
866 return -EINVAL;
867 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
868 return -EINVAL;
869
870 if (addrw->state == SCTP_ADDR_NEW)
871 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
872 else
873 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
874 }
875
876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
877 *
878 * API 8.1
879 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
880 * int flags);
881 *
882 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
883 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
884 * or IPv6 addresses.
885 *
886 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
887 * Section 3.1.2 for this usage.
888 *
889 * addrs is a pointer to an array of one or more socket addresses. Each
890 * address is contained in its appropriate structure (i.e. struct
891 * sockaddr_in or struct sockaddr_in6) the family of the address type
892 * must be used to distinguish the address length (note that this
893 * representation is termed a "packed array" of addresses). The caller
894 * specifies the number of addresses in the array with addrcnt.
895 *
896 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
897 * -1, and sets errno to the appropriate error code.
898 *
899 * For SCTP, the port given in each socket address must be the same, or
900 * sctp_bindx() will fail, setting errno to EINVAL.
901 *
902 * The flags parameter is formed from the bitwise OR of zero or more of
903 * the following currently defined flags:
904 *
905 * SCTP_BINDX_ADD_ADDR
906 *
907 * SCTP_BINDX_REM_ADDR
908 *
909 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
910 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
911 * addresses from the association. The two flags are mutually exclusive;
912 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
913 * not remove all addresses from an association; sctp_bindx() will
914 * reject such an attempt with EINVAL.
915 *
916 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
917 * additional addresses with an endpoint after calling bind(). Or use
918 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
919 * socket is associated with so that no new association accepted will be
920 * associated with those addresses. If the endpoint supports dynamic
921 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
922 * endpoint to send the appropriate message to the peer to change the
923 * peers address lists.
924 *
925 * Adding and removing addresses from a connected association is
926 * optional functionality. Implementations that do not support this
927 * functionality should return EOPNOTSUPP.
928 *
929 * Basically do nothing but copying the addresses from user to kernel
930 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
931 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
932 * from userspace.
933 *
934 * We don't use copy_from_user() for optimization: we first do the
935 * sanity checks (buffer size -fast- and access check-healthy
936 * pointer); if all of those succeed, then we can alloc the memory
937 * (expensive operation) needed to copy the data to kernel. Then we do
938 * the copying without checking the user space area
939 * (__copy_from_user()).
940 *
941 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
942 * it.
943 *
944 * sk The sk of the socket
945 * addrs The pointer to the addresses in user land
946 * addrssize Size of the addrs buffer
947 * op Operation to perform (add or remove, see the flags of
948 * sctp_bindx)
949 *
950 * Returns 0 if ok, <0 errno code on error.
951 */
952 static int sctp_setsockopt_bindx(struct sock *sk,
953 struct sockaddr __user *addrs,
954 int addrs_size, int op)
955 {
956 struct sockaddr *kaddrs;
957 int err;
958 int addrcnt = 0;
959 int walk_size = 0;
960 struct sockaddr *sa_addr;
961 void *addr_buf;
962 struct sctp_af *af;
963
964 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
965 __func__, sk, addrs, addrs_size, op);
966
967 if (unlikely(addrs_size <= 0))
968 return -EINVAL;
969
970 /* Check the user passed a healthy pointer. */
971 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
972 return -EFAULT;
973
974 /* Alloc space for the address array in kernel memory. */
975 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
976 if (unlikely(!kaddrs))
977 return -ENOMEM;
978
979 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
980 kfree(kaddrs);
981 return -EFAULT;
982 }
983
984 /* Walk through the addrs buffer and count the number of addresses. */
985 addr_buf = kaddrs;
986 while (walk_size < addrs_size) {
987 if (walk_size + sizeof(sa_family_t) > addrs_size) {
988 kfree(kaddrs);
989 return -EINVAL;
990 }
991
992 sa_addr = addr_buf;
993 af = sctp_get_af_specific(sa_addr->sa_family);
994
995 /* If the address family is not supported or if this address
996 * causes the address buffer to overflow return EINVAL.
997 */
998 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
999 kfree(kaddrs);
1000 return -EINVAL;
1001 }
1002 addrcnt++;
1003 addr_buf += af->sockaddr_len;
1004 walk_size += af->sockaddr_len;
1005 }
1006
1007 /* Do the work. */
1008 switch (op) {
1009 case SCTP_BINDX_ADD_ADDR:
1010 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1011 if (err)
1012 goto out;
1013 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1014 break;
1015
1016 case SCTP_BINDX_REM_ADDR:
1017 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1018 if (err)
1019 goto out;
1020 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1021 break;
1022
1023 default:
1024 err = -EINVAL;
1025 break;
1026 }
1027
1028 out:
1029 kfree(kaddrs);
1030
1031 return err;
1032 }
1033
1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1035 *
1036 * Common routine for handling connect() and sctp_connectx().
1037 * Connect will come in with just a single address.
1038 */
1039 static int __sctp_connect(struct sock *sk,
1040 struct sockaddr *kaddrs,
1041 int addrs_size,
1042 sctp_assoc_t *assoc_id)
1043 {
1044 struct net *net = sock_net(sk);
1045 struct sctp_sock *sp;
1046 struct sctp_endpoint *ep;
1047 struct sctp_association *asoc = NULL;
1048 struct sctp_association *asoc2;
1049 struct sctp_transport *transport;
1050 union sctp_addr to;
1051 sctp_scope_t scope;
1052 long timeo;
1053 int err = 0;
1054 int addrcnt = 0;
1055 int walk_size = 0;
1056 union sctp_addr *sa_addr = NULL;
1057 void *addr_buf;
1058 unsigned short port;
1059 unsigned int f_flags = 0;
1060
1061 sp = sctp_sk(sk);
1062 ep = sp->ep;
1063
1064 /* connect() cannot be done on a socket that is already in ESTABLISHED
1065 * state - UDP-style peeled off socket or a TCP-style socket that
1066 * is already connected.
1067 * It cannot be done even on a TCP-style listening socket.
1068 */
1069 if (sctp_sstate(sk, ESTABLISHED) ||
1070 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1071 err = -EISCONN;
1072 goto out_free;
1073 }
1074
1075 /* Walk through the addrs buffer and count the number of addresses. */
1076 addr_buf = kaddrs;
1077 while (walk_size < addrs_size) {
1078 struct sctp_af *af;
1079
1080 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 err = -EINVAL;
1082 goto out_free;
1083 }
1084
1085 sa_addr = addr_buf;
1086 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087
1088 /* If the address family is not supported or if this address
1089 * causes the address buffer to overflow return EINVAL.
1090 */
1091 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 err = -EINVAL;
1093 goto out_free;
1094 }
1095
1096 port = ntohs(sa_addr->v4.sin_port);
1097
1098 /* Save current address so we can work with it */
1099 memcpy(&to, sa_addr, af->sockaddr_len);
1100
1101 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 if (err)
1103 goto out_free;
1104
1105 /* Make sure the destination port is correctly set
1106 * in all addresses.
1107 */
1108 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 err = -EINVAL;
1110 goto out_free;
1111 }
1112
1113 /* Check if there already is a matching association on the
1114 * endpoint (other than the one created here).
1115 */
1116 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 if (asoc2 && asoc2 != asoc) {
1118 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 err = -EISCONN;
1120 else
1121 err = -EALREADY;
1122 goto out_free;
1123 }
1124
1125 /* If we could not find a matching association on the endpoint,
1126 * make sure that there is no peeled-off association matching
1127 * the peer address even on another socket.
1128 */
1129 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 err = -EADDRNOTAVAIL;
1131 goto out_free;
1132 }
1133
1134 if (!asoc) {
1135 /* If a bind() or sctp_bindx() is not called prior to
1136 * an sctp_connectx() call, the system picks an
1137 * ephemeral port and will choose an address set
1138 * equivalent to binding with a wildcard address.
1139 */
1140 if (!ep->base.bind_addr.port) {
1141 if (sctp_autobind(sk)) {
1142 err = -EAGAIN;
1143 goto out_free;
1144 }
1145 } else {
1146 /*
1147 * If an unprivileged user inherits a 1-many
1148 * style socket with open associations on a
1149 * privileged port, it MAY be permitted to
1150 * accept new associations, but it SHOULD NOT
1151 * be permitted to open new associations.
1152 */
1153 if (ep->base.bind_addr.port < PROT_SOCK &&
1154 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 err = -EACCES;
1156 goto out_free;
1157 }
1158 }
1159
1160 scope = sctp_scope(&to);
1161 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 if (!asoc) {
1163 err = -ENOMEM;
1164 goto out_free;
1165 }
1166
1167 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 GFP_KERNEL);
1169 if (err < 0) {
1170 goto out_free;
1171 }
1172
1173 }
1174
1175 /* Prime the peer's transport structures. */
1176 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 SCTP_UNKNOWN);
1178 if (!transport) {
1179 err = -ENOMEM;
1180 goto out_free;
1181 }
1182
1183 addrcnt++;
1184 addr_buf += af->sockaddr_len;
1185 walk_size += af->sockaddr_len;
1186 }
1187
1188 /* In case the user of sctp_connectx() wants an association
1189 * id back, assign one now.
1190 */
1191 if (assoc_id) {
1192 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 if (err < 0)
1194 goto out_free;
1195 }
1196
1197 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 if (err < 0) {
1199 goto out_free;
1200 }
1201
1202 /* Initialize sk's dport and daddr for getpeername() */
1203 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 sp->pf->to_sk_daddr(sa_addr, sk);
1205 sk->sk_err = 0;
1206
1207 /* in-kernel sockets don't generally have a file allocated to them
1208 * if all they do is call sock_create_kern().
1209 */
1210 if (sk->sk_socket->file)
1211 f_flags = sk->sk_socket->file->f_flags;
1212
1213 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1214
1215 err = sctp_wait_for_connect(asoc, &timeo);
1216 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1217 *assoc_id = asoc->assoc_id;
1218
1219 /* Don't free association on exit. */
1220 asoc = NULL;
1221
1222 out_free:
1223 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1224 __func__, asoc, kaddrs, err);
1225
1226 if (asoc) {
1227 /* sctp_primitive_ASSOCIATE may have added this association
1228 * To the hash table, try to unhash it, just in case, its a noop
1229 * if it wasn't hashed so we're safe
1230 */
1231 sctp_unhash_established(asoc);
1232 sctp_association_free(asoc);
1233 }
1234 return err;
1235 }
1236
1237 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1238 *
1239 * API 8.9
1240 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1241 * sctp_assoc_t *asoc);
1242 *
1243 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1244 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1245 * or IPv6 addresses.
1246 *
1247 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1248 * Section 3.1.2 for this usage.
1249 *
1250 * addrs is a pointer to an array of one or more socket addresses. Each
1251 * address is contained in its appropriate structure (i.e. struct
1252 * sockaddr_in or struct sockaddr_in6) the family of the address type
1253 * must be used to distengish the address length (note that this
1254 * representation is termed a "packed array" of addresses). The caller
1255 * specifies the number of addresses in the array with addrcnt.
1256 *
1257 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1258 * the association id of the new association. On failure, sctp_connectx()
1259 * returns -1, and sets errno to the appropriate error code. The assoc_id
1260 * is not touched by the kernel.
1261 *
1262 * For SCTP, the port given in each socket address must be the same, or
1263 * sctp_connectx() will fail, setting errno to EINVAL.
1264 *
1265 * An application can use sctp_connectx to initiate an association with
1266 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1267 * allows a caller to specify multiple addresses at which a peer can be
1268 * reached. The way the SCTP stack uses the list of addresses to set up
1269 * the association is implementation dependent. This function only
1270 * specifies that the stack will try to make use of all the addresses in
1271 * the list when needed.
1272 *
1273 * Note that the list of addresses passed in is only used for setting up
1274 * the association. It does not necessarily equal the set of addresses
1275 * the peer uses for the resulting association. If the caller wants to
1276 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1277 * retrieve them after the association has been set up.
1278 *
1279 * Basically do nothing but copying the addresses from user to kernel
1280 * land and invoking either sctp_connectx(). This is used for tunneling
1281 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1282 *
1283 * We don't use copy_from_user() for optimization: we first do the
1284 * sanity checks (buffer size -fast- and access check-healthy
1285 * pointer); if all of those succeed, then we can alloc the memory
1286 * (expensive operation) needed to copy the data to kernel. Then we do
1287 * the copying without checking the user space area
1288 * (__copy_from_user()).
1289 *
1290 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1291 * it.
1292 *
1293 * sk The sk of the socket
1294 * addrs The pointer to the addresses in user land
1295 * addrssize Size of the addrs buffer
1296 *
1297 * Returns >=0 if ok, <0 errno code on error.
1298 */
1299 static int __sctp_setsockopt_connectx(struct sock *sk,
1300 struct sockaddr __user *addrs,
1301 int addrs_size,
1302 sctp_assoc_t *assoc_id)
1303 {
1304 struct sockaddr *kaddrs;
1305 gfp_t gfp = GFP_KERNEL;
1306 int err = 0;
1307
1308 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1309 __func__, sk, addrs, addrs_size);
1310
1311 if (unlikely(addrs_size <= 0))
1312 return -EINVAL;
1313
1314 /* Check the user passed a healthy pointer. */
1315 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1316 return -EFAULT;
1317
1318 /* Alloc space for the address array in kernel memory. */
1319 if (sk->sk_socket->file)
1320 gfp = GFP_USER | __GFP_NOWARN;
1321 kaddrs = kmalloc(addrs_size, gfp);
1322 if (unlikely(!kaddrs))
1323 return -ENOMEM;
1324
1325 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1326 err = -EFAULT;
1327 } else {
1328 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1329 }
1330
1331 kfree(kaddrs);
1332
1333 return err;
1334 }
1335
1336 /*
1337 * This is an older interface. It's kept for backward compatibility
1338 * to the option that doesn't provide association id.
1339 */
1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 struct sockaddr __user *addrs,
1342 int addrs_size)
1343 {
1344 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1345 }
1346
1347 /*
1348 * New interface for the API. The since the API is done with a socket
1349 * option, to make it simple we feed back the association id is as a return
1350 * indication to the call. Error is always negative and association id is
1351 * always positive.
1352 */
1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 struct sockaddr __user *addrs,
1355 int addrs_size)
1356 {
1357 sctp_assoc_t assoc_id = 0;
1358 int err = 0;
1359
1360 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1361
1362 if (err)
1363 return err;
1364 else
1365 return assoc_id;
1366 }
1367
1368 /*
1369 * New (hopefully final) interface for the API.
1370 * We use the sctp_getaddrs_old structure so that use-space library
1371 * can avoid any unnecessary allocations. The only different part
1372 * is that we store the actual length of the address buffer into the
1373 * addrs_num structure member. That way we can re-use the existing
1374 * code.
1375 */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 sctp_assoc_t assoc_id;
1379 s32 addr_num;
1380 compat_uptr_t addrs; /* struct sockaddr * */
1381 };
1382 #endif
1383
1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 char __user *optval,
1386 int __user *optlen)
1387 {
1388 struct sctp_getaddrs_old param;
1389 sctp_assoc_t assoc_id = 0;
1390 int err = 0;
1391
1392 #ifdef CONFIG_COMPAT
1393 if (is_compat_task()) {
1394 struct compat_sctp_getaddrs_old param32;
1395
1396 if (len < sizeof(param32))
1397 return -EINVAL;
1398 if (copy_from_user(&param32, optval, sizeof(param32)))
1399 return -EFAULT;
1400
1401 param.assoc_id = param32.assoc_id;
1402 param.addr_num = param32.addr_num;
1403 param.addrs = compat_ptr(param32.addrs);
1404 } else
1405 #endif
1406 {
1407 if (len < sizeof(param))
1408 return -EINVAL;
1409 if (copy_from_user(&param, optval, sizeof(param)))
1410 return -EFAULT;
1411 }
1412
1413 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1414 param.addrs, param.addr_num,
1415 &assoc_id);
1416 if (err == 0 || err == -EINPROGRESS) {
1417 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1418 return -EFAULT;
1419 if (put_user(sizeof(assoc_id), optlen))
1420 return -EFAULT;
1421 }
1422
1423 return err;
1424 }
1425
1426 /* API 3.1.4 close() - UDP Style Syntax
1427 * Applications use close() to perform graceful shutdown (as described in
1428 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1429 * by a UDP-style socket.
1430 *
1431 * The syntax is
1432 *
1433 * ret = close(int sd);
1434 *
1435 * sd - the socket descriptor of the associations to be closed.
1436 *
1437 * To gracefully shutdown a specific association represented by the
1438 * UDP-style socket, an application should use the sendmsg() call,
1439 * passing no user data, but including the appropriate flag in the
1440 * ancillary data (see Section xxxx).
1441 *
1442 * If sd in the close() call is a branched-off socket representing only
1443 * one association, the shutdown is performed on that association only.
1444 *
1445 * 4.1.6 close() - TCP Style Syntax
1446 *
1447 * Applications use close() to gracefully close down an association.
1448 *
1449 * The syntax is:
1450 *
1451 * int close(int sd);
1452 *
1453 * sd - the socket descriptor of the association to be closed.
1454 *
1455 * After an application calls close() on a socket descriptor, no further
1456 * socket operations will succeed on that descriptor.
1457 *
1458 * API 7.1.4 SO_LINGER
1459 *
1460 * An application using the TCP-style socket can use this option to
1461 * perform the SCTP ABORT primitive. The linger option structure is:
1462 *
1463 * struct linger {
1464 * int l_onoff; // option on/off
1465 * int l_linger; // linger time
1466 * };
1467 *
1468 * To enable the option, set l_onoff to 1. If the l_linger value is set
1469 * to 0, calling close() is the same as the ABORT primitive. If the
1470 * value is set to a negative value, the setsockopt() call will return
1471 * an error. If the value is set to a positive value linger_time, the
1472 * close() can be blocked for at most linger_time ms. If the graceful
1473 * shutdown phase does not finish during this period, close() will
1474 * return but the graceful shutdown phase continues in the system.
1475 */
1476 static void sctp_close(struct sock *sk, long timeout)
1477 {
1478 struct net *net = sock_net(sk);
1479 struct sctp_endpoint *ep;
1480 struct sctp_association *asoc;
1481 struct list_head *pos, *temp;
1482 unsigned int data_was_unread;
1483
1484 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1485
1486 lock_sock(sk);
1487 sk->sk_shutdown = SHUTDOWN_MASK;
1488 sk->sk_state = SCTP_SS_CLOSING;
1489
1490 ep = sctp_sk(sk)->ep;
1491
1492 /* Clean up any skbs sitting on the receive queue. */
1493 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1494 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1495
1496 /* Walk all associations on an endpoint. */
1497 list_for_each_safe(pos, temp, &ep->asocs) {
1498 asoc = list_entry(pos, struct sctp_association, asocs);
1499
1500 if (sctp_style(sk, TCP)) {
1501 /* A closed association can still be in the list if
1502 * it belongs to a TCP-style listening socket that is
1503 * not yet accepted. If so, free it. If not, send an
1504 * ABORT or SHUTDOWN based on the linger options.
1505 */
1506 if (sctp_state(asoc, CLOSED)) {
1507 sctp_unhash_established(asoc);
1508 sctp_association_free(asoc);
1509 continue;
1510 }
1511 }
1512
1513 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1514 !skb_queue_empty(&asoc->ulpq.reasm) ||
1515 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1516 struct sctp_chunk *chunk;
1517
1518 chunk = sctp_make_abort_user(asoc, NULL, 0);
1519 sctp_primitive_ABORT(net, asoc, chunk);
1520 } else
1521 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1522 }
1523
1524 /* On a TCP-style socket, block for at most linger_time if set. */
1525 if (sctp_style(sk, TCP) && timeout)
1526 sctp_wait_for_close(sk, timeout);
1527
1528 /* This will run the backlog queue. */
1529 release_sock(sk);
1530
1531 /* Supposedly, no process has access to the socket, but
1532 * the net layers still may.
1533 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1534 * held and that should be grabbed before socket lock.
1535 */
1536 spin_lock_bh(&net->sctp.addr_wq_lock);
1537 bh_lock_sock(sk);
1538
1539 /* Hold the sock, since sk_common_release() will put sock_put()
1540 * and we have just a little more cleanup.
1541 */
1542 sock_hold(sk);
1543 sk_common_release(sk);
1544
1545 bh_unlock_sock(sk);
1546 spin_unlock_bh(&net->sctp.addr_wq_lock);
1547
1548 sock_put(sk);
1549
1550 SCTP_DBG_OBJCNT_DEC(sock);
1551 }
1552
1553 /* Handle EPIPE error. */
1554 static int sctp_error(struct sock *sk, int flags, int err)
1555 {
1556 if (err == -EPIPE)
1557 err = sock_error(sk) ? : -EPIPE;
1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 send_sig(SIGPIPE, current, 0);
1560 return err;
1561 }
1562
1563 /* API 3.1.3 sendmsg() - UDP Style Syntax
1564 *
1565 * An application uses sendmsg() and recvmsg() calls to transmit data to
1566 * and receive data from its peer.
1567 *
1568 * ssize_t sendmsg(int socket, const struct msghdr *message,
1569 * int flags);
1570 *
1571 * socket - the socket descriptor of the endpoint.
1572 * message - pointer to the msghdr structure which contains a single
1573 * user message and possibly some ancillary data.
1574 *
1575 * See Section 5 for complete description of the data
1576 * structures.
1577 *
1578 * flags - flags sent or received with the user message, see Section
1579 * 5 for complete description of the flags.
1580 *
1581 * Note: This function could use a rewrite especially when explicit
1582 * connect support comes in.
1583 */
1584 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1585
1586 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587
1588 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1589 {
1590 struct net *net = sock_net(sk);
1591 struct sctp_sock *sp;
1592 struct sctp_endpoint *ep;
1593 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1594 struct sctp_transport *transport, *chunk_tp;
1595 struct sctp_chunk *chunk;
1596 union sctp_addr to;
1597 struct sockaddr *msg_name = NULL;
1598 struct sctp_sndrcvinfo default_sinfo;
1599 struct sctp_sndrcvinfo *sinfo;
1600 struct sctp_initmsg *sinit;
1601 sctp_assoc_t associd = 0;
1602 sctp_cmsgs_t cmsgs = { NULL };
1603 sctp_scope_t scope;
1604 bool fill_sinfo_ttl = false, wait_connect = false;
1605 struct sctp_datamsg *datamsg;
1606 int msg_flags = msg->msg_flags;
1607 __u16 sinfo_flags = 0;
1608 long timeo;
1609 int err;
1610
1611 err = 0;
1612 sp = sctp_sk(sk);
1613 ep = sp->ep;
1614
1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 msg, msg_len, ep);
1617
1618 /* We cannot send a message over a TCP-style listening socket. */
1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 err = -EPIPE;
1621 goto out_nounlock;
1622 }
1623
1624 /* Parse out the SCTP CMSGs. */
1625 err = sctp_msghdr_parse(msg, &cmsgs);
1626 if (err) {
1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 goto out_nounlock;
1629 }
1630
1631 /* Fetch the destination address for this packet. This
1632 * address only selects the association--it is not necessarily
1633 * the address we will send to.
1634 * For a peeled-off socket, msg_name is ignored.
1635 */
1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 int msg_namelen = msg->msg_namelen;
1638
1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 msg_namelen);
1641 if (err)
1642 return err;
1643
1644 if (msg_namelen > sizeof(to))
1645 msg_namelen = sizeof(to);
1646 memcpy(&to, msg->msg_name, msg_namelen);
1647 msg_name = msg->msg_name;
1648 }
1649
1650 sinit = cmsgs.init;
1651 if (cmsgs.sinfo != NULL) {
1652 memset(&default_sinfo, 0, sizeof(default_sinfo));
1653 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1654 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1655 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1656 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1657 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1658
1659 sinfo = &default_sinfo;
1660 fill_sinfo_ttl = true;
1661 } else {
1662 sinfo = cmsgs.srinfo;
1663 }
1664 /* Did the user specify SNDINFO/SNDRCVINFO? */
1665 if (sinfo) {
1666 sinfo_flags = sinfo->sinfo_flags;
1667 associd = sinfo->sinfo_assoc_id;
1668 }
1669
1670 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1671 msg_len, sinfo_flags);
1672
1673 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1674 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1675 err = -EINVAL;
1676 goto out_nounlock;
1677 }
1678
1679 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1680 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1681 * If SCTP_ABORT is set, the message length could be non zero with
1682 * the msg_iov set to the user abort reason.
1683 */
1684 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1685 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1686 err = -EINVAL;
1687 goto out_nounlock;
1688 }
1689
1690 /* If SCTP_ADDR_OVER is set, there must be an address
1691 * specified in msg_name.
1692 */
1693 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1694 err = -EINVAL;
1695 goto out_nounlock;
1696 }
1697
1698 transport = NULL;
1699
1700 pr_debug("%s: about to look up association\n", __func__);
1701
1702 lock_sock(sk);
1703
1704 /* If a msg_name has been specified, assume this is to be used. */
1705 if (msg_name) {
1706 /* Look for a matching association on the endpoint. */
1707 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1708 if (!asoc) {
1709 /* If we could not find a matching association on the
1710 * endpoint, make sure that it is not a TCP-style
1711 * socket that already has an association or there is
1712 * no peeled-off association on another socket.
1713 */
1714 if ((sctp_style(sk, TCP) &&
1715 sctp_sstate(sk, ESTABLISHED)) ||
1716 sctp_endpoint_is_peeled_off(ep, &to)) {
1717 err = -EADDRNOTAVAIL;
1718 goto out_unlock;
1719 }
1720 }
1721 } else {
1722 asoc = sctp_id2assoc(sk, associd);
1723 if (!asoc) {
1724 err = -EPIPE;
1725 goto out_unlock;
1726 }
1727 }
1728
1729 if (asoc) {
1730 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1731
1732 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1733 * socket that has an association in CLOSED state. This can
1734 * happen when an accepted socket has an association that is
1735 * already CLOSED.
1736 */
1737 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1738 err = -EPIPE;
1739 goto out_unlock;
1740 }
1741
1742 if (sinfo_flags & SCTP_EOF) {
1743 pr_debug("%s: shutting down association:%p\n",
1744 __func__, asoc);
1745
1746 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1747 err = 0;
1748 goto out_unlock;
1749 }
1750 if (sinfo_flags & SCTP_ABORT) {
1751
1752 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1753 if (!chunk) {
1754 err = -ENOMEM;
1755 goto out_unlock;
1756 }
1757
1758 pr_debug("%s: aborting association:%p\n",
1759 __func__, asoc);
1760
1761 sctp_primitive_ABORT(net, asoc, chunk);
1762 err = 0;
1763 goto out_unlock;
1764 }
1765 }
1766
1767 /* Do we need to create the association? */
1768 if (!asoc) {
1769 pr_debug("%s: there is no association yet\n", __func__);
1770
1771 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1772 err = -EINVAL;
1773 goto out_unlock;
1774 }
1775
1776 /* Check for invalid stream against the stream counts,
1777 * either the default or the user specified stream counts.
1778 */
1779 if (sinfo) {
1780 if (!sinit || !sinit->sinit_num_ostreams) {
1781 /* Check against the defaults. */
1782 if (sinfo->sinfo_stream >=
1783 sp->initmsg.sinit_num_ostreams) {
1784 err = -EINVAL;
1785 goto out_unlock;
1786 }
1787 } else {
1788 /* Check against the requested. */
1789 if (sinfo->sinfo_stream >=
1790 sinit->sinit_num_ostreams) {
1791 err = -EINVAL;
1792 goto out_unlock;
1793 }
1794 }
1795 }
1796
1797 /*
1798 * API 3.1.2 bind() - UDP Style Syntax
1799 * If a bind() or sctp_bindx() is not called prior to a
1800 * sendmsg() call that initiates a new association, the
1801 * system picks an ephemeral port and will choose an address
1802 * set equivalent to binding with a wildcard address.
1803 */
1804 if (!ep->base.bind_addr.port) {
1805 if (sctp_autobind(sk)) {
1806 err = -EAGAIN;
1807 goto out_unlock;
1808 }
1809 } else {
1810 /*
1811 * If an unprivileged user inherits a one-to-many
1812 * style socket with open associations on a privileged
1813 * port, it MAY be permitted to accept new associations,
1814 * but it SHOULD NOT be permitted to open new
1815 * associations.
1816 */
1817 if (ep->base.bind_addr.port < PROT_SOCK &&
1818 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1819 err = -EACCES;
1820 goto out_unlock;
1821 }
1822 }
1823
1824 scope = sctp_scope(&to);
1825 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1826 if (!new_asoc) {
1827 err = -ENOMEM;
1828 goto out_unlock;
1829 }
1830 asoc = new_asoc;
1831 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1832 if (err < 0) {
1833 err = -ENOMEM;
1834 goto out_free;
1835 }
1836
1837 /* If the SCTP_INIT ancillary data is specified, set all
1838 * the association init values accordingly.
1839 */
1840 if (sinit) {
1841 if (sinit->sinit_num_ostreams) {
1842 asoc->c.sinit_num_ostreams =
1843 sinit->sinit_num_ostreams;
1844 }
1845 if (sinit->sinit_max_instreams) {
1846 asoc->c.sinit_max_instreams =
1847 sinit->sinit_max_instreams;
1848 }
1849 if (sinit->sinit_max_attempts) {
1850 asoc->max_init_attempts
1851 = sinit->sinit_max_attempts;
1852 }
1853 if (sinit->sinit_max_init_timeo) {
1854 asoc->max_init_timeo =
1855 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1856 }
1857 }
1858
1859 /* Prime the peer's transport structures. */
1860 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1861 if (!transport) {
1862 err = -ENOMEM;
1863 goto out_free;
1864 }
1865 }
1866
1867 /* ASSERT: we have a valid association at this point. */
1868 pr_debug("%s: we have a valid association\n", __func__);
1869
1870 if (!sinfo) {
1871 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1872 * one with some defaults.
1873 */
1874 memset(&default_sinfo, 0, sizeof(default_sinfo));
1875 default_sinfo.sinfo_stream = asoc->default_stream;
1876 default_sinfo.sinfo_flags = asoc->default_flags;
1877 default_sinfo.sinfo_ppid = asoc->default_ppid;
1878 default_sinfo.sinfo_context = asoc->default_context;
1879 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1880 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1881
1882 sinfo = &default_sinfo;
1883 } else if (fill_sinfo_ttl) {
1884 /* In case SNDINFO was specified, we still need to fill
1885 * it with a default ttl from the assoc here.
1886 */
1887 sinfo->sinfo_timetolive = asoc->default_timetolive;
1888 }
1889
1890 /* API 7.1.7, the sndbuf size per association bounds the
1891 * maximum size of data that can be sent in a single send call.
1892 */
1893 if (msg_len > sk->sk_sndbuf) {
1894 err = -EMSGSIZE;
1895 goto out_free;
1896 }
1897
1898 if (asoc->pmtu_pending)
1899 sctp_assoc_pending_pmtu(sk, asoc);
1900
1901 /* If fragmentation is disabled and the message length exceeds the
1902 * association fragmentation point, return EMSGSIZE. The I-D
1903 * does not specify what this error is, but this looks like
1904 * a great fit.
1905 */
1906 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1907 err = -EMSGSIZE;
1908 goto out_free;
1909 }
1910
1911 /* Check for invalid stream. */
1912 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1913 err = -EINVAL;
1914 goto out_free;
1915 }
1916
1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1918 if (!sctp_wspace(asoc)) {
1919 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1920 if (err)
1921 goto out_free;
1922 }
1923
1924 /* If an address is passed with the sendto/sendmsg call, it is used
1925 * to override the primary destination address in the TCP model, or
1926 * when SCTP_ADDR_OVER flag is set in the UDP model.
1927 */
1928 if ((sctp_style(sk, TCP) && msg_name) ||
1929 (sinfo_flags & SCTP_ADDR_OVER)) {
1930 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1931 if (!chunk_tp) {
1932 err = -EINVAL;
1933 goto out_free;
1934 }
1935 } else
1936 chunk_tp = NULL;
1937
1938 /* Auto-connect, if we aren't connected already. */
1939 if (sctp_state(asoc, CLOSED)) {
1940 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1941 if (err < 0)
1942 goto out_free;
1943
1944 wait_connect = true;
1945 pr_debug("%s: we associated primitively\n", __func__);
1946 }
1947
1948 /* Break the message into multiple chunks of maximum size. */
1949 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1950 if (IS_ERR(datamsg)) {
1951 err = PTR_ERR(datamsg);
1952 goto out_free;
1953 }
1954
1955 /* Now send the (possibly) fragmented message. */
1956 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1957 /* Do accounting for the write space. */
1958 sctp_set_owner_w(chunk);
1959
1960 chunk->transport = chunk_tp;
1961 }
1962
1963 /* Send it to the lower layers. Note: all chunks
1964 * must either fail or succeed. The lower layer
1965 * works that way today. Keep it that way or this
1966 * breaks.
1967 */
1968 err = sctp_primitive_SEND(net, asoc, datamsg);
1969 sctp_datamsg_put(datamsg);
1970 /* Did the lower layer accept the chunk? */
1971 if (err)
1972 goto out_free;
1973
1974 pr_debug("%s: we sent primitively\n", __func__);
1975
1976 err = msg_len;
1977
1978 if (unlikely(wait_connect)) {
1979 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1980 sctp_wait_for_connect(asoc, &timeo);
1981 }
1982
1983 /* If we are already past ASSOCIATE, the lower
1984 * layers are responsible for association cleanup.
1985 */
1986 goto out_unlock;
1987
1988 out_free:
1989 if (new_asoc) {
1990 sctp_unhash_established(asoc);
1991 sctp_association_free(asoc);
1992 }
1993 out_unlock:
1994 release_sock(sk);
1995
1996 out_nounlock:
1997 return sctp_error(sk, msg_flags, err);
1998
1999 #if 0
2000 do_sock_err:
2001 if (msg_len)
2002 err = msg_len;
2003 else
2004 err = sock_error(sk);
2005 goto out;
2006
2007 do_interrupted:
2008 if (msg_len)
2009 err = msg_len;
2010 goto out;
2011 #endif /* 0 */
2012 }
2013
2014 /* This is an extended version of skb_pull() that removes the data from the
2015 * start of a skb even when data is spread across the list of skb's in the
2016 * frag_list. len specifies the total amount of data that needs to be removed.
2017 * when 'len' bytes could be removed from the skb, it returns 0.
2018 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2019 * could not be removed.
2020 */
2021 static int sctp_skb_pull(struct sk_buff *skb, int len)
2022 {
2023 struct sk_buff *list;
2024 int skb_len = skb_headlen(skb);
2025 int rlen;
2026
2027 if (len <= skb_len) {
2028 __skb_pull(skb, len);
2029 return 0;
2030 }
2031 len -= skb_len;
2032 __skb_pull(skb, skb_len);
2033
2034 skb_walk_frags(skb, list) {
2035 rlen = sctp_skb_pull(list, len);
2036 skb->len -= (len-rlen);
2037 skb->data_len -= (len-rlen);
2038
2039 if (!rlen)
2040 return 0;
2041
2042 len = rlen;
2043 }
2044
2045 return len;
2046 }
2047
2048 /* API 3.1.3 recvmsg() - UDP Style Syntax
2049 *
2050 * ssize_t recvmsg(int socket, struct msghdr *message,
2051 * int flags);
2052 *
2053 * socket - the socket descriptor of the endpoint.
2054 * message - pointer to the msghdr structure which contains a single
2055 * user message and possibly some ancillary data.
2056 *
2057 * See Section 5 for complete description of the data
2058 * structures.
2059 *
2060 * flags - flags sent or received with the user message, see Section
2061 * 5 for complete description of the flags.
2062 */
2063 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2064 int noblock, int flags, int *addr_len)
2065 {
2066 struct sctp_ulpevent *event = NULL;
2067 struct sctp_sock *sp = sctp_sk(sk);
2068 struct sk_buff *skb;
2069 int copied;
2070 int err = 0;
2071 int skb_len;
2072
2073 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2074 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2075 addr_len);
2076
2077 lock_sock(sk);
2078
2079 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2080 err = -ENOTCONN;
2081 goto out;
2082 }
2083
2084 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2085 if (!skb)
2086 goto out;
2087
2088 /* Get the total length of the skb including any skb's in the
2089 * frag_list.
2090 */
2091 skb_len = skb->len;
2092
2093 copied = skb_len;
2094 if (copied > len)
2095 copied = len;
2096
2097 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2098
2099 event = sctp_skb2event(skb);
2100
2101 if (err)
2102 goto out_free;
2103
2104 sock_recv_ts_and_drops(msg, sk, skb);
2105 if (sctp_ulpevent_is_notification(event)) {
2106 msg->msg_flags |= MSG_NOTIFICATION;
2107 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2108 } else {
2109 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2110 }
2111
2112 /* Check if we allow SCTP_NXTINFO. */
2113 if (sp->recvnxtinfo)
2114 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2115 /* Check if we allow SCTP_RCVINFO. */
2116 if (sp->recvrcvinfo)
2117 sctp_ulpevent_read_rcvinfo(event, msg);
2118 /* Check if we allow SCTP_SNDRCVINFO. */
2119 if (sp->subscribe.sctp_data_io_event)
2120 sctp_ulpevent_read_sndrcvinfo(event, msg);
2121
2122 err = copied;
2123
2124 /* If skb's length exceeds the user's buffer, update the skb and
2125 * push it back to the receive_queue so that the next call to
2126 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2127 */
2128 if (skb_len > copied) {
2129 msg->msg_flags &= ~MSG_EOR;
2130 if (flags & MSG_PEEK)
2131 goto out_free;
2132 sctp_skb_pull(skb, copied);
2133 skb_queue_head(&sk->sk_receive_queue, skb);
2134
2135 /* When only partial message is copied to the user, increase
2136 * rwnd by that amount. If all the data in the skb is read,
2137 * rwnd is updated when the event is freed.
2138 */
2139 if (!sctp_ulpevent_is_notification(event))
2140 sctp_assoc_rwnd_increase(event->asoc, copied);
2141 goto out;
2142 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2143 (event->msg_flags & MSG_EOR))
2144 msg->msg_flags |= MSG_EOR;
2145 else
2146 msg->msg_flags &= ~MSG_EOR;
2147
2148 out_free:
2149 if (flags & MSG_PEEK) {
2150 /* Release the skb reference acquired after peeking the skb in
2151 * sctp_skb_recv_datagram().
2152 */
2153 kfree_skb(skb);
2154 } else {
2155 /* Free the event which includes releasing the reference to
2156 * the owner of the skb, freeing the skb and updating the
2157 * rwnd.
2158 */
2159 sctp_ulpevent_free(event);
2160 }
2161 out:
2162 release_sock(sk);
2163 return err;
2164 }
2165
2166 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2167 *
2168 * This option is a on/off flag. If enabled no SCTP message
2169 * fragmentation will be performed. Instead if a message being sent
2170 * exceeds the current PMTU size, the message will NOT be sent and
2171 * instead a error will be indicated to the user.
2172 */
2173 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2174 char __user *optval,
2175 unsigned int optlen)
2176 {
2177 int val;
2178
2179 if (optlen < sizeof(int))
2180 return -EINVAL;
2181
2182 if (get_user(val, (int __user *)optval))
2183 return -EFAULT;
2184
2185 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2186
2187 return 0;
2188 }
2189
2190 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2191 unsigned int optlen)
2192 {
2193 struct sctp_association *asoc;
2194 struct sctp_ulpevent *event;
2195
2196 if (optlen > sizeof(struct sctp_event_subscribe))
2197 return -EINVAL;
2198 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2199 return -EFAULT;
2200
2201 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2202 * if there is no data to be sent or retransmit, the stack will
2203 * immediately send up this notification.
2204 */
2205 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2206 &sctp_sk(sk)->subscribe)) {
2207 asoc = sctp_id2assoc(sk, 0);
2208
2209 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2210 event = sctp_ulpevent_make_sender_dry_event(asoc,
2211 GFP_ATOMIC);
2212 if (!event)
2213 return -ENOMEM;
2214
2215 sctp_ulpq_tail_event(&asoc->ulpq, event);
2216 }
2217 }
2218
2219 return 0;
2220 }
2221
2222 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2223 *
2224 * This socket option is applicable to the UDP-style socket only. When
2225 * set it will cause associations that are idle for more than the
2226 * specified number of seconds to automatically close. An association
2227 * being idle is defined an association that has NOT sent or received
2228 * user data. The special value of '0' indicates that no automatic
2229 * close of any associations should be performed. The option expects an
2230 * integer defining the number of seconds of idle time before an
2231 * association is closed.
2232 */
2233 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2234 unsigned int optlen)
2235 {
2236 struct sctp_sock *sp = sctp_sk(sk);
2237 struct net *net = sock_net(sk);
2238
2239 /* Applicable to UDP-style socket only */
2240 if (sctp_style(sk, TCP))
2241 return -EOPNOTSUPP;
2242 if (optlen != sizeof(int))
2243 return -EINVAL;
2244 if (copy_from_user(&sp->autoclose, optval, optlen))
2245 return -EFAULT;
2246
2247 if (sp->autoclose > net->sctp.max_autoclose)
2248 sp->autoclose = net->sctp.max_autoclose;
2249
2250 return 0;
2251 }
2252
2253 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2254 *
2255 * Applications can enable or disable heartbeats for any peer address of
2256 * an association, modify an address's heartbeat interval, force a
2257 * heartbeat to be sent immediately, and adjust the address's maximum
2258 * number of retransmissions sent before an address is considered
2259 * unreachable. The following structure is used to access and modify an
2260 * address's parameters:
2261 *
2262 * struct sctp_paddrparams {
2263 * sctp_assoc_t spp_assoc_id;
2264 * struct sockaddr_storage spp_address;
2265 * uint32_t spp_hbinterval;
2266 * uint16_t spp_pathmaxrxt;
2267 * uint32_t spp_pathmtu;
2268 * uint32_t spp_sackdelay;
2269 * uint32_t spp_flags;
2270 * };
2271 *
2272 * spp_assoc_id - (one-to-many style socket) This is filled in the
2273 * application, and identifies the association for
2274 * this query.
2275 * spp_address - This specifies which address is of interest.
2276 * spp_hbinterval - This contains the value of the heartbeat interval,
2277 * in milliseconds. If a value of zero
2278 * is present in this field then no changes are to
2279 * be made to this parameter.
2280 * spp_pathmaxrxt - This contains the maximum number of
2281 * retransmissions before this address shall be
2282 * considered unreachable. If a value of zero
2283 * is present in this field then no changes are to
2284 * be made to this parameter.
2285 * spp_pathmtu - When Path MTU discovery is disabled the value
2286 * specified here will be the "fixed" path mtu.
2287 * Note that if the spp_address field is empty
2288 * then all associations on this address will
2289 * have this fixed path mtu set upon them.
2290 *
2291 * spp_sackdelay - When delayed sack is enabled, this value specifies
2292 * the number of milliseconds that sacks will be delayed
2293 * for. This value will apply to all addresses of an
2294 * association if the spp_address field is empty. Note
2295 * also, that if delayed sack is enabled and this
2296 * value is set to 0, no change is made to the last
2297 * recorded delayed sack timer value.
2298 *
2299 * spp_flags - These flags are used to control various features
2300 * on an association. The flag field may contain
2301 * zero or more of the following options.
2302 *
2303 * SPP_HB_ENABLE - Enable heartbeats on the
2304 * specified address. Note that if the address
2305 * field is empty all addresses for the association
2306 * have heartbeats enabled upon them.
2307 *
2308 * SPP_HB_DISABLE - Disable heartbeats on the
2309 * speicifed address. Note that if the address
2310 * field is empty all addresses for the association
2311 * will have their heartbeats disabled. Note also
2312 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2313 * mutually exclusive, only one of these two should
2314 * be specified. Enabling both fields will have
2315 * undetermined results.
2316 *
2317 * SPP_HB_DEMAND - Request a user initiated heartbeat
2318 * to be made immediately.
2319 *
2320 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2321 * heartbeat delayis to be set to the value of 0
2322 * milliseconds.
2323 *
2324 * SPP_PMTUD_ENABLE - This field will enable PMTU
2325 * discovery upon the specified address. Note that
2326 * if the address feild is empty then all addresses
2327 * on the association are effected.
2328 *
2329 * SPP_PMTUD_DISABLE - This field will disable PMTU
2330 * discovery upon the specified address. Note that
2331 * if the address feild is empty then all addresses
2332 * on the association are effected. Not also that
2333 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2334 * exclusive. Enabling both will have undetermined
2335 * results.
2336 *
2337 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2338 * on delayed sack. The time specified in spp_sackdelay
2339 * is used to specify the sack delay for this address. Note
2340 * that if spp_address is empty then all addresses will
2341 * enable delayed sack and take on the sack delay
2342 * value specified in spp_sackdelay.
2343 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2344 * off delayed sack. If the spp_address field is blank then
2345 * delayed sack is disabled for the entire association. Note
2346 * also that this field is mutually exclusive to
2347 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2348 * results.
2349 */
2350 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2351 struct sctp_transport *trans,
2352 struct sctp_association *asoc,
2353 struct sctp_sock *sp,
2354 int hb_change,
2355 int pmtud_change,
2356 int sackdelay_change)
2357 {
2358 int error;
2359
2360 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2361 struct net *net = sock_net(trans->asoc->base.sk);
2362
2363 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2364 if (error)
2365 return error;
2366 }
2367
2368 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2369 * this field is ignored. Note also that a value of zero indicates
2370 * the current setting should be left unchanged.
2371 */
2372 if (params->spp_flags & SPP_HB_ENABLE) {
2373
2374 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2375 * set. This lets us use 0 value when this flag
2376 * is set.
2377 */
2378 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2379 params->spp_hbinterval = 0;
2380
2381 if (params->spp_hbinterval ||
2382 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2383 if (trans) {
2384 trans->hbinterval =
2385 msecs_to_jiffies(params->spp_hbinterval);
2386 } else if (asoc) {
2387 asoc->hbinterval =
2388 msecs_to_jiffies(params->spp_hbinterval);
2389 } else {
2390 sp->hbinterval = params->spp_hbinterval;
2391 }
2392 }
2393 }
2394
2395 if (hb_change) {
2396 if (trans) {
2397 trans->param_flags =
2398 (trans->param_flags & ~SPP_HB) | hb_change;
2399 } else if (asoc) {
2400 asoc->param_flags =
2401 (asoc->param_flags & ~SPP_HB) | hb_change;
2402 } else {
2403 sp->param_flags =
2404 (sp->param_flags & ~SPP_HB) | hb_change;
2405 }
2406 }
2407
2408 /* When Path MTU discovery is disabled the value specified here will
2409 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2410 * include the flag SPP_PMTUD_DISABLE for this field to have any
2411 * effect).
2412 */
2413 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2414 if (trans) {
2415 trans->pathmtu = params->spp_pathmtu;
2416 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2417 } else if (asoc) {
2418 asoc->pathmtu = params->spp_pathmtu;
2419 sctp_frag_point(asoc, params->spp_pathmtu);
2420 } else {
2421 sp->pathmtu = params->spp_pathmtu;
2422 }
2423 }
2424
2425 if (pmtud_change) {
2426 if (trans) {
2427 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2428 (params->spp_flags & SPP_PMTUD_ENABLE);
2429 trans->param_flags =
2430 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2431 if (update) {
2432 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2433 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2434 }
2435 } else if (asoc) {
2436 asoc->param_flags =
2437 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2438 } else {
2439 sp->param_flags =
2440 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2441 }
2442 }
2443
2444 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2445 * value of this field is ignored. Note also that a value of zero
2446 * indicates the current setting should be left unchanged.
2447 */
2448 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2449 if (trans) {
2450 trans->sackdelay =
2451 msecs_to_jiffies(params->spp_sackdelay);
2452 } else if (asoc) {
2453 asoc->sackdelay =
2454 msecs_to_jiffies(params->spp_sackdelay);
2455 } else {
2456 sp->sackdelay = params->spp_sackdelay;
2457 }
2458 }
2459
2460 if (sackdelay_change) {
2461 if (trans) {
2462 trans->param_flags =
2463 (trans->param_flags & ~SPP_SACKDELAY) |
2464 sackdelay_change;
2465 } else if (asoc) {
2466 asoc->param_flags =
2467 (asoc->param_flags & ~SPP_SACKDELAY) |
2468 sackdelay_change;
2469 } else {
2470 sp->param_flags =
2471 (sp->param_flags & ~SPP_SACKDELAY) |
2472 sackdelay_change;
2473 }
2474 }
2475
2476 /* Note that a value of zero indicates the current setting should be
2477 left unchanged.
2478 */
2479 if (params->spp_pathmaxrxt) {
2480 if (trans) {
2481 trans->pathmaxrxt = params->spp_pathmaxrxt;
2482 } else if (asoc) {
2483 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2484 } else {
2485 sp->pathmaxrxt = params->spp_pathmaxrxt;
2486 }
2487 }
2488
2489 return 0;
2490 }
2491
2492 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2493 char __user *optval,
2494 unsigned int optlen)
2495 {
2496 struct sctp_paddrparams params;
2497 struct sctp_transport *trans = NULL;
2498 struct sctp_association *asoc = NULL;
2499 struct sctp_sock *sp = sctp_sk(sk);
2500 int error;
2501 int hb_change, pmtud_change, sackdelay_change;
2502
2503 if (optlen != sizeof(struct sctp_paddrparams))
2504 return -EINVAL;
2505
2506 if (copy_from_user(&params, optval, optlen))
2507 return -EFAULT;
2508
2509 /* Validate flags and value parameters. */
2510 hb_change = params.spp_flags & SPP_HB;
2511 pmtud_change = params.spp_flags & SPP_PMTUD;
2512 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2513
2514 if (hb_change == SPP_HB ||
2515 pmtud_change == SPP_PMTUD ||
2516 sackdelay_change == SPP_SACKDELAY ||
2517 params.spp_sackdelay > 500 ||
2518 (params.spp_pathmtu &&
2519 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2520 return -EINVAL;
2521
2522 /* If an address other than INADDR_ANY is specified, and
2523 * no transport is found, then the request is invalid.
2524 */
2525 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2526 trans = sctp_addr_id2transport(sk, &params.spp_address,
2527 params.spp_assoc_id);
2528 if (!trans)
2529 return -EINVAL;
2530 }
2531
2532 /* Get association, if assoc_id != 0 and the socket is a one
2533 * to many style socket, and an association was not found, then
2534 * the id was invalid.
2535 */
2536 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2537 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2538 return -EINVAL;
2539
2540 /* Heartbeat demand can only be sent on a transport or
2541 * association, but not a socket.
2542 */
2543 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2544 return -EINVAL;
2545
2546 /* Process parameters. */
2547 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2548 hb_change, pmtud_change,
2549 sackdelay_change);
2550
2551 if (error)
2552 return error;
2553
2554 /* If changes are for association, also apply parameters to each
2555 * transport.
2556 */
2557 if (!trans && asoc) {
2558 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2559 transports) {
2560 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2561 hb_change, pmtud_change,
2562 sackdelay_change);
2563 }
2564 }
2565
2566 return 0;
2567 }
2568
2569 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2570 {
2571 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2572 }
2573
2574 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2575 {
2576 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2577 }
2578
2579 /*
2580 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2581 *
2582 * This option will effect the way delayed acks are performed. This
2583 * option allows you to get or set the delayed ack time, in
2584 * milliseconds. It also allows changing the delayed ack frequency.
2585 * Changing the frequency to 1 disables the delayed sack algorithm. If
2586 * the assoc_id is 0, then this sets or gets the endpoints default
2587 * values. If the assoc_id field is non-zero, then the set or get
2588 * effects the specified association for the one to many model (the
2589 * assoc_id field is ignored by the one to one model). Note that if
2590 * sack_delay or sack_freq are 0 when setting this option, then the
2591 * current values will remain unchanged.
2592 *
2593 * struct sctp_sack_info {
2594 * sctp_assoc_t sack_assoc_id;
2595 * uint32_t sack_delay;
2596 * uint32_t sack_freq;
2597 * };
2598 *
2599 * sack_assoc_id - This parameter, indicates which association the user
2600 * is performing an action upon. Note that if this field's value is
2601 * zero then the endpoints default value is changed (effecting future
2602 * associations only).
2603 *
2604 * sack_delay - This parameter contains the number of milliseconds that
2605 * the user is requesting the delayed ACK timer be set to. Note that
2606 * this value is defined in the standard to be between 200 and 500
2607 * milliseconds.
2608 *
2609 * sack_freq - This parameter contains the number of packets that must
2610 * be received before a sack is sent without waiting for the delay
2611 * timer to expire. The default value for this is 2, setting this
2612 * value to 1 will disable the delayed sack algorithm.
2613 */
2614
2615 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2616 char __user *optval, unsigned int optlen)
2617 {
2618 struct sctp_sack_info params;
2619 struct sctp_transport *trans = NULL;
2620 struct sctp_association *asoc = NULL;
2621 struct sctp_sock *sp = sctp_sk(sk);
2622
2623 if (optlen == sizeof(struct sctp_sack_info)) {
2624 if (copy_from_user(&params, optval, optlen))
2625 return -EFAULT;
2626
2627 if (params.sack_delay == 0 && params.sack_freq == 0)
2628 return 0;
2629 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2630 pr_warn_ratelimited(DEPRECATED
2631 "%s (pid %d) "
2632 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2633 "Use struct sctp_sack_info instead\n",
2634 current->comm, task_pid_nr(current));
2635 if (copy_from_user(&params, optval, optlen))
2636 return -EFAULT;
2637
2638 if (params.sack_delay == 0)
2639 params.sack_freq = 1;
2640 else
2641 params.sack_freq = 0;
2642 } else
2643 return -EINVAL;
2644
2645 /* Validate value parameter. */
2646 if (params.sack_delay > 500)
2647 return -EINVAL;
2648
2649 /* Get association, if sack_assoc_id != 0 and the socket is a one
2650 * to many style socket, and an association was not found, then
2651 * the id was invalid.
2652 */
2653 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2654 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2655 return -EINVAL;
2656
2657 if (params.sack_delay) {
2658 if (asoc) {
2659 asoc->sackdelay =
2660 msecs_to_jiffies(params.sack_delay);
2661 asoc->param_flags =
2662 sctp_spp_sackdelay_enable(asoc->param_flags);
2663 } else {
2664 sp->sackdelay = params.sack_delay;
2665 sp->param_flags =
2666 sctp_spp_sackdelay_enable(sp->param_flags);
2667 }
2668 }
2669
2670 if (params.sack_freq == 1) {
2671 if (asoc) {
2672 asoc->param_flags =
2673 sctp_spp_sackdelay_disable(asoc->param_flags);
2674 } else {
2675 sp->param_flags =
2676 sctp_spp_sackdelay_disable(sp->param_flags);
2677 }
2678 } else if (params.sack_freq > 1) {
2679 if (asoc) {
2680 asoc->sackfreq = params.sack_freq;
2681 asoc->param_flags =
2682 sctp_spp_sackdelay_enable(asoc->param_flags);
2683 } else {
2684 sp->sackfreq = params.sack_freq;
2685 sp->param_flags =
2686 sctp_spp_sackdelay_enable(sp->param_flags);
2687 }
2688 }
2689
2690 /* If change is for association, also apply to each transport. */
2691 if (asoc) {
2692 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2693 transports) {
2694 if (params.sack_delay) {
2695 trans->sackdelay =
2696 msecs_to_jiffies(params.sack_delay);
2697 trans->param_flags =
2698 sctp_spp_sackdelay_enable(trans->param_flags);
2699 }
2700 if (params.sack_freq == 1) {
2701 trans->param_flags =
2702 sctp_spp_sackdelay_disable(trans->param_flags);
2703 } else if (params.sack_freq > 1) {
2704 trans->sackfreq = params.sack_freq;
2705 trans->param_flags =
2706 sctp_spp_sackdelay_enable(trans->param_flags);
2707 }
2708 }
2709 }
2710
2711 return 0;
2712 }
2713
2714 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2715 *
2716 * Applications can specify protocol parameters for the default association
2717 * initialization. The option name argument to setsockopt() and getsockopt()
2718 * is SCTP_INITMSG.
2719 *
2720 * Setting initialization parameters is effective only on an unconnected
2721 * socket (for UDP-style sockets only future associations are effected
2722 * by the change). With TCP-style sockets, this option is inherited by
2723 * sockets derived from a listener socket.
2724 */
2725 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2726 {
2727 struct sctp_initmsg sinit;
2728 struct sctp_sock *sp = sctp_sk(sk);
2729
2730 if (optlen != sizeof(struct sctp_initmsg))
2731 return -EINVAL;
2732 if (copy_from_user(&sinit, optval, optlen))
2733 return -EFAULT;
2734
2735 if (sinit.sinit_num_ostreams)
2736 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2737 if (sinit.sinit_max_instreams)
2738 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2739 if (sinit.sinit_max_attempts)
2740 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2741 if (sinit.sinit_max_init_timeo)
2742 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2743
2744 return 0;
2745 }
2746
2747 /*
2748 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2749 *
2750 * Applications that wish to use the sendto() system call may wish to
2751 * specify a default set of parameters that would normally be supplied
2752 * through the inclusion of ancillary data. This socket option allows
2753 * such an application to set the default sctp_sndrcvinfo structure.
2754 * The application that wishes to use this socket option simply passes
2755 * in to this call the sctp_sndrcvinfo structure defined in Section
2756 * 5.2.2) The input parameters accepted by this call include
2757 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2758 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2759 * to this call if the caller is using the UDP model.
2760 */
2761 static int sctp_setsockopt_default_send_param(struct sock *sk,
2762 char __user *optval,
2763 unsigned int optlen)
2764 {
2765 struct sctp_sock *sp = sctp_sk(sk);
2766 struct sctp_association *asoc;
2767 struct sctp_sndrcvinfo info;
2768
2769 if (optlen != sizeof(info))
2770 return -EINVAL;
2771 if (copy_from_user(&info, optval, optlen))
2772 return -EFAULT;
2773 if (info.sinfo_flags &
2774 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2775 SCTP_ABORT | SCTP_EOF))
2776 return -EINVAL;
2777
2778 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2779 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2780 return -EINVAL;
2781 if (asoc) {
2782 asoc->default_stream = info.sinfo_stream;
2783 asoc->default_flags = info.sinfo_flags;
2784 asoc->default_ppid = info.sinfo_ppid;
2785 asoc->default_context = info.sinfo_context;
2786 asoc->default_timetolive = info.sinfo_timetolive;
2787 } else {
2788 sp->default_stream = info.sinfo_stream;
2789 sp->default_flags = info.sinfo_flags;
2790 sp->default_ppid = info.sinfo_ppid;
2791 sp->default_context = info.sinfo_context;
2792 sp->default_timetolive = info.sinfo_timetolive;
2793 }
2794
2795 return 0;
2796 }
2797
2798 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2799 * (SCTP_DEFAULT_SNDINFO)
2800 */
2801 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2802 char __user *optval,
2803 unsigned int optlen)
2804 {
2805 struct sctp_sock *sp = sctp_sk(sk);
2806 struct sctp_association *asoc;
2807 struct sctp_sndinfo info;
2808
2809 if (optlen != sizeof(info))
2810 return -EINVAL;
2811 if (copy_from_user(&info, optval, optlen))
2812 return -EFAULT;
2813 if (info.snd_flags &
2814 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2815 SCTP_ABORT | SCTP_EOF))
2816 return -EINVAL;
2817
2818 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2819 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2820 return -EINVAL;
2821 if (asoc) {
2822 asoc->default_stream = info.snd_sid;
2823 asoc->default_flags = info.snd_flags;
2824 asoc->default_ppid = info.snd_ppid;
2825 asoc->default_context = info.snd_context;
2826 } else {
2827 sp->default_stream = info.snd_sid;
2828 sp->default_flags = info.snd_flags;
2829 sp->default_ppid = info.snd_ppid;
2830 sp->default_context = info.snd_context;
2831 }
2832
2833 return 0;
2834 }
2835
2836 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2837 *
2838 * Requests that the local SCTP stack use the enclosed peer address as
2839 * the association primary. The enclosed address must be one of the
2840 * association peer's addresses.
2841 */
2842 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2843 unsigned int optlen)
2844 {
2845 struct sctp_prim prim;
2846 struct sctp_transport *trans;
2847
2848 if (optlen != sizeof(struct sctp_prim))
2849 return -EINVAL;
2850
2851 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2852 return -EFAULT;
2853
2854 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2855 if (!trans)
2856 return -EINVAL;
2857
2858 sctp_assoc_set_primary(trans->asoc, trans);
2859
2860 return 0;
2861 }
2862
2863 /*
2864 * 7.1.5 SCTP_NODELAY
2865 *
2866 * Turn on/off any Nagle-like algorithm. This means that packets are
2867 * generally sent as soon as possible and no unnecessary delays are
2868 * introduced, at the cost of more packets in the network. Expects an
2869 * integer boolean flag.
2870 */
2871 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2872 unsigned int optlen)
2873 {
2874 int val;
2875
2876 if (optlen < sizeof(int))
2877 return -EINVAL;
2878 if (get_user(val, (int __user *)optval))
2879 return -EFAULT;
2880
2881 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2882 return 0;
2883 }
2884
2885 /*
2886 *
2887 * 7.1.1 SCTP_RTOINFO
2888 *
2889 * The protocol parameters used to initialize and bound retransmission
2890 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2891 * and modify these parameters.
2892 * All parameters are time values, in milliseconds. A value of 0, when
2893 * modifying the parameters, indicates that the current value should not
2894 * be changed.
2895 *
2896 */
2897 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2898 {
2899 struct sctp_rtoinfo rtoinfo;
2900 struct sctp_association *asoc;
2901 unsigned long rto_min, rto_max;
2902 struct sctp_sock *sp = sctp_sk(sk);
2903
2904 if (optlen != sizeof (struct sctp_rtoinfo))
2905 return -EINVAL;
2906
2907 if (copy_from_user(&rtoinfo, optval, optlen))
2908 return -EFAULT;
2909
2910 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2911
2912 /* Set the values to the specific association */
2913 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2914 return -EINVAL;
2915
2916 rto_max = rtoinfo.srto_max;
2917 rto_min = rtoinfo.srto_min;
2918
2919 if (rto_max)
2920 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2921 else
2922 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2923
2924 if (rto_min)
2925 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2926 else
2927 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2928
2929 if (rto_min > rto_max)
2930 return -EINVAL;
2931
2932 if (asoc) {
2933 if (rtoinfo.srto_initial != 0)
2934 asoc->rto_initial =
2935 msecs_to_jiffies(rtoinfo.srto_initial);
2936 asoc->rto_max = rto_max;
2937 asoc->rto_min = rto_min;
2938 } else {
2939 /* If there is no association or the association-id = 0
2940 * set the values to the endpoint.
2941 */
2942 if (rtoinfo.srto_initial != 0)
2943 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2944 sp->rtoinfo.srto_max = rto_max;
2945 sp->rtoinfo.srto_min = rto_min;
2946 }
2947
2948 return 0;
2949 }
2950
2951 /*
2952 *
2953 * 7.1.2 SCTP_ASSOCINFO
2954 *
2955 * This option is used to tune the maximum retransmission attempts
2956 * of the association.
2957 * Returns an error if the new association retransmission value is
2958 * greater than the sum of the retransmission value of the peer.
2959 * See [SCTP] for more information.
2960 *
2961 */
2962 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2963 {
2964
2965 struct sctp_assocparams assocparams;
2966 struct sctp_association *asoc;
2967
2968 if (optlen != sizeof(struct sctp_assocparams))
2969 return -EINVAL;
2970 if (copy_from_user(&assocparams, optval, optlen))
2971 return -EFAULT;
2972
2973 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2974
2975 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2976 return -EINVAL;
2977
2978 /* Set the values to the specific association */
2979 if (asoc) {
2980 if (assocparams.sasoc_asocmaxrxt != 0) {
2981 __u32 path_sum = 0;
2982 int paths = 0;
2983 struct sctp_transport *peer_addr;
2984
2985 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2986 transports) {
2987 path_sum += peer_addr->pathmaxrxt;
2988 paths++;
2989 }
2990
2991 /* Only validate asocmaxrxt if we have more than
2992 * one path/transport. We do this because path
2993 * retransmissions are only counted when we have more
2994 * then one path.
2995 */
2996 if (paths > 1 &&
2997 assocparams.sasoc_asocmaxrxt > path_sum)
2998 return -EINVAL;
2999
3000 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3001 }
3002
3003 if (assocparams.sasoc_cookie_life != 0)
3004 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3005 } else {
3006 /* Set the values to the endpoint */
3007 struct sctp_sock *sp = sctp_sk(sk);
3008
3009 if (assocparams.sasoc_asocmaxrxt != 0)
3010 sp->assocparams.sasoc_asocmaxrxt =
3011 assocparams.sasoc_asocmaxrxt;
3012 if (assocparams.sasoc_cookie_life != 0)
3013 sp->assocparams.sasoc_cookie_life =
3014 assocparams.sasoc_cookie_life;
3015 }
3016 return 0;
3017 }
3018
3019 /*
3020 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3021 *
3022 * This socket option is a boolean flag which turns on or off mapped V4
3023 * addresses. If this option is turned on and the socket is type
3024 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3025 * If this option is turned off, then no mapping will be done of V4
3026 * addresses and a user will receive both PF_INET6 and PF_INET type
3027 * addresses on the socket.
3028 */
3029 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3030 {
3031 int val;
3032 struct sctp_sock *sp = sctp_sk(sk);
3033
3034 if (optlen < sizeof(int))
3035 return -EINVAL;
3036 if (get_user(val, (int __user *)optval))
3037 return -EFAULT;
3038 if (val)
3039 sp->v4mapped = 1;
3040 else
3041 sp->v4mapped = 0;
3042
3043 return 0;
3044 }
3045
3046 /*
3047 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3048 * This option will get or set the maximum size to put in any outgoing
3049 * SCTP DATA chunk. If a message is larger than this size it will be
3050 * fragmented by SCTP into the specified size. Note that the underlying
3051 * SCTP implementation may fragment into smaller sized chunks when the
3052 * PMTU of the underlying association is smaller than the value set by
3053 * the user. The default value for this option is '0' which indicates
3054 * the user is NOT limiting fragmentation and only the PMTU will effect
3055 * SCTP's choice of DATA chunk size. Note also that values set larger
3056 * than the maximum size of an IP datagram will effectively let SCTP
3057 * control fragmentation (i.e. the same as setting this option to 0).
3058 *
3059 * The following structure is used to access and modify this parameter:
3060 *
3061 * struct sctp_assoc_value {
3062 * sctp_assoc_t assoc_id;
3063 * uint32_t assoc_value;
3064 * };
3065 *
3066 * assoc_id: This parameter is ignored for one-to-one style sockets.
3067 * For one-to-many style sockets this parameter indicates which
3068 * association the user is performing an action upon. Note that if
3069 * this field's value is zero then the endpoints default value is
3070 * changed (effecting future associations only).
3071 * assoc_value: This parameter specifies the maximum size in bytes.
3072 */
3073 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3074 {
3075 struct sctp_assoc_value params;
3076 struct sctp_association *asoc;
3077 struct sctp_sock *sp = sctp_sk(sk);
3078 int val;
3079
3080 if (optlen == sizeof(int)) {
3081 pr_warn_ratelimited(DEPRECATED
3082 "%s (pid %d) "
3083 "Use of int in maxseg socket option.\n"
3084 "Use struct sctp_assoc_value instead\n",
3085 current->comm, task_pid_nr(current));
3086 if (copy_from_user(&val, optval, optlen))
3087 return -EFAULT;
3088 params.assoc_id = 0;
3089 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3090 if (copy_from_user(&params, optval, optlen))
3091 return -EFAULT;
3092 val = params.assoc_value;
3093 } else
3094 return -EINVAL;
3095
3096 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3097 return -EINVAL;
3098
3099 asoc = sctp_id2assoc(sk, params.assoc_id);
3100 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3101 return -EINVAL;
3102
3103 if (asoc) {
3104 if (val == 0) {
3105 val = asoc->pathmtu;
3106 val -= sp->pf->af->net_header_len;
3107 val -= sizeof(struct sctphdr) +
3108 sizeof(struct sctp_data_chunk);
3109 }
3110 asoc->user_frag = val;
3111 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3112 } else {
3113 sp->user_frag = val;
3114 }
3115
3116 return 0;
3117 }
3118
3119
3120 /*
3121 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3122 *
3123 * Requests that the peer mark the enclosed address as the association
3124 * primary. The enclosed address must be one of the association's
3125 * locally bound addresses. The following structure is used to make a
3126 * set primary request:
3127 */
3128 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3129 unsigned int optlen)
3130 {
3131 struct net *net = sock_net(sk);
3132 struct sctp_sock *sp;
3133 struct sctp_association *asoc = NULL;
3134 struct sctp_setpeerprim prim;
3135 struct sctp_chunk *chunk;
3136 struct sctp_af *af;
3137 int err;
3138
3139 sp = sctp_sk(sk);
3140
3141 if (!net->sctp.addip_enable)
3142 return -EPERM;
3143
3144 if (optlen != sizeof(struct sctp_setpeerprim))
3145 return -EINVAL;
3146
3147 if (copy_from_user(&prim, optval, optlen))
3148 return -EFAULT;
3149
3150 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3151 if (!asoc)
3152 return -EINVAL;
3153
3154 if (!asoc->peer.asconf_capable)
3155 return -EPERM;
3156
3157 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3158 return -EPERM;
3159
3160 if (!sctp_state(asoc, ESTABLISHED))
3161 return -ENOTCONN;
3162
3163 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3164 if (!af)
3165 return -EINVAL;
3166
3167 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3168 return -EADDRNOTAVAIL;
3169
3170 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3171 return -EADDRNOTAVAIL;
3172
3173 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3174 chunk = sctp_make_asconf_set_prim(asoc,
3175 (union sctp_addr *)&prim.sspp_addr);
3176 if (!chunk)
3177 return -ENOMEM;
3178
3179 err = sctp_send_asconf(asoc, chunk);
3180
3181 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3182
3183 return err;
3184 }
3185
3186 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3187 unsigned int optlen)
3188 {
3189 struct sctp_setadaptation adaptation;
3190
3191 if (optlen != sizeof(struct sctp_setadaptation))
3192 return -EINVAL;
3193 if (copy_from_user(&adaptation, optval, optlen))
3194 return -EFAULT;
3195
3196 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3197
3198 return 0;
3199 }
3200
3201 /*
3202 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3203 *
3204 * The context field in the sctp_sndrcvinfo structure is normally only
3205 * used when a failed message is retrieved holding the value that was
3206 * sent down on the actual send call. This option allows the setting of
3207 * a default context on an association basis that will be received on
3208 * reading messages from the peer. This is especially helpful in the
3209 * one-2-many model for an application to keep some reference to an
3210 * internal state machine that is processing messages on the
3211 * association. Note that the setting of this value only effects
3212 * received messages from the peer and does not effect the value that is
3213 * saved with outbound messages.
3214 */
3215 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3216 unsigned int optlen)
3217 {
3218 struct sctp_assoc_value params;
3219 struct sctp_sock *sp;
3220 struct sctp_association *asoc;
3221
3222 if (optlen != sizeof(struct sctp_assoc_value))
3223 return -EINVAL;
3224 if (copy_from_user(&params, optval, optlen))
3225 return -EFAULT;
3226
3227 sp = sctp_sk(sk);
3228
3229 if (params.assoc_id != 0) {
3230 asoc = sctp_id2assoc(sk, params.assoc_id);
3231 if (!asoc)
3232 return -EINVAL;
3233 asoc->default_rcv_context = params.assoc_value;
3234 } else {
3235 sp->default_rcv_context = params.assoc_value;
3236 }
3237
3238 return 0;
3239 }
3240
3241 /*
3242 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3243 *
3244 * This options will at a minimum specify if the implementation is doing
3245 * fragmented interleave. Fragmented interleave, for a one to many
3246 * socket, is when subsequent calls to receive a message may return
3247 * parts of messages from different associations. Some implementations
3248 * may allow you to turn this value on or off. If so, when turned off,
3249 * no fragment interleave will occur (which will cause a head of line
3250 * blocking amongst multiple associations sharing the same one to many
3251 * socket). When this option is turned on, then each receive call may
3252 * come from a different association (thus the user must receive data
3253 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3254 * association each receive belongs to.
3255 *
3256 * This option takes a boolean value. A non-zero value indicates that
3257 * fragmented interleave is on. A value of zero indicates that
3258 * fragmented interleave is off.
3259 *
3260 * Note that it is important that an implementation that allows this
3261 * option to be turned on, have it off by default. Otherwise an unaware
3262 * application using the one to many model may become confused and act
3263 * incorrectly.
3264 */
3265 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3266 char __user *optval,
3267 unsigned int optlen)
3268 {
3269 int val;
3270
3271 if (optlen != sizeof(int))
3272 return -EINVAL;
3273 if (get_user(val, (int __user *)optval))
3274 return -EFAULT;
3275
3276 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3277
3278 return 0;
3279 }
3280
3281 /*
3282 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3283 * (SCTP_PARTIAL_DELIVERY_POINT)
3284 *
3285 * This option will set or get the SCTP partial delivery point. This
3286 * point is the size of a message where the partial delivery API will be
3287 * invoked to help free up rwnd space for the peer. Setting this to a
3288 * lower value will cause partial deliveries to happen more often. The
3289 * calls argument is an integer that sets or gets the partial delivery
3290 * point. Note also that the call will fail if the user attempts to set
3291 * this value larger than the socket receive buffer size.
3292 *
3293 * Note that any single message having a length smaller than or equal to
3294 * the SCTP partial delivery point will be delivered in one single read
3295 * call as long as the user provided buffer is large enough to hold the
3296 * message.
3297 */
3298 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3299 char __user *optval,
3300 unsigned int optlen)
3301 {
3302 u32 val;
3303
3304 if (optlen != sizeof(u32))
3305 return -EINVAL;
3306 if (get_user(val, (int __user *)optval))
3307 return -EFAULT;
3308
3309 /* Note: We double the receive buffer from what the user sets
3310 * it to be, also initial rwnd is based on rcvbuf/2.
3311 */
3312 if (val > (sk->sk_rcvbuf >> 1))
3313 return -EINVAL;
3314
3315 sctp_sk(sk)->pd_point = val;
3316
3317 return 0; /* is this the right error code? */
3318 }
3319
3320 /*
3321 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3322 *
3323 * This option will allow a user to change the maximum burst of packets
3324 * that can be emitted by this association. Note that the default value
3325 * is 4, and some implementations may restrict this setting so that it
3326 * can only be lowered.
3327 *
3328 * NOTE: This text doesn't seem right. Do this on a socket basis with
3329 * future associations inheriting the socket value.
3330 */
3331 static int sctp_setsockopt_maxburst(struct sock *sk,
3332 char __user *optval,
3333 unsigned int optlen)
3334 {
3335 struct sctp_assoc_value params;
3336 struct sctp_sock *sp;
3337 struct sctp_association *asoc;
3338 int val;
3339 int assoc_id = 0;
3340
3341 if (optlen == sizeof(int)) {
3342 pr_warn_ratelimited(DEPRECATED
3343 "%s (pid %d) "
3344 "Use of int in max_burst socket option deprecated.\n"
3345 "Use struct sctp_assoc_value instead\n",
3346 current->comm, task_pid_nr(current));
3347 if (copy_from_user(&val, optval, optlen))
3348 return -EFAULT;
3349 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3350 if (copy_from_user(&params, optval, optlen))
3351 return -EFAULT;
3352 val = params.assoc_value;
3353 assoc_id = params.assoc_id;
3354 } else
3355 return -EINVAL;
3356
3357 sp = sctp_sk(sk);
3358
3359 if (assoc_id != 0) {
3360 asoc = sctp_id2assoc(sk, assoc_id);
3361 if (!asoc)
3362 return -EINVAL;
3363 asoc->max_burst = val;
3364 } else
3365 sp->max_burst = val;
3366
3367 return 0;
3368 }
3369
3370 /*
3371 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3372 *
3373 * This set option adds a chunk type that the user is requesting to be
3374 * received only in an authenticated way. Changes to the list of chunks
3375 * will only effect future associations on the socket.
3376 */
3377 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3378 char __user *optval,
3379 unsigned int optlen)
3380 {
3381 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3382 struct sctp_authchunk val;
3383
3384 if (!ep->auth_enable)
3385 return -EACCES;
3386
3387 if (optlen != sizeof(struct sctp_authchunk))
3388 return -EINVAL;
3389 if (copy_from_user(&val, optval, optlen))
3390 return -EFAULT;
3391
3392 switch (val.sauth_chunk) {
3393 case SCTP_CID_INIT:
3394 case SCTP_CID_INIT_ACK:
3395 case SCTP_CID_SHUTDOWN_COMPLETE:
3396 case SCTP_CID_AUTH:
3397 return -EINVAL;
3398 }
3399
3400 /* add this chunk id to the endpoint */
3401 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3402 }
3403
3404 /*
3405 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3406 *
3407 * This option gets or sets the list of HMAC algorithms that the local
3408 * endpoint requires the peer to use.
3409 */
3410 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3411 char __user *optval,
3412 unsigned int optlen)
3413 {
3414 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3415 struct sctp_hmacalgo *hmacs;
3416 u32 idents;
3417 int err;
3418
3419 if (!ep->auth_enable)
3420 return -EACCES;
3421
3422 if (optlen < sizeof(struct sctp_hmacalgo))
3423 return -EINVAL;
3424
3425 hmacs = memdup_user(optval, optlen);
3426 if (IS_ERR(hmacs))
3427 return PTR_ERR(hmacs);
3428
3429 idents = hmacs->shmac_num_idents;
3430 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3431 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3432 err = -EINVAL;
3433 goto out;
3434 }
3435
3436 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3437 out:
3438 kfree(hmacs);
3439 return err;
3440 }
3441
3442 /*
3443 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3444 *
3445 * This option will set a shared secret key which is used to build an
3446 * association shared key.
3447 */
3448 static int sctp_setsockopt_auth_key(struct sock *sk,
3449 char __user *optval,
3450 unsigned int optlen)
3451 {
3452 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3453 struct sctp_authkey *authkey;
3454 struct sctp_association *asoc;
3455 int ret;
3456
3457 if (!ep->auth_enable)
3458 return -EACCES;
3459
3460 if (optlen <= sizeof(struct sctp_authkey))
3461 return -EINVAL;
3462
3463 authkey = memdup_user(optval, optlen);
3464 if (IS_ERR(authkey))
3465 return PTR_ERR(authkey);
3466
3467 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3468 ret = -EINVAL;
3469 goto out;
3470 }
3471
3472 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3473 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3474 ret = -EINVAL;
3475 goto out;
3476 }
3477
3478 ret = sctp_auth_set_key(ep, asoc, authkey);
3479 out:
3480 kzfree(authkey);
3481 return ret;
3482 }
3483
3484 /*
3485 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3486 *
3487 * This option will get or set the active shared key to be used to build
3488 * the association shared key.
3489 */
3490 static int sctp_setsockopt_active_key(struct sock *sk,
3491 char __user *optval,
3492 unsigned int optlen)
3493 {
3494 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3495 struct sctp_authkeyid val;
3496 struct sctp_association *asoc;
3497
3498 if (!ep->auth_enable)
3499 return -EACCES;
3500
3501 if (optlen != sizeof(struct sctp_authkeyid))
3502 return -EINVAL;
3503 if (copy_from_user(&val, optval, optlen))
3504 return -EFAULT;
3505
3506 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3507 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3508 return -EINVAL;
3509
3510 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3511 }
3512
3513 /*
3514 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3515 *
3516 * This set option will delete a shared secret key from use.
3517 */
3518 static int sctp_setsockopt_del_key(struct sock *sk,
3519 char __user *optval,
3520 unsigned int optlen)
3521 {
3522 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3523 struct sctp_authkeyid val;
3524 struct sctp_association *asoc;
3525
3526 if (!ep->auth_enable)
3527 return -EACCES;
3528
3529 if (optlen != sizeof(struct sctp_authkeyid))
3530 return -EINVAL;
3531 if (copy_from_user(&val, optval, optlen))
3532 return -EFAULT;
3533
3534 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3535 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3536 return -EINVAL;
3537
3538 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3539
3540 }
3541
3542 /*
3543 * 8.1.23 SCTP_AUTO_ASCONF
3544 *
3545 * This option will enable or disable the use of the automatic generation of
3546 * ASCONF chunks to add and delete addresses to an existing association. Note
3547 * that this option has two caveats namely: a) it only affects sockets that
3548 * are bound to all addresses available to the SCTP stack, and b) the system
3549 * administrator may have an overriding control that turns the ASCONF feature
3550 * off no matter what setting the socket option may have.
3551 * This option expects an integer boolean flag, where a non-zero value turns on
3552 * the option, and a zero value turns off the option.
3553 * Note. In this implementation, socket operation overrides default parameter
3554 * being set by sysctl as well as FreeBSD implementation
3555 */
3556 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3557 unsigned int optlen)
3558 {
3559 int val;
3560 struct sctp_sock *sp = sctp_sk(sk);
3561
3562 if (optlen < sizeof(int))
3563 return -EINVAL;
3564 if (get_user(val, (int __user *)optval))
3565 return -EFAULT;
3566 if (!sctp_is_ep_boundall(sk) && val)
3567 return -EINVAL;
3568 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3569 return 0;
3570
3571 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3572 if (val == 0 && sp->do_auto_asconf) {
3573 list_del(&sp->auto_asconf_list);
3574 sp->do_auto_asconf = 0;
3575 } else if (val && !sp->do_auto_asconf) {
3576 list_add_tail(&sp->auto_asconf_list,
3577 &sock_net(sk)->sctp.auto_asconf_splist);
3578 sp->do_auto_asconf = 1;
3579 }
3580 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3581 return 0;
3582 }
3583
3584 /*
3585 * SCTP_PEER_ADDR_THLDS
3586 *
3587 * This option allows us to alter the partially failed threshold for one or all
3588 * transports in an association. See Section 6.1 of:
3589 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3590 */
3591 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3592 char __user *optval,
3593 unsigned int optlen)
3594 {
3595 struct sctp_paddrthlds val;
3596 struct sctp_transport *trans;
3597 struct sctp_association *asoc;
3598
3599 if (optlen < sizeof(struct sctp_paddrthlds))
3600 return -EINVAL;
3601 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3602 sizeof(struct sctp_paddrthlds)))
3603 return -EFAULT;
3604
3605
3606 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3607 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3608 if (!asoc)
3609 return -ENOENT;
3610 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3611 transports) {
3612 if (val.spt_pathmaxrxt)
3613 trans->pathmaxrxt = val.spt_pathmaxrxt;
3614 trans->pf_retrans = val.spt_pathpfthld;
3615 }
3616
3617 if (val.spt_pathmaxrxt)
3618 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3619 asoc->pf_retrans = val.spt_pathpfthld;
3620 } else {
3621 trans = sctp_addr_id2transport(sk, &val.spt_address,
3622 val.spt_assoc_id);
3623 if (!trans)
3624 return -ENOENT;
3625
3626 if (val.spt_pathmaxrxt)
3627 trans->pathmaxrxt = val.spt_pathmaxrxt;
3628 trans->pf_retrans = val.spt_pathpfthld;
3629 }
3630
3631 return 0;
3632 }
3633
3634 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3635 char __user *optval,
3636 unsigned int optlen)
3637 {
3638 int val;
3639
3640 if (optlen < sizeof(int))
3641 return -EINVAL;
3642 if (get_user(val, (int __user *) optval))
3643 return -EFAULT;
3644
3645 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3646
3647 return 0;
3648 }
3649
3650 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3651 char __user *optval,
3652 unsigned int optlen)
3653 {
3654 int val;
3655
3656 if (optlen < sizeof(int))
3657 return -EINVAL;
3658 if (get_user(val, (int __user *) optval))
3659 return -EFAULT;
3660
3661 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3662
3663 return 0;
3664 }
3665
3666 /* API 6.2 setsockopt(), getsockopt()
3667 *
3668 * Applications use setsockopt() and getsockopt() to set or retrieve
3669 * socket options. Socket options are used to change the default
3670 * behavior of sockets calls. They are described in Section 7.
3671 *
3672 * The syntax is:
3673 *
3674 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3675 * int __user *optlen);
3676 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3677 * int optlen);
3678 *
3679 * sd - the socket descript.
3680 * level - set to IPPROTO_SCTP for all SCTP options.
3681 * optname - the option name.
3682 * optval - the buffer to store the value of the option.
3683 * optlen - the size of the buffer.
3684 */
3685 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3686 char __user *optval, unsigned int optlen)
3687 {
3688 int retval = 0;
3689
3690 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3691
3692 /* I can hardly begin to describe how wrong this is. This is
3693 * so broken as to be worse than useless. The API draft
3694 * REALLY is NOT helpful here... I am not convinced that the
3695 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3696 * are at all well-founded.
3697 */
3698 if (level != SOL_SCTP) {
3699 struct sctp_af *af = sctp_sk(sk)->pf->af;
3700 retval = af->setsockopt(sk, level, optname, optval, optlen);
3701 goto out_nounlock;
3702 }
3703
3704 lock_sock(sk);
3705
3706 switch (optname) {
3707 case SCTP_SOCKOPT_BINDX_ADD:
3708 /* 'optlen' is the size of the addresses buffer. */
3709 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3710 optlen, SCTP_BINDX_ADD_ADDR);
3711 break;
3712
3713 case SCTP_SOCKOPT_BINDX_REM:
3714 /* 'optlen' is the size of the addresses buffer. */
3715 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3716 optlen, SCTP_BINDX_REM_ADDR);
3717 break;
3718
3719 case SCTP_SOCKOPT_CONNECTX_OLD:
3720 /* 'optlen' is the size of the addresses buffer. */
3721 retval = sctp_setsockopt_connectx_old(sk,
3722 (struct sockaddr __user *)optval,
3723 optlen);
3724 break;
3725
3726 case SCTP_SOCKOPT_CONNECTX:
3727 /* 'optlen' is the size of the addresses buffer. */
3728 retval = sctp_setsockopt_connectx(sk,
3729 (struct sockaddr __user *)optval,
3730 optlen);
3731 break;
3732
3733 case SCTP_DISABLE_FRAGMENTS:
3734 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3735 break;
3736
3737 case SCTP_EVENTS:
3738 retval = sctp_setsockopt_events(sk, optval, optlen);
3739 break;
3740
3741 case SCTP_AUTOCLOSE:
3742 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3743 break;
3744
3745 case SCTP_PEER_ADDR_PARAMS:
3746 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3747 break;
3748
3749 case SCTP_DELAYED_SACK:
3750 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3751 break;
3752 case SCTP_PARTIAL_DELIVERY_POINT:
3753 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3754 break;
3755
3756 case SCTP_INITMSG:
3757 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3758 break;
3759 case SCTP_DEFAULT_SEND_PARAM:
3760 retval = sctp_setsockopt_default_send_param(sk, optval,
3761 optlen);
3762 break;
3763 case SCTP_DEFAULT_SNDINFO:
3764 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3765 break;
3766 case SCTP_PRIMARY_ADDR:
3767 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3768 break;
3769 case SCTP_SET_PEER_PRIMARY_ADDR:
3770 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3771 break;
3772 case SCTP_NODELAY:
3773 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3774 break;
3775 case SCTP_RTOINFO:
3776 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3777 break;
3778 case SCTP_ASSOCINFO:
3779 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3780 break;
3781 case SCTP_I_WANT_MAPPED_V4_ADDR:
3782 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3783 break;
3784 case SCTP_MAXSEG:
3785 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3786 break;
3787 case SCTP_ADAPTATION_LAYER:
3788 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3789 break;
3790 case SCTP_CONTEXT:
3791 retval = sctp_setsockopt_context(sk, optval, optlen);
3792 break;
3793 case SCTP_FRAGMENT_INTERLEAVE:
3794 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3795 break;
3796 case SCTP_MAX_BURST:
3797 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3798 break;
3799 case SCTP_AUTH_CHUNK:
3800 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3801 break;
3802 case SCTP_HMAC_IDENT:
3803 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3804 break;
3805 case SCTP_AUTH_KEY:
3806 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3807 break;
3808 case SCTP_AUTH_ACTIVE_KEY:
3809 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3810 break;
3811 case SCTP_AUTH_DELETE_KEY:
3812 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3813 break;
3814 case SCTP_AUTO_ASCONF:
3815 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3816 break;
3817 case SCTP_PEER_ADDR_THLDS:
3818 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3819 break;
3820 case SCTP_RECVRCVINFO:
3821 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3822 break;
3823 case SCTP_RECVNXTINFO:
3824 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3825 break;
3826 default:
3827 retval = -ENOPROTOOPT;
3828 break;
3829 }
3830
3831 release_sock(sk);
3832
3833 out_nounlock:
3834 return retval;
3835 }
3836
3837 /* API 3.1.6 connect() - UDP Style Syntax
3838 *
3839 * An application may use the connect() call in the UDP model to initiate an
3840 * association without sending data.
3841 *
3842 * The syntax is:
3843 *
3844 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3845 *
3846 * sd: the socket descriptor to have a new association added to.
3847 *
3848 * nam: the address structure (either struct sockaddr_in or struct
3849 * sockaddr_in6 defined in RFC2553 [7]).
3850 *
3851 * len: the size of the address.
3852 */
3853 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3854 int addr_len)
3855 {
3856 int err = 0;
3857 struct sctp_af *af;
3858
3859 lock_sock(sk);
3860
3861 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3862 addr, addr_len);
3863
3864 /* Validate addr_len before calling common connect/connectx routine. */
3865 af = sctp_get_af_specific(addr->sa_family);
3866 if (!af || addr_len < af->sockaddr_len) {
3867 err = -EINVAL;
3868 } else {
3869 /* Pass correct addr len to common routine (so it knows there
3870 * is only one address being passed.
3871 */
3872 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3873 }
3874
3875 release_sock(sk);
3876 return err;
3877 }
3878
3879 /* FIXME: Write comments. */
3880 static int sctp_disconnect(struct sock *sk, int flags)
3881 {
3882 return -EOPNOTSUPP; /* STUB */
3883 }
3884
3885 /* 4.1.4 accept() - TCP Style Syntax
3886 *
3887 * Applications use accept() call to remove an established SCTP
3888 * association from the accept queue of the endpoint. A new socket
3889 * descriptor will be returned from accept() to represent the newly
3890 * formed association.
3891 */
3892 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3893 {
3894 struct sctp_sock *sp;
3895 struct sctp_endpoint *ep;
3896 struct sock *newsk = NULL;
3897 struct sctp_association *asoc;
3898 long timeo;
3899 int error = 0;
3900
3901 lock_sock(sk);
3902
3903 sp = sctp_sk(sk);
3904 ep = sp->ep;
3905
3906 if (!sctp_style(sk, TCP)) {
3907 error = -EOPNOTSUPP;
3908 goto out;
3909 }
3910
3911 if (!sctp_sstate(sk, LISTENING)) {
3912 error = -EINVAL;
3913 goto out;
3914 }
3915
3916 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3917
3918 error = sctp_wait_for_accept(sk, timeo);
3919 if (error)
3920 goto out;
3921
3922 /* We treat the list of associations on the endpoint as the accept
3923 * queue and pick the first association on the list.
3924 */
3925 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3926
3927 newsk = sp->pf->create_accept_sk(sk, asoc);
3928 if (!newsk) {
3929 error = -ENOMEM;
3930 goto out;
3931 }
3932
3933 /* Populate the fields of the newsk from the oldsk and migrate the
3934 * asoc to the newsk.
3935 */
3936 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3937
3938 out:
3939 release_sock(sk);
3940 *err = error;
3941 return newsk;
3942 }
3943
3944 /* The SCTP ioctl handler. */
3945 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3946 {
3947 int rc = -ENOTCONN;
3948
3949 lock_sock(sk);
3950
3951 /*
3952 * SEQPACKET-style sockets in LISTENING state are valid, for
3953 * SCTP, so only discard TCP-style sockets in LISTENING state.
3954 */
3955 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3956 goto out;
3957
3958 switch (cmd) {
3959 case SIOCINQ: {
3960 struct sk_buff *skb;
3961 unsigned int amount = 0;
3962
3963 skb = skb_peek(&sk->sk_receive_queue);
3964 if (skb != NULL) {
3965 /*
3966 * We will only return the amount of this packet since
3967 * that is all that will be read.
3968 */
3969 amount = skb->len;
3970 }
3971 rc = put_user(amount, (int __user *)arg);
3972 break;
3973 }
3974 default:
3975 rc = -ENOIOCTLCMD;
3976 break;
3977 }
3978 out:
3979 release_sock(sk);
3980 return rc;
3981 }
3982
3983 /* This is the function which gets called during socket creation to
3984 * initialized the SCTP-specific portion of the sock.
3985 * The sock structure should already be zero-filled memory.
3986 */
3987 static int sctp_init_sock(struct sock *sk)
3988 {
3989 struct net *net = sock_net(sk);
3990 struct sctp_sock *sp;
3991
3992 pr_debug("%s: sk:%p\n", __func__, sk);
3993
3994 sp = sctp_sk(sk);
3995
3996 /* Initialize the SCTP per socket area. */
3997 switch (sk->sk_type) {
3998 case SOCK_SEQPACKET:
3999 sp->type = SCTP_SOCKET_UDP;
4000 break;
4001 case SOCK_STREAM:
4002 sp->type = SCTP_SOCKET_TCP;
4003 break;
4004 default:
4005 return -ESOCKTNOSUPPORT;
4006 }
4007
4008 /* Initialize default send parameters. These parameters can be
4009 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4010 */
4011 sp->default_stream = 0;
4012 sp->default_ppid = 0;
4013 sp->default_flags = 0;
4014 sp->default_context = 0;
4015 sp->default_timetolive = 0;
4016
4017 sp->default_rcv_context = 0;
4018 sp->max_burst = net->sctp.max_burst;
4019
4020 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4021
4022 /* Initialize default setup parameters. These parameters
4023 * can be modified with the SCTP_INITMSG socket option or
4024 * overridden by the SCTP_INIT CMSG.
4025 */
4026 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4027 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4028 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4029 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4030
4031 /* Initialize default RTO related parameters. These parameters can
4032 * be modified for with the SCTP_RTOINFO socket option.
4033 */
4034 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4035 sp->rtoinfo.srto_max = net->sctp.rto_max;
4036 sp->rtoinfo.srto_min = net->sctp.rto_min;
4037
4038 /* Initialize default association related parameters. These parameters
4039 * can be modified with the SCTP_ASSOCINFO socket option.
4040 */
4041 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4042 sp->assocparams.sasoc_number_peer_destinations = 0;
4043 sp->assocparams.sasoc_peer_rwnd = 0;
4044 sp->assocparams.sasoc_local_rwnd = 0;
4045 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4046
4047 /* Initialize default event subscriptions. By default, all the
4048 * options are off.
4049 */
4050 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4051
4052 /* Default Peer Address Parameters. These defaults can
4053 * be modified via SCTP_PEER_ADDR_PARAMS
4054 */
4055 sp->hbinterval = net->sctp.hb_interval;
4056 sp->pathmaxrxt = net->sctp.max_retrans_path;
4057 sp->pathmtu = 0; /* allow default discovery */
4058 sp->sackdelay = net->sctp.sack_timeout;
4059 sp->sackfreq = 2;
4060 sp->param_flags = SPP_HB_ENABLE |
4061 SPP_PMTUD_ENABLE |
4062 SPP_SACKDELAY_ENABLE;
4063
4064 /* If enabled no SCTP message fragmentation will be performed.
4065 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4066 */
4067 sp->disable_fragments = 0;
4068
4069 /* Enable Nagle algorithm by default. */
4070 sp->nodelay = 0;
4071
4072 sp->recvrcvinfo = 0;
4073 sp->recvnxtinfo = 0;
4074
4075 /* Enable by default. */
4076 sp->v4mapped = 1;
4077
4078 /* Auto-close idle associations after the configured
4079 * number of seconds. A value of 0 disables this
4080 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4081 * for UDP-style sockets only.
4082 */
4083 sp->autoclose = 0;
4084
4085 /* User specified fragmentation limit. */
4086 sp->user_frag = 0;
4087
4088 sp->adaptation_ind = 0;
4089
4090 sp->pf = sctp_get_pf_specific(sk->sk_family);
4091
4092 /* Control variables for partial data delivery. */
4093 atomic_set(&sp->pd_mode, 0);
4094 skb_queue_head_init(&sp->pd_lobby);
4095 sp->frag_interleave = 0;
4096
4097 /* Create a per socket endpoint structure. Even if we
4098 * change the data structure relationships, this may still
4099 * be useful for storing pre-connect address information.
4100 */
4101 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4102 if (!sp->ep)
4103 return -ENOMEM;
4104
4105 sp->hmac = NULL;
4106
4107 sk->sk_destruct = sctp_destruct_sock;
4108
4109 SCTP_DBG_OBJCNT_INC(sock);
4110
4111 local_bh_disable();
4112 percpu_counter_inc(&sctp_sockets_allocated);
4113 sock_prot_inuse_add(net, sk->sk_prot, 1);
4114
4115 /* Nothing can fail after this block, otherwise
4116 * sctp_destroy_sock() will be called without addr_wq_lock held
4117 */
4118 if (net->sctp.default_auto_asconf) {
4119 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4120 list_add_tail(&sp->auto_asconf_list,
4121 &net->sctp.auto_asconf_splist);
4122 sp->do_auto_asconf = 1;
4123 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4124 } else {
4125 sp->do_auto_asconf = 0;
4126 }
4127
4128 local_bh_enable();
4129
4130 return 0;
4131 }
4132
4133 /* Cleanup any SCTP per socket resources. Must be called with
4134 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4135 */
4136 static void sctp_destroy_sock(struct sock *sk)
4137 {
4138 struct sctp_sock *sp;
4139
4140 pr_debug("%s: sk:%p\n", __func__, sk);
4141
4142 /* Release our hold on the endpoint. */
4143 sp = sctp_sk(sk);
4144 /* This could happen during socket init, thus we bail out
4145 * early, since the rest of the below is not setup either.
4146 */
4147 if (sp->ep == NULL)
4148 return;
4149
4150 if (sp->do_auto_asconf) {
4151 sp->do_auto_asconf = 0;
4152 list_del(&sp->auto_asconf_list);
4153 }
4154 sctp_endpoint_free(sp->ep);
4155 local_bh_disable();
4156 percpu_counter_dec(&sctp_sockets_allocated);
4157 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4158 local_bh_enable();
4159 }
4160
4161 /* Triggered when there are no references on the socket anymore */
4162 static void sctp_destruct_sock(struct sock *sk)
4163 {
4164 struct sctp_sock *sp = sctp_sk(sk);
4165
4166 /* Free up the HMAC transform. */
4167 crypto_free_hash(sp->hmac);
4168
4169 inet_sock_destruct(sk);
4170 }
4171
4172 /* API 4.1.7 shutdown() - TCP Style Syntax
4173 * int shutdown(int socket, int how);
4174 *
4175 * sd - the socket descriptor of the association to be closed.
4176 * how - Specifies the type of shutdown. The values are
4177 * as follows:
4178 * SHUT_RD
4179 * Disables further receive operations. No SCTP
4180 * protocol action is taken.
4181 * SHUT_WR
4182 * Disables further send operations, and initiates
4183 * the SCTP shutdown sequence.
4184 * SHUT_RDWR
4185 * Disables further send and receive operations
4186 * and initiates the SCTP shutdown sequence.
4187 */
4188 static void sctp_shutdown(struct sock *sk, int how)
4189 {
4190 struct net *net = sock_net(sk);
4191 struct sctp_endpoint *ep;
4192 struct sctp_association *asoc;
4193
4194 if (!sctp_style(sk, TCP))
4195 return;
4196
4197 if (how & SEND_SHUTDOWN) {
4198 ep = sctp_sk(sk)->ep;
4199 if (!list_empty(&ep->asocs)) {
4200 asoc = list_entry(ep->asocs.next,
4201 struct sctp_association, asocs);
4202 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4203 }
4204 }
4205 }
4206
4207 /* 7.2.1 Association Status (SCTP_STATUS)
4208
4209 * Applications can retrieve current status information about an
4210 * association, including association state, peer receiver window size,
4211 * number of unacked data chunks, and number of data chunks pending
4212 * receipt. This information is read-only.
4213 */
4214 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4215 char __user *optval,
4216 int __user *optlen)
4217 {
4218 struct sctp_status status;
4219 struct sctp_association *asoc = NULL;
4220 struct sctp_transport *transport;
4221 sctp_assoc_t associd;
4222 int retval = 0;
4223
4224 if (len < sizeof(status)) {
4225 retval = -EINVAL;
4226 goto out;
4227 }
4228
4229 len = sizeof(status);
4230 if (copy_from_user(&status, optval, len)) {
4231 retval = -EFAULT;
4232 goto out;
4233 }
4234
4235 associd = status.sstat_assoc_id;
4236 asoc = sctp_id2assoc(sk, associd);
4237 if (!asoc) {
4238 retval = -EINVAL;
4239 goto out;
4240 }
4241
4242 transport = asoc->peer.primary_path;
4243
4244 status.sstat_assoc_id = sctp_assoc2id(asoc);
4245 status.sstat_state = sctp_assoc_to_state(asoc);
4246 status.sstat_rwnd = asoc->peer.rwnd;
4247 status.sstat_unackdata = asoc->unack_data;
4248
4249 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4250 status.sstat_instrms = asoc->c.sinit_max_instreams;
4251 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4252 status.sstat_fragmentation_point = asoc->frag_point;
4253 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4254 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4255 transport->af_specific->sockaddr_len);
4256 /* Map ipv4 address into v4-mapped-on-v6 address. */
4257 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4258 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4259 status.sstat_primary.spinfo_state = transport->state;
4260 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4261 status.sstat_primary.spinfo_srtt = transport->srtt;
4262 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4263 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4264
4265 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4266 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4267
4268 if (put_user(len, optlen)) {
4269 retval = -EFAULT;
4270 goto out;
4271 }
4272
4273 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4274 __func__, len, status.sstat_state, status.sstat_rwnd,
4275 status.sstat_assoc_id);
4276
4277 if (copy_to_user(optval, &status, len)) {
4278 retval = -EFAULT;
4279 goto out;
4280 }
4281
4282 out:
4283 return retval;
4284 }
4285
4286
4287 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4288 *
4289 * Applications can retrieve information about a specific peer address
4290 * of an association, including its reachability state, congestion
4291 * window, and retransmission timer values. This information is
4292 * read-only.
4293 */
4294 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4295 char __user *optval,
4296 int __user *optlen)
4297 {
4298 struct sctp_paddrinfo pinfo;
4299 struct sctp_transport *transport;
4300 int retval = 0;
4301
4302 if (len < sizeof(pinfo)) {
4303 retval = -EINVAL;
4304 goto out;
4305 }
4306
4307 len = sizeof(pinfo);
4308 if (copy_from_user(&pinfo, optval, len)) {
4309 retval = -EFAULT;
4310 goto out;
4311 }
4312
4313 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4314 pinfo.spinfo_assoc_id);
4315 if (!transport)
4316 return -EINVAL;
4317
4318 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4319 pinfo.spinfo_state = transport->state;
4320 pinfo.spinfo_cwnd = transport->cwnd;
4321 pinfo.spinfo_srtt = transport->srtt;
4322 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4323 pinfo.spinfo_mtu = transport->pathmtu;
4324
4325 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4326 pinfo.spinfo_state = SCTP_ACTIVE;
4327
4328 if (put_user(len, optlen)) {
4329 retval = -EFAULT;
4330 goto out;
4331 }
4332
4333 if (copy_to_user(optval, &pinfo, len)) {
4334 retval = -EFAULT;
4335 goto out;
4336 }
4337
4338 out:
4339 return retval;
4340 }
4341
4342 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4343 *
4344 * This option is a on/off flag. If enabled no SCTP message
4345 * fragmentation will be performed. Instead if a message being sent
4346 * exceeds the current PMTU size, the message will NOT be sent and
4347 * instead a error will be indicated to the user.
4348 */
4349 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4350 char __user *optval, int __user *optlen)
4351 {
4352 int val;
4353
4354 if (len < sizeof(int))
4355 return -EINVAL;
4356
4357 len = sizeof(int);
4358 val = (sctp_sk(sk)->disable_fragments == 1);
4359 if (put_user(len, optlen))
4360 return -EFAULT;
4361 if (copy_to_user(optval, &val, len))
4362 return -EFAULT;
4363 return 0;
4364 }
4365
4366 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4367 *
4368 * This socket option is used to specify various notifications and
4369 * ancillary data the user wishes to receive.
4370 */
4371 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4372 int __user *optlen)
4373 {
4374 if (len <= 0)
4375 return -EINVAL;
4376 if (len > sizeof(struct sctp_event_subscribe))
4377 len = sizeof(struct sctp_event_subscribe);
4378 if (put_user(len, optlen))
4379 return -EFAULT;
4380 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4381 return -EFAULT;
4382 return 0;
4383 }
4384
4385 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4386 *
4387 * This socket option is applicable to the UDP-style socket only. When
4388 * set it will cause associations that are idle for more than the
4389 * specified number of seconds to automatically close. An association
4390 * being idle is defined an association that has NOT sent or received
4391 * user data. The special value of '0' indicates that no automatic
4392 * close of any associations should be performed. The option expects an
4393 * integer defining the number of seconds of idle time before an
4394 * association is closed.
4395 */
4396 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4397 {
4398 /* Applicable to UDP-style socket only */
4399 if (sctp_style(sk, TCP))
4400 return -EOPNOTSUPP;
4401 if (len < sizeof(int))
4402 return -EINVAL;
4403 len = sizeof(int);
4404 if (put_user(len, optlen))
4405 return -EFAULT;
4406 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4407 return -EFAULT;
4408 return 0;
4409 }
4410
4411 /* Helper routine to branch off an association to a new socket. */
4412 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4413 {
4414 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4415 struct sctp_sock *sp = sctp_sk(sk);
4416 struct socket *sock;
4417 int err = 0;
4418
4419 if (!asoc)
4420 return -EINVAL;
4421
4422 /* An association cannot be branched off from an already peeled-off
4423 * socket, nor is this supported for tcp style sockets.
4424 */
4425 if (!sctp_style(sk, UDP))
4426 return -EINVAL;
4427
4428 /* Create a new socket. */
4429 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4430 if (err < 0)
4431 return err;
4432
4433 sctp_copy_sock(sock->sk, sk, asoc);
4434
4435 /* Make peeled-off sockets more like 1-1 accepted sockets.
4436 * Set the daddr and initialize id to something more random
4437 */
4438 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4439
4440 /* Populate the fields of the newsk from the oldsk and migrate the
4441 * asoc to the newsk.
4442 */
4443 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4444
4445 *sockp = sock;
4446
4447 return err;
4448 }
4449 EXPORT_SYMBOL(sctp_do_peeloff);
4450
4451 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4452 {
4453 sctp_peeloff_arg_t peeloff;
4454 struct socket *newsock;
4455 struct file *newfile;
4456 int retval = 0;
4457
4458 if (len < sizeof(sctp_peeloff_arg_t))
4459 return -EINVAL;
4460 len = sizeof(sctp_peeloff_arg_t);
4461 if (copy_from_user(&peeloff, optval, len))
4462 return -EFAULT;
4463
4464 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4465 if (retval < 0)
4466 goto out;
4467
4468 /* Map the socket to an unused fd that can be returned to the user. */
4469 retval = get_unused_fd_flags(0);
4470 if (retval < 0) {
4471 sock_release(newsock);
4472 goto out;
4473 }
4474
4475 newfile = sock_alloc_file(newsock, 0, NULL);
4476 if (IS_ERR(newfile)) {
4477 put_unused_fd(retval);
4478 sock_release(newsock);
4479 return PTR_ERR(newfile);
4480 }
4481
4482 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4483 retval);
4484
4485 /* Return the fd mapped to the new socket. */
4486 if (put_user(len, optlen)) {
4487 fput(newfile);
4488 put_unused_fd(retval);
4489 return -EFAULT;
4490 }
4491 peeloff.sd = retval;
4492 if (copy_to_user(optval, &peeloff, len)) {
4493 fput(newfile);
4494 put_unused_fd(retval);
4495 return -EFAULT;
4496 }
4497 fd_install(retval, newfile);
4498 out:
4499 return retval;
4500 }
4501
4502 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4503 *
4504 * Applications can enable or disable heartbeats for any peer address of
4505 * an association, modify an address's heartbeat interval, force a
4506 * heartbeat to be sent immediately, and adjust the address's maximum
4507 * number of retransmissions sent before an address is considered
4508 * unreachable. The following structure is used to access and modify an
4509 * address's parameters:
4510 *
4511 * struct sctp_paddrparams {
4512 * sctp_assoc_t spp_assoc_id;
4513 * struct sockaddr_storage spp_address;
4514 * uint32_t spp_hbinterval;
4515 * uint16_t spp_pathmaxrxt;
4516 * uint32_t spp_pathmtu;
4517 * uint32_t spp_sackdelay;
4518 * uint32_t spp_flags;
4519 * };
4520 *
4521 * spp_assoc_id - (one-to-many style socket) This is filled in the
4522 * application, and identifies the association for
4523 * this query.
4524 * spp_address - This specifies which address is of interest.
4525 * spp_hbinterval - This contains the value of the heartbeat interval,
4526 * in milliseconds. If a value of zero
4527 * is present in this field then no changes are to
4528 * be made to this parameter.
4529 * spp_pathmaxrxt - This contains the maximum number of
4530 * retransmissions before this address shall be
4531 * considered unreachable. If a value of zero
4532 * is present in this field then no changes are to
4533 * be made to this parameter.
4534 * spp_pathmtu - When Path MTU discovery is disabled the value
4535 * specified here will be the "fixed" path mtu.
4536 * Note that if the spp_address field is empty
4537 * then all associations on this address will
4538 * have this fixed path mtu set upon them.
4539 *
4540 * spp_sackdelay - When delayed sack is enabled, this value specifies
4541 * the number of milliseconds that sacks will be delayed
4542 * for. This value will apply to all addresses of an
4543 * association if the spp_address field is empty. Note
4544 * also, that if delayed sack is enabled and this
4545 * value is set to 0, no change is made to the last
4546 * recorded delayed sack timer value.
4547 *
4548 * spp_flags - These flags are used to control various features
4549 * on an association. The flag field may contain
4550 * zero or more of the following options.
4551 *
4552 * SPP_HB_ENABLE - Enable heartbeats on the
4553 * specified address. Note that if the address
4554 * field is empty all addresses for the association
4555 * have heartbeats enabled upon them.
4556 *
4557 * SPP_HB_DISABLE - Disable heartbeats on the
4558 * speicifed address. Note that if the address
4559 * field is empty all addresses for the association
4560 * will have their heartbeats disabled. Note also
4561 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4562 * mutually exclusive, only one of these two should
4563 * be specified. Enabling both fields will have
4564 * undetermined results.
4565 *
4566 * SPP_HB_DEMAND - Request a user initiated heartbeat
4567 * to be made immediately.
4568 *
4569 * SPP_PMTUD_ENABLE - This field will enable PMTU
4570 * discovery upon the specified address. Note that
4571 * if the address feild is empty then all addresses
4572 * on the association are effected.
4573 *
4574 * SPP_PMTUD_DISABLE - This field will disable PMTU
4575 * discovery upon the specified address. Note that
4576 * if the address feild is empty then all addresses
4577 * on the association are effected. Not also that
4578 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4579 * exclusive. Enabling both will have undetermined
4580 * results.
4581 *
4582 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4583 * on delayed sack. The time specified in spp_sackdelay
4584 * is used to specify the sack delay for this address. Note
4585 * that if spp_address is empty then all addresses will
4586 * enable delayed sack and take on the sack delay
4587 * value specified in spp_sackdelay.
4588 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4589 * off delayed sack. If the spp_address field is blank then
4590 * delayed sack is disabled for the entire association. Note
4591 * also that this field is mutually exclusive to
4592 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4593 * results.
4594 */
4595 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4596 char __user *optval, int __user *optlen)
4597 {
4598 struct sctp_paddrparams params;
4599 struct sctp_transport *trans = NULL;
4600 struct sctp_association *asoc = NULL;
4601 struct sctp_sock *sp = sctp_sk(sk);
4602
4603 if (len < sizeof(struct sctp_paddrparams))
4604 return -EINVAL;
4605 len = sizeof(struct sctp_paddrparams);
4606 if (copy_from_user(&params, optval, len))
4607 return -EFAULT;
4608
4609 /* If an address other than INADDR_ANY is specified, and
4610 * no transport is found, then the request is invalid.
4611 */
4612 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4613 trans = sctp_addr_id2transport(sk, &params.spp_address,
4614 params.spp_assoc_id);
4615 if (!trans) {
4616 pr_debug("%s: failed no transport\n", __func__);
4617 return -EINVAL;
4618 }
4619 }
4620
4621 /* Get association, if assoc_id != 0 and the socket is a one
4622 * to many style socket, and an association was not found, then
4623 * the id was invalid.
4624 */
4625 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4626 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4627 pr_debug("%s: failed no association\n", __func__);
4628 return -EINVAL;
4629 }
4630
4631 if (trans) {
4632 /* Fetch transport values. */
4633 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4634 params.spp_pathmtu = trans->pathmtu;
4635 params.spp_pathmaxrxt = trans->pathmaxrxt;
4636 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4637
4638 /*draft-11 doesn't say what to return in spp_flags*/
4639 params.spp_flags = trans->param_flags;
4640 } else if (asoc) {
4641 /* Fetch association values. */
4642 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4643 params.spp_pathmtu = asoc->pathmtu;
4644 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4645 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4646
4647 /*draft-11 doesn't say what to return in spp_flags*/
4648 params.spp_flags = asoc->param_flags;
4649 } else {
4650 /* Fetch socket values. */
4651 params.spp_hbinterval = sp->hbinterval;
4652 params.spp_pathmtu = sp->pathmtu;
4653 params.spp_sackdelay = sp->sackdelay;
4654 params.spp_pathmaxrxt = sp->pathmaxrxt;
4655
4656 /*draft-11 doesn't say what to return in spp_flags*/
4657 params.spp_flags = sp->param_flags;
4658 }
4659
4660 if (copy_to_user(optval, &params, len))
4661 return -EFAULT;
4662
4663 if (put_user(len, optlen))
4664 return -EFAULT;
4665
4666 return 0;
4667 }
4668
4669 /*
4670 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4671 *
4672 * This option will effect the way delayed acks are performed. This
4673 * option allows you to get or set the delayed ack time, in
4674 * milliseconds. It also allows changing the delayed ack frequency.
4675 * Changing the frequency to 1 disables the delayed sack algorithm. If
4676 * the assoc_id is 0, then this sets or gets the endpoints default
4677 * values. If the assoc_id field is non-zero, then the set or get
4678 * effects the specified association for the one to many model (the
4679 * assoc_id field is ignored by the one to one model). Note that if
4680 * sack_delay or sack_freq are 0 when setting this option, then the
4681 * current values will remain unchanged.
4682 *
4683 * struct sctp_sack_info {
4684 * sctp_assoc_t sack_assoc_id;
4685 * uint32_t sack_delay;
4686 * uint32_t sack_freq;
4687 * };
4688 *
4689 * sack_assoc_id - This parameter, indicates which association the user
4690 * is performing an action upon. Note that if this field's value is
4691 * zero then the endpoints default value is changed (effecting future
4692 * associations only).
4693 *
4694 * sack_delay - This parameter contains the number of milliseconds that
4695 * the user is requesting the delayed ACK timer be set to. Note that
4696 * this value is defined in the standard to be between 200 and 500
4697 * milliseconds.
4698 *
4699 * sack_freq - This parameter contains the number of packets that must
4700 * be received before a sack is sent without waiting for the delay
4701 * timer to expire. The default value for this is 2, setting this
4702 * value to 1 will disable the delayed sack algorithm.
4703 */
4704 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4705 char __user *optval,
4706 int __user *optlen)
4707 {
4708 struct sctp_sack_info params;
4709 struct sctp_association *asoc = NULL;
4710 struct sctp_sock *sp = sctp_sk(sk);
4711
4712 if (len >= sizeof(struct sctp_sack_info)) {
4713 len = sizeof(struct sctp_sack_info);
4714
4715 if (copy_from_user(&params, optval, len))
4716 return -EFAULT;
4717 } else if (len == sizeof(struct sctp_assoc_value)) {
4718 pr_warn_ratelimited(DEPRECATED
4719 "%s (pid %d) "
4720 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4721 "Use struct sctp_sack_info instead\n",
4722 current->comm, task_pid_nr(current));
4723 if (copy_from_user(&params, optval, len))
4724 return -EFAULT;
4725 } else
4726 return -EINVAL;
4727
4728 /* Get association, if sack_assoc_id != 0 and the socket is a one
4729 * to many style socket, and an association was not found, then
4730 * the id was invalid.
4731 */
4732 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4733 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4734 return -EINVAL;
4735
4736 if (asoc) {
4737 /* Fetch association values. */
4738 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4739 params.sack_delay = jiffies_to_msecs(
4740 asoc->sackdelay);
4741 params.sack_freq = asoc->sackfreq;
4742
4743 } else {
4744 params.sack_delay = 0;
4745 params.sack_freq = 1;
4746 }
4747 } else {
4748 /* Fetch socket values. */
4749 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4750 params.sack_delay = sp->sackdelay;
4751 params.sack_freq = sp->sackfreq;
4752 } else {
4753 params.sack_delay = 0;
4754 params.sack_freq = 1;
4755 }
4756 }
4757
4758 if (copy_to_user(optval, &params, len))
4759 return -EFAULT;
4760
4761 if (put_user(len, optlen))
4762 return -EFAULT;
4763
4764 return 0;
4765 }
4766
4767 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4768 *
4769 * Applications can specify protocol parameters for the default association
4770 * initialization. The option name argument to setsockopt() and getsockopt()
4771 * is SCTP_INITMSG.
4772 *
4773 * Setting initialization parameters is effective only on an unconnected
4774 * socket (for UDP-style sockets only future associations are effected
4775 * by the change). With TCP-style sockets, this option is inherited by
4776 * sockets derived from a listener socket.
4777 */
4778 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4779 {
4780 if (len < sizeof(struct sctp_initmsg))
4781 return -EINVAL;
4782 len = sizeof(struct sctp_initmsg);
4783 if (put_user(len, optlen))
4784 return -EFAULT;
4785 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4786 return -EFAULT;
4787 return 0;
4788 }
4789
4790
4791 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4792 char __user *optval, int __user *optlen)
4793 {
4794 struct sctp_association *asoc;
4795 int cnt = 0;
4796 struct sctp_getaddrs getaddrs;
4797 struct sctp_transport *from;
4798 void __user *to;
4799 union sctp_addr temp;
4800 struct sctp_sock *sp = sctp_sk(sk);
4801 int addrlen;
4802 size_t space_left;
4803 int bytes_copied;
4804
4805 if (len < sizeof(struct sctp_getaddrs))
4806 return -EINVAL;
4807
4808 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4809 return -EFAULT;
4810
4811 /* For UDP-style sockets, id specifies the association to query. */
4812 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4813 if (!asoc)
4814 return -EINVAL;
4815
4816 to = optval + offsetof(struct sctp_getaddrs, addrs);
4817 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4818
4819 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4820 transports) {
4821 memcpy(&temp, &from->ipaddr, sizeof(temp));
4822 addrlen = sctp_get_pf_specific(sk->sk_family)
4823 ->addr_to_user(sp, &temp);
4824 if (space_left < addrlen)
4825 return -ENOMEM;
4826 if (copy_to_user(to, &temp, addrlen))
4827 return -EFAULT;
4828 to += addrlen;
4829 cnt++;
4830 space_left -= addrlen;
4831 }
4832
4833 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4834 return -EFAULT;
4835 bytes_copied = ((char __user *)to) - optval;
4836 if (put_user(bytes_copied, optlen))
4837 return -EFAULT;
4838
4839 return 0;
4840 }
4841
4842 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4843 size_t space_left, int *bytes_copied)
4844 {
4845 struct sctp_sockaddr_entry *addr;
4846 union sctp_addr temp;
4847 int cnt = 0;
4848 int addrlen;
4849 struct net *net = sock_net(sk);
4850
4851 rcu_read_lock();
4852 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4853 if (!addr->valid)
4854 continue;
4855
4856 if ((PF_INET == sk->sk_family) &&
4857 (AF_INET6 == addr->a.sa.sa_family))
4858 continue;
4859 if ((PF_INET6 == sk->sk_family) &&
4860 inet_v6_ipv6only(sk) &&
4861 (AF_INET == addr->a.sa.sa_family))
4862 continue;
4863 memcpy(&temp, &addr->a, sizeof(temp));
4864 if (!temp.v4.sin_port)
4865 temp.v4.sin_port = htons(port);
4866
4867 addrlen = sctp_get_pf_specific(sk->sk_family)
4868 ->addr_to_user(sctp_sk(sk), &temp);
4869
4870 if (space_left < addrlen) {
4871 cnt = -ENOMEM;
4872 break;
4873 }
4874 memcpy(to, &temp, addrlen);
4875
4876 to += addrlen;
4877 cnt++;
4878 space_left -= addrlen;
4879 *bytes_copied += addrlen;
4880 }
4881 rcu_read_unlock();
4882
4883 return cnt;
4884 }
4885
4886
4887 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4888 char __user *optval, int __user *optlen)
4889 {
4890 struct sctp_bind_addr *bp;
4891 struct sctp_association *asoc;
4892 int cnt = 0;
4893 struct sctp_getaddrs getaddrs;
4894 struct sctp_sockaddr_entry *addr;
4895 void __user *to;
4896 union sctp_addr temp;
4897 struct sctp_sock *sp = sctp_sk(sk);
4898 int addrlen;
4899 int err = 0;
4900 size_t space_left;
4901 int bytes_copied = 0;
4902 void *addrs;
4903 void *buf;
4904
4905 if (len < sizeof(struct sctp_getaddrs))
4906 return -EINVAL;
4907
4908 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4909 return -EFAULT;
4910
4911 /*
4912 * For UDP-style sockets, id specifies the association to query.
4913 * If the id field is set to the value '0' then the locally bound
4914 * addresses are returned without regard to any particular
4915 * association.
4916 */
4917 if (0 == getaddrs.assoc_id) {
4918 bp = &sctp_sk(sk)->ep->base.bind_addr;
4919 } else {
4920 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4921 if (!asoc)
4922 return -EINVAL;
4923 bp = &asoc->base.bind_addr;
4924 }
4925
4926 to = optval + offsetof(struct sctp_getaddrs, addrs);
4927 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4928
4929 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
4930 if (!addrs)
4931 return -ENOMEM;
4932
4933 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4934 * addresses from the global local address list.
4935 */
4936 if (sctp_list_single_entry(&bp->address_list)) {
4937 addr = list_entry(bp->address_list.next,
4938 struct sctp_sockaddr_entry, list);
4939 if (sctp_is_any(sk, &addr->a)) {
4940 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4941 space_left, &bytes_copied);
4942 if (cnt < 0) {
4943 err = cnt;
4944 goto out;
4945 }
4946 goto copy_getaddrs;
4947 }
4948 }
4949
4950 buf = addrs;
4951 /* Protection on the bound address list is not needed since
4952 * in the socket option context we hold a socket lock and
4953 * thus the bound address list can't change.
4954 */
4955 list_for_each_entry(addr, &bp->address_list, list) {
4956 memcpy(&temp, &addr->a, sizeof(temp));
4957 addrlen = sctp_get_pf_specific(sk->sk_family)
4958 ->addr_to_user(sp, &temp);
4959 if (space_left < addrlen) {
4960 err = -ENOMEM; /*fixme: right error?*/
4961 goto out;
4962 }
4963 memcpy(buf, &temp, addrlen);
4964 buf += addrlen;
4965 bytes_copied += addrlen;
4966 cnt++;
4967 space_left -= addrlen;
4968 }
4969
4970 copy_getaddrs:
4971 if (copy_to_user(to, addrs, bytes_copied)) {
4972 err = -EFAULT;
4973 goto out;
4974 }
4975 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4976 err = -EFAULT;
4977 goto out;
4978 }
4979 if (put_user(bytes_copied, optlen))
4980 err = -EFAULT;
4981 out:
4982 kfree(addrs);
4983 return err;
4984 }
4985
4986 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4987 *
4988 * Requests that the local SCTP stack use the enclosed peer address as
4989 * the association primary. The enclosed address must be one of the
4990 * association peer's addresses.
4991 */
4992 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4993 char __user *optval, int __user *optlen)
4994 {
4995 struct sctp_prim prim;
4996 struct sctp_association *asoc;
4997 struct sctp_sock *sp = sctp_sk(sk);
4998
4999 if (len < sizeof(struct sctp_prim))
5000 return -EINVAL;
5001
5002 len = sizeof(struct sctp_prim);
5003
5004 if (copy_from_user(&prim, optval, len))
5005 return -EFAULT;
5006
5007 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5008 if (!asoc)
5009 return -EINVAL;
5010
5011 if (!asoc->peer.primary_path)
5012 return -ENOTCONN;
5013
5014 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5015 asoc->peer.primary_path->af_specific->sockaddr_len);
5016
5017 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5018 (union sctp_addr *)&prim.ssp_addr);
5019
5020 if (put_user(len, optlen))
5021 return -EFAULT;
5022 if (copy_to_user(optval, &prim, len))
5023 return -EFAULT;
5024
5025 return 0;
5026 }
5027
5028 /*
5029 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5030 *
5031 * Requests that the local endpoint set the specified Adaptation Layer
5032 * Indication parameter for all future INIT and INIT-ACK exchanges.
5033 */
5034 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5035 char __user *optval, int __user *optlen)
5036 {
5037 struct sctp_setadaptation adaptation;
5038
5039 if (len < sizeof(struct sctp_setadaptation))
5040 return -EINVAL;
5041
5042 len = sizeof(struct sctp_setadaptation);
5043
5044 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5045
5046 if (put_user(len, optlen))
5047 return -EFAULT;
5048 if (copy_to_user(optval, &adaptation, len))
5049 return -EFAULT;
5050
5051 return 0;
5052 }
5053
5054 /*
5055 *
5056 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5057 *
5058 * Applications that wish to use the sendto() system call may wish to
5059 * specify a default set of parameters that would normally be supplied
5060 * through the inclusion of ancillary data. This socket option allows
5061 * such an application to set the default sctp_sndrcvinfo structure.
5062
5063
5064 * The application that wishes to use this socket option simply passes
5065 * in to this call the sctp_sndrcvinfo structure defined in Section
5066 * 5.2.2) The input parameters accepted by this call include
5067 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5068 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5069 * to this call if the caller is using the UDP model.
5070 *
5071 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5072 */
5073 static int sctp_getsockopt_default_send_param(struct sock *sk,
5074 int len, char __user *optval,
5075 int __user *optlen)
5076 {
5077 struct sctp_sock *sp = sctp_sk(sk);
5078 struct sctp_association *asoc;
5079 struct sctp_sndrcvinfo info;
5080
5081 if (len < sizeof(info))
5082 return -EINVAL;
5083
5084 len = sizeof(info);
5085
5086 if (copy_from_user(&info, optval, len))
5087 return -EFAULT;
5088
5089 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5090 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5091 return -EINVAL;
5092 if (asoc) {
5093 info.sinfo_stream = asoc->default_stream;
5094 info.sinfo_flags = asoc->default_flags;
5095 info.sinfo_ppid = asoc->default_ppid;
5096 info.sinfo_context = asoc->default_context;
5097 info.sinfo_timetolive = asoc->default_timetolive;
5098 } else {
5099 info.sinfo_stream = sp->default_stream;
5100 info.sinfo_flags = sp->default_flags;
5101 info.sinfo_ppid = sp->default_ppid;
5102 info.sinfo_context = sp->default_context;
5103 info.sinfo_timetolive = sp->default_timetolive;
5104 }
5105
5106 if (put_user(len, optlen))
5107 return -EFAULT;
5108 if (copy_to_user(optval, &info, len))
5109 return -EFAULT;
5110
5111 return 0;
5112 }
5113
5114 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5115 * (SCTP_DEFAULT_SNDINFO)
5116 */
5117 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5118 char __user *optval,
5119 int __user *optlen)
5120 {
5121 struct sctp_sock *sp = sctp_sk(sk);
5122 struct sctp_association *asoc;
5123 struct sctp_sndinfo info;
5124
5125 if (len < sizeof(info))
5126 return -EINVAL;
5127
5128 len = sizeof(info);
5129
5130 if (copy_from_user(&info, optval, len))
5131 return -EFAULT;
5132
5133 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5134 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5135 return -EINVAL;
5136 if (asoc) {
5137 info.snd_sid = asoc->default_stream;
5138 info.snd_flags = asoc->default_flags;
5139 info.snd_ppid = asoc->default_ppid;
5140 info.snd_context = asoc->default_context;
5141 } else {
5142 info.snd_sid = sp->default_stream;
5143 info.snd_flags = sp->default_flags;
5144 info.snd_ppid = sp->default_ppid;
5145 info.snd_context = sp->default_context;
5146 }
5147
5148 if (put_user(len, optlen))
5149 return -EFAULT;
5150 if (copy_to_user(optval, &info, len))
5151 return -EFAULT;
5152
5153 return 0;
5154 }
5155
5156 /*
5157 *
5158 * 7.1.5 SCTP_NODELAY
5159 *
5160 * Turn on/off any Nagle-like algorithm. This means that packets are
5161 * generally sent as soon as possible and no unnecessary delays are
5162 * introduced, at the cost of more packets in the network. Expects an
5163 * integer boolean flag.
5164 */
5165
5166 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5167 char __user *optval, int __user *optlen)
5168 {
5169 int val;
5170
5171 if (len < sizeof(int))
5172 return -EINVAL;
5173
5174 len = sizeof(int);
5175 val = (sctp_sk(sk)->nodelay == 1);
5176 if (put_user(len, optlen))
5177 return -EFAULT;
5178 if (copy_to_user(optval, &val, len))
5179 return -EFAULT;
5180 return 0;
5181 }
5182
5183 /*
5184 *
5185 * 7.1.1 SCTP_RTOINFO
5186 *
5187 * The protocol parameters used to initialize and bound retransmission
5188 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5189 * and modify these parameters.
5190 * All parameters are time values, in milliseconds. A value of 0, when
5191 * modifying the parameters, indicates that the current value should not
5192 * be changed.
5193 *
5194 */
5195 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5196 char __user *optval,
5197 int __user *optlen) {
5198 struct sctp_rtoinfo rtoinfo;
5199 struct sctp_association *asoc;
5200
5201 if (len < sizeof (struct sctp_rtoinfo))
5202 return -EINVAL;
5203
5204 len = sizeof(struct sctp_rtoinfo);
5205
5206 if (copy_from_user(&rtoinfo, optval, len))
5207 return -EFAULT;
5208
5209 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5210
5211 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5212 return -EINVAL;
5213
5214 /* Values corresponding to the specific association. */
5215 if (asoc) {
5216 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5217 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5218 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5219 } else {
5220 /* Values corresponding to the endpoint. */
5221 struct sctp_sock *sp = sctp_sk(sk);
5222
5223 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5224 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5225 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5226 }
5227
5228 if (put_user(len, optlen))
5229 return -EFAULT;
5230
5231 if (copy_to_user(optval, &rtoinfo, len))
5232 return -EFAULT;
5233
5234 return 0;
5235 }
5236
5237 /*
5238 *
5239 * 7.1.2 SCTP_ASSOCINFO
5240 *
5241 * This option is used to tune the maximum retransmission attempts
5242 * of the association.
5243 * Returns an error if the new association retransmission value is
5244 * greater than the sum of the retransmission value of the peer.
5245 * See [SCTP] for more information.
5246 *
5247 */
5248 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5249 char __user *optval,
5250 int __user *optlen)
5251 {
5252
5253 struct sctp_assocparams assocparams;
5254 struct sctp_association *asoc;
5255 struct list_head *pos;
5256 int cnt = 0;
5257
5258 if (len < sizeof (struct sctp_assocparams))
5259 return -EINVAL;
5260
5261 len = sizeof(struct sctp_assocparams);
5262
5263 if (copy_from_user(&assocparams, optval, len))
5264 return -EFAULT;
5265
5266 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5267
5268 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5269 return -EINVAL;
5270
5271 /* Values correspoinding to the specific association */
5272 if (asoc) {
5273 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5274 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5275 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5276 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5277
5278 list_for_each(pos, &asoc->peer.transport_addr_list) {
5279 cnt++;
5280 }
5281
5282 assocparams.sasoc_number_peer_destinations = cnt;
5283 } else {
5284 /* Values corresponding to the endpoint */
5285 struct sctp_sock *sp = sctp_sk(sk);
5286
5287 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5288 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5289 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5290 assocparams.sasoc_cookie_life =
5291 sp->assocparams.sasoc_cookie_life;
5292 assocparams.sasoc_number_peer_destinations =
5293 sp->assocparams.
5294 sasoc_number_peer_destinations;
5295 }
5296
5297 if (put_user(len, optlen))
5298 return -EFAULT;
5299
5300 if (copy_to_user(optval, &assocparams, len))
5301 return -EFAULT;
5302
5303 return 0;
5304 }
5305
5306 /*
5307 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5308 *
5309 * This socket option is a boolean flag which turns on or off mapped V4
5310 * addresses. If this option is turned on and the socket is type
5311 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5312 * If this option is turned off, then no mapping will be done of V4
5313 * addresses and a user will receive both PF_INET6 and PF_INET type
5314 * addresses on the socket.
5315 */
5316 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5317 char __user *optval, int __user *optlen)
5318 {
5319 int val;
5320 struct sctp_sock *sp = sctp_sk(sk);
5321
5322 if (len < sizeof(int))
5323 return -EINVAL;
5324
5325 len = sizeof(int);
5326 val = sp->v4mapped;
5327 if (put_user(len, optlen))
5328 return -EFAULT;
5329 if (copy_to_user(optval, &val, len))
5330 return -EFAULT;
5331
5332 return 0;
5333 }
5334
5335 /*
5336 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5337 * (chapter and verse is quoted at sctp_setsockopt_context())
5338 */
5339 static int sctp_getsockopt_context(struct sock *sk, int len,
5340 char __user *optval, int __user *optlen)
5341 {
5342 struct sctp_assoc_value params;
5343 struct sctp_sock *sp;
5344 struct sctp_association *asoc;
5345
5346 if (len < sizeof(struct sctp_assoc_value))
5347 return -EINVAL;
5348
5349 len = sizeof(struct sctp_assoc_value);
5350
5351 if (copy_from_user(&params, optval, len))
5352 return -EFAULT;
5353
5354 sp = sctp_sk(sk);
5355
5356 if (params.assoc_id != 0) {
5357 asoc = sctp_id2assoc(sk, params.assoc_id);
5358 if (!asoc)
5359 return -EINVAL;
5360 params.assoc_value = asoc->default_rcv_context;
5361 } else {
5362 params.assoc_value = sp->default_rcv_context;
5363 }
5364
5365 if (put_user(len, optlen))
5366 return -EFAULT;
5367 if (copy_to_user(optval, &params, len))
5368 return -EFAULT;
5369
5370 return 0;
5371 }
5372
5373 /*
5374 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5375 * This option will get or set the maximum size to put in any outgoing
5376 * SCTP DATA chunk. If a message is larger than this size it will be
5377 * fragmented by SCTP into the specified size. Note that the underlying
5378 * SCTP implementation may fragment into smaller sized chunks when the
5379 * PMTU of the underlying association is smaller than the value set by
5380 * the user. The default value for this option is '0' which indicates
5381 * the user is NOT limiting fragmentation and only the PMTU will effect
5382 * SCTP's choice of DATA chunk size. Note also that values set larger
5383 * than the maximum size of an IP datagram will effectively let SCTP
5384 * control fragmentation (i.e. the same as setting this option to 0).
5385 *
5386 * The following structure is used to access and modify this parameter:
5387 *
5388 * struct sctp_assoc_value {
5389 * sctp_assoc_t assoc_id;
5390 * uint32_t assoc_value;
5391 * };
5392 *
5393 * assoc_id: This parameter is ignored for one-to-one style sockets.
5394 * For one-to-many style sockets this parameter indicates which
5395 * association the user is performing an action upon. Note that if
5396 * this field's value is zero then the endpoints default value is
5397 * changed (effecting future associations only).
5398 * assoc_value: This parameter specifies the maximum size in bytes.
5399 */
5400 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5401 char __user *optval, int __user *optlen)
5402 {
5403 struct sctp_assoc_value params;
5404 struct sctp_association *asoc;
5405
5406 if (len == sizeof(int)) {
5407 pr_warn_ratelimited(DEPRECATED
5408 "%s (pid %d) "
5409 "Use of int in maxseg socket option.\n"
5410 "Use struct sctp_assoc_value instead\n",
5411 current->comm, task_pid_nr(current));
5412 params.assoc_id = 0;
5413 } else if (len >= sizeof(struct sctp_assoc_value)) {
5414 len = sizeof(struct sctp_assoc_value);
5415 if (copy_from_user(&params, optval, sizeof(params)))
5416 return -EFAULT;
5417 } else
5418 return -EINVAL;
5419
5420 asoc = sctp_id2assoc(sk, params.assoc_id);
5421 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5422 return -EINVAL;
5423
5424 if (asoc)
5425 params.assoc_value = asoc->frag_point;
5426 else
5427 params.assoc_value = sctp_sk(sk)->user_frag;
5428
5429 if (put_user(len, optlen))
5430 return -EFAULT;
5431 if (len == sizeof(int)) {
5432 if (copy_to_user(optval, &params.assoc_value, len))
5433 return -EFAULT;
5434 } else {
5435 if (copy_to_user(optval, &params, len))
5436 return -EFAULT;
5437 }
5438
5439 return 0;
5440 }
5441
5442 /*
5443 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5444 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5445 */
5446 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5447 char __user *optval, int __user *optlen)
5448 {
5449 int val;
5450
5451 if (len < sizeof(int))
5452 return -EINVAL;
5453
5454 len = sizeof(int);
5455
5456 val = sctp_sk(sk)->frag_interleave;
5457 if (put_user(len, optlen))
5458 return -EFAULT;
5459 if (copy_to_user(optval, &val, len))
5460 return -EFAULT;
5461
5462 return 0;
5463 }
5464
5465 /*
5466 * 7.1.25. Set or Get the sctp partial delivery point
5467 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5468 */
5469 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5470 char __user *optval,
5471 int __user *optlen)
5472 {
5473 u32 val;
5474
5475 if (len < sizeof(u32))
5476 return -EINVAL;
5477
5478 len = sizeof(u32);
5479
5480 val = sctp_sk(sk)->pd_point;
5481 if (put_user(len, optlen))
5482 return -EFAULT;
5483 if (copy_to_user(optval, &val, len))
5484 return -EFAULT;
5485
5486 return 0;
5487 }
5488
5489 /*
5490 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5491 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5492 */
5493 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5494 char __user *optval,
5495 int __user *optlen)
5496 {
5497 struct sctp_assoc_value params;
5498 struct sctp_sock *sp;
5499 struct sctp_association *asoc;
5500
5501 if (len == sizeof(int)) {
5502 pr_warn_ratelimited(DEPRECATED
5503 "%s (pid %d) "
5504 "Use of int in max_burst socket option.\n"
5505 "Use struct sctp_assoc_value instead\n",
5506 current->comm, task_pid_nr(current));
5507 params.assoc_id = 0;
5508 } else if (len >= sizeof(struct sctp_assoc_value)) {
5509 len = sizeof(struct sctp_assoc_value);
5510 if (copy_from_user(&params, optval, len))
5511 return -EFAULT;
5512 } else
5513 return -EINVAL;
5514
5515 sp = sctp_sk(sk);
5516
5517 if (params.assoc_id != 0) {
5518 asoc = sctp_id2assoc(sk, params.assoc_id);
5519 if (!asoc)
5520 return -EINVAL;
5521 params.assoc_value = asoc->max_burst;
5522 } else
5523 params.assoc_value = sp->max_burst;
5524
5525 if (len == sizeof(int)) {
5526 if (copy_to_user(optval, &params.assoc_value, len))
5527 return -EFAULT;
5528 } else {
5529 if (copy_to_user(optval, &params, len))
5530 return -EFAULT;
5531 }
5532
5533 return 0;
5534
5535 }
5536
5537 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5538 char __user *optval, int __user *optlen)
5539 {
5540 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5541 struct sctp_hmacalgo __user *p = (void __user *)optval;
5542 struct sctp_hmac_algo_param *hmacs;
5543 __u16 data_len = 0;
5544 u32 num_idents;
5545
5546 if (!ep->auth_enable)
5547 return -EACCES;
5548
5549 hmacs = ep->auth_hmacs_list;
5550 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5551
5552 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5553 return -EINVAL;
5554
5555 len = sizeof(struct sctp_hmacalgo) + data_len;
5556 num_idents = data_len / sizeof(u16);
5557
5558 if (put_user(len, optlen))
5559 return -EFAULT;
5560 if (put_user(num_idents, &p->shmac_num_idents))
5561 return -EFAULT;
5562 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5563 return -EFAULT;
5564 return 0;
5565 }
5566
5567 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5568 char __user *optval, int __user *optlen)
5569 {
5570 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5571 struct sctp_authkeyid val;
5572 struct sctp_association *asoc;
5573
5574 if (!ep->auth_enable)
5575 return -EACCES;
5576
5577 if (len < sizeof(struct sctp_authkeyid))
5578 return -EINVAL;
5579 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5580 return -EFAULT;
5581
5582 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5583 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5584 return -EINVAL;
5585
5586 if (asoc)
5587 val.scact_keynumber = asoc->active_key_id;
5588 else
5589 val.scact_keynumber = ep->active_key_id;
5590
5591 len = sizeof(struct sctp_authkeyid);
5592 if (put_user(len, optlen))
5593 return -EFAULT;
5594 if (copy_to_user(optval, &val, len))
5595 return -EFAULT;
5596
5597 return 0;
5598 }
5599
5600 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5601 char __user *optval, int __user *optlen)
5602 {
5603 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5604 struct sctp_authchunks __user *p = (void __user *)optval;
5605 struct sctp_authchunks val;
5606 struct sctp_association *asoc;
5607 struct sctp_chunks_param *ch;
5608 u32 num_chunks = 0;
5609 char __user *to;
5610
5611 if (!ep->auth_enable)
5612 return -EACCES;
5613
5614 if (len < sizeof(struct sctp_authchunks))
5615 return -EINVAL;
5616
5617 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5618 return -EFAULT;
5619
5620 to = p->gauth_chunks;
5621 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5622 if (!asoc)
5623 return -EINVAL;
5624
5625 ch = asoc->peer.peer_chunks;
5626 if (!ch)
5627 goto num;
5628
5629 /* See if the user provided enough room for all the data */
5630 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5631 if (len < num_chunks)
5632 return -EINVAL;
5633
5634 if (copy_to_user(to, ch->chunks, num_chunks))
5635 return -EFAULT;
5636 num:
5637 len = sizeof(struct sctp_authchunks) + num_chunks;
5638 if (put_user(len, optlen))
5639 return -EFAULT;
5640 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5641 return -EFAULT;
5642 return 0;
5643 }
5644
5645 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5646 char __user *optval, int __user *optlen)
5647 {
5648 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5649 struct sctp_authchunks __user *p = (void __user *)optval;
5650 struct sctp_authchunks val;
5651 struct sctp_association *asoc;
5652 struct sctp_chunks_param *ch;
5653 u32 num_chunks = 0;
5654 char __user *to;
5655
5656 if (!ep->auth_enable)
5657 return -EACCES;
5658
5659 if (len < sizeof(struct sctp_authchunks))
5660 return -EINVAL;
5661
5662 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5663 return -EFAULT;
5664
5665 to = p->gauth_chunks;
5666 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5667 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5668 return -EINVAL;
5669
5670 if (asoc)
5671 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5672 else
5673 ch = ep->auth_chunk_list;
5674
5675 if (!ch)
5676 goto num;
5677
5678 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5679 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5680 return -EINVAL;
5681
5682 if (copy_to_user(to, ch->chunks, num_chunks))
5683 return -EFAULT;
5684 num:
5685 len = sizeof(struct sctp_authchunks) + num_chunks;
5686 if (put_user(len, optlen))
5687 return -EFAULT;
5688 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5689 return -EFAULT;
5690
5691 return 0;
5692 }
5693
5694 /*
5695 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5696 * This option gets the current number of associations that are attached
5697 * to a one-to-many style socket. The option value is an uint32_t.
5698 */
5699 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5700 char __user *optval, int __user *optlen)
5701 {
5702 struct sctp_sock *sp = sctp_sk(sk);
5703 struct sctp_association *asoc;
5704 u32 val = 0;
5705
5706 if (sctp_style(sk, TCP))
5707 return -EOPNOTSUPP;
5708
5709 if (len < sizeof(u32))
5710 return -EINVAL;
5711
5712 len = sizeof(u32);
5713
5714 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5715 val++;
5716 }
5717
5718 if (put_user(len, optlen))
5719 return -EFAULT;
5720 if (copy_to_user(optval, &val, len))
5721 return -EFAULT;
5722
5723 return 0;
5724 }
5725
5726 /*
5727 * 8.1.23 SCTP_AUTO_ASCONF
5728 * See the corresponding setsockopt entry as description
5729 */
5730 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5731 char __user *optval, int __user *optlen)
5732 {
5733 int val = 0;
5734
5735 if (len < sizeof(int))
5736 return -EINVAL;
5737
5738 len = sizeof(int);
5739 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5740 val = 1;
5741 if (put_user(len, optlen))
5742 return -EFAULT;
5743 if (copy_to_user(optval, &val, len))
5744 return -EFAULT;
5745 return 0;
5746 }
5747
5748 /*
5749 * 8.2.6. Get the Current Identifiers of Associations
5750 * (SCTP_GET_ASSOC_ID_LIST)
5751 *
5752 * This option gets the current list of SCTP association identifiers of
5753 * the SCTP associations handled by a one-to-many style socket.
5754 */
5755 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5756 char __user *optval, int __user *optlen)
5757 {
5758 struct sctp_sock *sp = sctp_sk(sk);
5759 struct sctp_association *asoc;
5760 struct sctp_assoc_ids *ids;
5761 u32 num = 0;
5762
5763 if (sctp_style(sk, TCP))
5764 return -EOPNOTSUPP;
5765
5766 if (len < sizeof(struct sctp_assoc_ids))
5767 return -EINVAL;
5768
5769 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5770 num++;
5771 }
5772
5773 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5774 return -EINVAL;
5775
5776 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5777
5778 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
5779 if (unlikely(!ids))
5780 return -ENOMEM;
5781
5782 ids->gaids_number_of_ids = num;
5783 num = 0;
5784 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5785 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5786 }
5787
5788 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5789 kfree(ids);
5790 return -EFAULT;
5791 }
5792
5793 kfree(ids);
5794 return 0;
5795 }
5796
5797 /*
5798 * SCTP_PEER_ADDR_THLDS
5799 *
5800 * This option allows us to fetch the partially failed threshold for one or all
5801 * transports in an association. See Section 6.1 of:
5802 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5803 */
5804 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5805 char __user *optval,
5806 int len,
5807 int __user *optlen)
5808 {
5809 struct sctp_paddrthlds val;
5810 struct sctp_transport *trans;
5811 struct sctp_association *asoc;
5812
5813 if (len < sizeof(struct sctp_paddrthlds))
5814 return -EINVAL;
5815 len = sizeof(struct sctp_paddrthlds);
5816 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5817 return -EFAULT;
5818
5819 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5820 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5821 if (!asoc)
5822 return -ENOENT;
5823
5824 val.spt_pathpfthld = asoc->pf_retrans;
5825 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5826 } else {
5827 trans = sctp_addr_id2transport(sk, &val.spt_address,
5828 val.spt_assoc_id);
5829 if (!trans)
5830 return -ENOENT;
5831
5832 val.spt_pathmaxrxt = trans->pathmaxrxt;
5833 val.spt_pathpfthld = trans->pf_retrans;
5834 }
5835
5836 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5837 return -EFAULT;
5838
5839 return 0;
5840 }
5841
5842 /*
5843 * SCTP_GET_ASSOC_STATS
5844 *
5845 * This option retrieves local per endpoint statistics. It is modeled
5846 * after OpenSolaris' implementation
5847 */
5848 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5849 char __user *optval,
5850 int __user *optlen)
5851 {
5852 struct sctp_assoc_stats sas;
5853 struct sctp_association *asoc = NULL;
5854
5855 /* User must provide at least the assoc id */
5856 if (len < sizeof(sctp_assoc_t))
5857 return -EINVAL;
5858
5859 /* Allow the struct to grow and fill in as much as possible */
5860 len = min_t(size_t, len, sizeof(sas));
5861
5862 if (copy_from_user(&sas, optval, len))
5863 return -EFAULT;
5864
5865 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5866 if (!asoc)
5867 return -EINVAL;
5868
5869 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5870 sas.sas_gapcnt = asoc->stats.gapcnt;
5871 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5872 sas.sas_osacks = asoc->stats.osacks;
5873 sas.sas_isacks = asoc->stats.isacks;
5874 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5875 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5876 sas.sas_oodchunks = asoc->stats.oodchunks;
5877 sas.sas_iodchunks = asoc->stats.iodchunks;
5878 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5879 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5880 sas.sas_idupchunks = asoc->stats.idupchunks;
5881 sas.sas_opackets = asoc->stats.opackets;
5882 sas.sas_ipackets = asoc->stats.ipackets;
5883
5884 /* New high max rto observed, will return 0 if not a single
5885 * RTO update took place. obs_rto_ipaddr will be bogus
5886 * in such a case
5887 */
5888 sas.sas_maxrto = asoc->stats.max_obs_rto;
5889 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5890 sizeof(struct sockaddr_storage));
5891
5892 /* Mark beginning of a new observation period */
5893 asoc->stats.max_obs_rto = asoc->rto_min;
5894
5895 if (put_user(len, optlen))
5896 return -EFAULT;
5897
5898 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5899
5900 if (copy_to_user(optval, &sas, len))
5901 return -EFAULT;
5902
5903 return 0;
5904 }
5905
5906 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
5907 char __user *optval,
5908 int __user *optlen)
5909 {
5910 int val = 0;
5911
5912 if (len < sizeof(int))
5913 return -EINVAL;
5914
5915 len = sizeof(int);
5916 if (sctp_sk(sk)->recvrcvinfo)
5917 val = 1;
5918 if (put_user(len, optlen))
5919 return -EFAULT;
5920 if (copy_to_user(optval, &val, len))
5921 return -EFAULT;
5922
5923 return 0;
5924 }
5925
5926 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
5927 char __user *optval,
5928 int __user *optlen)
5929 {
5930 int val = 0;
5931
5932 if (len < sizeof(int))
5933 return -EINVAL;
5934
5935 len = sizeof(int);
5936 if (sctp_sk(sk)->recvnxtinfo)
5937 val = 1;
5938 if (put_user(len, optlen))
5939 return -EFAULT;
5940 if (copy_to_user(optval, &val, len))
5941 return -EFAULT;
5942
5943 return 0;
5944 }
5945
5946 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5947 char __user *optval, int __user *optlen)
5948 {
5949 int retval = 0;
5950 int len;
5951
5952 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5953
5954 /* I can hardly begin to describe how wrong this is. This is
5955 * so broken as to be worse than useless. The API draft
5956 * REALLY is NOT helpful here... I am not convinced that the
5957 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5958 * are at all well-founded.
5959 */
5960 if (level != SOL_SCTP) {
5961 struct sctp_af *af = sctp_sk(sk)->pf->af;
5962
5963 retval = af->getsockopt(sk, level, optname, optval, optlen);
5964 return retval;
5965 }
5966
5967 if (get_user(len, optlen))
5968 return -EFAULT;
5969
5970 lock_sock(sk);
5971
5972 switch (optname) {
5973 case SCTP_STATUS:
5974 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5975 break;
5976 case SCTP_DISABLE_FRAGMENTS:
5977 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5978 optlen);
5979 break;
5980 case SCTP_EVENTS:
5981 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5982 break;
5983 case SCTP_AUTOCLOSE:
5984 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5985 break;
5986 case SCTP_SOCKOPT_PEELOFF:
5987 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5988 break;
5989 case SCTP_PEER_ADDR_PARAMS:
5990 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5991 optlen);
5992 break;
5993 case SCTP_DELAYED_SACK:
5994 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5995 optlen);
5996 break;
5997 case SCTP_INITMSG:
5998 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5999 break;
6000 case SCTP_GET_PEER_ADDRS:
6001 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6002 optlen);
6003 break;
6004 case SCTP_GET_LOCAL_ADDRS:
6005 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6006 optlen);
6007 break;
6008 case SCTP_SOCKOPT_CONNECTX3:
6009 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6010 break;
6011 case SCTP_DEFAULT_SEND_PARAM:
6012 retval = sctp_getsockopt_default_send_param(sk, len,
6013 optval, optlen);
6014 break;
6015 case SCTP_DEFAULT_SNDINFO:
6016 retval = sctp_getsockopt_default_sndinfo(sk, len,
6017 optval, optlen);
6018 break;
6019 case SCTP_PRIMARY_ADDR:
6020 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6021 break;
6022 case SCTP_NODELAY:
6023 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6024 break;
6025 case SCTP_RTOINFO:
6026 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6027 break;
6028 case SCTP_ASSOCINFO:
6029 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6030 break;
6031 case SCTP_I_WANT_MAPPED_V4_ADDR:
6032 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6033 break;
6034 case SCTP_MAXSEG:
6035 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6036 break;
6037 case SCTP_GET_PEER_ADDR_INFO:
6038 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6039 optlen);
6040 break;
6041 case SCTP_ADAPTATION_LAYER:
6042 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6043 optlen);
6044 break;
6045 case SCTP_CONTEXT:
6046 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6047 break;
6048 case SCTP_FRAGMENT_INTERLEAVE:
6049 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6050 optlen);
6051 break;
6052 case SCTP_PARTIAL_DELIVERY_POINT:
6053 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6054 optlen);
6055 break;
6056 case SCTP_MAX_BURST:
6057 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6058 break;
6059 case SCTP_AUTH_KEY:
6060 case SCTP_AUTH_CHUNK:
6061 case SCTP_AUTH_DELETE_KEY:
6062 retval = -EOPNOTSUPP;
6063 break;
6064 case SCTP_HMAC_IDENT:
6065 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6066 break;
6067 case SCTP_AUTH_ACTIVE_KEY:
6068 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6069 break;
6070 case SCTP_PEER_AUTH_CHUNKS:
6071 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6072 optlen);
6073 break;
6074 case SCTP_LOCAL_AUTH_CHUNKS:
6075 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6076 optlen);
6077 break;
6078 case SCTP_GET_ASSOC_NUMBER:
6079 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6080 break;
6081 case SCTP_GET_ASSOC_ID_LIST:
6082 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6083 break;
6084 case SCTP_AUTO_ASCONF:
6085 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6086 break;
6087 case SCTP_PEER_ADDR_THLDS:
6088 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6089 break;
6090 case SCTP_GET_ASSOC_STATS:
6091 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6092 break;
6093 case SCTP_RECVRCVINFO:
6094 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6095 break;
6096 case SCTP_RECVNXTINFO:
6097 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6098 break;
6099 default:
6100 retval = -ENOPROTOOPT;
6101 break;
6102 }
6103
6104 release_sock(sk);
6105 return retval;
6106 }
6107
6108 static void sctp_hash(struct sock *sk)
6109 {
6110 /* STUB */
6111 }
6112
6113 static void sctp_unhash(struct sock *sk)
6114 {
6115 /* STUB */
6116 }
6117
6118 /* Check if port is acceptable. Possibly find first available port.
6119 *
6120 * The port hash table (contained in the 'global' SCTP protocol storage
6121 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6122 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6123 * list (the list number is the port number hashed out, so as you
6124 * would expect from a hash function, all the ports in a given list have
6125 * such a number that hashes out to the same list number; you were
6126 * expecting that, right?); so each list has a set of ports, with a
6127 * link to the socket (struct sock) that uses it, the port number and
6128 * a fastreuse flag (FIXME: NPI ipg).
6129 */
6130 static struct sctp_bind_bucket *sctp_bucket_create(
6131 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6132
6133 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6134 {
6135 struct sctp_bind_hashbucket *head; /* hash list */
6136 struct sctp_bind_bucket *pp;
6137 unsigned short snum;
6138 int ret;
6139
6140 snum = ntohs(addr->v4.sin_port);
6141
6142 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6143
6144 local_bh_disable();
6145
6146 if (snum == 0) {
6147 /* Search for an available port. */
6148 int low, high, remaining, index;
6149 unsigned int rover;
6150 struct net *net = sock_net(sk);
6151
6152 inet_get_local_port_range(net, &low, &high);
6153 remaining = (high - low) + 1;
6154 rover = prandom_u32() % remaining + low;
6155
6156 do {
6157 rover++;
6158 if ((rover < low) || (rover > high))
6159 rover = low;
6160 if (inet_is_local_reserved_port(net, rover))
6161 continue;
6162 index = sctp_phashfn(sock_net(sk), rover);
6163 head = &sctp_port_hashtable[index];
6164 spin_lock(&head->lock);
6165 sctp_for_each_hentry(pp, &head->chain)
6166 if ((pp->port == rover) &&
6167 net_eq(sock_net(sk), pp->net))
6168 goto next;
6169 break;
6170 next:
6171 spin_unlock(&head->lock);
6172 } while (--remaining > 0);
6173
6174 /* Exhausted local port range during search? */
6175 ret = 1;
6176 if (remaining <= 0)
6177 goto fail;
6178
6179 /* OK, here is the one we will use. HEAD (the port
6180 * hash table list entry) is non-NULL and we hold it's
6181 * mutex.
6182 */
6183 snum = rover;
6184 } else {
6185 /* We are given an specific port number; we verify
6186 * that it is not being used. If it is used, we will
6187 * exahust the search in the hash list corresponding
6188 * to the port number (snum) - we detect that with the
6189 * port iterator, pp being NULL.
6190 */
6191 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6192 spin_lock(&head->lock);
6193 sctp_for_each_hentry(pp, &head->chain) {
6194 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6195 goto pp_found;
6196 }
6197 }
6198 pp = NULL;
6199 goto pp_not_found;
6200 pp_found:
6201 if (!hlist_empty(&pp->owner)) {
6202 /* We had a port hash table hit - there is an
6203 * available port (pp != NULL) and it is being
6204 * used by other socket (pp->owner not empty); that other
6205 * socket is going to be sk2.
6206 */
6207 int reuse = sk->sk_reuse;
6208 struct sock *sk2;
6209
6210 pr_debug("%s: found a possible match\n", __func__);
6211
6212 if (pp->fastreuse && sk->sk_reuse &&
6213 sk->sk_state != SCTP_SS_LISTENING)
6214 goto success;
6215
6216 /* Run through the list of sockets bound to the port
6217 * (pp->port) [via the pointers bind_next and
6218 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6219 * we get the endpoint they describe and run through
6220 * the endpoint's list of IP (v4 or v6) addresses,
6221 * comparing each of the addresses with the address of
6222 * the socket sk. If we find a match, then that means
6223 * that this port/socket (sk) combination are already
6224 * in an endpoint.
6225 */
6226 sk_for_each_bound(sk2, &pp->owner) {
6227 struct sctp_endpoint *ep2;
6228 ep2 = sctp_sk(sk2)->ep;
6229
6230 if (sk == sk2 ||
6231 (reuse && sk2->sk_reuse &&
6232 sk2->sk_state != SCTP_SS_LISTENING))
6233 continue;
6234
6235 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6236 sctp_sk(sk2), sctp_sk(sk))) {
6237 ret = (long)sk2;
6238 goto fail_unlock;
6239 }
6240 }
6241
6242 pr_debug("%s: found a match\n", __func__);
6243 }
6244 pp_not_found:
6245 /* If there was a hash table miss, create a new port. */
6246 ret = 1;
6247 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6248 goto fail_unlock;
6249
6250 /* In either case (hit or miss), make sure fastreuse is 1 only
6251 * if sk->sk_reuse is too (that is, if the caller requested
6252 * SO_REUSEADDR on this socket -sk-).
6253 */
6254 if (hlist_empty(&pp->owner)) {
6255 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6256 pp->fastreuse = 1;
6257 else
6258 pp->fastreuse = 0;
6259 } else if (pp->fastreuse &&
6260 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6261 pp->fastreuse = 0;
6262
6263 /* We are set, so fill up all the data in the hash table
6264 * entry, tie the socket list information with the rest of the
6265 * sockets FIXME: Blurry, NPI (ipg).
6266 */
6267 success:
6268 if (!sctp_sk(sk)->bind_hash) {
6269 inet_sk(sk)->inet_num = snum;
6270 sk_add_bind_node(sk, &pp->owner);
6271 sctp_sk(sk)->bind_hash = pp;
6272 }
6273 ret = 0;
6274
6275 fail_unlock:
6276 spin_unlock(&head->lock);
6277
6278 fail:
6279 local_bh_enable();
6280 return ret;
6281 }
6282
6283 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6284 * port is requested.
6285 */
6286 static int sctp_get_port(struct sock *sk, unsigned short snum)
6287 {
6288 union sctp_addr addr;
6289 struct sctp_af *af = sctp_sk(sk)->pf->af;
6290
6291 /* Set up a dummy address struct from the sk. */
6292 af->from_sk(&addr, sk);
6293 addr.v4.sin_port = htons(snum);
6294
6295 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6296 return !!sctp_get_port_local(sk, &addr);
6297 }
6298
6299 /*
6300 * Move a socket to LISTENING state.
6301 */
6302 static int sctp_listen_start(struct sock *sk, int backlog)
6303 {
6304 struct sctp_sock *sp = sctp_sk(sk);
6305 struct sctp_endpoint *ep = sp->ep;
6306 struct crypto_hash *tfm = NULL;
6307 char alg[32];
6308
6309 /* Allocate HMAC for generating cookie. */
6310 if (!sp->hmac && sp->sctp_hmac_alg) {
6311 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6312 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6313 if (IS_ERR(tfm)) {
6314 net_info_ratelimited("failed to load transform for %s: %ld\n",
6315 sp->sctp_hmac_alg, PTR_ERR(tfm));
6316 return -ENOSYS;
6317 }
6318 sctp_sk(sk)->hmac = tfm;
6319 }
6320
6321 /*
6322 * If a bind() or sctp_bindx() is not called prior to a listen()
6323 * call that allows new associations to be accepted, the system
6324 * picks an ephemeral port and will choose an address set equivalent
6325 * to binding with a wildcard address.
6326 *
6327 * This is not currently spelled out in the SCTP sockets
6328 * extensions draft, but follows the practice as seen in TCP
6329 * sockets.
6330 *
6331 */
6332 sk->sk_state = SCTP_SS_LISTENING;
6333 if (!ep->base.bind_addr.port) {
6334 if (sctp_autobind(sk))
6335 return -EAGAIN;
6336 } else {
6337 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6338 sk->sk_state = SCTP_SS_CLOSED;
6339 return -EADDRINUSE;
6340 }
6341 }
6342
6343 sk->sk_max_ack_backlog = backlog;
6344 sctp_hash_endpoint(ep);
6345 return 0;
6346 }
6347
6348 /*
6349 * 4.1.3 / 5.1.3 listen()
6350 *
6351 * By default, new associations are not accepted for UDP style sockets.
6352 * An application uses listen() to mark a socket as being able to
6353 * accept new associations.
6354 *
6355 * On TCP style sockets, applications use listen() to ready the SCTP
6356 * endpoint for accepting inbound associations.
6357 *
6358 * On both types of endpoints a backlog of '0' disables listening.
6359 *
6360 * Move a socket to LISTENING state.
6361 */
6362 int sctp_inet_listen(struct socket *sock, int backlog)
6363 {
6364 struct sock *sk = sock->sk;
6365 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6366 int err = -EINVAL;
6367
6368 if (unlikely(backlog < 0))
6369 return err;
6370
6371 lock_sock(sk);
6372
6373 /* Peeled-off sockets are not allowed to listen(). */
6374 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6375 goto out;
6376
6377 if (sock->state != SS_UNCONNECTED)
6378 goto out;
6379
6380 /* If backlog is zero, disable listening. */
6381 if (!backlog) {
6382 if (sctp_sstate(sk, CLOSED))
6383 goto out;
6384
6385 err = 0;
6386 sctp_unhash_endpoint(ep);
6387 sk->sk_state = SCTP_SS_CLOSED;
6388 if (sk->sk_reuse)
6389 sctp_sk(sk)->bind_hash->fastreuse = 1;
6390 goto out;
6391 }
6392
6393 /* If we are already listening, just update the backlog */
6394 if (sctp_sstate(sk, LISTENING))
6395 sk->sk_max_ack_backlog = backlog;
6396 else {
6397 err = sctp_listen_start(sk, backlog);
6398 if (err)
6399 goto out;
6400 }
6401
6402 err = 0;
6403 out:
6404 release_sock(sk);
6405 return err;
6406 }
6407
6408 /*
6409 * This function is done by modeling the current datagram_poll() and the
6410 * tcp_poll(). Note that, based on these implementations, we don't
6411 * lock the socket in this function, even though it seems that,
6412 * ideally, locking or some other mechanisms can be used to ensure
6413 * the integrity of the counters (sndbuf and wmem_alloc) used
6414 * in this place. We assume that we don't need locks either until proven
6415 * otherwise.
6416 *
6417 * Another thing to note is that we include the Async I/O support
6418 * here, again, by modeling the current TCP/UDP code. We don't have
6419 * a good way to test with it yet.
6420 */
6421 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6422 {
6423 struct sock *sk = sock->sk;
6424 struct sctp_sock *sp = sctp_sk(sk);
6425 unsigned int mask;
6426
6427 poll_wait(file, sk_sleep(sk), wait);
6428
6429 /* A TCP-style listening socket becomes readable when the accept queue
6430 * is not empty.
6431 */
6432 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6433 return (!list_empty(&sp->ep->asocs)) ?
6434 (POLLIN | POLLRDNORM) : 0;
6435
6436 mask = 0;
6437
6438 /* Is there any exceptional events? */
6439 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6440 mask |= POLLERR |
6441 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6442 if (sk->sk_shutdown & RCV_SHUTDOWN)
6443 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6444 if (sk->sk_shutdown == SHUTDOWN_MASK)
6445 mask |= POLLHUP;
6446
6447 /* Is it readable? Reconsider this code with TCP-style support. */
6448 if (!skb_queue_empty(&sk->sk_receive_queue))
6449 mask |= POLLIN | POLLRDNORM;
6450
6451 /* The association is either gone or not ready. */
6452 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6453 return mask;
6454
6455 /* Is it writable? */
6456 if (sctp_writeable(sk)) {
6457 mask |= POLLOUT | POLLWRNORM;
6458 } else {
6459 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6460 /*
6461 * Since the socket is not locked, the buffer
6462 * might be made available after the writeable check and
6463 * before the bit is set. This could cause a lost I/O
6464 * signal. tcp_poll() has a race breaker for this race
6465 * condition. Based on their implementation, we put
6466 * in the following code to cover it as well.
6467 */
6468 if (sctp_writeable(sk))
6469 mask |= POLLOUT | POLLWRNORM;
6470 }
6471 return mask;
6472 }
6473
6474 /********************************************************************
6475 * 2nd Level Abstractions
6476 ********************************************************************/
6477
6478 static struct sctp_bind_bucket *sctp_bucket_create(
6479 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6480 {
6481 struct sctp_bind_bucket *pp;
6482
6483 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6484 if (pp) {
6485 SCTP_DBG_OBJCNT_INC(bind_bucket);
6486 pp->port = snum;
6487 pp->fastreuse = 0;
6488 INIT_HLIST_HEAD(&pp->owner);
6489 pp->net = net;
6490 hlist_add_head(&pp->node, &head->chain);
6491 }
6492 return pp;
6493 }
6494
6495 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6496 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6497 {
6498 if (pp && hlist_empty(&pp->owner)) {
6499 __hlist_del(&pp->node);
6500 kmem_cache_free(sctp_bucket_cachep, pp);
6501 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6502 }
6503 }
6504
6505 /* Release this socket's reference to a local port. */
6506 static inline void __sctp_put_port(struct sock *sk)
6507 {
6508 struct sctp_bind_hashbucket *head =
6509 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6510 inet_sk(sk)->inet_num)];
6511 struct sctp_bind_bucket *pp;
6512
6513 spin_lock(&head->lock);
6514 pp = sctp_sk(sk)->bind_hash;
6515 __sk_del_bind_node(sk);
6516 sctp_sk(sk)->bind_hash = NULL;
6517 inet_sk(sk)->inet_num = 0;
6518 sctp_bucket_destroy(pp);
6519 spin_unlock(&head->lock);
6520 }
6521
6522 void sctp_put_port(struct sock *sk)
6523 {
6524 local_bh_disable();
6525 __sctp_put_port(sk);
6526 local_bh_enable();
6527 }
6528
6529 /*
6530 * The system picks an ephemeral port and choose an address set equivalent
6531 * to binding with a wildcard address.
6532 * One of those addresses will be the primary address for the association.
6533 * This automatically enables the multihoming capability of SCTP.
6534 */
6535 static int sctp_autobind(struct sock *sk)
6536 {
6537 union sctp_addr autoaddr;
6538 struct sctp_af *af;
6539 __be16 port;
6540
6541 /* Initialize a local sockaddr structure to INADDR_ANY. */
6542 af = sctp_sk(sk)->pf->af;
6543
6544 port = htons(inet_sk(sk)->inet_num);
6545 af->inaddr_any(&autoaddr, port);
6546
6547 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6548 }
6549
6550 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6551 *
6552 * From RFC 2292
6553 * 4.2 The cmsghdr Structure *
6554 *
6555 * When ancillary data is sent or received, any number of ancillary data
6556 * objects can be specified by the msg_control and msg_controllen members of
6557 * the msghdr structure, because each object is preceded by
6558 * a cmsghdr structure defining the object's length (the cmsg_len member).
6559 * Historically Berkeley-derived implementations have passed only one object
6560 * at a time, but this API allows multiple objects to be
6561 * passed in a single call to sendmsg() or recvmsg(). The following example
6562 * shows two ancillary data objects in a control buffer.
6563 *
6564 * |<--------------------------- msg_controllen -------------------------->|
6565 * | |
6566 *
6567 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6568 *
6569 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6570 * | | |
6571 *
6572 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6573 *
6574 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6575 * | | | | |
6576 *
6577 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6578 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6579 *
6580 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6581 *
6582 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6583 * ^
6584 * |
6585 *
6586 * msg_control
6587 * points here
6588 */
6589 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6590 {
6591 struct cmsghdr *cmsg;
6592 struct msghdr *my_msg = (struct msghdr *)msg;
6593
6594 for_each_cmsghdr(cmsg, my_msg) {
6595 if (!CMSG_OK(my_msg, cmsg))
6596 return -EINVAL;
6597
6598 /* Should we parse this header or ignore? */
6599 if (cmsg->cmsg_level != IPPROTO_SCTP)
6600 continue;
6601
6602 /* Strictly check lengths following example in SCM code. */
6603 switch (cmsg->cmsg_type) {
6604 case SCTP_INIT:
6605 /* SCTP Socket API Extension
6606 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6607 *
6608 * This cmsghdr structure provides information for
6609 * initializing new SCTP associations with sendmsg().
6610 * The SCTP_INITMSG socket option uses this same data
6611 * structure. This structure is not used for
6612 * recvmsg().
6613 *
6614 * cmsg_level cmsg_type cmsg_data[]
6615 * ------------ ------------ ----------------------
6616 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6617 */
6618 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6619 return -EINVAL;
6620
6621 cmsgs->init = CMSG_DATA(cmsg);
6622 break;
6623
6624 case SCTP_SNDRCV:
6625 /* SCTP Socket API Extension
6626 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6627 *
6628 * This cmsghdr structure specifies SCTP options for
6629 * sendmsg() and describes SCTP header information
6630 * about a received message through recvmsg().
6631 *
6632 * cmsg_level cmsg_type cmsg_data[]
6633 * ------------ ------------ ----------------------
6634 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6635 */
6636 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6637 return -EINVAL;
6638
6639 cmsgs->srinfo = CMSG_DATA(cmsg);
6640
6641 if (cmsgs->srinfo->sinfo_flags &
6642 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6643 SCTP_ABORT | SCTP_EOF))
6644 return -EINVAL;
6645 break;
6646
6647 case SCTP_SNDINFO:
6648 /* SCTP Socket API Extension
6649 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6650 *
6651 * This cmsghdr structure specifies SCTP options for
6652 * sendmsg(). This structure and SCTP_RCVINFO replaces
6653 * SCTP_SNDRCV which has been deprecated.
6654 *
6655 * cmsg_level cmsg_type cmsg_data[]
6656 * ------------ ------------ ---------------------
6657 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
6658 */
6659 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6660 return -EINVAL;
6661
6662 cmsgs->sinfo = CMSG_DATA(cmsg);
6663
6664 if (cmsgs->sinfo->snd_flags &
6665 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6666 SCTP_ABORT | SCTP_EOF))
6667 return -EINVAL;
6668 break;
6669 default:
6670 return -EINVAL;
6671 }
6672 }
6673
6674 return 0;
6675 }
6676
6677 /*
6678 * Wait for a packet..
6679 * Note: This function is the same function as in core/datagram.c
6680 * with a few modifications to make lksctp work.
6681 */
6682 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6683 {
6684 int error;
6685 DEFINE_WAIT(wait);
6686
6687 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6688
6689 /* Socket errors? */
6690 error = sock_error(sk);
6691 if (error)
6692 goto out;
6693
6694 if (!skb_queue_empty(&sk->sk_receive_queue))
6695 goto ready;
6696
6697 /* Socket shut down? */
6698 if (sk->sk_shutdown & RCV_SHUTDOWN)
6699 goto out;
6700
6701 /* Sequenced packets can come disconnected. If so we report the
6702 * problem.
6703 */
6704 error = -ENOTCONN;
6705
6706 /* Is there a good reason to think that we may receive some data? */
6707 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6708 goto out;
6709
6710 /* Handle signals. */
6711 if (signal_pending(current))
6712 goto interrupted;
6713
6714 /* Let another process have a go. Since we are going to sleep
6715 * anyway. Note: This may cause odd behaviors if the message
6716 * does not fit in the user's buffer, but this seems to be the
6717 * only way to honor MSG_DONTWAIT realistically.
6718 */
6719 release_sock(sk);
6720 *timeo_p = schedule_timeout(*timeo_p);
6721 lock_sock(sk);
6722
6723 ready:
6724 finish_wait(sk_sleep(sk), &wait);
6725 return 0;
6726
6727 interrupted:
6728 error = sock_intr_errno(*timeo_p);
6729
6730 out:
6731 finish_wait(sk_sleep(sk), &wait);
6732 *err = error;
6733 return error;
6734 }
6735
6736 /* Receive a datagram.
6737 * Note: This is pretty much the same routine as in core/datagram.c
6738 * with a few changes to make lksctp work.
6739 */
6740 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6741 int noblock, int *err)
6742 {
6743 int error;
6744 struct sk_buff *skb;
6745 long timeo;
6746
6747 timeo = sock_rcvtimeo(sk, noblock);
6748
6749 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6750 MAX_SCHEDULE_TIMEOUT);
6751
6752 do {
6753 /* Again only user level code calls this function,
6754 * so nothing interrupt level
6755 * will suddenly eat the receive_queue.
6756 *
6757 * Look at current nfs client by the way...
6758 * However, this function was correct in any case. 8)
6759 */
6760 if (flags & MSG_PEEK) {
6761 spin_lock_bh(&sk->sk_receive_queue.lock);
6762 skb = skb_peek(&sk->sk_receive_queue);
6763 if (skb)
6764 atomic_inc(&skb->users);
6765 spin_unlock_bh(&sk->sk_receive_queue.lock);
6766 } else {
6767 skb = skb_dequeue(&sk->sk_receive_queue);
6768 }
6769
6770 if (skb)
6771 return skb;
6772
6773 /* Caller is allowed not to check sk->sk_err before calling. */
6774 error = sock_error(sk);
6775 if (error)
6776 goto no_packet;
6777
6778 if (sk->sk_shutdown & RCV_SHUTDOWN)
6779 break;
6780
6781 if (sk_can_busy_loop(sk) &&
6782 sk_busy_loop(sk, noblock))
6783 continue;
6784
6785 /* User doesn't want to wait. */
6786 error = -EAGAIN;
6787 if (!timeo)
6788 goto no_packet;
6789 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6790
6791 return NULL;
6792
6793 no_packet:
6794 *err = error;
6795 return NULL;
6796 }
6797
6798 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6799 static void __sctp_write_space(struct sctp_association *asoc)
6800 {
6801 struct sock *sk = asoc->base.sk;
6802
6803 if (sctp_wspace(asoc) <= 0)
6804 return;
6805
6806 if (waitqueue_active(&asoc->wait))
6807 wake_up_interruptible(&asoc->wait);
6808
6809 if (sctp_writeable(sk)) {
6810 struct socket_wq *wq;
6811
6812 rcu_read_lock();
6813 wq = rcu_dereference(sk->sk_wq);
6814 if (wq) {
6815 if (waitqueue_active(&wq->wait))
6816 wake_up_interruptible(&wq->wait);
6817
6818 /* Note that we try to include the Async I/O support
6819 * here by modeling from the current TCP/UDP code.
6820 * We have not tested with it yet.
6821 */
6822 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6823 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
6824 }
6825 rcu_read_unlock();
6826 }
6827 }
6828
6829 static void sctp_wake_up_waiters(struct sock *sk,
6830 struct sctp_association *asoc)
6831 {
6832 struct sctp_association *tmp = asoc;
6833
6834 /* We do accounting for the sndbuf space per association,
6835 * so we only need to wake our own association.
6836 */
6837 if (asoc->ep->sndbuf_policy)
6838 return __sctp_write_space(asoc);
6839
6840 /* If association goes down and is just flushing its
6841 * outq, then just normally notify others.
6842 */
6843 if (asoc->base.dead)
6844 return sctp_write_space(sk);
6845
6846 /* Accounting for the sndbuf space is per socket, so we
6847 * need to wake up others, try to be fair and in case of
6848 * other associations, let them have a go first instead
6849 * of just doing a sctp_write_space() call.
6850 *
6851 * Note that we reach sctp_wake_up_waiters() only when
6852 * associations free up queued chunks, thus we are under
6853 * lock and the list of associations on a socket is
6854 * guaranteed not to change.
6855 */
6856 for (tmp = list_next_entry(tmp, asocs); 1;
6857 tmp = list_next_entry(tmp, asocs)) {
6858 /* Manually skip the head element. */
6859 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6860 continue;
6861 /* Wake up association. */
6862 __sctp_write_space(tmp);
6863 /* We've reached the end. */
6864 if (tmp == asoc)
6865 break;
6866 }
6867 }
6868
6869 /* Do accounting for the sndbuf space.
6870 * Decrement the used sndbuf space of the corresponding association by the
6871 * data size which was just transmitted(freed).
6872 */
6873 static void sctp_wfree(struct sk_buff *skb)
6874 {
6875 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6876 struct sctp_association *asoc = chunk->asoc;
6877 struct sock *sk = asoc->base.sk;
6878
6879 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6880 sizeof(struct sk_buff) +
6881 sizeof(struct sctp_chunk);
6882
6883 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6884
6885 /*
6886 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6887 */
6888 sk->sk_wmem_queued -= skb->truesize;
6889 sk_mem_uncharge(sk, skb->truesize);
6890
6891 sock_wfree(skb);
6892 sctp_wake_up_waiters(sk, asoc);
6893
6894 sctp_association_put(asoc);
6895 }
6896
6897 /* Do accounting for the receive space on the socket.
6898 * Accounting for the association is done in ulpevent.c
6899 * We set this as a destructor for the cloned data skbs so that
6900 * accounting is done at the correct time.
6901 */
6902 void sctp_sock_rfree(struct sk_buff *skb)
6903 {
6904 struct sock *sk = skb->sk;
6905 struct sctp_ulpevent *event = sctp_skb2event(skb);
6906
6907 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6908
6909 /*
6910 * Mimic the behavior of sock_rfree
6911 */
6912 sk_mem_uncharge(sk, event->rmem_len);
6913 }
6914
6915
6916 /* Helper function to wait for space in the sndbuf. */
6917 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6918 size_t msg_len)
6919 {
6920 struct sock *sk = asoc->base.sk;
6921 int err = 0;
6922 long current_timeo = *timeo_p;
6923 DEFINE_WAIT(wait);
6924
6925 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6926 *timeo_p, msg_len);
6927
6928 /* Increment the association's refcnt. */
6929 sctp_association_hold(asoc);
6930
6931 /* Wait on the association specific sndbuf space. */
6932 for (;;) {
6933 prepare_to_wait_exclusive(&asoc->wait, &wait,
6934 TASK_INTERRUPTIBLE);
6935 if (!*timeo_p)
6936 goto do_nonblock;
6937 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6938 asoc->base.dead)
6939 goto do_error;
6940 if (signal_pending(current))
6941 goto do_interrupted;
6942 if (msg_len <= sctp_wspace(asoc))
6943 break;
6944
6945 /* Let another process have a go. Since we are going
6946 * to sleep anyway.
6947 */
6948 release_sock(sk);
6949 current_timeo = schedule_timeout(current_timeo);
6950 BUG_ON(sk != asoc->base.sk);
6951 lock_sock(sk);
6952
6953 *timeo_p = current_timeo;
6954 }
6955
6956 out:
6957 finish_wait(&asoc->wait, &wait);
6958
6959 /* Release the association's refcnt. */
6960 sctp_association_put(asoc);
6961
6962 return err;
6963
6964 do_error:
6965 err = -EPIPE;
6966 goto out;
6967
6968 do_interrupted:
6969 err = sock_intr_errno(*timeo_p);
6970 goto out;
6971
6972 do_nonblock:
6973 err = -EAGAIN;
6974 goto out;
6975 }
6976
6977 void sctp_data_ready(struct sock *sk)
6978 {
6979 struct socket_wq *wq;
6980
6981 rcu_read_lock();
6982 wq = rcu_dereference(sk->sk_wq);
6983 if (wq_has_sleeper(wq))
6984 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6985 POLLRDNORM | POLLRDBAND);
6986 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6987 rcu_read_unlock();
6988 }
6989
6990 /* If socket sndbuf has changed, wake up all per association waiters. */
6991 void sctp_write_space(struct sock *sk)
6992 {
6993 struct sctp_association *asoc;
6994
6995 /* Wake up the tasks in each wait queue. */
6996 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6997 __sctp_write_space(asoc);
6998 }
6999 }
7000
7001 /* Is there any sndbuf space available on the socket?
7002 *
7003 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7004 * associations on the same socket. For a UDP-style socket with
7005 * multiple associations, it is possible for it to be "unwriteable"
7006 * prematurely. I assume that this is acceptable because
7007 * a premature "unwriteable" is better than an accidental "writeable" which
7008 * would cause an unwanted block under certain circumstances. For the 1-1
7009 * UDP-style sockets or TCP-style sockets, this code should work.
7010 * - Daisy
7011 */
7012 static int sctp_writeable(struct sock *sk)
7013 {
7014 int amt = 0;
7015
7016 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7017 if (amt < 0)
7018 amt = 0;
7019 return amt;
7020 }
7021
7022 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7023 * returns immediately with EINPROGRESS.
7024 */
7025 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7026 {
7027 struct sock *sk = asoc->base.sk;
7028 int err = 0;
7029 long current_timeo = *timeo_p;
7030 DEFINE_WAIT(wait);
7031
7032 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7033
7034 /* Increment the association's refcnt. */
7035 sctp_association_hold(asoc);
7036
7037 for (;;) {
7038 prepare_to_wait_exclusive(&asoc->wait, &wait,
7039 TASK_INTERRUPTIBLE);
7040 if (!*timeo_p)
7041 goto do_nonblock;
7042 if (sk->sk_shutdown & RCV_SHUTDOWN)
7043 break;
7044 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7045 asoc->base.dead)
7046 goto do_error;
7047 if (signal_pending(current))
7048 goto do_interrupted;
7049
7050 if (sctp_state(asoc, ESTABLISHED))
7051 break;
7052
7053 /* Let another process have a go. Since we are going
7054 * to sleep anyway.
7055 */
7056 release_sock(sk);
7057 current_timeo = schedule_timeout(current_timeo);
7058 lock_sock(sk);
7059
7060 *timeo_p = current_timeo;
7061 }
7062
7063 out:
7064 finish_wait(&asoc->wait, &wait);
7065
7066 /* Release the association's refcnt. */
7067 sctp_association_put(asoc);
7068
7069 return err;
7070
7071 do_error:
7072 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7073 err = -ETIMEDOUT;
7074 else
7075 err = -ECONNREFUSED;
7076 goto out;
7077
7078 do_interrupted:
7079 err = sock_intr_errno(*timeo_p);
7080 goto out;
7081
7082 do_nonblock:
7083 err = -EINPROGRESS;
7084 goto out;
7085 }
7086
7087 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7088 {
7089 struct sctp_endpoint *ep;
7090 int err = 0;
7091 DEFINE_WAIT(wait);
7092
7093 ep = sctp_sk(sk)->ep;
7094
7095
7096 for (;;) {
7097 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7098 TASK_INTERRUPTIBLE);
7099
7100 if (list_empty(&ep->asocs)) {
7101 release_sock(sk);
7102 timeo = schedule_timeout(timeo);
7103 lock_sock(sk);
7104 }
7105
7106 err = -EINVAL;
7107 if (!sctp_sstate(sk, LISTENING))
7108 break;
7109
7110 err = 0;
7111 if (!list_empty(&ep->asocs))
7112 break;
7113
7114 err = sock_intr_errno(timeo);
7115 if (signal_pending(current))
7116 break;
7117
7118 err = -EAGAIN;
7119 if (!timeo)
7120 break;
7121 }
7122
7123 finish_wait(sk_sleep(sk), &wait);
7124
7125 return err;
7126 }
7127
7128 static void sctp_wait_for_close(struct sock *sk, long timeout)
7129 {
7130 DEFINE_WAIT(wait);
7131
7132 do {
7133 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7134 if (list_empty(&sctp_sk(sk)->ep->asocs))
7135 break;
7136 release_sock(sk);
7137 timeout = schedule_timeout(timeout);
7138 lock_sock(sk);
7139 } while (!signal_pending(current) && timeout);
7140
7141 finish_wait(sk_sleep(sk), &wait);
7142 }
7143
7144 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7145 {
7146 struct sk_buff *frag;
7147
7148 if (!skb->data_len)
7149 goto done;
7150
7151 /* Don't forget the fragments. */
7152 skb_walk_frags(skb, frag)
7153 sctp_skb_set_owner_r_frag(frag, sk);
7154
7155 done:
7156 sctp_skb_set_owner_r(skb, sk);
7157 }
7158
7159 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7160 struct sctp_association *asoc)
7161 {
7162 struct inet_sock *inet = inet_sk(sk);
7163 struct inet_sock *newinet;
7164
7165 newsk->sk_type = sk->sk_type;
7166 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7167 newsk->sk_flags = sk->sk_flags;
7168 newsk->sk_tsflags = sk->sk_tsflags;
7169 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7170 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7171 newsk->sk_reuse = sk->sk_reuse;
7172
7173 newsk->sk_shutdown = sk->sk_shutdown;
7174 newsk->sk_destruct = sctp_destruct_sock;
7175 newsk->sk_family = sk->sk_family;
7176 newsk->sk_protocol = IPPROTO_SCTP;
7177 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7178 newsk->sk_sndbuf = sk->sk_sndbuf;
7179 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7180 newsk->sk_lingertime = sk->sk_lingertime;
7181 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7182 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7183
7184 newinet = inet_sk(newsk);
7185
7186 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7187 * getsockname() and getpeername()
7188 */
7189 newinet->inet_sport = inet->inet_sport;
7190 newinet->inet_saddr = inet->inet_saddr;
7191 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7192 newinet->inet_dport = htons(asoc->peer.port);
7193 newinet->pmtudisc = inet->pmtudisc;
7194 newinet->inet_id = asoc->next_tsn ^ jiffies;
7195
7196 newinet->uc_ttl = inet->uc_ttl;
7197 newinet->mc_loop = 1;
7198 newinet->mc_ttl = 1;
7199 newinet->mc_index = 0;
7200 newinet->mc_list = NULL;
7201
7202 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7203 net_enable_timestamp();
7204
7205 security_sk_clone(sk, newsk);
7206 }
7207
7208 static inline void sctp_copy_descendant(struct sock *sk_to,
7209 const struct sock *sk_from)
7210 {
7211 int ancestor_size = sizeof(struct inet_sock) +
7212 sizeof(struct sctp_sock) -
7213 offsetof(struct sctp_sock, auto_asconf_list);
7214
7215 if (sk_from->sk_family == PF_INET6)
7216 ancestor_size += sizeof(struct ipv6_pinfo);
7217
7218 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7219 }
7220
7221 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7222 * and its messages to the newsk.
7223 */
7224 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7225 struct sctp_association *assoc,
7226 sctp_socket_type_t type)
7227 {
7228 struct sctp_sock *oldsp = sctp_sk(oldsk);
7229 struct sctp_sock *newsp = sctp_sk(newsk);
7230 struct sctp_bind_bucket *pp; /* hash list port iterator */
7231 struct sctp_endpoint *newep = newsp->ep;
7232 struct sk_buff *skb, *tmp;
7233 struct sctp_ulpevent *event;
7234 struct sctp_bind_hashbucket *head;
7235
7236 /* Migrate socket buffer sizes and all the socket level options to the
7237 * new socket.
7238 */
7239 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7240 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7241 /* Brute force copy old sctp opt. */
7242 sctp_copy_descendant(newsk, oldsk);
7243
7244 /* Restore the ep value that was overwritten with the above structure
7245 * copy.
7246 */
7247 newsp->ep = newep;
7248 newsp->hmac = NULL;
7249
7250 /* Hook this new socket in to the bind_hash list. */
7251 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7252 inet_sk(oldsk)->inet_num)];
7253 local_bh_disable();
7254 spin_lock(&head->lock);
7255 pp = sctp_sk(oldsk)->bind_hash;
7256 sk_add_bind_node(newsk, &pp->owner);
7257 sctp_sk(newsk)->bind_hash = pp;
7258 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7259 spin_unlock(&head->lock);
7260 local_bh_enable();
7261
7262 /* Copy the bind_addr list from the original endpoint to the new
7263 * endpoint so that we can handle restarts properly
7264 */
7265 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7266 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7267
7268 /* Move any messages in the old socket's receive queue that are for the
7269 * peeled off association to the new socket's receive queue.
7270 */
7271 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7272 event = sctp_skb2event(skb);
7273 if (event->asoc == assoc) {
7274 __skb_unlink(skb, &oldsk->sk_receive_queue);
7275 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7276 sctp_skb_set_owner_r_frag(skb, newsk);
7277 }
7278 }
7279
7280 /* Clean up any messages pending delivery due to partial
7281 * delivery. Three cases:
7282 * 1) No partial deliver; no work.
7283 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7284 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7285 */
7286 skb_queue_head_init(&newsp->pd_lobby);
7287 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7288
7289 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7290 struct sk_buff_head *queue;
7291
7292 /* Decide which queue to move pd_lobby skbs to. */
7293 if (assoc->ulpq.pd_mode) {
7294 queue = &newsp->pd_lobby;
7295 } else
7296 queue = &newsk->sk_receive_queue;
7297
7298 /* Walk through the pd_lobby, looking for skbs that
7299 * need moved to the new socket.
7300 */
7301 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7302 event = sctp_skb2event(skb);
7303 if (event->asoc == assoc) {
7304 __skb_unlink(skb, &oldsp->pd_lobby);
7305 __skb_queue_tail(queue, skb);
7306 sctp_skb_set_owner_r_frag(skb, newsk);
7307 }
7308 }
7309
7310 /* Clear up any skbs waiting for the partial
7311 * delivery to finish.
7312 */
7313 if (assoc->ulpq.pd_mode)
7314 sctp_clear_pd(oldsk, NULL);
7315
7316 }
7317
7318 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7319 sctp_skb_set_owner_r_frag(skb, newsk);
7320
7321 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7322 sctp_skb_set_owner_r_frag(skb, newsk);
7323
7324 /* Set the type of socket to indicate that it is peeled off from the
7325 * original UDP-style socket or created with the accept() call on a
7326 * TCP-style socket..
7327 */
7328 newsp->type = type;
7329
7330 /* Mark the new socket "in-use" by the user so that any packets
7331 * that may arrive on the association after we've moved it are
7332 * queued to the backlog. This prevents a potential race between
7333 * backlog processing on the old socket and new-packet processing
7334 * on the new socket.
7335 *
7336 * The caller has just allocated newsk so we can guarantee that other
7337 * paths won't try to lock it and then oldsk.
7338 */
7339 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7340 sctp_assoc_migrate(assoc, newsk);
7341
7342 /* If the association on the newsk is already closed before accept()
7343 * is called, set RCV_SHUTDOWN flag.
7344 */
7345 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7346 newsk->sk_shutdown |= RCV_SHUTDOWN;
7347
7348 newsk->sk_state = SCTP_SS_ESTABLISHED;
7349 release_sock(newsk);
7350 }
7351
7352
7353 /* This proto struct describes the ULP interface for SCTP. */
7354 struct proto sctp_prot = {
7355 .name = "SCTP",
7356 .owner = THIS_MODULE,
7357 .close = sctp_close,
7358 .connect = sctp_connect,
7359 .disconnect = sctp_disconnect,
7360 .accept = sctp_accept,
7361 .ioctl = sctp_ioctl,
7362 .init = sctp_init_sock,
7363 .destroy = sctp_destroy_sock,
7364 .shutdown = sctp_shutdown,
7365 .setsockopt = sctp_setsockopt,
7366 .getsockopt = sctp_getsockopt,
7367 .sendmsg = sctp_sendmsg,
7368 .recvmsg = sctp_recvmsg,
7369 .bind = sctp_bind,
7370 .backlog_rcv = sctp_backlog_rcv,
7371 .hash = sctp_hash,
7372 .unhash = sctp_unhash,
7373 .get_port = sctp_get_port,
7374 .obj_size = sizeof(struct sctp_sock),
7375 .sysctl_mem = sysctl_sctp_mem,
7376 .sysctl_rmem = sysctl_sctp_rmem,
7377 .sysctl_wmem = sysctl_sctp_wmem,
7378 .memory_pressure = &sctp_memory_pressure,
7379 .enter_memory_pressure = sctp_enter_memory_pressure,
7380 .memory_allocated = &sctp_memory_allocated,
7381 .sockets_allocated = &sctp_sockets_allocated,
7382 };
7383
7384 #if IS_ENABLED(CONFIG_IPV6)
7385
7386 #include <net/transp_v6.h>
7387 static void sctp_v6_destroy_sock(struct sock *sk)
7388 {
7389 sctp_destroy_sock(sk);
7390 inet6_destroy_sock(sk);
7391 }
7392
7393 struct proto sctpv6_prot = {
7394 .name = "SCTPv6",
7395 .owner = THIS_MODULE,
7396 .close = sctp_close,
7397 .connect = sctp_connect,
7398 .disconnect = sctp_disconnect,
7399 .accept = sctp_accept,
7400 .ioctl = sctp_ioctl,
7401 .init = sctp_init_sock,
7402 .destroy = sctp_v6_destroy_sock,
7403 .shutdown = sctp_shutdown,
7404 .setsockopt = sctp_setsockopt,
7405 .getsockopt = sctp_getsockopt,
7406 .sendmsg = sctp_sendmsg,
7407 .recvmsg = sctp_recvmsg,
7408 .bind = sctp_bind,
7409 .backlog_rcv = sctp_backlog_rcv,
7410 .hash = sctp_hash,
7411 .unhash = sctp_unhash,
7412 .get_port = sctp_get_port,
7413 .obj_size = sizeof(struct sctp6_sock),
7414 .sysctl_mem = sysctl_sctp_mem,
7415 .sysctl_rmem = sysctl_sctp_rmem,
7416 .sysctl_wmem = sysctl_sctp_wmem,
7417 .memory_pressure = &sctp_memory_pressure,
7418 .enter_memory_pressure = sctp_enter_memory_pressure,
7419 .memory_allocated = &sctp_memory_allocated,
7420 .sockets_allocated = &sctp_sockets_allocated,
7421 };
7422 #endif /* IS_ENABLED(CONFIG_IPV6) */