]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sctp/socket.c
ffdad8e842ac2cddecf42c10d29d408af182623e
[mirror_ubuntu-zesty-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel reference Implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * The SCTP reference implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * The SCTP reference implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern kmem_cache_t *sctp_bucket_cachep;
111
112 /* Get the sndbuf space available at the time on the association. */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 struct sock *sk = asoc->base.sk;
116 int amt = 0;
117
118 if (asoc->ep->sndbuf_policy) {
119 /* make sure that no association uses more than sk_sndbuf */
120 amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 } else {
122 /* do socket level accounting */
123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 }
125
126 if (amt < 0)
127 amt = 0;
128
129 return amt;
130 }
131
132 /* Increment the used sndbuf space count of the corresponding association by
133 * the size of the outgoing data chunk.
134 * Also, set the skb destructor for sndbuf accounting later.
135 *
136 * Since it is always 1-1 between chunk and skb, and also a new skb is always
137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138 * destructor in the data chunk skb for the purpose of the sndbuf space
139 * tracking.
140 */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 struct sctp_association *asoc = chunk->asoc;
144 struct sock *sk = asoc->base.sk;
145
146 /* The sndbuf space is tracked per association. */
147 sctp_association_hold(asoc);
148
149 skb_set_owner_w(chunk->skb, sk);
150
151 chunk->skb->destructor = sctp_wfree;
152 /* Save the chunk pointer in skb for sctp_wfree to use later. */
153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154
155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 sizeof(struct sk_buff) +
157 sizeof(struct sctp_chunk);
158
159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 int len)
165 {
166 struct sctp_af *af;
167
168 /* Verify basic sockaddr. */
169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 if (!af)
171 return -EINVAL;
172
173 /* Is this a valid SCTP address? */
174 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 return -EINVAL;
176
177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 return -EINVAL;
179
180 return 0;
181 }
182
183 /* Look up the association by its id. If this is not a UDP-style
184 * socket, the ID field is always ignored.
185 */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 struct sctp_association *asoc = NULL;
189
190 /* If this is not a UDP-style socket, assoc id should be ignored. */
191 if (!sctp_style(sk, UDP)) {
192 /* Return NULL if the socket state is not ESTABLISHED. It
193 * could be a TCP-style listening socket or a socket which
194 * hasn't yet called connect() to establish an association.
195 */
196 if (!sctp_sstate(sk, ESTABLISHED))
197 return NULL;
198
199 /* Get the first and the only association from the list. */
200 if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 struct sctp_association, asocs);
203 return asoc;
204 }
205
206 /* Otherwise this is a UDP-style socket. */
207 if (!id || (id == (sctp_assoc_t)-1))
208 return NULL;
209
210 spin_lock_bh(&sctp_assocs_id_lock);
211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 spin_unlock_bh(&sctp_assocs_id_lock);
213
214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 return NULL;
216
217 return asoc;
218 }
219
220 /* Look up the transport from an address and an assoc id. If both address and
221 * id are specified, the associations matching the address and the id should be
222 * the same.
223 */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 struct sockaddr_storage *addr,
226 sctp_assoc_t id)
227 {
228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 struct sctp_transport *transport;
230 union sctp_addr *laddr = (union sctp_addr *)addr;
231 union sctp_addr tmp;
232
233 flip_to_h(&tmp, laddr);
234 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
235 &tmp,
236 &transport);
237
238 if (!addr_asoc)
239 return NULL;
240
241 id_asoc = sctp_id2assoc(sk, id);
242 if (id_asoc && (id_asoc != addr_asoc))
243 return NULL;
244
245 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
246 (union sctp_addr *)addr);
247
248 return transport;
249 }
250
251 /* API 3.1.2 bind() - UDP Style Syntax
252 * The syntax of bind() is,
253 *
254 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
255 *
256 * sd - the socket descriptor returned by socket().
257 * addr - the address structure (struct sockaddr_in or struct
258 * sockaddr_in6 [RFC 2553]),
259 * addr_len - the size of the address structure.
260 */
261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
262 {
263 int retval = 0;
264
265 sctp_lock_sock(sk);
266
267 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
268 sk, addr, addr_len);
269
270 /* Disallow binding twice. */
271 if (!sctp_sk(sk)->ep->base.bind_addr.port)
272 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
273 addr_len);
274 else
275 retval = -EINVAL;
276
277 sctp_release_sock(sk);
278
279 return retval;
280 }
281
282 static long sctp_get_port_local(struct sock *, union sctp_addr *);
283
284 /* Verify this is a valid sockaddr. */
285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
286 union sctp_addr *addr, int len)
287 {
288 struct sctp_af *af;
289
290 /* Check minimum size. */
291 if (len < sizeof (struct sockaddr))
292 return NULL;
293
294 /* Does this PF support this AF? */
295 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
296 return NULL;
297
298 /* If we get this far, af is valid. */
299 af = sctp_get_af_specific(addr->sa.sa_family);
300
301 if (len < af->sockaddr_len)
302 return NULL;
303
304 return af;
305 }
306
307 /* Bind a local address either to an endpoint or to an association. */
308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
309 {
310 struct sctp_sock *sp = sctp_sk(sk);
311 struct sctp_endpoint *ep = sp->ep;
312 struct sctp_bind_addr *bp = &ep->base.bind_addr;
313 struct sctp_af *af;
314 unsigned short snum;
315 int ret = 0;
316 union sctp_addr tmp;
317
318 /* Common sockaddr verification. */
319 af = sctp_sockaddr_af(sp, addr, len);
320 if (!af) {
321 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
322 sk, addr, len);
323 return -EINVAL;
324 }
325
326 snum = ntohs(addr->v4.sin_port);
327
328 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
329 ", port: %d, new port: %d, len: %d)\n",
330 sk,
331 addr,
332 bp->port, snum,
333 len);
334
335 /* PF specific bind() address verification. */
336 if (!sp->pf->bind_verify(sp, addr))
337 return -EADDRNOTAVAIL;
338
339 /* We must either be unbound, or bind to the same port. */
340 if (bp->port && (snum != bp->port)) {
341 SCTP_DEBUG_PRINTK("sctp_do_bind:"
342 " New port %d does not match existing port "
343 "%d.\n", snum, bp->port);
344 return -EINVAL;
345 }
346
347 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
348 return -EACCES;
349
350 /* Make sure we are allowed to bind here.
351 * The function sctp_get_port_local() does duplicate address
352 * detection.
353 */
354 if ((ret = sctp_get_port_local(sk, addr))) {
355 if (ret == (long) sk) {
356 /* This endpoint has a conflicting address. */
357 return -EINVAL;
358 } else {
359 return -EADDRINUSE;
360 }
361 }
362
363 /* Refresh ephemeral port. */
364 if (!bp->port)
365 bp->port = inet_sk(sk)->num;
366
367 /* Add the address to the bind address list. */
368 sctp_local_bh_disable();
369 sctp_write_lock(&ep->base.addr_lock);
370
371 /* Use GFP_ATOMIC since BHs are disabled. */
372 flip_to_h(&tmp, addr);
373 ret = sctp_add_bind_addr(bp, &tmp, 1, GFP_ATOMIC);
374 sctp_write_unlock(&ep->base.addr_lock);
375 sctp_local_bh_enable();
376
377 /* Copy back into socket for getsockname() use. */
378 if (!ret) {
379 inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 af->to_sk_saddr(addr, sk);
381 }
382
383 return ret;
384 }
385
386 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
387 *
388 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389 * at any one time. If a sender, after sending an ASCONF chunk, decides
390 * it needs to transfer another ASCONF Chunk, it MUST wait until the
391 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392 * subsequent ASCONF. Note this restriction binds each side, so at any
393 * time two ASCONF may be in-transit on any given association (one sent
394 * from each endpoint).
395 */
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 struct sctp_chunk *chunk)
398 {
399 int retval = 0;
400
401 /* If there is an outstanding ASCONF chunk, queue it for later
402 * transmission.
403 */
404 if (asoc->addip_last_asconf) {
405 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
406 goto out;
407 }
408
409 /* Hold the chunk until an ASCONF_ACK is received. */
410 sctp_chunk_hold(chunk);
411 retval = sctp_primitive_ASCONF(asoc, chunk);
412 if (retval)
413 sctp_chunk_free(chunk);
414 else
415 asoc->addip_last_asconf = chunk;
416
417 out:
418 return retval;
419 }
420
421 /* Add a list of addresses as bind addresses to local endpoint or
422 * association.
423 *
424 * Basically run through each address specified in the addrs/addrcnt
425 * array/length pair, determine if it is IPv6 or IPv4 and call
426 * sctp_do_bind() on it.
427 *
428 * If any of them fails, then the operation will be reversed and the
429 * ones that were added will be removed.
430 *
431 * Only sctp_setsockopt_bindx() is supposed to call this function.
432 */
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
434 {
435 int cnt;
436 int retval = 0;
437 void *addr_buf;
438 struct sockaddr *sa_addr;
439 struct sctp_af *af;
440
441 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 sk, addrs, addrcnt);
443
444 addr_buf = addrs;
445 for (cnt = 0; cnt < addrcnt; cnt++) {
446 /* The list may contain either IPv4 or IPv6 address;
447 * determine the address length for walking thru the list.
448 */
449 sa_addr = (struct sockaddr *)addr_buf;
450 af = sctp_get_af_specific(sa_addr->sa_family);
451 if (!af) {
452 retval = -EINVAL;
453 goto err_bindx_add;
454 }
455
456 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 af->sockaddr_len);
458
459 addr_buf += af->sockaddr_len;
460
461 err_bindx_add:
462 if (retval < 0) {
463 /* Failed. Cleanup the ones that have been added */
464 if (cnt > 0)
465 sctp_bindx_rem(sk, addrs, cnt);
466 return retval;
467 }
468 }
469
470 return retval;
471 }
472
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474 * associations that are part of the endpoint indicating that a list of local
475 * addresses are added to the endpoint.
476 *
477 * If any of the addresses is already in the bind address list of the
478 * association, we do not send the chunk for that association. But it will not
479 * affect other associations.
480 *
481 * Only sctp_setsockopt_bindx() is supposed to call this function.
482 */
483 static int sctp_send_asconf_add_ip(struct sock *sk,
484 struct sockaddr *addrs,
485 int addrcnt)
486 {
487 struct sctp_sock *sp;
488 struct sctp_endpoint *ep;
489 struct sctp_association *asoc;
490 struct sctp_bind_addr *bp;
491 struct sctp_chunk *chunk;
492 struct sctp_sockaddr_entry *laddr;
493 union sctp_addr *addr;
494 union sctp_addr saveaddr;
495 void *addr_buf;
496 struct sctp_af *af;
497 struct list_head *pos;
498 struct list_head *p;
499 int i;
500 int retval = 0;
501
502 if (!sctp_addip_enable)
503 return retval;
504
505 sp = sctp_sk(sk);
506 ep = sp->ep;
507
508 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
509 __FUNCTION__, sk, addrs, addrcnt);
510
511 list_for_each(pos, &ep->asocs) {
512 asoc = list_entry(pos, struct sctp_association, asocs);
513
514 if (!asoc->peer.asconf_capable)
515 continue;
516
517 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
518 continue;
519
520 if (!sctp_state(asoc, ESTABLISHED))
521 continue;
522
523 /* Check if any address in the packed array of addresses is
524 * in the bind address list of the association. If so,
525 * do not send the asconf chunk to its peer, but continue with
526 * other associations.
527 */
528 addr_buf = addrs;
529 for (i = 0; i < addrcnt; i++) {
530 addr = (union sctp_addr *)addr_buf;
531 af = sctp_get_af_specific(addr->v4.sin_family);
532 if (!af) {
533 retval = -EINVAL;
534 goto out;
535 }
536
537 if (sctp_assoc_lookup_laddr(asoc, addr))
538 break;
539
540 addr_buf += af->sockaddr_len;
541 }
542 if (i < addrcnt)
543 continue;
544
545 /* Use the first address in bind addr list of association as
546 * Address Parameter of ASCONF CHUNK.
547 */
548 sctp_read_lock(&asoc->base.addr_lock);
549 bp = &asoc->base.bind_addr;
550 p = bp->address_list.next;
551 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
552 sctp_read_unlock(&asoc->base.addr_lock);
553
554 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a_h, addrs,
555 addrcnt, SCTP_PARAM_ADD_IP);
556 if (!chunk) {
557 retval = -ENOMEM;
558 goto out;
559 }
560
561 retval = sctp_send_asconf(asoc, chunk);
562 if (retval)
563 goto out;
564
565 /* Add the new addresses to the bind address list with
566 * use_as_src set to 0.
567 */
568 sctp_local_bh_disable();
569 sctp_write_lock(&asoc->base.addr_lock);
570 addr_buf = addrs;
571 for (i = 0; i < addrcnt; i++) {
572 addr = (union sctp_addr *)addr_buf;
573 af = sctp_get_af_specific(addr->v4.sin_family);
574 memcpy(&saveaddr, addr, af->sockaddr_len);
575 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
576 retval = sctp_add_bind_addr(bp, &saveaddr, 0,
577 GFP_ATOMIC);
578 addr_buf += af->sockaddr_len;
579 }
580 sctp_write_unlock(&asoc->base.addr_lock);
581 sctp_local_bh_enable();
582 }
583
584 out:
585 return retval;
586 }
587
588 /* Remove a list of addresses from bind addresses list. Do not remove the
589 * last address.
590 *
591 * Basically run through each address specified in the addrs/addrcnt
592 * array/length pair, determine if it is IPv6 or IPv4 and call
593 * sctp_del_bind() on it.
594 *
595 * If any of them fails, then the operation will be reversed and the
596 * ones that were removed will be added back.
597 *
598 * At least one address has to be left; if only one address is
599 * available, the operation will return -EBUSY.
600 *
601 * Only sctp_setsockopt_bindx() is supposed to call this function.
602 */
603 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
604 {
605 struct sctp_sock *sp = sctp_sk(sk);
606 struct sctp_endpoint *ep = sp->ep;
607 int cnt;
608 struct sctp_bind_addr *bp = &ep->base.bind_addr;
609 int retval = 0;
610 union sctp_addr saveaddr;
611 void *addr_buf;
612 struct sockaddr *sa_addr;
613 struct sctp_af *af;
614
615 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
616 sk, addrs, addrcnt);
617
618 addr_buf = addrs;
619 for (cnt = 0; cnt < addrcnt; cnt++) {
620 /* If the bind address list is empty or if there is only one
621 * bind address, there is nothing more to be removed (we need
622 * at least one address here).
623 */
624 if (list_empty(&bp->address_list) ||
625 (sctp_list_single_entry(&bp->address_list))) {
626 retval = -EBUSY;
627 goto err_bindx_rem;
628 }
629
630 /* The list may contain either IPv4 or IPv6 address;
631 * determine the address length to copy the address to
632 * saveaddr.
633 */
634 sa_addr = (struct sockaddr *)addr_buf;
635 af = sctp_get_af_specific(sa_addr->sa_family);
636 if (!af) {
637 retval = -EINVAL;
638 goto err_bindx_rem;
639 }
640 memcpy(&saveaddr, sa_addr, af->sockaddr_len);
641 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
642 if (saveaddr.v4.sin_port != bp->port) {
643 retval = -EINVAL;
644 goto err_bindx_rem;
645 }
646
647 /* FIXME - There is probably a need to check if sk->sk_saddr and
648 * sk->sk_rcv_addr are currently set to one of the addresses to
649 * be removed. This is something which needs to be looked into
650 * when we are fixing the outstanding issues with multi-homing
651 * socket routing and failover schemes. Refer to comments in
652 * sctp_do_bind(). -daisy
653 */
654 sctp_local_bh_disable();
655 sctp_write_lock(&ep->base.addr_lock);
656
657 retval = sctp_del_bind_addr(bp, &saveaddr);
658
659 sctp_write_unlock(&ep->base.addr_lock);
660 sctp_local_bh_enable();
661
662 addr_buf += af->sockaddr_len;
663 err_bindx_rem:
664 if (retval < 0) {
665 /* Failed. Add the ones that has been removed back */
666 if (cnt > 0)
667 sctp_bindx_add(sk, addrs, cnt);
668 return retval;
669 }
670 }
671
672 return retval;
673 }
674
675 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
676 * the associations that are part of the endpoint indicating that a list of
677 * local addresses are removed from the endpoint.
678 *
679 * If any of the addresses is already in the bind address list of the
680 * association, we do not send the chunk for that association. But it will not
681 * affect other associations.
682 *
683 * Only sctp_setsockopt_bindx() is supposed to call this function.
684 */
685 static int sctp_send_asconf_del_ip(struct sock *sk,
686 struct sockaddr *addrs,
687 int addrcnt)
688 {
689 struct sctp_sock *sp;
690 struct sctp_endpoint *ep;
691 struct sctp_association *asoc;
692 struct sctp_transport *transport;
693 struct sctp_bind_addr *bp;
694 struct sctp_chunk *chunk;
695 union sctp_addr *laddr;
696 void *addr_buf;
697 struct sctp_af *af;
698 struct list_head *pos, *pos1;
699 struct sctp_sockaddr_entry *saddr;
700 int i;
701 int retval = 0;
702
703 if (!sctp_addip_enable)
704 return retval;
705
706 sp = sctp_sk(sk);
707 ep = sp->ep;
708
709 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
710 __FUNCTION__, sk, addrs, addrcnt);
711
712 list_for_each(pos, &ep->asocs) {
713 asoc = list_entry(pos, struct sctp_association, asocs);
714
715 if (!asoc->peer.asconf_capable)
716 continue;
717
718 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
719 continue;
720
721 if (!sctp_state(asoc, ESTABLISHED))
722 continue;
723
724 /* Check if any address in the packed array of addresses is
725 * not present in the bind address list of the association.
726 * If so, do not send the asconf chunk to its peer, but
727 * continue with other associations.
728 */
729 addr_buf = addrs;
730 for (i = 0; i < addrcnt; i++) {
731 laddr = (union sctp_addr *)addr_buf;
732 af = sctp_get_af_specific(laddr->v4.sin_family);
733 if (!af) {
734 retval = -EINVAL;
735 goto out;
736 }
737
738 if (!sctp_assoc_lookup_laddr(asoc, laddr))
739 break;
740
741 addr_buf += af->sockaddr_len;
742 }
743 if (i < addrcnt)
744 continue;
745
746 /* Find one address in the association's bind address list
747 * that is not in the packed array of addresses. This is to
748 * make sure that we do not delete all the addresses in the
749 * association.
750 */
751 sctp_read_lock(&asoc->base.addr_lock);
752 bp = &asoc->base.bind_addr;
753 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
754 addrcnt, sp);
755 sctp_read_unlock(&asoc->base.addr_lock);
756 if (!laddr)
757 continue;
758
759 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
760 SCTP_PARAM_DEL_IP);
761 if (!chunk) {
762 retval = -ENOMEM;
763 goto out;
764 }
765
766 /* Reset use_as_src flag for the addresses in the bind address
767 * list that are to be deleted.
768 */
769 sctp_local_bh_disable();
770 sctp_write_lock(&asoc->base.addr_lock);
771 addr_buf = addrs;
772 for (i = 0; i < addrcnt; i++) {
773 laddr = (union sctp_addr *)addr_buf;
774 af = sctp_get_af_specific(laddr->v4.sin_family);
775 list_for_each(pos1, &bp->address_list) {
776 saddr = list_entry(pos1,
777 struct sctp_sockaddr_entry,
778 list);
779 if (sctp_cmp_addr_exact(&saddr->a, laddr))
780 saddr->use_as_src = 0;
781 }
782 addr_buf += af->sockaddr_len;
783 }
784 sctp_write_unlock(&asoc->base.addr_lock);
785 sctp_local_bh_enable();
786
787 /* Update the route and saddr entries for all the transports
788 * as some of the addresses in the bind address list are
789 * about to be deleted and cannot be used as source addresses.
790 */
791 list_for_each(pos1, &asoc->peer.transport_addr_list) {
792 transport = list_entry(pos1, struct sctp_transport,
793 transports);
794 dst_release(transport->dst);
795 sctp_transport_route(transport, NULL,
796 sctp_sk(asoc->base.sk));
797 }
798
799 retval = sctp_send_asconf(asoc, chunk);
800 }
801 out:
802 return retval;
803 }
804
805 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
806 *
807 * API 8.1
808 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
809 * int flags);
810 *
811 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
812 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
813 * or IPv6 addresses.
814 *
815 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
816 * Section 3.1.2 for this usage.
817 *
818 * addrs is a pointer to an array of one or more socket addresses. Each
819 * address is contained in its appropriate structure (i.e. struct
820 * sockaddr_in or struct sockaddr_in6) the family of the address type
821 * must be used to distinguish the address length (note that this
822 * representation is termed a "packed array" of addresses). The caller
823 * specifies the number of addresses in the array with addrcnt.
824 *
825 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
826 * -1, and sets errno to the appropriate error code.
827 *
828 * For SCTP, the port given in each socket address must be the same, or
829 * sctp_bindx() will fail, setting errno to EINVAL.
830 *
831 * The flags parameter is formed from the bitwise OR of zero or more of
832 * the following currently defined flags:
833 *
834 * SCTP_BINDX_ADD_ADDR
835 *
836 * SCTP_BINDX_REM_ADDR
837 *
838 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
839 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
840 * addresses from the association. The two flags are mutually exclusive;
841 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
842 * not remove all addresses from an association; sctp_bindx() will
843 * reject such an attempt with EINVAL.
844 *
845 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
846 * additional addresses with an endpoint after calling bind(). Or use
847 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
848 * socket is associated with so that no new association accepted will be
849 * associated with those addresses. If the endpoint supports dynamic
850 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
851 * endpoint to send the appropriate message to the peer to change the
852 * peers address lists.
853 *
854 * Adding and removing addresses from a connected association is
855 * optional functionality. Implementations that do not support this
856 * functionality should return EOPNOTSUPP.
857 *
858 * Basically do nothing but copying the addresses from user to kernel
859 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
860 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
861 * from userspace.
862 *
863 * We don't use copy_from_user() for optimization: we first do the
864 * sanity checks (buffer size -fast- and access check-healthy
865 * pointer); if all of those succeed, then we can alloc the memory
866 * (expensive operation) needed to copy the data to kernel. Then we do
867 * the copying without checking the user space area
868 * (__copy_from_user()).
869 *
870 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
871 * it.
872 *
873 * sk The sk of the socket
874 * addrs The pointer to the addresses in user land
875 * addrssize Size of the addrs buffer
876 * op Operation to perform (add or remove, see the flags of
877 * sctp_bindx)
878 *
879 * Returns 0 if ok, <0 errno code on error.
880 */
881 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
882 struct sockaddr __user *addrs,
883 int addrs_size, int op)
884 {
885 struct sockaddr *kaddrs;
886 int err;
887 int addrcnt = 0;
888 int walk_size = 0;
889 struct sockaddr *sa_addr;
890 void *addr_buf;
891 struct sctp_af *af;
892
893 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
894 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
895
896 if (unlikely(addrs_size <= 0))
897 return -EINVAL;
898
899 /* Check the user passed a healthy pointer. */
900 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
901 return -EFAULT;
902
903 /* Alloc space for the address array in kernel memory. */
904 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
905 if (unlikely(!kaddrs))
906 return -ENOMEM;
907
908 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
909 kfree(kaddrs);
910 return -EFAULT;
911 }
912
913 /* Walk through the addrs buffer and count the number of addresses. */
914 addr_buf = kaddrs;
915 while (walk_size < addrs_size) {
916 sa_addr = (struct sockaddr *)addr_buf;
917 af = sctp_get_af_specific(sa_addr->sa_family);
918
919 /* If the address family is not supported or if this address
920 * causes the address buffer to overflow return EINVAL.
921 */
922 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
923 kfree(kaddrs);
924 return -EINVAL;
925 }
926 addrcnt++;
927 addr_buf += af->sockaddr_len;
928 walk_size += af->sockaddr_len;
929 }
930
931 /* Do the work. */
932 switch (op) {
933 case SCTP_BINDX_ADD_ADDR:
934 err = sctp_bindx_add(sk, kaddrs, addrcnt);
935 if (err)
936 goto out;
937 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
938 break;
939
940 case SCTP_BINDX_REM_ADDR:
941 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
942 if (err)
943 goto out;
944 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
945 break;
946
947 default:
948 err = -EINVAL;
949 break;
950 };
951
952 out:
953 kfree(kaddrs);
954
955 return err;
956 }
957
958 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
959 *
960 * Common routine for handling connect() and sctp_connectx().
961 * Connect will come in with just a single address.
962 */
963 static int __sctp_connect(struct sock* sk,
964 struct sockaddr *kaddrs,
965 int addrs_size)
966 {
967 struct sctp_sock *sp;
968 struct sctp_endpoint *ep;
969 struct sctp_association *asoc = NULL;
970 struct sctp_association *asoc2;
971 struct sctp_transport *transport;
972 union sctp_addr to;
973 struct sctp_af *af;
974 sctp_scope_t scope;
975 long timeo;
976 int err = 0;
977 int addrcnt = 0;
978 int walk_size = 0;
979 struct sockaddr *sa_addr;
980 void *addr_buf;
981
982 sp = sctp_sk(sk);
983 ep = sp->ep;
984
985 /* connect() cannot be done on a socket that is already in ESTABLISHED
986 * state - UDP-style peeled off socket or a TCP-style socket that
987 * is already connected.
988 * It cannot be done even on a TCP-style listening socket.
989 */
990 if (sctp_sstate(sk, ESTABLISHED) ||
991 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
992 err = -EISCONN;
993 goto out_free;
994 }
995
996 /* Walk through the addrs buffer and count the number of addresses. */
997 addr_buf = kaddrs;
998 while (walk_size < addrs_size) {
999 sa_addr = (struct sockaddr *)addr_buf;
1000 af = sctp_get_af_specific(sa_addr->sa_family);
1001
1002 /* If the address family is not supported or if this address
1003 * causes the address buffer to overflow return EINVAL.
1004 */
1005 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1006 err = -EINVAL;
1007 goto out_free;
1008 }
1009
1010 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
1011 af->sockaddr_len);
1012 if (err)
1013 goto out_free;
1014
1015 memcpy(&to, sa_addr, af->sockaddr_len);
1016 to.v4.sin_port = ntohs(to.v4.sin_port);
1017
1018 /* Check if there already is a matching association on the
1019 * endpoint (other than the one created here).
1020 */
1021 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1022 if (asoc2 && asoc2 != asoc) {
1023 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1024 err = -EISCONN;
1025 else
1026 err = -EALREADY;
1027 goto out_free;
1028 }
1029
1030 /* If we could not find a matching association on the endpoint,
1031 * make sure that there is no peeled-off association matching
1032 * the peer address even on another socket.
1033 */
1034 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1035 err = -EADDRNOTAVAIL;
1036 goto out_free;
1037 }
1038
1039 if (!asoc) {
1040 /* If a bind() or sctp_bindx() is not called prior to
1041 * an sctp_connectx() call, the system picks an
1042 * ephemeral port and will choose an address set
1043 * equivalent to binding with a wildcard address.
1044 */
1045 if (!ep->base.bind_addr.port) {
1046 if (sctp_autobind(sk)) {
1047 err = -EAGAIN;
1048 goto out_free;
1049 }
1050 } else {
1051 /*
1052 * If an unprivileged user inherits a 1-many
1053 * style socket with open associations on a
1054 * privileged port, it MAY be permitted to
1055 * accept new associations, but it SHOULD NOT
1056 * be permitted to open new associations.
1057 */
1058 if (ep->base.bind_addr.port < PROT_SOCK &&
1059 !capable(CAP_NET_BIND_SERVICE)) {
1060 err = -EACCES;
1061 goto out_free;
1062 }
1063 }
1064
1065 scope = sctp_scope(&to);
1066 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1067 if (!asoc) {
1068 err = -ENOMEM;
1069 goto out_free;
1070 }
1071 }
1072
1073 /* Prime the peer's transport structures. */
1074 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1075 SCTP_UNKNOWN);
1076 if (!transport) {
1077 err = -ENOMEM;
1078 goto out_free;
1079 }
1080
1081 addrcnt++;
1082 addr_buf += af->sockaddr_len;
1083 walk_size += af->sockaddr_len;
1084 }
1085
1086 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1087 if (err < 0) {
1088 goto out_free;
1089 }
1090
1091 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1092 if (err < 0) {
1093 goto out_free;
1094 }
1095
1096 /* Initialize sk's dport and daddr for getpeername() */
1097 inet_sk(sk)->dport = htons(asoc->peer.port);
1098 af = sctp_get_af_specific(to.sa.sa_family);
1099 af->to_sk_daddr(&to, sk);
1100 sk->sk_err = 0;
1101
1102 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1103 err = sctp_wait_for_connect(asoc, &timeo);
1104
1105 /* Don't free association on exit. */
1106 asoc = NULL;
1107
1108 out_free:
1109
1110 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1111 " kaddrs: %p err: %d\n",
1112 asoc, kaddrs, err);
1113 if (asoc)
1114 sctp_association_free(asoc);
1115 return err;
1116 }
1117
1118 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1119 *
1120 * API 8.9
1121 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1122 *
1123 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1124 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1125 * or IPv6 addresses.
1126 *
1127 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1128 * Section 3.1.2 for this usage.
1129 *
1130 * addrs is a pointer to an array of one or more socket addresses. Each
1131 * address is contained in its appropriate structure (i.e. struct
1132 * sockaddr_in or struct sockaddr_in6) the family of the address type
1133 * must be used to distengish the address length (note that this
1134 * representation is termed a "packed array" of addresses). The caller
1135 * specifies the number of addresses in the array with addrcnt.
1136 *
1137 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1138 * -1, and sets errno to the appropriate error code.
1139 *
1140 * For SCTP, the port given in each socket address must be the same, or
1141 * sctp_connectx() will fail, setting errno to EINVAL.
1142 *
1143 * An application can use sctp_connectx to initiate an association with
1144 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1145 * allows a caller to specify multiple addresses at which a peer can be
1146 * reached. The way the SCTP stack uses the list of addresses to set up
1147 * the association is implementation dependant. This function only
1148 * specifies that the stack will try to make use of all the addresses in
1149 * the list when needed.
1150 *
1151 * Note that the list of addresses passed in is only used for setting up
1152 * the association. It does not necessarily equal the set of addresses
1153 * the peer uses for the resulting association. If the caller wants to
1154 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1155 * retrieve them after the association has been set up.
1156 *
1157 * Basically do nothing but copying the addresses from user to kernel
1158 * land and invoking either sctp_connectx(). This is used for tunneling
1159 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1160 *
1161 * We don't use copy_from_user() for optimization: we first do the
1162 * sanity checks (buffer size -fast- and access check-healthy
1163 * pointer); if all of those succeed, then we can alloc the memory
1164 * (expensive operation) needed to copy the data to kernel. Then we do
1165 * the copying without checking the user space area
1166 * (__copy_from_user()).
1167 *
1168 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1169 * it.
1170 *
1171 * sk The sk of the socket
1172 * addrs The pointer to the addresses in user land
1173 * addrssize Size of the addrs buffer
1174 *
1175 * Returns 0 if ok, <0 errno code on error.
1176 */
1177 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1178 struct sockaddr __user *addrs,
1179 int addrs_size)
1180 {
1181 int err = 0;
1182 struct sockaddr *kaddrs;
1183
1184 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1185 __FUNCTION__, sk, addrs, addrs_size);
1186
1187 if (unlikely(addrs_size <= 0))
1188 return -EINVAL;
1189
1190 /* Check the user passed a healthy pointer. */
1191 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1192 return -EFAULT;
1193
1194 /* Alloc space for the address array in kernel memory. */
1195 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1196 if (unlikely(!kaddrs))
1197 return -ENOMEM;
1198
1199 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1200 err = -EFAULT;
1201 } else {
1202 err = __sctp_connect(sk, kaddrs, addrs_size);
1203 }
1204
1205 kfree(kaddrs);
1206 return err;
1207 }
1208
1209 /* API 3.1.4 close() - UDP Style Syntax
1210 * Applications use close() to perform graceful shutdown (as described in
1211 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1212 * by a UDP-style socket.
1213 *
1214 * The syntax is
1215 *
1216 * ret = close(int sd);
1217 *
1218 * sd - the socket descriptor of the associations to be closed.
1219 *
1220 * To gracefully shutdown a specific association represented by the
1221 * UDP-style socket, an application should use the sendmsg() call,
1222 * passing no user data, but including the appropriate flag in the
1223 * ancillary data (see Section xxxx).
1224 *
1225 * If sd in the close() call is a branched-off socket representing only
1226 * one association, the shutdown is performed on that association only.
1227 *
1228 * 4.1.6 close() - TCP Style Syntax
1229 *
1230 * Applications use close() to gracefully close down an association.
1231 *
1232 * The syntax is:
1233 *
1234 * int close(int sd);
1235 *
1236 * sd - the socket descriptor of the association to be closed.
1237 *
1238 * After an application calls close() on a socket descriptor, no further
1239 * socket operations will succeed on that descriptor.
1240 *
1241 * API 7.1.4 SO_LINGER
1242 *
1243 * An application using the TCP-style socket can use this option to
1244 * perform the SCTP ABORT primitive. The linger option structure is:
1245 *
1246 * struct linger {
1247 * int l_onoff; // option on/off
1248 * int l_linger; // linger time
1249 * };
1250 *
1251 * To enable the option, set l_onoff to 1. If the l_linger value is set
1252 * to 0, calling close() is the same as the ABORT primitive. If the
1253 * value is set to a negative value, the setsockopt() call will return
1254 * an error. If the value is set to a positive value linger_time, the
1255 * close() can be blocked for at most linger_time ms. If the graceful
1256 * shutdown phase does not finish during this period, close() will
1257 * return but the graceful shutdown phase continues in the system.
1258 */
1259 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1260 {
1261 struct sctp_endpoint *ep;
1262 struct sctp_association *asoc;
1263 struct list_head *pos, *temp;
1264
1265 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1266
1267 sctp_lock_sock(sk);
1268 sk->sk_shutdown = SHUTDOWN_MASK;
1269
1270 ep = sctp_sk(sk)->ep;
1271
1272 /* Walk all associations on an endpoint. */
1273 list_for_each_safe(pos, temp, &ep->asocs) {
1274 asoc = list_entry(pos, struct sctp_association, asocs);
1275
1276 if (sctp_style(sk, TCP)) {
1277 /* A closed association can still be in the list if
1278 * it belongs to a TCP-style listening socket that is
1279 * not yet accepted. If so, free it. If not, send an
1280 * ABORT or SHUTDOWN based on the linger options.
1281 */
1282 if (sctp_state(asoc, CLOSED)) {
1283 sctp_unhash_established(asoc);
1284 sctp_association_free(asoc);
1285 continue;
1286 }
1287 }
1288
1289 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1290 struct sctp_chunk *chunk;
1291
1292 chunk = sctp_make_abort_user(asoc, NULL, 0);
1293 if (chunk)
1294 sctp_primitive_ABORT(asoc, chunk);
1295 } else
1296 sctp_primitive_SHUTDOWN(asoc, NULL);
1297 }
1298
1299 /* Clean up any skbs sitting on the receive queue. */
1300 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1301 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1302
1303 /* On a TCP-style socket, block for at most linger_time if set. */
1304 if (sctp_style(sk, TCP) && timeout)
1305 sctp_wait_for_close(sk, timeout);
1306
1307 /* This will run the backlog queue. */
1308 sctp_release_sock(sk);
1309
1310 /* Supposedly, no process has access to the socket, but
1311 * the net layers still may.
1312 */
1313 sctp_local_bh_disable();
1314 sctp_bh_lock_sock(sk);
1315
1316 /* Hold the sock, since sk_common_release() will put sock_put()
1317 * and we have just a little more cleanup.
1318 */
1319 sock_hold(sk);
1320 sk_common_release(sk);
1321
1322 sctp_bh_unlock_sock(sk);
1323 sctp_local_bh_enable();
1324
1325 sock_put(sk);
1326
1327 SCTP_DBG_OBJCNT_DEC(sock);
1328 }
1329
1330 /* Handle EPIPE error. */
1331 static int sctp_error(struct sock *sk, int flags, int err)
1332 {
1333 if (err == -EPIPE)
1334 err = sock_error(sk) ? : -EPIPE;
1335 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1336 send_sig(SIGPIPE, current, 0);
1337 return err;
1338 }
1339
1340 /* API 3.1.3 sendmsg() - UDP Style Syntax
1341 *
1342 * An application uses sendmsg() and recvmsg() calls to transmit data to
1343 * and receive data from its peer.
1344 *
1345 * ssize_t sendmsg(int socket, const struct msghdr *message,
1346 * int flags);
1347 *
1348 * socket - the socket descriptor of the endpoint.
1349 * message - pointer to the msghdr structure which contains a single
1350 * user message and possibly some ancillary data.
1351 *
1352 * See Section 5 for complete description of the data
1353 * structures.
1354 *
1355 * flags - flags sent or received with the user message, see Section
1356 * 5 for complete description of the flags.
1357 *
1358 * Note: This function could use a rewrite especially when explicit
1359 * connect support comes in.
1360 */
1361 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1362
1363 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1364
1365 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1366 struct msghdr *msg, size_t msg_len)
1367 {
1368 struct sctp_sock *sp;
1369 struct sctp_endpoint *ep;
1370 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1371 struct sctp_transport *transport, *chunk_tp;
1372 struct sctp_chunk *chunk;
1373 union sctp_addr to, tmp;
1374 struct sockaddr *msg_name = NULL;
1375 struct sctp_sndrcvinfo default_sinfo = { 0 };
1376 struct sctp_sndrcvinfo *sinfo;
1377 struct sctp_initmsg *sinit;
1378 sctp_assoc_t associd = 0;
1379 sctp_cmsgs_t cmsgs = { NULL };
1380 int err;
1381 sctp_scope_t scope;
1382 long timeo;
1383 __u16 sinfo_flags = 0;
1384 struct sctp_datamsg *datamsg;
1385 struct list_head *pos;
1386 int msg_flags = msg->msg_flags;
1387
1388 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1389 sk, msg, msg_len);
1390
1391 err = 0;
1392 sp = sctp_sk(sk);
1393 ep = sp->ep;
1394
1395 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1396
1397 /* We cannot send a message over a TCP-style listening socket. */
1398 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1399 err = -EPIPE;
1400 goto out_nounlock;
1401 }
1402
1403 /* Parse out the SCTP CMSGs. */
1404 err = sctp_msghdr_parse(msg, &cmsgs);
1405
1406 if (err) {
1407 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1408 goto out_nounlock;
1409 }
1410
1411 /* Fetch the destination address for this packet. This
1412 * address only selects the association--it is not necessarily
1413 * the address we will send to.
1414 * For a peeled-off socket, msg_name is ignored.
1415 */
1416 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1417 int msg_namelen = msg->msg_namelen;
1418
1419 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1420 msg_namelen);
1421 if (err)
1422 return err;
1423
1424 if (msg_namelen > sizeof(to))
1425 msg_namelen = sizeof(to);
1426 memcpy(&to, msg->msg_name, msg_namelen);
1427 memcpy(&tmp, msg->msg_name, msg_namelen);
1428 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1429 "0x%x:%u.\n",
1430 to.v4.sin_addr.s_addr, to.v4.sin_port);
1431
1432 to.v4.sin_port = ntohs(to.v4.sin_port);
1433 msg_name = msg->msg_name;
1434 }
1435
1436 sinfo = cmsgs.info;
1437 sinit = cmsgs.init;
1438
1439 /* Did the user specify SNDRCVINFO? */
1440 if (sinfo) {
1441 sinfo_flags = sinfo->sinfo_flags;
1442 associd = sinfo->sinfo_assoc_id;
1443 }
1444
1445 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1446 msg_len, sinfo_flags);
1447
1448 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1449 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1450 err = -EINVAL;
1451 goto out_nounlock;
1452 }
1453
1454 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1455 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1456 * If SCTP_ABORT is set, the message length could be non zero with
1457 * the msg_iov set to the user abort reason.
1458 */
1459 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1460 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1461 err = -EINVAL;
1462 goto out_nounlock;
1463 }
1464
1465 /* If SCTP_ADDR_OVER is set, there must be an address
1466 * specified in msg_name.
1467 */
1468 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1469 err = -EINVAL;
1470 goto out_nounlock;
1471 }
1472
1473 transport = NULL;
1474
1475 SCTP_DEBUG_PRINTK("About to look up association.\n");
1476
1477 sctp_lock_sock(sk);
1478
1479 /* If a msg_name has been specified, assume this is to be used. */
1480 if (msg_name) {
1481 /* Look for a matching association on the endpoint. */
1482 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1483 if (!asoc) {
1484 /* If we could not find a matching association on the
1485 * endpoint, make sure that it is not a TCP-style
1486 * socket that already has an association or there is
1487 * no peeled-off association on another socket.
1488 */
1489 if ((sctp_style(sk, TCP) &&
1490 sctp_sstate(sk, ESTABLISHED)) ||
1491 sctp_endpoint_is_peeled_off(ep, &to)) {
1492 err = -EADDRNOTAVAIL;
1493 goto out_unlock;
1494 }
1495 }
1496 } else {
1497 asoc = sctp_id2assoc(sk, associd);
1498 if (!asoc) {
1499 err = -EPIPE;
1500 goto out_unlock;
1501 }
1502 }
1503
1504 if (asoc) {
1505 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1506
1507 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1508 * socket that has an association in CLOSED state. This can
1509 * happen when an accepted socket has an association that is
1510 * already CLOSED.
1511 */
1512 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1513 err = -EPIPE;
1514 goto out_unlock;
1515 }
1516
1517 if (sinfo_flags & SCTP_EOF) {
1518 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1519 asoc);
1520 sctp_primitive_SHUTDOWN(asoc, NULL);
1521 err = 0;
1522 goto out_unlock;
1523 }
1524 if (sinfo_flags & SCTP_ABORT) {
1525 struct sctp_chunk *chunk;
1526
1527 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1528 if (!chunk) {
1529 err = -ENOMEM;
1530 goto out_unlock;
1531 }
1532
1533 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1534 sctp_primitive_ABORT(asoc, chunk);
1535 err = 0;
1536 goto out_unlock;
1537 }
1538 }
1539
1540 /* Do we need to create the association? */
1541 if (!asoc) {
1542 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1543
1544 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1545 err = -EINVAL;
1546 goto out_unlock;
1547 }
1548
1549 /* Check for invalid stream against the stream counts,
1550 * either the default or the user specified stream counts.
1551 */
1552 if (sinfo) {
1553 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1554 /* Check against the defaults. */
1555 if (sinfo->sinfo_stream >=
1556 sp->initmsg.sinit_num_ostreams) {
1557 err = -EINVAL;
1558 goto out_unlock;
1559 }
1560 } else {
1561 /* Check against the requested. */
1562 if (sinfo->sinfo_stream >=
1563 sinit->sinit_num_ostreams) {
1564 err = -EINVAL;
1565 goto out_unlock;
1566 }
1567 }
1568 }
1569
1570 /*
1571 * API 3.1.2 bind() - UDP Style Syntax
1572 * If a bind() or sctp_bindx() is not called prior to a
1573 * sendmsg() call that initiates a new association, the
1574 * system picks an ephemeral port and will choose an address
1575 * set equivalent to binding with a wildcard address.
1576 */
1577 if (!ep->base.bind_addr.port) {
1578 if (sctp_autobind(sk)) {
1579 err = -EAGAIN;
1580 goto out_unlock;
1581 }
1582 } else {
1583 /*
1584 * If an unprivileged user inherits a one-to-many
1585 * style socket with open associations on a privileged
1586 * port, it MAY be permitted to accept new associations,
1587 * but it SHOULD NOT be permitted to open new
1588 * associations.
1589 */
1590 if (ep->base.bind_addr.port < PROT_SOCK &&
1591 !capable(CAP_NET_BIND_SERVICE)) {
1592 err = -EACCES;
1593 goto out_unlock;
1594 }
1595 }
1596
1597 scope = sctp_scope(&to);
1598 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1599 if (!new_asoc) {
1600 err = -ENOMEM;
1601 goto out_unlock;
1602 }
1603 asoc = new_asoc;
1604
1605 /* If the SCTP_INIT ancillary data is specified, set all
1606 * the association init values accordingly.
1607 */
1608 if (sinit) {
1609 if (sinit->sinit_num_ostreams) {
1610 asoc->c.sinit_num_ostreams =
1611 sinit->sinit_num_ostreams;
1612 }
1613 if (sinit->sinit_max_instreams) {
1614 asoc->c.sinit_max_instreams =
1615 sinit->sinit_max_instreams;
1616 }
1617 if (sinit->sinit_max_attempts) {
1618 asoc->max_init_attempts
1619 = sinit->sinit_max_attempts;
1620 }
1621 if (sinit->sinit_max_init_timeo) {
1622 asoc->max_init_timeo =
1623 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1624 }
1625 }
1626
1627 /* Prime the peer's transport structures. */
1628 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1629 if (!transport) {
1630 err = -ENOMEM;
1631 goto out_free;
1632 }
1633 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1634 if (err < 0) {
1635 err = -ENOMEM;
1636 goto out_free;
1637 }
1638 }
1639
1640 /* ASSERT: we have a valid association at this point. */
1641 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1642
1643 if (!sinfo) {
1644 /* If the user didn't specify SNDRCVINFO, make up one with
1645 * some defaults.
1646 */
1647 default_sinfo.sinfo_stream = asoc->default_stream;
1648 default_sinfo.sinfo_flags = asoc->default_flags;
1649 default_sinfo.sinfo_ppid = asoc->default_ppid;
1650 default_sinfo.sinfo_context = asoc->default_context;
1651 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1652 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1653 sinfo = &default_sinfo;
1654 }
1655
1656 /* API 7.1.7, the sndbuf size per association bounds the
1657 * maximum size of data that can be sent in a single send call.
1658 */
1659 if (msg_len > sk->sk_sndbuf) {
1660 err = -EMSGSIZE;
1661 goto out_free;
1662 }
1663
1664 /* If fragmentation is disabled and the message length exceeds the
1665 * association fragmentation point, return EMSGSIZE. The I-D
1666 * does not specify what this error is, but this looks like
1667 * a great fit.
1668 */
1669 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1670 err = -EMSGSIZE;
1671 goto out_free;
1672 }
1673
1674 if (sinfo) {
1675 /* Check for invalid stream. */
1676 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1677 err = -EINVAL;
1678 goto out_free;
1679 }
1680 }
1681
1682 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1683 if (!sctp_wspace(asoc)) {
1684 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1685 if (err)
1686 goto out_free;
1687 }
1688
1689 /* If an address is passed with the sendto/sendmsg call, it is used
1690 * to override the primary destination address in the TCP model, or
1691 * when SCTP_ADDR_OVER flag is set in the UDP model.
1692 */
1693 if ((sctp_style(sk, TCP) && msg_name) ||
1694 (sinfo_flags & SCTP_ADDR_OVER)) {
1695 chunk_tp = sctp_assoc_lookup_paddr(asoc, &tmp);
1696 if (!chunk_tp) {
1697 err = -EINVAL;
1698 goto out_free;
1699 }
1700 } else
1701 chunk_tp = NULL;
1702
1703 /* Auto-connect, if we aren't connected already. */
1704 if (sctp_state(asoc, CLOSED)) {
1705 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1706 if (err < 0)
1707 goto out_free;
1708 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1709 }
1710
1711 /* Break the message into multiple chunks of maximum size. */
1712 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1713 if (!datamsg) {
1714 err = -ENOMEM;
1715 goto out_free;
1716 }
1717
1718 /* Now send the (possibly) fragmented message. */
1719 list_for_each(pos, &datamsg->chunks) {
1720 chunk = list_entry(pos, struct sctp_chunk, frag_list);
1721 sctp_datamsg_track(chunk);
1722
1723 /* Do accounting for the write space. */
1724 sctp_set_owner_w(chunk);
1725
1726 chunk->transport = chunk_tp;
1727
1728 /* Send it to the lower layers. Note: all chunks
1729 * must either fail or succeed. The lower layer
1730 * works that way today. Keep it that way or this
1731 * breaks.
1732 */
1733 err = sctp_primitive_SEND(asoc, chunk);
1734 /* Did the lower layer accept the chunk? */
1735 if (err)
1736 sctp_chunk_free(chunk);
1737 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1738 }
1739
1740 sctp_datamsg_free(datamsg);
1741 if (err)
1742 goto out_free;
1743 else
1744 err = msg_len;
1745
1746 /* If we are already past ASSOCIATE, the lower
1747 * layers are responsible for association cleanup.
1748 */
1749 goto out_unlock;
1750
1751 out_free:
1752 if (new_asoc)
1753 sctp_association_free(asoc);
1754 out_unlock:
1755 sctp_release_sock(sk);
1756
1757 out_nounlock:
1758 return sctp_error(sk, msg_flags, err);
1759
1760 #if 0
1761 do_sock_err:
1762 if (msg_len)
1763 err = msg_len;
1764 else
1765 err = sock_error(sk);
1766 goto out;
1767
1768 do_interrupted:
1769 if (msg_len)
1770 err = msg_len;
1771 goto out;
1772 #endif /* 0 */
1773 }
1774
1775 /* This is an extended version of skb_pull() that removes the data from the
1776 * start of a skb even when data is spread across the list of skb's in the
1777 * frag_list. len specifies the total amount of data that needs to be removed.
1778 * when 'len' bytes could be removed from the skb, it returns 0.
1779 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1780 * could not be removed.
1781 */
1782 static int sctp_skb_pull(struct sk_buff *skb, int len)
1783 {
1784 struct sk_buff *list;
1785 int skb_len = skb_headlen(skb);
1786 int rlen;
1787
1788 if (len <= skb_len) {
1789 __skb_pull(skb, len);
1790 return 0;
1791 }
1792 len -= skb_len;
1793 __skb_pull(skb, skb_len);
1794
1795 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1796 rlen = sctp_skb_pull(list, len);
1797 skb->len -= (len-rlen);
1798 skb->data_len -= (len-rlen);
1799
1800 if (!rlen)
1801 return 0;
1802
1803 len = rlen;
1804 }
1805
1806 return len;
1807 }
1808
1809 /* API 3.1.3 recvmsg() - UDP Style Syntax
1810 *
1811 * ssize_t recvmsg(int socket, struct msghdr *message,
1812 * int flags);
1813 *
1814 * socket - the socket descriptor of the endpoint.
1815 * message - pointer to the msghdr structure which contains a single
1816 * user message and possibly some ancillary data.
1817 *
1818 * See Section 5 for complete description of the data
1819 * structures.
1820 *
1821 * flags - flags sent or received with the user message, see Section
1822 * 5 for complete description of the flags.
1823 */
1824 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1825
1826 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1827 struct msghdr *msg, size_t len, int noblock,
1828 int flags, int *addr_len)
1829 {
1830 struct sctp_ulpevent *event = NULL;
1831 struct sctp_sock *sp = sctp_sk(sk);
1832 struct sk_buff *skb;
1833 int copied;
1834 int err = 0;
1835 int skb_len;
1836
1837 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1838 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1839 "len", len, "knoblauch", noblock,
1840 "flags", flags, "addr_len", addr_len);
1841
1842 sctp_lock_sock(sk);
1843
1844 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1845 err = -ENOTCONN;
1846 goto out;
1847 }
1848
1849 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1850 if (!skb)
1851 goto out;
1852
1853 /* Get the total length of the skb including any skb's in the
1854 * frag_list.
1855 */
1856 skb_len = skb->len;
1857
1858 copied = skb_len;
1859 if (copied > len)
1860 copied = len;
1861
1862 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1863
1864 event = sctp_skb2event(skb);
1865
1866 if (err)
1867 goto out_free;
1868
1869 sock_recv_timestamp(msg, sk, skb);
1870 if (sctp_ulpevent_is_notification(event)) {
1871 msg->msg_flags |= MSG_NOTIFICATION;
1872 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1873 } else {
1874 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1875 }
1876
1877 /* Check if we allow SCTP_SNDRCVINFO. */
1878 if (sp->subscribe.sctp_data_io_event)
1879 sctp_ulpevent_read_sndrcvinfo(event, msg);
1880 #if 0
1881 /* FIXME: we should be calling IP/IPv6 layers. */
1882 if (sk->sk_protinfo.af_inet.cmsg_flags)
1883 ip_cmsg_recv(msg, skb);
1884 #endif
1885
1886 err = copied;
1887
1888 /* If skb's length exceeds the user's buffer, update the skb and
1889 * push it back to the receive_queue so that the next call to
1890 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1891 */
1892 if (skb_len > copied) {
1893 msg->msg_flags &= ~MSG_EOR;
1894 if (flags & MSG_PEEK)
1895 goto out_free;
1896 sctp_skb_pull(skb, copied);
1897 skb_queue_head(&sk->sk_receive_queue, skb);
1898
1899 /* When only partial message is copied to the user, increase
1900 * rwnd by that amount. If all the data in the skb is read,
1901 * rwnd is updated when the event is freed.
1902 */
1903 sctp_assoc_rwnd_increase(event->asoc, copied);
1904 goto out;
1905 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
1906 (event->msg_flags & MSG_EOR))
1907 msg->msg_flags |= MSG_EOR;
1908 else
1909 msg->msg_flags &= ~MSG_EOR;
1910
1911 out_free:
1912 if (flags & MSG_PEEK) {
1913 /* Release the skb reference acquired after peeking the skb in
1914 * sctp_skb_recv_datagram().
1915 */
1916 kfree_skb(skb);
1917 } else {
1918 /* Free the event which includes releasing the reference to
1919 * the owner of the skb, freeing the skb and updating the
1920 * rwnd.
1921 */
1922 sctp_ulpevent_free(event);
1923 }
1924 out:
1925 sctp_release_sock(sk);
1926 return err;
1927 }
1928
1929 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1930 *
1931 * This option is a on/off flag. If enabled no SCTP message
1932 * fragmentation will be performed. Instead if a message being sent
1933 * exceeds the current PMTU size, the message will NOT be sent and
1934 * instead a error will be indicated to the user.
1935 */
1936 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1937 char __user *optval, int optlen)
1938 {
1939 int val;
1940
1941 if (optlen < sizeof(int))
1942 return -EINVAL;
1943
1944 if (get_user(val, (int __user *)optval))
1945 return -EFAULT;
1946
1947 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1948
1949 return 0;
1950 }
1951
1952 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1953 int optlen)
1954 {
1955 if (optlen != sizeof(struct sctp_event_subscribe))
1956 return -EINVAL;
1957 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1958 return -EFAULT;
1959 return 0;
1960 }
1961
1962 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1963 *
1964 * This socket option is applicable to the UDP-style socket only. When
1965 * set it will cause associations that are idle for more than the
1966 * specified number of seconds to automatically close. An association
1967 * being idle is defined an association that has NOT sent or received
1968 * user data. The special value of '0' indicates that no automatic
1969 * close of any associations should be performed. The option expects an
1970 * integer defining the number of seconds of idle time before an
1971 * association is closed.
1972 */
1973 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1974 int optlen)
1975 {
1976 struct sctp_sock *sp = sctp_sk(sk);
1977
1978 /* Applicable to UDP-style socket only */
1979 if (sctp_style(sk, TCP))
1980 return -EOPNOTSUPP;
1981 if (optlen != sizeof(int))
1982 return -EINVAL;
1983 if (copy_from_user(&sp->autoclose, optval, optlen))
1984 return -EFAULT;
1985
1986 return 0;
1987 }
1988
1989 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1990 *
1991 * Applications can enable or disable heartbeats for any peer address of
1992 * an association, modify an address's heartbeat interval, force a
1993 * heartbeat to be sent immediately, and adjust the address's maximum
1994 * number of retransmissions sent before an address is considered
1995 * unreachable. The following structure is used to access and modify an
1996 * address's parameters:
1997 *
1998 * struct sctp_paddrparams {
1999 * sctp_assoc_t spp_assoc_id;
2000 * struct sockaddr_storage spp_address;
2001 * uint32_t spp_hbinterval;
2002 * uint16_t spp_pathmaxrxt;
2003 * uint32_t spp_pathmtu;
2004 * uint32_t spp_sackdelay;
2005 * uint32_t spp_flags;
2006 * };
2007 *
2008 * spp_assoc_id - (one-to-many style socket) This is filled in the
2009 * application, and identifies the association for
2010 * this query.
2011 * spp_address - This specifies which address is of interest.
2012 * spp_hbinterval - This contains the value of the heartbeat interval,
2013 * in milliseconds. If a value of zero
2014 * is present in this field then no changes are to
2015 * be made to this parameter.
2016 * spp_pathmaxrxt - This contains the maximum number of
2017 * retransmissions before this address shall be
2018 * considered unreachable. If a value of zero
2019 * is present in this field then no changes are to
2020 * be made to this parameter.
2021 * spp_pathmtu - When Path MTU discovery is disabled the value
2022 * specified here will be the "fixed" path mtu.
2023 * Note that if the spp_address field is empty
2024 * then all associations on this address will
2025 * have this fixed path mtu set upon them.
2026 *
2027 * spp_sackdelay - When delayed sack is enabled, this value specifies
2028 * the number of milliseconds that sacks will be delayed
2029 * for. This value will apply to all addresses of an
2030 * association if the spp_address field is empty. Note
2031 * also, that if delayed sack is enabled and this
2032 * value is set to 0, no change is made to the last
2033 * recorded delayed sack timer value.
2034 *
2035 * spp_flags - These flags are used to control various features
2036 * on an association. The flag field may contain
2037 * zero or more of the following options.
2038 *
2039 * SPP_HB_ENABLE - Enable heartbeats on the
2040 * specified address. Note that if the address
2041 * field is empty all addresses for the association
2042 * have heartbeats enabled upon them.
2043 *
2044 * SPP_HB_DISABLE - Disable heartbeats on the
2045 * speicifed address. Note that if the address
2046 * field is empty all addresses for the association
2047 * will have their heartbeats disabled. Note also
2048 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2049 * mutually exclusive, only one of these two should
2050 * be specified. Enabling both fields will have
2051 * undetermined results.
2052 *
2053 * SPP_HB_DEMAND - Request a user initiated heartbeat
2054 * to be made immediately.
2055 *
2056 * SPP_PMTUD_ENABLE - This field will enable PMTU
2057 * discovery upon the specified address. Note that
2058 * if the address feild is empty then all addresses
2059 * on the association are effected.
2060 *
2061 * SPP_PMTUD_DISABLE - This field will disable PMTU
2062 * discovery upon the specified address. Note that
2063 * if the address feild is empty then all addresses
2064 * on the association are effected. Not also that
2065 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2066 * exclusive. Enabling both will have undetermined
2067 * results.
2068 *
2069 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2070 * on delayed sack. The time specified in spp_sackdelay
2071 * is used to specify the sack delay for this address. Note
2072 * that if spp_address is empty then all addresses will
2073 * enable delayed sack and take on the sack delay
2074 * value specified in spp_sackdelay.
2075 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2076 * off delayed sack. If the spp_address field is blank then
2077 * delayed sack is disabled for the entire association. Note
2078 * also that this field is mutually exclusive to
2079 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2080 * results.
2081 */
2082 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2083 struct sctp_transport *trans,
2084 struct sctp_association *asoc,
2085 struct sctp_sock *sp,
2086 int hb_change,
2087 int pmtud_change,
2088 int sackdelay_change)
2089 {
2090 int error;
2091
2092 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2093 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2094 if (error)
2095 return error;
2096 }
2097
2098 if (params->spp_hbinterval) {
2099 if (trans) {
2100 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2101 } else if (asoc) {
2102 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2103 } else {
2104 sp->hbinterval = params->spp_hbinterval;
2105 }
2106 }
2107
2108 if (hb_change) {
2109 if (trans) {
2110 trans->param_flags =
2111 (trans->param_flags & ~SPP_HB) | hb_change;
2112 } else if (asoc) {
2113 asoc->param_flags =
2114 (asoc->param_flags & ~SPP_HB) | hb_change;
2115 } else {
2116 sp->param_flags =
2117 (sp->param_flags & ~SPP_HB) | hb_change;
2118 }
2119 }
2120
2121 if (params->spp_pathmtu) {
2122 if (trans) {
2123 trans->pathmtu = params->spp_pathmtu;
2124 sctp_assoc_sync_pmtu(asoc);
2125 } else if (asoc) {
2126 asoc->pathmtu = params->spp_pathmtu;
2127 sctp_frag_point(sp, params->spp_pathmtu);
2128 } else {
2129 sp->pathmtu = params->spp_pathmtu;
2130 }
2131 }
2132
2133 if (pmtud_change) {
2134 if (trans) {
2135 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2136 (params->spp_flags & SPP_PMTUD_ENABLE);
2137 trans->param_flags =
2138 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2139 if (update) {
2140 sctp_transport_pmtu(trans);
2141 sctp_assoc_sync_pmtu(asoc);
2142 }
2143 } else if (asoc) {
2144 asoc->param_flags =
2145 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2146 } else {
2147 sp->param_flags =
2148 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2149 }
2150 }
2151
2152 if (params->spp_sackdelay) {
2153 if (trans) {
2154 trans->sackdelay =
2155 msecs_to_jiffies(params->spp_sackdelay);
2156 } else if (asoc) {
2157 asoc->sackdelay =
2158 msecs_to_jiffies(params->spp_sackdelay);
2159 } else {
2160 sp->sackdelay = params->spp_sackdelay;
2161 }
2162 }
2163
2164 if (sackdelay_change) {
2165 if (trans) {
2166 trans->param_flags =
2167 (trans->param_flags & ~SPP_SACKDELAY) |
2168 sackdelay_change;
2169 } else if (asoc) {
2170 asoc->param_flags =
2171 (asoc->param_flags & ~SPP_SACKDELAY) |
2172 sackdelay_change;
2173 } else {
2174 sp->param_flags =
2175 (sp->param_flags & ~SPP_SACKDELAY) |
2176 sackdelay_change;
2177 }
2178 }
2179
2180 if (params->spp_pathmaxrxt) {
2181 if (trans) {
2182 trans->pathmaxrxt = params->spp_pathmaxrxt;
2183 } else if (asoc) {
2184 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2185 } else {
2186 sp->pathmaxrxt = params->spp_pathmaxrxt;
2187 }
2188 }
2189
2190 return 0;
2191 }
2192
2193 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2194 char __user *optval, int optlen)
2195 {
2196 struct sctp_paddrparams params;
2197 struct sctp_transport *trans = NULL;
2198 struct sctp_association *asoc = NULL;
2199 struct sctp_sock *sp = sctp_sk(sk);
2200 int error;
2201 int hb_change, pmtud_change, sackdelay_change;
2202
2203 if (optlen != sizeof(struct sctp_paddrparams))
2204 return - EINVAL;
2205
2206 if (copy_from_user(&params, optval, optlen))
2207 return -EFAULT;
2208
2209 /* Validate flags and value parameters. */
2210 hb_change = params.spp_flags & SPP_HB;
2211 pmtud_change = params.spp_flags & SPP_PMTUD;
2212 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2213
2214 if (hb_change == SPP_HB ||
2215 pmtud_change == SPP_PMTUD ||
2216 sackdelay_change == SPP_SACKDELAY ||
2217 params.spp_sackdelay > 500 ||
2218 (params.spp_pathmtu
2219 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2220 return -EINVAL;
2221
2222 /* If an address other than INADDR_ANY is specified, and
2223 * no transport is found, then the request is invalid.
2224 */
2225 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2226 trans = sctp_addr_id2transport(sk, &params.spp_address,
2227 params.spp_assoc_id);
2228 if (!trans)
2229 return -EINVAL;
2230 }
2231
2232 /* Get association, if assoc_id != 0 and the socket is a one
2233 * to many style socket, and an association was not found, then
2234 * the id was invalid.
2235 */
2236 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2237 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2238 return -EINVAL;
2239
2240 /* Heartbeat demand can only be sent on a transport or
2241 * association, but not a socket.
2242 */
2243 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2244 return -EINVAL;
2245
2246 /* Process parameters. */
2247 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2248 hb_change, pmtud_change,
2249 sackdelay_change);
2250
2251 if (error)
2252 return error;
2253
2254 /* If changes are for association, also apply parameters to each
2255 * transport.
2256 */
2257 if (!trans && asoc) {
2258 struct list_head *pos;
2259
2260 list_for_each(pos, &asoc->peer.transport_addr_list) {
2261 trans = list_entry(pos, struct sctp_transport,
2262 transports);
2263 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2264 hb_change, pmtud_change,
2265 sackdelay_change);
2266 }
2267 }
2268
2269 return 0;
2270 }
2271
2272 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2273 *
2274 * This options will get or set the delayed ack timer. The time is set
2275 * in milliseconds. If the assoc_id is 0, then this sets or gets the
2276 * endpoints default delayed ack timer value. If the assoc_id field is
2277 * non-zero, then the set or get effects the specified association.
2278 *
2279 * struct sctp_assoc_value {
2280 * sctp_assoc_t assoc_id;
2281 * uint32_t assoc_value;
2282 * };
2283 *
2284 * assoc_id - This parameter, indicates which association the
2285 * user is preforming an action upon. Note that if
2286 * this field's value is zero then the endpoints
2287 * default value is changed (effecting future
2288 * associations only).
2289 *
2290 * assoc_value - This parameter contains the number of milliseconds
2291 * that the user is requesting the delayed ACK timer
2292 * be set to. Note that this value is defined in
2293 * the standard to be between 200 and 500 milliseconds.
2294 *
2295 * Note: a value of zero will leave the value alone,
2296 * but disable SACK delay. A non-zero value will also
2297 * enable SACK delay.
2298 */
2299
2300 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2301 char __user *optval, int optlen)
2302 {
2303 struct sctp_assoc_value params;
2304 struct sctp_transport *trans = NULL;
2305 struct sctp_association *asoc = NULL;
2306 struct sctp_sock *sp = sctp_sk(sk);
2307
2308 if (optlen != sizeof(struct sctp_assoc_value))
2309 return - EINVAL;
2310
2311 if (copy_from_user(&params, optval, optlen))
2312 return -EFAULT;
2313
2314 /* Validate value parameter. */
2315 if (params.assoc_value > 500)
2316 return -EINVAL;
2317
2318 /* Get association, if assoc_id != 0 and the socket is a one
2319 * to many style socket, and an association was not found, then
2320 * the id was invalid.
2321 */
2322 asoc = sctp_id2assoc(sk, params.assoc_id);
2323 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2324 return -EINVAL;
2325
2326 if (params.assoc_value) {
2327 if (asoc) {
2328 asoc->sackdelay =
2329 msecs_to_jiffies(params.assoc_value);
2330 asoc->param_flags =
2331 (asoc->param_flags & ~SPP_SACKDELAY) |
2332 SPP_SACKDELAY_ENABLE;
2333 } else {
2334 sp->sackdelay = params.assoc_value;
2335 sp->param_flags =
2336 (sp->param_flags & ~SPP_SACKDELAY) |
2337 SPP_SACKDELAY_ENABLE;
2338 }
2339 } else {
2340 if (asoc) {
2341 asoc->param_flags =
2342 (asoc->param_flags & ~SPP_SACKDELAY) |
2343 SPP_SACKDELAY_DISABLE;
2344 } else {
2345 sp->param_flags =
2346 (sp->param_flags & ~SPP_SACKDELAY) |
2347 SPP_SACKDELAY_DISABLE;
2348 }
2349 }
2350
2351 /* If change is for association, also apply to each transport. */
2352 if (asoc) {
2353 struct list_head *pos;
2354
2355 list_for_each(pos, &asoc->peer.transport_addr_list) {
2356 trans = list_entry(pos, struct sctp_transport,
2357 transports);
2358 if (params.assoc_value) {
2359 trans->sackdelay =
2360 msecs_to_jiffies(params.assoc_value);
2361 trans->param_flags =
2362 (trans->param_flags & ~SPP_SACKDELAY) |
2363 SPP_SACKDELAY_ENABLE;
2364 } else {
2365 trans->param_flags =
2366 (trans->param_flags & ~SPP_SACKDELAY) |
2367 SPP_SACKDELAY_DISABLE;
2368 }
2369 }
2370 }
2371
2372 return 0;
2373 }
2374
2375 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2376 *
2377 * Applications can specify protocol parameters for the default association
2378 * initialization. The option name argument to setsockopt() and getsockopt()
2379 * is SCTP_INITMSG.
2380 *
2381 * Setting initialization parameters is effective only on an unconnected
2382 * socket (for UDP-style sockets only future associations are effected
2383 * by the change). With TCP-style sockets, this option is inherited by
2384 * sockets derived from a listener socket.
2385 */
2386 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2387 {
2388 struct sctp_initmsg sinit;
2389 struct sctp_sock *sp = sctp_sk(sk);
2390
2391 if (optlen != sizeof(struct sctp_initmsg))
2392 return -EINVAL;
2393 if (copy_from_user(&sinit, optval, optlen))
2394 return -EFAULT;
2395
2396 if (sinit.sinit_num_ostreams)
2397 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2398 if (sinit.sinit_max_instreams)
2399 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2400 if (sinit.sinit_max_attempts)
2401 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2402 if (sinit.sinit_max_init_timeo)
2403 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2404
2405 return 0;
2406 }
2407
2408 /*
2409 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2410 *
2411 * Applications that wish to use the sendto() system call may wish to
2412 * specify a default set of parameters that would normally be supplied
2413 * through the inclusion of ancillary data. This socket option allows
2414 * such an application to set the default sctp_sndrcvinfo structure.
2415 * The application that wishes to use this socket option simply passes
2416 * in to this call the sctp_sndrcvinfo structure defined in Section
2417 * 5.2.2) The input parameters accepted by this call include
2418 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2419 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2420 * to this call if the caller is using the UDP model.
2421 */
2422 static int sctp_setsockopt_default_send_param(struct sock *sk,
2423 char __user *optval, int optlen)
2424 {
2425 struct sctp_sndrcvinfo info;
2426 struct sctp_association *asoc;
2427 struct sctp_sock *sp = sctp_sk(sk);
2428
2429 if (optlen != sizeof(struct sctp_sndrcvinfo))
2430 return -EINVAL;
2431 if (copy_from_user(&info, optval, optlen))
2432 return -EFAULT;
2433
2434 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2435 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2436 return -EINVAL;
2437
2438 if (asoc) {
2439 asoc->default_stream = info.sinfo_stream;
2440 asoc->default_flags = info.sinfo_flags;
2441 asoc->default_ppid = info.sinfo_ppid;
2442 asoc->default_context = info.sinfo_context;
2443 asoc->default_timetolive = info.sinfo_timetolive;
2444 } else {
2445 sp->default_stream = info.sinfo_stream;
2446 sp->default_flags = info.sinfo_flags;
2447 sp->default_ppid = info.sinfo_ppid;
2448 sp->default_context = info.sinfo_context;
2449 sp->default_timetolive = info.sinfo_timetolive;
2450 }
2451
2452 return 0;
2453 }
2454
2455 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2456 *
2457 * Requests that the local SCTP stack use the enclosed peer address as
2458 * the association primary. The enclosed address must be one of the
2459 * association peer's addresses.
2460 */
2461 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2462 int optlen)
2463 {
2464 struct sctp_prim prim;
2465 struct sctp_transport *trans;
2466
2467 if (optlen != sizeof(struct sctp_prim))
2468 return -EINVAL;
2469
2470 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2471 return -EFAULT;
2472
2473 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2474 if (!trans)
2475 return -EINVAL;
2476
2477 sctp_assoc_set_primary(trans->asoc, trans);
2478
2479 return 0;
2480 }
2481
2482 /*
2483 * 7.1.5 SCTP_NODELAY
2484 *
2485 * Turn on/off any Nagle-like algorithm. This means that packets are
2486 * generally sent as soon as possible and no unnecessary delays are
2487 * introduced, at the cost of more packets in the network. Expects an
2488 * integer boolean flag.
2489 */
2490 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2491 int optlen)
2492 {
2493 int val;
2494
2495 if (optlen < sizeof(int))
2496 return -EINVAL;
2497 if (get_user(val, (int __user *)optval))
2498 return -EFAULT;
2499
2500 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2501 return 0;
2502 }
2503
2504 /*
2505 *
2506 * 7.1.1 SCTP_RTOINFO
2507 *
2508 * The protocol parameters used to initialize and bound retransmission
2509 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2510 * and modify these parameters.
2511 * All parameters are time values, in milliseconds. A value of 0, when
2512 * modifying the parameters, indicates that the current value should not
2513 * be changed.
2514 *
2515 */
2516 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2517 struct sctp_rtoinfo rtoinfo;
2518 struct sctp_association *asoc;
2519
2520 if (optlen != sizeof (struct sctp_rtoinfo))
2521 return -EINVAL;
2522
2523 if (copy_from_user(&rtoinfo, optval, optlen))
2524 return -EFAULT;
2525
2526 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2527
2528 /* Set the values to the specific association */
2529 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2530 return -EINVAL;
2531
2532 if (asoc) {
2533 if (rtoinfo.srto_initial != 0)
2534 asoc->rto_initial =
2535 msecs_to_jiffies(rtoinfo.srto_initial);
2536 if (rtoinfo.srto_max != 0)
2537 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2538 if (rtoinfo.srto_min != 0)
2539 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2540 } else {
2541 /* If there is no association or the association-id = 0
2542 * set the values to the endpoint.
2543 */
2544 struct sctp_sock *sp = sctp_sk(sk);
2545
2546 if (rtoinfo.srto_initial != 0)
2547 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2548 if (rtoinfo.srto_max != 0)
2549 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2550 if (rtoinfo.srto_min != 0)
2551 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2552 }
2553
2554 return 0;
2555 }
2556
2557 /*
2558 *
2559 * 7.1.2 SCTP_ASSOCINFO
2560 *
2561 * This option is used to tune the the maximum retransmission attempts
2562 * of the association.
2563 * Returns an error if the new association retransmission value is
2564 * greater than the sum of the retransmission value of the peer.
2565 * See [SCTP] for more information.
2566 *
2567 */
2568 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2569 {
2570
2571 struct sctp_assocparams assocparams;
2572 struct sctp_association *asoc;
2573
2574 if (optlen != sizeof(struct sctp_assocparams))
2575 return -EINVAL;
2576 if (copy_from_user(&assocparams, optval, optlen))
2577 return -EFAULT;
2578
2579 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2580
2581 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2582 return -EINVAL;
2583
2584 /* Set the values to the specific association */
2585 if (asoc) {
2586 if (assocparams.sasoc_asocmaxrxt != 0) {
2587 __u32 path_sum = 0;
2588 int paths = 0;
2589 struct list_head *pos;
2590 struct sctp_transport *peer_addr;
2591
2592 list_for_each(pos, &asoc->peer.transport_addr_list) {
2593 peer_addr = list_entry(pos,
2594 struct sctp_transport,
2595 transports);
2596 path_sum += peer_addr->pathmaxrxt;
2597 paths++;
2598 }
2599
2600 /* Only validate asocmaxrxt if we have more then
2601 * one path/transport. We do this because path
2602 * retransmissions are only counted when we have more
2603 * then one path.
2604 */
2605 if (paths > 1 &&
2606 assocparams.sasoc_asocmaxrxt > path_sum)
2607 return -EINVAL;
2608
2609 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2610 }
2611
2612 if (assocparams.sasoc_cookie_life != 0) {
2613 asoc->cookie_life.tv_sec =
2614 assocparams.sasoc_cookie_life / 1000;
2615 asoc->cookie_life.tv_usec =
2616 (assocparams.sasoc_cookie_life % 1000)
2617 * 1000;
2618 }
2619 } else {
2620 /* Set the values to the endpoint */
2621 struct sctp_sock *sp = sctp_sk(sk);
2622
2623 if (assocparams.sasoc_asocmaxrxt != 0)
2624 sp->assocparams.sasoc_asocmaxrxt =
2625 assocparams.sasoc_asocmaxrxt;
2626 if (assocparams.sasoc_cookie_life != 0)
2627 sp->assocparams.sasoc_cookie_life =
2628 assocparams.sasoc_cookie_life;
2629 }
2630 return 0;
2631 }
2632
2633 /*
2634 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2635 *
2636 * This socket option is a boolean flag which turns on or off mapped V4
2637 * addresses. If this option is turned on and the socket is type
2638 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2639 * If this option is turned off, then no mapping will be done of V4
2640 * addresses and a user will receive both PF_INET6 and PF_INET type
2641 * addresses on the socket.
2642 */
2643 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2644 {
2645 int val;
2646 struct sctp_sock *sp = sctp_sk(sk);
2647
2648 if (optlen < sizeof(int))
2649 return -EINVAL;
2650 if (get_user(val, (int __user *)optval))
2651 return -EFAULT;
2652 if (val)
2653 sp->v4mapped = 1;
2654 else
2655 sp->v4mapped = 0;
2656
2657 return 0;
2658 }
2659
2660 /*
2661 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2662 *
2663 * This socket option specifies the maximum size to put in any outgoing
2664 * SCTP chunk. If a message is larger than this size it will be
2665 * fragmented by SCTP into the specified size. Note that the underlying
2666 * SCTP implementation may fragment into smaller sized chunks when the
2667 * PMTU of the underlying association is smaller than the value set by
2668 * the user.
2669 */
2670 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2671 {
2672 struct sctp_association *asoc;
2673 struct list_head *pos;
2674 struct sctp_sock *sp = sctp_sk(sk);
2675 int val;
2676
2677 if (optlen < sizeof(int))
2678 return -EINVAL;
2679 if (get_user(val, (int __user *)optval))
2680 return -EFAULT;
2681 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2682 return -EINVAL;
2683 sp->user_frag = val;
2684
2685 /* Update the frag_point of the existing associations. */
2686 list_for_each(pos, &(sp->ep->asocs)) {
2687 asoc = list_entry(pos, struct sctp_association, asocs);
2688 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2689 }
2690
2691 return 0;
2692 }
2693
2694
2695 /*
2696 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2697 *
2698 * Requests that the peer mark the enclosed address as the association
2699 * primary. The enclosed address must be one of the association's
2700 * locally bound addresses. The following structure is used to make a
2701 * set primary request:
2702 */
2703 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2704 int optlen)
2705 {
2706 struct sctp_sock *sp;
2707 struct sctp_endpoint *ep;
2708 struct sctp_association *asoc = NULL;
2709 struct sctp_setpeerprim prim;
2710 struct sctp_chunk *chunk;
2711 int err;
2712
2713 sp = sctp_sk(sk);
2714 ep = sp->ep;
2715
2716 if (!sctp_addip_enable)
2717 return -EPERM;
2718
2719 if (optlen != sizeof(struct sctp_setpeerprim))
2720 return -EINVAL;
2721
2722 if (copy_from_user(&prim, optval, optlen))
2723 return -EFAULT;
2724
2725 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2726 if (!asoc)
2727 return -EINVAL;
2728
2729 if (!asoc->peer.asconf_capable)
2730 return -EPERM;
2731
2732 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2733 return -EPERM;
2734
2735 if (!sctp_state(asoc, ESTABLISHED))
2736 return -ENOTCONN;
2737
2738 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2739 return -EADDRNOTAVAIL;
2740
2741 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2742 chunk = sctp_make_asconf_set_prim(asoc,
2743 (union sctp_addr *)&prim.sspp_addr);
2744 if (!chunk)
2745 return -ENOMEM;
2746
2747 err = sctp_send_asconf(asoc, chunk);
2748
2749 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2750
2751 return err;
2752 }
2753
2754 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2755 int optlen)
2756 {
2757 struct sctp_setadaption adaption;
2758
2759 if (optlen != sizeof(struct sctp_setadaption))
2760 return -EINVAL;
2761 if (copy_from_user(&adaption, optval, optlen))
2762 return -EFAULT;
2763
2764 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2765
2766 return 0;
2767 }
2768
2769 /* API 6.2 setsockopt(), getsockopt()
2770 *
2771 * Applications use setsockopt() and getsockopt() to set or retrieve
2772 * socket options. Socket options are used to change the default
2773 * behavior of sockets calls. They are described in Section 7.
2774 *
2775 * The syntax is:
2776 *
2777 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
2778 * int __user *optlen);
2779 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2780 * int optlen);
2781 *
2782 * sd - the socket descript.
2783 * level - set to IPPROTO_SCTP for all SCTP options.
2784 * optname - the option name.
2785 * optval - the buffer to store the value of the option.
2786 * optlen - the size of the buffer.
2787 */
2788 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2789 char __user *optval, int optlen)
2790 {
2791 int retval = 0;
2792
2793 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2794 sk, optname);
2795
2796 /* I can hardly begin to describe how wrong this is. This is
2797 * so broken as to be worse than useless. The API draft
2798 * REALLY is NOT helpful here... I am not convinced that the
2799 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2800 * are at all well-founded.
2801 */
2802 if (level != SOL_SCTP) {
2803 struct sctp_af *af = sctp_sk(sk)->pf->af;
2804 retval = af->setsockopt(sk, level, optname, optval, optlen);
2805 goto out_nounlock;
2806 }
2807
2808 sctp_lock_sock(sk);
2809
2810 switch (optname) {
2811 case SCTP_SOCKOPT_BINDX_ADD:
2812 /* 'optlen' is the size of the addresses buffer. */
2813 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2814 optlen, SCTP_BINDX_ADD_ADDR);
2815 break;
2816
2817 case SCTP_SOCKOPT_BINDX_REM:
2818 /* 'optlen' is the size of the addresses buffer. */
2819 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2820 optlen, SCTP_BINDX_REM_ADDR);
2821 break;
2822
2823 case SCTP_SOCKOPT_CONNECTX:
2824 /* 'optlen' is the size of the addresses buffer. */
2825 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2826 optlen);
2827 break;
2828
2829 case SCTP_DISABLE_FRAGMENTS:
2830 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2831 break;
2832
2833 case SCTP_EVENTS:
2834 retval = sctp_setsockopt_events(sk, optval, optlen);
2835 break;
2836
2837 case SCTP_AUTOCLOSE:
2838 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2839 break;
2840
2841 case SCTP_PEER_ADDR_PARAMS:
2842 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2843 break;
2844
2845 case SCTP_DELAYED_ACK_TIME:
2846 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2847 break;
2848
2849 case SCTP_INITMSG:
2850 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2851 break;
2852 case SCTP_DEFAULT_SEND_PARAM:
2853 retval = sctp_setsockopt_default_send_param(sk, optval,
2854 optlen);
2855 break;
2856 case SCTP_PRIMARY_ADDR:
2857 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2858 break;
2859 case SCTP_SET_PEER_PRIMARY_ADDR:
2860 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2861 break;
2862 case SCTP_NODELAY:
2863 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2864 break;
2865 case SCTP_RTOINFO:
2866 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2867 break;
2868 case SCTP_ASSOCINFO:
2869 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2870 break;
2871 case SCTP_I_WANT_MAPPED_V4_ADDR:
2872 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2873 break;
2874 case SCTP_MAXSEG:
2875 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2876 break;
2877 case SCTP_ADAPTION_LAYER:
2878 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2879 break;
2880
2881 default:
2882 retval = -ENOPROTOOPT;
2883 break;
2884 };
2885
2886 sctp_release_sock(sk);
2887
2888 out_nounlock:
2889 return retval;
2890 }
2891
2892 /* API 3.1.6 connect() - UDP Style Syntax
2893 *
2894 * An application may use the connect() call in the UDP model to initiate an
2895 * association without sending data.
2896 *
2897 * The syntax is:
2898 *
2899 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2900 *
2901 * sd: the socket descriptor to have a new association added to.
2902 *
2903 * nam: the address structure (either struct sockaddr_in or struct
2904 * sockaddr_in6 defined in RFC2553 [7]).
2905 *
2906 * len: the size of the address.
2907 */
2908 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2909 int addr_len)
2910 {
2911 int err = 0;
2912 struct sctp_af *af;
2913
2914 sctp_lock_sock(sk);
2915
2916 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2917 __FUNCTION__, sk, addr, addr_len);
2918
2919 /* Validate addr_len before calling common connect/connectx routine. */
2920 af = sctp_get_af_specific(addr->sa_family);
2921 if (!af || addr_len < af->sockaddr_len) {
2922 err = -EINVAL;
2923 } else {
2924 /* Pass correct addr len to common routine (so it knows there
2925 * is only one address being passed.
2926 */
2927 err = __sctp_connect(sk, addr, af->sockaddr_len);
2928 }
2929
2930 sctp_release_sock(sk);
2931 return err;
2932 }
2933
2934 /* FIXME: Write comments. */
2935 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2936 {
2937 return -EOPNOTSUPP; /* STUB */
2938 }
2939
2940 /* 4.1.4 accept() - TCP Style Syntax
2941 *
2942 * Applications use accept() call to remove an established SCTP
2943 * association from the accept queue of the endpoint. A new socket
2944 * descriptor will be returned from accept() to represent the newly
2945 * formed association.
2946 */
2947 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2948 {
2949 struct sctp_sock *sp;
2950 struct sctp_endpoint *ep;
2951 struct sock *newsk = NULL;
2952 struct sctp_association *asoc;
2953 long timeo;
2954 int error = 0;
2955
2956 sctp_lock_sock(sk);
2957
2958 sp = sctp_sk(sk);
2959 ep = sp->ep;
2960
2961 if (!sctp_style(sk, TCP)) {
2962 error = -EOPNOTSUPP;
2963 goto out;
2964 }
2965
2966 if (!sctp_sstate(sk, LISTENING)) {
2967 error = -EINVAL;
2968 goto out;
2969 }
2970
2971 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
2972
2973 error = sctp_wait_for_accept(sk, timeo);
2974 if (error)
2975 goto out;
2976
2977 /* We treat the list of associations on the endpoint as the accept
2978 * queue and pick the first association on the list.
2979 */
2980 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2981
2982 newsk = sp->pf->create_accept_sk(sk, asoc);
2983 if (!newsk) {
2984 error = -ENOMEM;
2985 goto out;
2986 }
2987
2988 /* Populate the fields of the newsk from the oldsk and migrate the
2989 * asoc to the newsk.
2990 */
2991 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2992
2993 out:
2994 sctp_release_sock(sk);
2995 *err = error;
2996 return newsk;
2997 }
2998
2999 /* The SCTP ioctl handler. */
3000 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3001 {
3002 return -ENOIOCTLCMD;
3003 }
3004
3005 /* This is the function which gets called during socket creation to
3006 * initialized the SCTP-specific portion of the sock.
3007 * The sock structure should already be zero-filled memory.
3008 */
3009 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3010 {
3011 struct sctp_endpoint *ep;
3012 struct sctp_sock *sp;
3013
3014 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3015
3016 sp = sctp_sk(sk);
3017
3018 /* Initialize the SCTP per socket area. */
3019 switch (sk->sk_type) {
3020 case SOCK_SEQPACKET:
3021 sp->type = SCTP_SOCKET_UDP;
3022 break;
3023 case SOCK_STREAM:
3024 sp->type = SCTP_SOCKET_TCP;
3025 break;
3026 default:
3027 return -ESOCKTNOSUPPORT;
3028 }
3029
3030 /* Initialize default send parameters. These parameters can be
3031 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3032 */
3033 sp->default_stream = 0;
3034 sp->default_ppid = 0;
3035 sp->default_flags = 0;
3036 sp->default_context = 0;
3037 sp->default_timetolive = 0;
3038
3039 /* Initialize default setup parameters. These parameters
3040 * can be modified with the SCTP_INITMSG socket option or
3041 * overridden by the SCTP_INIT CMSG.
3042 */
3043 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3044 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3045 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3046 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3047
3048 /* Initialize default RTO related parameters. These parameters can
3049 * be modified for with the SCTP_RTOINFO socket option.
3050 */
3051 sp->rtoinfo.srto_initial = sctp_rto_initial;
3052 sp->rtoinfo.srto_max = sctp_rto_max;
3053 sp->rtoinfo.srto_min = sctp_rto_min;
3054
3055 /* Initialize default association related parameters. These parameters
3056 * can be modified with the SCTP_ASSOCINFO socket option.
3057 */
3058 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3059 sp->assocparams.sasoc_number_peer_destinations = 0;
3060 sp->assocparams.sasoc_peer_rwnd = 0;
3061 sp->assocparams.sasoc_local_rwnd = 0;
3062 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3063
3064 /* Initialize default event subscriptions. By default, all the
3065 * options are off.
3066 */
3067 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3068
3069 /* Default Peer Address Parameters. These defaults can
3070 * be modified via SCTP_PEER_ADDR_PARAMS
3071 */
3072 sp->hbinterval = sctp_hb_interval;
3073 sp->pathmaxrxt = sctp_max_retrans_path;
3074 sp->pathmtu = 0; // allow default discovery
3075 sp->sackdelay = sctp_sack_timeout;
3076 sp->param_flags = SPP_HB_ENABLE |
3077 SPP_PMTUD_ENABLE |
3078 SPP_SACKDELAY_ENABLE;
3079
3080 /* If enabled no SCTP message fragmentation will be performed.
3081 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3082 */
3083 sp->disable_fragments = 0;
3084
3085 /* Enable Nagle algorithm by default. */
3086 sp->nodelay = 0;
3087
3088 /* Enable by default. */
3089 sp->v4mapped = 1;
3090
3091 /* Auto-close idle associations after the configured
3092 * number of seconds. A value of 0 disables this
3093 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3094 * for UDP-style sockets only.
3095 */
3096 sp->autoclose = 0;
3097
3098 /* User specified fragmentation limit. */
3099 sp->user_frag = 0;
3100
3101 sp->adaption_ind = 0;
3102
3103 sp->pf = sctp_get_pf_specific(sk->sk_family);
3104
3105 /* Control variables for partial data delivery. */
3106 sp->pd_mode = 0;
3107 skb_queue_head_init(&sp->pd_lobby);
3108
3109 /* Create a per socket endpoint structure. Even if we
3110 * change the data structure relationships, this may still
3111 * be useful for storing pre-connect address information.
3112 */
3113 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3114 if (!ep)
3115 return -ENOMEM;
3116
3117 sp->ep = ep;
3118 sp->hmac = NULL;
3119
3120 SCTP_DBG_OBJCNT_INC(sock);
3121 return 0;
3122 }
3123
3124 /* Cleanup any SCTP per socket resources. */
3125 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3126 {
3127 struct sctp_endpoint *ep;
3128
3129 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3130
3131 /* Release our hold on the endpoint. */
3132 ep = sctp_sk(sk)->ep;
3133 sctp_endpoint_free(ep);
3134
3135 return 0;
3136 }
3137
3138 /* API 4.1.7 shutdown() - TCP Style Syntax
3139 * int shutdown(int socket, int how);
3140 *
3141 * sd - the socket descriptor of the association to be closed.
3142 * how - Specifies the type of shutdown. The values are
3143 * as follows:
3144 * SHUT_RD
3145 * Disables further receive operations. No SCTP
3146 * protocol action is taken.
3147 * SHUT_WR
3148 * Disables further send operations, and initiates
3149 * the SCTP shutdown sequence.
3150 * SHUT_RDWR
3151 * Disables further send and receive operations
3152 * and initiates the SCTP shutdown sequence.
3153 */
3154 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3155 {
3156 struct sctp_endpoint *ep;
3157 struct sctp_association *asoc;
3158
3159 if (!sctp_style(sk, TCP))
3160 return;
3161
3162 if (how & SEND_SHUTDOWN) {
3163 ep = sctp_sk(sk)->ep;
3164 if (!list_empty(&ep->asocs)) {
3165 asoc = list_entry(ep->asocs.next,
3166 struct sctp_association, asocs);
3167 sctp_primitive_SHUTDOWN(asoc, NULL);
3168 }
3169 }
3170 }
3171
3172 /* 7.2.1 Association Status (SCTP_STATUS)
3173
3174 * Applications can retrieve current status information about an
3175 * association, including association state, peer receiver window size,
3176 * number of unacked data chunks, and number of data chunks pending
3177 * receipt. This information is read-only.
3178 */
3179 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3180 char __user *optval,
3181 int __user *optlen)
3182 {
3183 struct sctp_status status;
3184 struct sctp_association *asoc = NULL;
3185 struct sctp_transport *transport;
3186 sctp_assoc_t associd;
3187 int retval = 0;
3188
3189 if (len != sizeof(status)) {
3190 retval = -EINVAL;
3191 goto out;
3192 }
3193
3194 if (copy_from_user(&status, optval, sizeof(status))) {
3195 retval = -EFAULT;
3196 goto out;
3197 }
3198
3199 associd = status.sstat_assoc_id;
3200 asoc = sctp_id2assoc(sk, associd);
3201 if (!asoc) {
3202 retval = -EINVAL;
3203 goto out;
3204 }
3205
3206 transport = asoc->peer.primary_path;
3207
3208 status.sstat_assoc_id = sctp_assoc2id(asoc);
3209 status.sstat_state = asoc->state;
3210 status.sstat_rwnd = asoc->peer.rwnd;
3211 status.sstat_unackdata = asoc->unack_data;
3212
3213 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3214 status.sstat_instrms = asoc->c.sinit_max_instreams;
3215 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3216 status.sstat_fragmentation_point = asoc->frag_point;
3217 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3218 flip_to_n((union sctp_addr *)&status.sstat_primary.spinfo_address,
3219 &transport->ipaddr_h);
3220 /* Map ipv4 address into v4-mapped-on-v6 address. */
3221 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3222 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3223 status.sstat_primary.spinfo_state = transport->state;
3224 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3225 status.sstat_primary.spinfo_srtt = transport->srtt;
3226 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3227 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3228
3229 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3230 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3231
3232 if (put_user(len, optlen)) {
3233 retval = -EFAULT;
3234 goto out;
3235 }
3236
3237 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3238 len, status.sstat_state, status.sstat_rwnd,
3239 status.sstat_assoc_id);
3240
3241 if (copy_to_user(optval, &status, len)) {
3242 retval = -EFAULT;
3243 goto out;
3244 }
3245
3246 out:
3247 return (retval);
3248 }
3249
3250
3251 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3252 *
3253 * Applications can retrieve information about a specific peer address
3254 * of an association, including its reachability state, congestion
3255 * window, and retransmission timer values. This information is
3256 * read-only.
3257 */
3258 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3259 char __user *optval,
3260 int __user *optlen)
3261 {
3262 struct sctp_paddrinfo pinfo;
3263 struct sctp_transport *transport;
3264 int retval = 0;
3265
3266 if (len != sizeof(pinfo)) {
3267 retval = -EINVAL;
3268 goto out;
3269 }
3270
3271 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3272 retval = -EFAULT;
3273 goto out;
3274 }
3275
3276 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3277 pinfo.spinfo_assoc_id);
3278 if (!transport)
3279 return -EINVAL;
3280
3281 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3282 pinfo.spinfo_state = transport->state;
3283 pinfo.spinfo_cwnd = transport->cwnd;
3284 pinfo.spinfo_srtt = transport->srtt;
3285 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3286 pinfo.spinfo_mtu = transport->pathmtu;
3287
3288 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3289 pinfo.spinfo_state = SCTP_ACTIVE;
3290
3291 if (put_user(len, optlen)) {
3292 retval = -EFAULT;
3293 goto out;
3294 }
3295
3296 if (copy_to_user(optval, &pinfo, len)) {
3297 retval = -EFAULT;
3298 goto out;
3299 }
3300
3301 out:
3302 return (retval);
3303 }
3304
3305 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3306 *
3307 * This option is a on/off flag. If enabled no SCTP message
3308 * fragmentation will be performed. Instead if a message being sent
3309 * exceeds the current PMTU size, the message will NOT be sent and
3310 * instead a error will be indicated to the user.
3311 */
3312 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3313 char __user *optval, int __user *optlen)
3314 {
3315 int val;
3316
3317 if (len < sizeof(int))
3318 return -EINVAL;
3319
3320 len = sizeof(int);
3321 val = (sctp_sk(sk)->disable_fragments == 1);
3322 if (put_user(len, optlen))
3323 return -EFAULT;
3324 if (copy_to_user(optval, &val, len))
3325 return -EFAULT;
3326 return 0;
3327 }
3328
3329 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3330 *
3331 * This socket option is used to specify various notifications and
3332 * ancillary data the user wishes to receive.
3333 */
3334 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3335 int __user *optlen)
3336 {
3337 if (len != sizeof(struct sctp_event_subscribe))
3338 return -EINVAL;
3339 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3340 return -EFAULT;
3341 return 0;
3342 }
3343
3344 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3345 *
3346 * This socket option is applicable to the UDP-style socket only. When
3347 * set it will cause associations that are idle for more than the
3348 * specified number of seconds to automatically close. An association
3349 * being idle is defined an association that has NOT sent or received
3350 * user data. The special value of '0' indicates that no automatic
3351 * close of any associations should be performed. The option expects an
3352 * integer defining the number of seconds of idle time before an
3353 * association is closed.
3354 */
3355 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3356 {
3357 /* Applicable to UDP-style socket only */
3358 if (sctp_style(sk, TCP))
3359 return -EOPNOTSUPP;
3360 if (len != sizeof(int))
3361 return -EINVAL;
3362 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3363 return -EFAULT;
3364 return 0;
3365 }
3366
3367 /* Helper routine to branch off an association to a new socket. */
3368 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3369 struct socket **sockp)
3370 {
3371 struct sock *sk = asoc->base.sk;
3372 struct socket *sock;
3373 struct inet_sock *inetsk;
3374 int err = 0;
3375
3376 /* An association cannot be branched off from an already peeled-off
3377 * socket, nor is this supported for tcp style sockets.
3378 */
3379 if (!sctp_style(sk, UDP))
3380 return -EINVAL;
3381
3382 /* Create a new socket. */
3383 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3384 if (err < 0)
3385 return err;
3386
3387 /* Populate the fields of the newsk from the oldsk and migrate the
3388 * asoc to the newsk.
3389 */
3390 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3391
3392 /* Make peeled-off sockets more like 1-1 accepted sockets.
3393 * Set the daddr and initialize id to something more random
3394 */
3395 inetsk = inet_sk(sock->sk);
3396 inetsk->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr;
3397 inetsk->id = asoc->next_tsn ^ jiffies;
3398
3399 *sockp = sock;
3400
3401 return err;
3402 }
3403
3404 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3405 {
3406 sctp_peeloff_arg_t peeloff;
3407 struct socket *newsock;
3408 int retval = 0;
3409 struct sctp_association *asoc;
3410
3411 if (len != sizeof(sctp_peeloff_arg_t))
3412 return -EINVAL;
3413 if (copy_from_user(&peeloff, optval, len))
3414 return -EFAULT;
3415
3416 asoc = sctp_id2assoc(sk, peeloff.associd);
3417 if (!asoc) {
3418 retval = -EINVAL;
3419 goto out;
3420 }
3421
3422 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3423
3424 retval = sctp_do_peeloff(asoc, &newsock);
3425 if (retval < 0)
3426 goto out;
3427
3428 /* Map the socket to an unused fd that can be returned to the user. */
3429 retval = sock_map_fd(newsock);
3430 if (retval < 0) {
3431 sock_release(newsock);
3432 goto out;
3433 }
3434
3435 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3436 __FUNCTION__, sk, asoc, newsock->sk, retval);
3437
3438 /* Return the fd mapped to the new socket. */
3439 peeloff.sd = retval;
3440 if (copy_to_user(optval, &peeloff, len))
3441 retval = -EFAULT;
3442
3443 out:
3444 return retval;
3445 }
3446
3447 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3448 *
3449 * Applications can enable or disable heartbeats for any peer address of
3450 * an association, modify an address's heartbeat interval, force a
3451 * heartbeat to be sent immediately, and adjust the address's maximum
3452 * number of retransmissions sent before an address is considered
3453 * unreachable. The following structure is used to access and modify an
3454 * address's parameters:
3455 *
3456 * struct sctp_paddrparams {
3457 * sctp_assoc_t spp_assoc_id;
3458 * struct sockaddr_storage spp_address;
3459 * uint32_t spp_hbinterval;
3460 * uint16_t spp_pathmaxrxt;
3461 * uint32_t spp_pathmtu;
3462 * uint32_t spp_sackdelay;
3463 * uint32_t spp_flags;
3464 * };
3465 *
3466 * spp_assoc_id - (one-to-many style socket) This is filled in the
3467 * application, and identifies the association for
3468 * this query.
3469 * spp_address - This specifies which address is of interest.
3470 * spp_hbinterval - This contains the value of the heartbeat interval,
3471 * in milliseconds. If a value of zero
3472 * is present in this field then no changes are to
3473 * be made to this parameter.
3474 * spp_pathmaxrxt - This contains the maximum number of
3475 * retransmissions before this address shall be
3476 * considered unreachable. If a value of zero
3477 * is present in this field then no changes are to
3478 * be made to this parameter.
3479 * spp_pathmtu - When Path MTU discovery is disabled the value
3480 * specified here will be the "fixed" path mtu.
3481 * Note that if the spp_address field is empty
3482 * then all associations on this address will
3483 * have this fixed path mtu set upon them.
3484 *
3485 * spp_sackdelay - When delayed sack is enabled, this value specifies
3486 * the number of milliseconds that sacks will be delayed
3487 * for. This value will apply to all addresses of an
3488 * association if the spp_address field is empty. Note
3489 * also, that if delayed sack is enabled and this
3490 * value is set to 0, no change is made to the last
3491 * recorded delayed sack timer value.
3492 *
3493 * spp_flags - These flags are used to control various features
3494 * on an association. The flag field may contain
3495 * zero or more of the following options.
3496 *
3497 * SPP_HB_ENABLE - Enable heartbeats on the
3498 * specified address. Note that if the address
3499 * field is empty all addresses for the association
3500 * have heartbeats enabled upon them.
3501 *
3502 * SPP_HB_DISABLE - Disable heartbeats on the
3503 * speicifed address. Note that if the address
3504 * field is empty all addresses for the association
3505 * will have their heartbeats disabled. Note also
3506 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
3507 * mutually exclusive, only one of these two should
3508 * be specified. Enabling both fields will have
3509 * undetermined results.
3510 *
3511 * SPP_HB_DEMAND - Request a user initiated heartbeat
3512 * to be made immediately.
3513 *
3514 * SPP_PMTUD_ENABLE - This field will enable PMTU
3515 * discovery upon the specified address. Note that
3516 * if the address feild is empty then all addresses
3517 * on the association are effected.
3518 *
3519 * SPP_PMTUD_DISABLE - This field will disable PMTU
3520 * discovery upon the specified address. Note that
3521 * if the address feild is empty then all addresses
3522 * on the association are effected. Not also that
3523 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3524 * exclusive. Enabling both will have undetermined
3525 * results.
3526 *
3527 * SPP_SACKDELAY_ENABLE - Setting this flag turns
3528 * on delayed sack. The time specified in spp_sackdelay
3529 * is used to specify the sack delay for this address. Note
3530 * that if spp_address is empty then all addresses will
3531 * enable delayed sack and take on the sack delay
3532 * value specified in spp_sackdelay.
3533 * SPP_SACKDELAY_DISABLE - Setting this flag turns
3534 * off delayed sack. If the spp_address field is blank then
3535 * delayed sack is disabled for the entire association. Note
3536 * also that this field is mutually exclusive to
3537 * SPP_SACKDELAY_ENABLE, setting both will have undefined
3538 * results.
3539 */
3540 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3541 char __user *optval, int __user *optlen)
3542 {
3543 struct sctp_paddrparams params;
3544 struct sctp_transport *trans = NULL;
3545 struct sctp_association *asoc = NULL;
3546 struct sctp_sock *sp = sctp_sk(sk);
3547
3548 if (len != sizeof(struct sctp_paddrparams))
3549 return -EINVAL;
3550
3551 if (copy_from_user(&params, optval, len))
3552 return -EFAULT;
3553
3554 /* If an address other than INADDR_ANY is specified, and
3555 * no transport is found, then the request is invalid.
3556 */
3557 if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3558 trans = sctp_addr_id2transport(sk, &params.spp_address,
3559 params.spp_assoc_id);
3560 if (!trans) {
3561 SCTP_DEBUG_PRINTK("Failed no transport\n");
3562 return -EINVAL;
3563 }
3564 }
3565
3566 /* Get association, if assoc_id != 0 and the socket is a one
3567 * to many style socket, and an association was not found, then
3568 * the id was invalid.
3569 */
3570 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3571 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3572 SCTP_DEBUG_PRINTK("Failed no association\n");
3573 return -EINVAL;
3574 }
3575
3576 if (trans) {
3577 /* Fetch transport values. */
3578 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3579 params.spp_pathmtu = trans->pathmtu;
3580 params.spp_pathmaxrxt = trans->pathmaxrxt;
3581 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
3582
3583 /*draft-11 doesn't say what to return in spp_flags*/
3584 params.spp_flags = trans->param_flags;
3585 } else if (asoc) {
3586 /* Fetch association values. */
3587 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3588 params.spp_pathmtu = asoc->pathmtu;
3589 params.spp_pathmaxrxt = asoc->pathmaxrxt;
3590 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
3591
3592 /*draft-11 doesn't say what to return in spp_flags*/
3593 params.spp_flags = asoc->param_flags;
3594 } else {
3595 /* Fetch socket values. */
3596 params.spp_hbinterval = sp->hbinterval;
3597 params.spp_pathmtu = sp->pathmtu;
3598 params.spp_sackdelay = sp->sackdelay;
3599 params.spp_pathmaxrxt = sp->pathmaxrxt;
3600
3601 /*draft-11 doesn't say what to return in spp_flags*/
3602 params.spp_flags = sp->param_flags;
3603 }
3604
3605 if (copy_to_user(optval, &params, len))
3606 return -EFAULT;
3607
3608 if (put_user(len, optlen))
3609 return -EFAULT;
3610
3611 return 0;
3612 }
3613
3614 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3615 *
3616 * This options will get or set the delayed ack timer. The time is set
3617 * in milliseconds. If the assoc_id is 0, then this sets or gets the
3618 * endpoints default delayed ack timer value. If the assoc_id field is
3619 * non-zero, then the set or get effects the specified association.
3620 *
3621 * struct sctp_assoc_value {
3622 * sctp_assoc_t assoc_id;
3623 * uint32_t assoc_value;
3624 * };
3625 *
3626 * assoc_id - This parameter, indicates which association the
3627 * user is preforming an action upon. Note that if
3628 * this field's value is zero then the endpoints
3629 * default value is changed (effecting future
3630 * associations only).
3631 *
3632 * assoc_value - This parameter contains the number of milliseconds
3633 * that the user is requesting the delayed ACK timer
3634 * be set to. Note that this value is defined in
3635 * the standard to be between 200 and 500 milliseconds.
3636 *
3637 * Note: a value of zero will leave the value alone,
3638 * but disable SACK delay. A non-zero value will also
3639 * enable SACK delay.
3640 */
3641 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3642 char __user *optval,
3643 int __user *optlen)
3644 {
3645 struct sctp_assoc_value params;
3646 struct sctp_association *asoc = NULL;
3647 struct sctp_sock *sp = sctp_sk(sk);
3648
3649 if (len != sizeof(struct sctp_assoc_value))
3650 return - EINVAL;
3651
3652 if (copy_from_user(&params, optval, len))
3653 return -EFAULT;
3654
3655 /* Get association, if assoc_id != 0 and the socket is a one
3656 * to many style socket, and an association was not found, then
3657 * the id was invalid.
3658 */
3659 asoc = sctp_id2assoc(sk, params.assoc_id);
3660 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3661 return -EINVAL;
3662
3663 if (asoc) {
3664 /* Fetch association values. */
3665 if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3666 params.assoc_value = jiffies_to_msecs(
3667 asoc->sackdelay);
3668 else
3669 params.assoc_value = 0;
3670 } else {
3671 /* Fetch socket values. */
3672 if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3673 params.assoc_value = sp->sackdelay;
3674 else
3675 params.assoc_value = 0;
3676 }
3677
3678 if (copy_to_user(optval, &params, len))
3679 return -EFAULT;
3680
3681 if (put_user(len, optlen))
3682 return -EFAULT;
3683
3684 return 0;
3685 }
3686
3687 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3688 *
3689 * Applications can specify protocol parameters for the default association
3690 * initialization. The option name argument to setsockopt() and getsockopt()
3691 * is SCTP_INITMSG.
3692 *
3693 * Setting initialization parameters is effective only on an unconnected
3694 * socket (for UDP-style sockets only future associations are effected
3695 * by the change). With TCP-style sockets, this option is inherited by
3696 * sockets derived from a listener socket.
3697 */
3698 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3699 {
3700 if (len != sizeof(struct sctp_initmsg))
3701 return -EINVAL;
3702 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3703 return -EFAULT;
3704 return 0;
3705 }
3706
3707 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3708 char __user *optval,
3709 int __user *optlen)
3710 {
3711 sctp_assoc_t id;
3712 struct sctp_association *asoc;
3713 struct list_head *pos;
3714 int cnt = 0;
3715
3716 if (len != sizeof(sctp_assoc_t))
3717 return -EINVAL;
3718
3719 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3720 return -EFAULT;
3721
3722 /* For UDP-style sockets, id specifies the association to query. */
3723 asoc = sctp_id2assoc(sk, id);
3724 if (!asoc)
3725 return -EINVAL;
3726
3727 list_for_each(pos, &asoc->peer.transport_addr_list) {
3728 cnt ++;
3729 }
3730
3731 return cnt;
3732 }
3733
3734 /*
3735 * Old API for getting list of peer addresses. Does not work for 32-bit
3736 * programs running on a 64-bit kernel
3737 */
3738 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3739 char __user *optval,
3740 int __user *optlen)
3741 {
3742 struct sctp_association *asoc;
3743 struct list_head *pos;
3744 int cnt = 0;
3745 struct sctp_getaddrs_old getaddrs;
3746 struct sctp_transport *from;
3747 void __user *to;
3748 union sctp_addr temp;
3749 struct sctp_sock *sp = sctp_sk(sk);
3750 int addrlen;
3751
3752 if (len != sizeof(struct sctp_getaddrs_old))
3753 return -EINVAL;
3754
3755 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3756 return -EFAULT;
3757
3758 if (getaddrs.addr_num <= 0) return -EINVAL;
3759
3760 /* For UDP-style sockets, id specifies the association to query. */
3761 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3762 if (!asoc)
3763 return -EINVAL;
3764
3765 to = (void __user *)getaddrs.addrs;
3766 list_for_each(pos, &asoc->peer.transport_addr_list) {
3767 from = list_entry(pos, struct sctp_transport, transports);
3768 memcpy(&temp, &from->ipaddr_h, sizeof(temp));
3769 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3770 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3771 temp.v4.sin_port = htons(temp.v4.sin_port);
3772 if (copy_to_user(to, &temp, addrlen))
3773 return -EFAULT;
3774 to += addrlen ;
3775 cnt ++;
3776 if (cnt >= getaddrs.addr_num) break;
3777 }
3778 getaddrs.addr_num = cnt;
3779 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3780 return -EFAULT;
3781
3782 return 0;
3783 }
3784
3785 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3786 char __user *optval, int __user *optlen)
3787 {
3788 struct sctp_association *asoc;
3789 struct list_head *pos;
3790 int cnt = 0;
3791 struct sctp_getaddrs getaddrs;
3792 struct sctp_transport *from;
3793 void __user *to;
3794 union sctp_addr temp;
3795 struct sctp_sock *sp = sctp_sk(sk);
3796 int addrlen;
3797 size_t space_left;
3798 int bytes_copied;
3799
3800 if (len < sizeof(struct sctp_getaddrs))
3801 return -EINVAL;
3802
3803 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3804 return -EFAULT;
3805
3806 /* For UDP-style sockets, id specifies the association to query. */
3807 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3808 if (!asoc)
3809 return -EINVAL;
3810
3811 to = optval + offsetof(struct sctp_getaddrs,addrs);
3812 space_left = len - sizeof(struct sctp_getaddrs) -
3813 offsetof(struct sctp_getaddrs,addrs);
3814
3815 list_for_each(pos, &asoc->peer.transport_addr_list) {
3816 from = list_entry(pos, struct sctp_transport, transports);
3817 memcpy(&temp, &from->ipaddr_h, sizeof(temp));
3818 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3819 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3820 if(space_left < addrlen)
3821 return -ENOMEM;
3822 temp.v4.sin_port = htons(temp.v4.sin_port);
3823 if (copy_to_user(to, &temp, addrlen))
3824 return -EFAULT;
3825 to += addrlen;
3826 cnt++;
3827 space_left -= addrlen;
3828 }
3829
3830 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3831 return -EFAULT;
3832 bytes_copied = ((char __user *)to) - optval;
3833 if (put_user(bytes_copied, optlen))
3834 return -EFAULT;
3835
3836 return 0;
3837 }
3838
3839 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3840 char __user *optval,
3841 int __user *optlen)
3842 {
3843 sctp_assoc_t id;
3844 struct sctp_bind_addr *bp;
3845 struct sctp_association *asoc;
3846 struct list_head *pos;
3847 struct sctp_sockaddr_entry *addr;
3848 rwlock_t *addr_lock;
3849 unsigned long flags;
3850 int cnt = 0;
3851
3852 if (len != sizeof(sctp_assoc_t))
3853 return -EINVAL;
3854
3855 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3856 return -EFAULT;
3857
3858 /*
3859 * For UDP-style sockets, id specifies the association to query.
3860 * If the id field is set to the value '0' then the locally bound
3861 * addresses are returned without regard to any particular
3862 * association.
3863 */
3864 if (0 == id) {
3865 bp = &sctp_sk(sk)->ep->base.bind_addr;
3866 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3867 } else {
3868 asoc = sctp_id2assoc(sk, id);
3869 if (!asoc)
3870 return -EINVAL;
3871 bp = &asoc->base.bind_addr;
3872 addr_lock = &asoc->base.addr_lock;
3873 }
3874
3875 sctp_read_lock(addr_lock);
3876
3877 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3878 * addresses from the global local address list.
3879 */
3880 if (sctp_list_single_entry(&bp->address_list)) {
3881 addr = list_entry(bp->address_list.next,
3882 struct sctp_sockaddr_entry, list);
3883 if (sctp_is_any(&addr->a_h)) {
3884 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3885 list_for_each(pos, &sctp_local_addr_list) {
3886 addr = list_entry(pos,
3887 struct sctp_sockaddr_entry,
3888 list);
3889 if ((PF_INET == sk->sk_family) &&
3890 (AF_INET6 == addr->a_h.sa.sa_family))
3891 continue;
3892 cnt++;
3893 }
3894 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3895 flags);
3896 } else {
3897 cnt = 1;
3898 }
3899 goto done;
3900 }
3901
3902 list_for_each(pos, &bp->address_list) {
3903 cnt ++;
3904 }
3905
3906 done:
3907 sctp_read_unlock(addr_lock);
3908 return cnt;
3909 }
3910
3911 /* Helper function that copies local addresses to user and returns the number
3912 * of addresses copied.
3913 */
3914 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3915 void __user *to)
3916 {
3917 struct list_head *pos;
3918 struct sctp_sockaddr_entry *addr;
3919 unsigned long flags;
3920 union sctp_addr temp;
3921 int cnt = 0;
3922 int addrlen;
3923
3924 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3925 list_for_each(pos, &sctp_local_addr_list) {
3926 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3927 if ((PF_INET == sk->sk_family) &&
3928 (AF_INET6 == addr->a_h.sa.sa_family))
3929 continue;
3930 memcpy(&temp, &addr->a_h, sizeof(temp));
3931 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3932 &temp);
3933 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3934 temp.v4.sin_port = htons(port);
3935 if (copy_to_user(to, &temp, addrlen)) {
3936 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3937 flags);
3938 return -EFAULT;
3939 }
3940 to += addrlen;
3941 cnt ++;
3942 if (cnt >= max_addrs) break;
3943 }
3944 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3945
3946 return cnt;
3947 }
3948
3949 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3950 void __user **to, size_t space_left)
3951 {
3952 struct list_head *pos;
3953 struct sctp_sockaddr_entry *addr;
3954 unsigned long flags;
3955 union sctp_addr temp;
3956 int cnt = 0;
3957 int addrlen;
3958
3959 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3960 list_for_each(pos, &sctp_local_addr_list) {
3961 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3962 if ((PF_INET == sk->sk_family) &&
3963 (AF_INET6 == addr->a_h.sa.sa_family))
3964 continue;
3965 memcpy(&temp, &addr->a_h, sizeof(temp));
3966 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3967 &temp);
3968 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3969 if(space_left<addrlen)
3970 return -ENOMEM;
3971 temp.v4.sin_port = htons(port);
3972 if (copy_to_user(*to, &temp, addrlen)) {
3973 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3974 flags);
3975 return -EFAULT;
3976 }
3977 *to += addrlen;
3978 cnt ++;
3979 space_left -= addrlen;
3980 }
3981 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3982
3983 return cnt;
3984 }
3985
3986 /* Old API for getting list of local addresses. Does not work for 32-bit
3987 * programs running on a 64-bit kernel
3988 */
3989 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3990 char __user *optval, int __user *optlen)
3991 {
3992 struct sctp_bind_addr *bp;
3993 struct sctp_association *asoc;
3994 struct list_head *pos;
3995 int cnt = 0;
3996 struct sctp_getaddrs_old getaddrs;
3997 struct sctp_sockaddr_entry *addr;
3998 void __user *to;
3999 union sctp_addr temp;
4000 struct sctp_sock *sp = sctp_sk(sk);
4001 int addrlen;
4002 rwlock_t *addr_lock;
4003 int err = 0;
4004
4005 if (len != sizeof(struct sctp_getaddrs_old))
4006 return -EINVAL;
4007
4008 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
4009 return -EFAULT;
4010
4011 if (getaddrs.addr_num <= 0) return -EINVAL;
4012 /*
4013 * For UDP-style sockets, id specifies the association to query.
4014 * If the id field is set to the value '0' then the locally bound
4015 * addresses are returned without regard to any particular
4016 * association.
4017 */
4018 if (0 == getaddrs.assoc_id) {
4019 bp = &sctp_sk(sk)->ep->base.bind_addr;
4020 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4021 } else {
4022 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4023 if (!asoc)
4024 return -EINVAL;
4025 bp = &asoc->base.bind_addr;
4026 addr_lock = &asoc->base.addr_lock;
4027 }
4028
4029 to = getaddrs.addrs;
4030
4031 sctp_read_lock(addr_lock);
4032
4033 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4034 * addresses from the global local address list.
4035 */
4036 if (sctp_list_single_entry(&bp->address_list)) {
4037 addr = list_entry(bp->address_list.next,
4038 struct sctp_sockaddr_entry, list);
4039 if (sctp_is_any(&addr->a_h)) {
4040 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
4041 getaddrs.addr_num,
4042 to);
4043 if (cnt < 0) {
4044 err = cnt;
4045 goto unlock;
4046 }
4047 goto copy_getaddrs;
4048 }
4049 }
4050
4051 list_for_each(pos, &bp->address_list) {
4052 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4053 memcpy(&temp, &addr->a_h, sizeof(temp));
4054 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4055 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4056 temp.v4.sin_port = htons(temp.v4.sin_port);
4057 if (copy_to_user(to, &temp, addrlen)) {
4058 err = -EFAULT;
4059 goto unlock;
4060 }
4061 to += addrlen;
4062 cnt ++;
4063 if (cnt >= getaddrs.addr_num) break;
4064 }
4065
4066 copy_getaddrs:
4067 getaddrs.addr_num = cnt;
4068 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4069 err = -EFAULT;
4070
4071 unlock:
4072 sctp_read_unlock(addr_lock);
4073 return err;
4074 }
4075
4076 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4077 char __user *optval, int __user *optlen)
4078 {
4079 struct sctp_bind_addr *bp;
4080 struct sctp_association *asoc;
4081 struct list_head *pos;
4082 int cnt = 0;
4083 struct sctp_getaddrs getaddrs;
4084 struct sctp_sockaddr_entry *addr;
4085 void __user *to;
4086 union sctp_addr temp;
4087 struct sctp_sock *sp = sctp_sk(sk);
4088 int addrlen;
4089 rwlock_t *addr_lock;
4090 int err = 0;
4091 size_t space_left;
4092 int bytes_copied;
4093
4094 if (len <= sizeof(struct sctp_getaddrs))
4095 return -EINVAL;
4096
4097 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4098 return -EFAULT;
4099
4100 /*
4101 * For UDP-style sockets, id specifies the association to query.
4102 * If the id field is set to the value '0' then the locally bound
4103 * addresses are returned without regard to any particular
4104 * association.
4105 */
4106 if (0 == getaddrs.assoc_id) {
4107 bp = &sctp_sk(sk)->ep->base.bind_addr;
4108 addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4109 } else {
4110 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4111 if (!asoc)
4112 return -EINVAL;
4113 bp = &asoc->base.bind_addr;
4114 addr_lock = &asoc->base.addr_lock;
4115 }
4116
4117 to = optval + offsetof(struct sctp_getaddrs,addrs);
4118 space_left = len - sizeof(struct sctp_getaddrs) -
4119 offsetof(struct sctp_getaddrs,addrs);
4120
4121 sctp_read_lock(addr_lock);
4122
4123 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4124 * addresses from the global local address list.
4125 */
4126 if (sctp_list_single_entry(&bp->address_list)) {
4127 addr = list_entry(bp->address_list.next,
4128 struct sctp_sockaddr_entry, list);
4129 if (sctp_is_any(&addr->a_h)) {
4130 cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4131 &to, space_left);
4132 if (cnt < 0) {
4133 err = cnt;
4134 goto unlock;
4135 }
4136 goto copy_getaddrs;
4137 }
4138 }
4139
4140 list_for_each(pos, &bp->address_list) {
4141 addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4142 memcpy(&temp, &addr->a_h, sizeof(temp));
4143 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4144 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4145 if(space_left < addrlen)
4146 return -ENOMEM; /*fixme: right error?*/
4147 temp.v4.sin_port = htons(temp.v4.sin_port);
4148 if (copy_to_user(to, &temp, addrlen)) {
4149 err = -EFAULT;
4150 goto unlock;
4151 }
4152 to += addrlen;
4153 cnt ++;
4154 space_left -= addrlen;
4155 }
4156
4157 copy_getaddrs:
4158 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4159 return -EFAULT;
4160 bytes_copied = ((char __user *)to) - optval;
4161 if (put_user(bytes_copied, optlen))
4162 return -EFAULT;
4163
4164 unlock:
4165 sctp_read_unlock(addr_lock);
4166 return err;
4167 }
4168
4169 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4170 *
4171 * Requests that the local SCTP stack use the enclosed peer address as
4172 * the association primary. The enclosed address must be one of the
4173 * association peer's addresses.
4174 */
4175 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4176 char __user *optval, int __user *optlen)
4177 {
4178 struct sctp_prim prim;
4179 struct sctp_association *asoc;
4180 struct sctp_sock *sp = sctp_sk(sk);
4181
4182 if (len != sizeof(struct sctp_prim))
4183 return -EINVAL;
4184
4185 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4186 return -EFAULT;
4187
4188 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4189 if (!asoc)
4190 return -EINVAL;
4191
4192 if (!asoc->peer.primary_path)
4193 return -ENOTCONN;
4194
4195 flip_to_n((union sctp_addr *)&prim.ssp_addr,
4196 &asoc->peer.primary_path->ipaddr_h);
4197
4198 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4199 (union sctp_addr *)&prim.ssp_addr);
4200
4201 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4202 return -EFAULT;
4203
4204 return 0;
4205 }
4206
4207 /*
4208 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4209 *
4210 * Requests that the local endpoint set the specified Adaption Layer
4211 * Indication parameter for all future INIT and INIT-ACK exchanges.
4212 */
4213 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4214 char __user *optval, int __user *optlen)
4215 {
4216 struct sctp_setadaption adaption;
4217
4218 if (len != sizeof(struct sctp_setadaption))
4219 return -EINVAL;
4220
4221 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4222 if (copy_to_user(optval, &adaption, len))
4223 return -EFAULT;
4224
4225 return 0;
4226 }
4227
4228 /*
4229 *
4230 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4231 *
4232 * Applications that wish to use the sendto() system call may wish to
4233 * specify a default set of parameters that would normally be supplied
4234 * through the inclusion of ancillary data. This socket option allows
4235 * such an application to set the default sctp_sndrcvinfo structure.
4236
4237
4238 * The application that wishes to use this socket option simply passes
4239 * in to this call the sctp_sndrcvinfo structure defined in Section
4240 * 5.2.2) The input parameters accepted by this call include
4241 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4242 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4243 * to this call if the caller is using the UDP model.
4244 *
4245 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4246 */
4247 static int sctp_getsockopt_default_send_param(struct sock *sk,
4248 int len, char __user *optval,
4249 int __user *optlen)
4250 {
4251 struct sctp_sndrcvinfo info;
4252 struct sctp_association *asoc;
4253 struct sctp_sock *sp = sctp_sk(sk);
4254
4255 if (len != sizeof(struct sctp_sndrcvinfo))
4256 return -EINVAL;
4257 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4258 return -EFAULT;
4259
4260 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4261 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4262 return -EINVAL;
4263
4264 if (asoc) {
4265 info.sinfo_stream = asoc->default_stream;
4266 info.sinfo_flags = asoc->default_flags;
4267 info.sinfo_ppid = asoc->default_ppid;
4268 info.sinfo_context = asoc->default_context;
4269 info.sinfo_timetolive = asoc->default_timetolive;
4270 } else {
4271 info.sinfo_stream = sp->default_stream;
4272 info.sinfo_flags = sp->default_flags;
4273 info.sinfo_ppid = sp->default_ppid;
4274 info.sinfo_context = sp->default_context;
4275 info.sinfo_timetolive = sp->default_timetolive;
4276 }
4277
4278 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4279 return -EFAULT;
4280
4281 return 0;
4282 }
4283
4284 /*
4285 *
4286 * 7.1.5 SCTP_NODELAY
4287 *
4288 * Turn on/off any Nagle-like algorithm. This means that packets are
4289 * generally sent as soon as possible and no unnecessary delays are
4290 * introduced, at the cost of more packets in the network. Expects an
4291 * integer boolean flag.
4292 */
4293
4294 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4295 char __user *optval, int __user *optlen)
4296 {
4297 int val;
4298
4299 if (len < sizeof(int))
4300 return -EINVAL;
4301
4302 len = sizeof(int);
4303 val = (sctp_sk(sk)->nodelay == 1);
4304 if (put_user(len, optlen))
4305 return -EFAULT;
4306 if (copy_to_user(optval, &val, len))
4307 return -EFAULT;
4308 return 0;
4309 }
4310
4311 /*
4312 *
4313 * 7.1.1 SCTP_RTOINFO
4314 *
4315 * The protocol parameters used to initialize and bound retransmission
4316 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4317 * and modify these parameters.
4318 * All parameters are time values, in milliseconds. A value of 0, when
4319 * modifying the parameters, indicates that the current value should not
4320 * be changed.
4321 *
4322 */
4323 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4324 char __user *optval,
4325 int __user *optlen) {
4326 struct sctp_rtoinfo rtoinfo;
4327 struct sctp_association *asoc;
4328
4329 if (len != sizeof (struct sctp_rtoinfo))
4330 return -EINVAL;
4331
4332 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4333 return -EFAULT;
4334
4335 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4336
4337 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4338 return -EINVAL;
4339
4340 /* Values corresponding to the specific association. */
4341 if (asoc) {
4342 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4343 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4344 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4345 } else {
4346 /* Values corresponding to the endpoint. */
4347 struct sctp_sock *sp = sctp_sk(sk);
4348
4349 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4350 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4351 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4352 }
4353
4354 if (put_user(len, optlen))
4355 return -EFAULT;
4356
4357 if (copy_to_user(optval, &rtoinfo, len))
4358 return -EFAULT;
4359
4360 return 0;
4361 }
4362
4363 /*
4364 *
4365 * 7.1.2 SCTP_ASSOCINFO
4366 *
4367 * This option is used to tune the the maximum retransmission attempts
4368 * of the association.
4369 * Returns an error if the new association retransmission value is
4370 * greater than the sum of the retransmission value of the peer.
4371 * See [SCTP] for more information.
4372 *
4373 */
4374 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4375 char __user *optval,
4376 int __user *optlen)
4377 {
4378
4379 struct sctp_assocparams assocparams;
4380 struct sctp_association *asoc;
4381 struct list_head *pos;
4382 int cnt = 0;
4383
4384 if (len != sizeof (struct sctp_assocparams))
4385 return -EINVAL;
4386
4387 if (copy_from_user(&assocparams, optval,
4388 sizeof (struct sctp_assocparams)))
4389 return -EFAULT;
4390
4391 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4392
4393 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4394 return -EINVAL;
4395
4396 /* Values correspoinding to the specific association */
4397 if (asoc) {
4398 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4399 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4400 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4401 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4402 * 1000) +
4403 (asoc->cookie_life.tv_usec
4404 / 1000);
4405
4406 list_for_each(pos, &asoc->peer.transport_addr_list) {
4407 cnt ++;
4408 }
4409
4410 assocparams.sasoc_number_peer_destinations = cnt;
4411 } else {
4412 /* Values corresponding to the endpoint */
4413 struct sctp_sock *sp = sctp_sk(sk);
4414
4415 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4416 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4417 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4418 assocparams.sasoc_cookie_life =
4419 sp->assocparams.sasoc_cookie_life;
4420 assocparams.sasoc_number_peer_destinations =
4421 sp->assocparams.
4422 sasoc_number_peer_destinations;
4423 }
4424
4425 if (put_user(len, optlen))
4426 return -EFAULT;
4427
4428 if (copy_to_user(optval, &assocparams, len))
4429 return -EFAULT;
4430
4431 return 0;
4432 }
4433
4434 /*
4435 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4436 *
4437 * This socket option is a boolean flag which turns on or off mapped V4
4438 * addresses. If this option is turned on and the socket is type
4439 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4440 * If this option is turned off, then no mapping will be done of V4
4441 * addresses and a user will receive both PF_INET6 and PF_INET type
4442 * addresses on the socket.
4443 */
4444 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4445 char __user *optval, int __user *optlen)
4446 {
4447 int val;
4448 struct sctp_sock *sp = sctp_sk(sk);
4449
4450 if (len < sizeof(int))
4451 return -EINVAL;
4452
4453 len = sizeof(int);
4454 val = sp->v4mapped;
4455 if (put_user(len, optlen))
4456 return -EFAULT;
4457 if (copy_to_user(optval, &val, len))
4458 return -EFAULT;
4459
4460 return 0;
4461 }
4462
4463 /*
4464 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4465 *
4466 * This socket option specifies the maximum size to put in any outgoing
4467 * SCTP chunk. If a message is larger than this size it will be
4468 * fragmented by SCTP into the specified size. Note that the underlying
4469 * SCTP implementation may fragment into smaller sized chunks when the
4470 * PMTU of the underlying association is smaller than the value set by
4471 * the user.
4472 */
4473 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4474 char __user *optval, int __user *optlen)
4475 {
4476 int val;
4477
4478 if (len < sizeof(int))
4479 return -EINVAL;
4480
4481 len = sizeof(int);
4482
4483 val = sctp_sk(sk)->user_frag;
4484 if (put_user(len, optlen))
4485 return -EFAULT;
4486 if (copy_to_user(optval, &val, len))
4487 return -EFAULT;
4488
4489 return 0;
4490 }
4491
4492 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4493 char __user *optval, int __user *optlen)
4494 {
4495 int retval = 0;
4496 int len;
4497
4498 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4499 sk, optname);
4500
4501 /* I can hardly begin to describe how wrong this is. This is
4502 * so broken as to be worse than useless. The API draft
4503 * REALLY is NOT helpful here... I am not convinced that the
4504 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4505 * are at all well-founded.
4506 */
4507 if (level != SOL_SCTP) {
4508 struct sctp_af *af = sctp_sk(sk)->pf->af;
4509
4510 retval = af->getsockopt(sk, level, optname, optval, optlen);
4511 return retval;
4512 }
4513
4514 if (get_user(len, optlen))
4515 return -EFAULT;
4516
4517 sctp_lock_sock(sk);
4518
4519 switch (optname) {
4520 case SCTP_STATUS:
4521 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4522 break;
4523 case SCTP_DISABLE_FRAGMENTS:
4524 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4525 optlen);
4526 break;
4527 case SCTP_EVENTS:
4528 retval = sctp_getsockopt_events(sk, len, optval, optlen);
4529 break;
4530 case SCTP_AUTOCLOSE:
4531 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4532 break;
4533 case SCTP_SOCKOPT_PEELOFF:
4534 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4535 break;
4536 case SCTP_PEER_ADDR_PARAMS:
4537 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4538 optlen);
4539 break;
4540 case SCTP_DELAYED_ACK_TIME:
4541 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4542 optlen);
4543 break;
4544 case SCTP_INITMSG:
4545 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4546 break;
4547 case SCTP_GET_PEER_ADDRS_NUM_OLD:
4548 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4549 optlen);
4550 break;
4551 case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4552 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4553 optlen);
4554 break;
4555 case SCTP_GET_PEER_ADDRS_OLD:
4556 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4557 optlen);
4558 break;
4559 case SCTP_GET_LOCAL_ADDRS_OLD:
4560 retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4561 optlen);
4562 break;
4563 case SCTP_GET_PEER_ADDRS:
4564 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4565 optlen);
4566 break;
4567 case SCTP_GET_LOCAL_ADDRS:
4568 retval = sctp_getsockopt_local_addrs(sk, len, optval,
4569 optlen);
4570 break;
4571 case SCTP_DEFAULT_SEND_PARAM:
4572 retval = sctp_getsockopt_default_send_param(sk, len,
4573 optval, optlen);
4574 break;
4575 case SCTP_PRIMARY_ADDR:
4576 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4577 break;
4578 case SCTP_NODELAY:
4579 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4580 break;
4581 case SCTP_RTOINFO:
4582 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4583 break;
4584 case SCTP_ASSOCINFO:
4585 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4586 break;
4587 case SCTP_I_WANT_MAPPED_V4_ADDR:
4588 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4589 break;
4590 case SCTP_MAXSEG:
4591 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4592 break;
4593 case SCTP_GET_PEER_ADDR_INFO:
4594 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4595 optlen);
4596 break;
4597 case SCTP_ADAPTION_LAYER:
4598 retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4599 optlen);
4600 break;
4601 default:
4602 retval = -ENOPROTOOPT;
4603 break;
4604 };
4605
4606 sctp_release_sock(sk);
4607 return retval;
4608 }
4609
4610 static void sctp_hash(struct sock *sk)
4611 {
4612 /* STUB */
4613 }
4614
4615 static void sctp_unhash(struct sock *sk)
4616 {
4617 /* STUB */
4618 }
4619
4620 /* Check if port is acceptable. Possibly find first available port.
4621 *
4622 * The port hash table (contained in the 'global' SCTP protocol storage
4623 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4624 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4625 * list (the list number is the port number hashed out, so as you
4626 * would expect from a hash function, all the ports in a given list have
4627 * such a number that hashes out to the same list number; you were
4628 * expecting that, right?); so each list has a set of ports, with a
4629 * link to the socket (struct sock) that uses it, the port number and
4630 * a fastreuse flag (FIXME: NPI ipg).
4631 */
4632 static struct sctp_bind_bucket *sctp_bucket_create(
4633 struct sctp_bind_hashbucket *head, unsigned short snum);
4634
4635 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4636 {
4637 struct sctp_bind_hashbucket *head; /* hash list */
4638 struct sctp_bind_bucket *pp; /* hash list port iterator */
4639 unsigned short snum;
4640 int ret;
4641
4642 snum = ntohs(addr->v4.sin_port);
4643
4644 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4645 sctp_local_bh_disable();
4646
4647 if (snum == 0) {
4648 /* Search for an available port.
4649 *
4650 * 'sctp_port_rover' was the last port assigned, so
4651 * we start to search from 'sctp_port_rover +
4652 * 1'. What we do is first check if port 'rover' is
4653 * already in the hash table; if not, we use that; if
4654 * it is, we try next.
4655 */
4656 int low = sysctl_local_port_range[0];
4657 int high = sysctl_local_port_range[1];
4658 int remaining = (high - low) + 1;
4659 int rover;
4660 int index;
4661
4662 sctp_spin_lock(&sctp_port_alloc_lock);
4663 rover = sctp_port_rover;
4664 do {
4665 rover++;
4666 if ((rover < low) || (rover > high))
4667 rover = low;
4668 index = sctp_phashfn(rover);
4669 head = &sctp_port_hashtable[index];
4670 sctp_spin_lock(&head->lock);
4671 for (pp = head->chain; pp; pp = pp->next)
4672 if (pp->port == rover)
4673 goto next;
4674 break;
4675 next:
4676 sctp_spin_unlock(&head->lock);
4677 } while (--remaining > 0);
4678 sctp_port_rover = rover;
4679 sctp_spin_unlock(&sctp_port_alloc_lock);
4680
4681 /* Exhausted local port range during search? */
4682 ret = 1;
4683 if (remaining <= 0)
4684 goto fail;
4685
4686 /* OK, here is the one we will use. HEAD (the port
4687 * hash table list entry) is non-NULL and we hold it's
4688 * mutex.
4689 */
4690 snum = rover;
4691 } else {
4692 /* We are given an specific port number; we verify
4693 * that it is not being used. If it is used, we will
4694 * exahust the search in the hash list corresponding
4695 * to the port number (snum) - we detect that with the
4696 * port iterator, pp being NULL.
4697 */
4698 head = &sctp_port_hashtable[sctp_phashfn(snum)];
4699 sctp_spin_lock(&head->lock);
4700 for (pp = head->chain; pp; pp = pp->next) {
4701 if (pp->port == snum)
4702 goto pp_found;
4703 }
4704 }
4705 pp = NULL;
4706 goto pp_not_found;
4707 pp_found:
4708 if (!hlist_empty(&pp->owner)) {
4709 /* We had a port hash table hit - there is an
4710 * available port (pp != NULL) and it is being
4711 * used by other socket (pp->owner not empty); that other
4712 * socket is going to be sk2.
4713 */
4714 int reuse = sk->sk_reuse;
4715 struct sock *sk2;
4716 struct hlist_node *node;
4717
4718 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4719 if (pp->fastreuse && sk->sk_reuse)
4720 goto success;
4721
4722 /* Run through the list of sockets bound to the port
4723 * (pp->port) [via the pointers bind_next and
4724 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4725 * we get the endpoint they describe and run through
4726 * the endpoint's list of IP (v4 or v6) addresses,
4727 * comparing each of the addresses with the address of
4728 * the socket sk. If we find a match, then that means
4729 * that this port/socket (sk) combination are already
4730 * in an endpoint.
4731 */
4732 sk_for_each_bound(sk2, node, &pp->owner) {
4733 struct sctp_endpoint *ep2;
4734 ep2 = sctp_sk(sk2)->ep;
4735
4736 if (reuse && sk2->sk_reuse)
4737 continue;
4738
4739 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4740 sctp_sk(sk))) {
4741 ret = (long)sk2;
4742 goto fail_unlock;
4743 }
4744 }
4745 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4746 }
4747 pp_not_found:
4748 /* If there was a hash table miss, create a new port. */
4749 ret = 1;
4750 if (!pp && !(pp = sctp_bucket_create(head, snum)))
4751 goto fail_unlock;
4752
4753 /* In either case (hit or miss), make sure fastreuse is 1 only
4754 * if sk->sk_reuse is too (that is, if the caller requested
4755 * SO_REUSEADDR on this socket -sk-).
4756 */
4757 if (hlist_empty(&pp->owner))
4758 pp->fastreuse = sk->sk_reuse ? 1 : 0;
4759 else if (pp->fastreuse && !sk->sk_reuse)
4760 pp->fastreuse = 0;
4761
4762 /* We are set, so fill up all the data in the hash table
4763 * entry, tie the socket list information with the rest of the
4764 * sockets FIXME: Blurry, NPI (ipg).
4765 */
4766 success:
4767 inet_sk(sk)->num = snum;
4768 if (!sctp_sk(sk)->bind_hash) {
4769 sk_add_bind_node(sk, &pp->owner);
4770 sctp_sk(sk)->bind_hash = pp;
4771 }
4772 ret = 0;
4773
4774 fail_unlock:
4775 sctp_spin_unlock(&head->lock);
4776
4777 fail:
4778 sctp_local_bh_enable();
4779 return ret;
4780 }
4781
4782 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
4783 * port is requested.
4784 */
4785 static int sctp_get_port(struct sock *sk, unsigned short snum)
4786 {
4787 long ret;
4788 union sctp_addr addr;
4789 struct sctp_af *af = sctp_sk(sk)->pf->af;
4790
4791 /* Set up a dummy address struct from the sk. */
4792 af->from_sk(&addr, sk);
4793 addr.v4.sin_port = htons(snum);
4794
4795 /* Note: sk->sk_num gets filled in if ephemeral port request. */
4796 ret = sctp_get_port_local(sk, &addr);
4797
4798 return (ret ? 1 : 0);
4799 }
4800
4801 /*
4802 * 3.1.3 listen() - UDP Style Syntax
4803 *
4804 * By default, new associations are not accepted for UDP style sockets.
4805 * An application uses listen() to mark a socket as being able to
4806 * accept new associations.
4807 */
4808 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4809 {
4810 struct sctp_sock *sp = sctp_sk(sk);
4811 struct sctp_endpoint *ep = sp->ep;
4812
4813 /* Only UDP style sockets that are not peeled off are allowed to
4814 * listen().
4815 */
4816 if (!sctp_style(sk, UDP))
4817 return -EINVAL;
4818
4819 /* If backlog is zero, disable listening. */
4820 if (!backlog) {
4821 if (sctp_sstate(sk, CLOSED))
4822 return 0;
4823
4824 sctp_unhash_endpoint(ep);
4825 sk->sk_state = SCTP_SS_CLOSED;
4826 }
4827
4828 /* Return if we are already listening. */
4829 if (sctp_sstate(sk, LISTENING))
4830 return 0;
4831
4832 /*
4833 * If a bind() or sctp_bindx() is not called prior to a listen()
4834 * call that allows new associations to be accepted, the system
4835 * picks an ephemeral port and will choose an address set equivalent
4836 * to binding with a wildcard address.
4837 *
4838 * This is not currently spelled out in the SCTP sockets
4839 * extensions draft, but follows the practice as seen in TCP
4840 * sockets.
4841 */
4842 if (!ep->base.bind_addr.port) {
4843 if (sctp_autobind(sk))
4844 return -EAGAIN;
4845 }
4846 sk->sk_state = SCTP_SS_LISTENING;
4847 sctp_hash_endpoint(ep);
4848 return 0;
4849 }
4850
4851 /*
4852 * 4.1.3 listen() - TCP Style Syntax
4853 *
4854 * Applications uses listen() to ready the SCTP endpoint for accepting
4855 * inbound associations.
4856 */
4857 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4858 {
4859 struct sctp_sock *sp = sctp_sk(sk);
4860 struct sctp_endpoint *ep = sp->ep;
4861
4862 /* If backlog is zero, disable listening. */
4863 if (!backlog) {
4864 if (sctp_sstate(sk, CLOSED))
4865 return 0;
4866
4867 sctp_unhash_endpoint(ep);
4868 sk->sk_state = SCTP_SS_CLOSED;
4869 }
4870
4871 if (sctp_sstate(sk, LISTENING))
4872 return 0;
4873
4874 /*
4875 * If a bind() or sctp_bindx() is not called prior to a listen()
4876 * call that allows new associations to be accepted, the system
4877 * picks an ephemeral port and will choose an address set equivalent
4878 * to binding with a wildcard address.
4879 *
4880 * This is not currently spelled out in the SCTP sockets
4881 * extensions draft, but follows the practice as seen in TCP
4882 * sockets.
4883 */
4884 if (!ep->base.bind_addr.port) {
4885 if (sctp_autobind(sk))
4886 return -EAGAIN;
4887 }
4888 sk->sk_state = SCTP_SS_LISTENING;
4889 sk->sk_max_ack_backlog = backlog;
4890 sctp_hash_endpoint(ep);
4891 return 0;
4892 }
4893
4894 /*
4895 * Move a socket to LISTENING state.
4896 */
4897 int sctp_inet_listen(struct socket *sock, int backlog)
4898 {
4899 struct sock *sk = sock->sk;
4900 struct crypto_hash *tfm = NULL;
4901 int err = -EINVAL;
4902
4903 if (unlikely(backlog < 0))
4904 goto out;
4905
4906 sctp_lock_sock(sk);
4907
4908 if (sock->state != SS_UNCONNECTED)
4909 goto out;
4910
4911 /* Allocate HMAC for generating cookie. */
4912 if (sctp_hmac_alg) {
4913 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
4914 if (!tfm) {
4915 err = -ENOSYS;
4916 goto out;
4917 }
4918 }
4919
4920 switch (sock->type) {
4921 case SOCK_SEQPACKET:
4922 err = sctp_seqpacket_listen(sk, backlog);
4923 break;
4924 case SOCK_STREAM:
4925 err = sctp_stream_listen(sk, backlog);
4926 break;
4927 default:
4928 break;
4929 };
4930 if (err)
4931 goto cleanup;
4932
4933 /* Store away the transform reference. */
4934 sctp_sk(sk)->hmac = tfm;
4935 out:
4936 sctp_release_sock(sk);
4937 return err;
4938 cleanup:
4939 crypto_free_hash(tfm);
4940 goto out;
4941 }
4942
4943 /*
4944 * This function is done by modeling the current datagram_poll() and the
4945 * tcp_poll(). Note that, based on these implementations, we don't
4946 * lock the socket in this function, even though it seems that,
4947 * ideally, locking or some other mechanisms can be used to ensure
4948 * the integrity of the counters (sndbuf and wmem_alloc) used
4949 * in this place. We assume that we don't need locks either until proven
4950 * otherwise.
4951 *
4952 * Another thing to note is that we include the Async I/O support
4953 * here, again, by modeling the current TCP/UDP code. We don't have
4954 * a good way to test with it yet.
4955 */
4956 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4957 {
4958 struct sock *sk = sock->sk;
4959 struct sctp_sock *sp = sctp_sk(sk);
4960 unsigned int mask;
4961
4962 poll_wait(file, sk->sk_sleep, wait);
4963
4964 /* A TCP-style listening socket becomes readable when the accept queue
4965 * is not empty.
4966 */
4967 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4968 return (!list_empty(&sp->ep->asocs)) ?
4969 (POLLIN | POLLRDNORM) : 0;
4970
4971 mask = 0;
4972
4973 /* Is there any exceptional events? */
4974 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4975 mask |= POLLERR;
4976 if (sk->sk_shutdown & RCV_SHUTDOWN)
4977 mask |= POLLRDHUP;
4978 if (sk->sk_shutdown == SHUTDOWN_MASK)
4979 mask |= POLLHUP;
4980
4981 /* Is it readable? Reconsider this code with TCP-style support. */
4982 if (!skb_queue_empty(&sk->sk_receive_queue) ||
4983 (sk->sk_shutdown & RCV_SHUTDOWN))
4984 mask |= POLLIN | POLLRDNORM;
4985
4986 /* The association is either gone or not ready. */
4987 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4988 return mask;
4989
4990 /* Is it writable? */
4991 if (sctp_writeable(sk)) {
4992 mask |= POLLOUT | POLLWRNORM;
4993 } else {
4994 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4995 /*
4996 * Since the socket is not locked, the buffer
4997 * might be made available after the writeable check and
4998 * before the bit is set. This could cause a lost I/O
4999 * signal. tcp_poll() has a race breaker for this race
5000 * condition. Based on their implementation, we put
5001 * in the following code to cover it as well.
5002 */
5003 if (sctp_writeable(sk))
5004 mask |= POLLOUT | POLLWRNORM;
5005 }
5006 return mask;
5007 }
5008
5009 /********************************************************************
5010 * 2nd Level Abstractions
5011 ********************************************************************/
5012
5013 static struct sctp_bind_bucket *sctp_bucket_create(
5014 struct sctp_bind_hashbucket *head, unsigned short snum)
5015 {
5016 struct sctp_bind_bucket *pp;
5017
5018 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
5019 SCTP_DBG_OBJCNT_INC(bind_bucket);
5020 if (pp) {
5021 pp->port = snum;
5022 pp->fastreuse = 0;
5023 INIT_HLIST_HEAD(&pp->owner);
5024 if ((pp->next = head->chain) != NULL)
5025 pp->next->pprev = &pp->next;
5026 head->chain = pp;
5027 pp->pprev = &head->chain;
5028 }
5029 return pp;
5030 }
5031
5032 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5033 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5034 {
5035 if (pp && hlist_empty(&pp->owner)) {
5036 if (pp->next)
5037 pp->next->pprev = pp->pprev;
5038 *(pp->pprev) = pp->next;
5039 kmem_cache_free(sctp_bucket_cachep, pp);
5040 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5041 }
5042 }
5043
5044 /* Release this socket's reference to a local port. */
5045 static inline void __sctp_put_port(struct sock *sk)
5046 {
5047 struct sctp_bind_hashbucket *head =
5048 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5049 struct sctp_bind_bucket *pp;
5050
5051 sctp_spin_lock(&head->lock);
5052 pp = sctp_sk(sk)->bind_hash;
5053 __sk_del_bind_node(sk);
5054 sctp_sk(sk)->bind_hash = NULL;
5055 inet_sk(sk)->num = 0;
5056 sctp_bucket_destroy(pp);
5057 sctp_spin_unlock(&head->lock);
5058 }
5059
5060 void sctp_put_port(struct sock *sk)
5061 {
5062 sctp_local_bh_disable();
5063 __sctp_put_port(sk);
5064 sctp_local_bh_enable();
5065 }
5066
5067 /*
5068 * The system picks an ephemeral port and choose an address set equivalent
5069 * to binding with a wildcard address.
5070 * One of those addresses will be the primary address for the association.
5071 * This automatically enables the multihoming capability of SCTP.
5072 */
5073 static int sctp_autobind(struct sock *sk)
5074 {
5075 union sctp_addr autoaddr;
5076 struct sctp_af *af;
5077 unsigned short port;
5078
5079 /* Initialize a local sockaddr structure to INADDR_ANY. */
5080 af = sctp_sk(sk)->pf->af;
5081
5082 port = htons(inet_sk(sk)->num);
5083 af->inaddr_any(&autoaddr, port);
5084
5085 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5086 }
5087
5088 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5089 *
5090 * From RFC 2292
5091 * 4.2 The cmsghdr Structure *
5092 *
5093 * When ancillary data is sent or received, any number of ancillary data
5094 * objects can be specified by the msg_control and msg_controllen members of
5095 * the msghdr structure, because each object is preceded by
5096 * a cmsghdr structure defining the object's length (the cmsg_len member).
5097 * Historically Berkeley-derived implementations have passed only one object
5098 * at a time, but this API allows multiple objects to be
5099 * passed in a single call to sendmsg() or recvmsg(). The following example
5100 * shows two ancillary data objects in a control buffer.
5101 *
5102 * |<--------------------------- msg_controllen -------------------------->|
5103 * | |
5104 *
5105 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5106 *
5107 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5108 * | | |
5109 *
5110 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5111 *
5112 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5113 * | | | | |
5114 *
5115 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5116 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5117 *
5118 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5119 *
5120 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5121 * ^
5122 * |
5123 *
5124 * msg_control
5125 * points here
5126 */
5127 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5128 sctp_cmsgs_t *cmsgs)
5129 {
5130 struct cmsghdr *cmsg;
5131
5132 for (cmsg = CMSG_FIRSTHDR(msg);
5133 cmsg != NULL;
5134 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5135 if (!CMSG_OK(msg, cmsg))
5136 return -EINVAL;
5137
5138 /* Should we parse this header or ignore? */
5139 if (cmsg->cmsg_level != IPPROTO_SCTP)
5140 continue;
5141
5142 /* Strictly check lengths following example in SCM code. */
5143 switch (cmsg->cmsg_type) {
5144 case SCTP_INIT:
5145 /* SCTP Socket API Extension
5146 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5147 *
5148 * This cmsghdr structure provides information for
5149 * initializing new SCTP associations with sendmsg().
5150 * The SCTP_INITMSG socket option uses this same data
5151 * structure. This structure is not used for
5152 * recvmsg().
5153 *
5154 * cmsg_level cmsg_type cmsg_data[]
5155 * ------------ ------------ ----------------------
5156 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5157 */
5158 if (cmsg->cmsg_len !=
5159 CMSG_LEN(sizeof(struct sctp_initmsg)))
5160 return -EINVAL;
5161 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5162 break;
5163
5164 case SCTP_SNDRCV:
5165 /* SCTP Socket API Extension
5166 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5167 *
5168 * This cmsghdr structure specifies SCTP options for
5169 * sendmsg() and describes SCTP header information
5170 * about a received message through recvmsg().
5171 *
5172 * cmsg_level cmsg_type cmsg_data[]
5173 * ------------ ------------ ----------------------
5174 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5175 */
5176 if (cmsg->cmsg_len !=
5177 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5178 return -EINVAL;
5179
5180 cmsgs->info =
5181 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5182
5183 /* Minimally, validate the sinfo_flags. */
5184 if (cmsgs->info->sinfo_flags &
5185 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5186 SCTP_ABORT | SCTP_EOF))
5187 return -EINVAL;
5188 break;
5189
5190 default:
5191 return -EINVAL;
5192 };
5193 }
5194 return 0;
5195 }
5196
5197 /*
5198 * Wait for a packet..
5199 * Note: This function is the same function as in core/datagram.c
5200 * with a few modifications to make lksctp work.
5201 */
5202 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5203 {
5204 int error;
5205 DEFINE_WAIT(wait);
5206
5207 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5208
5209 /* Socket errors? */
5210 error = sock_error(sk);
5211 if (error)
5212 goto out;
5213
5214 if (!skb_queue_empty(&sk->sk_receive_queue))
5215 goto ready;
5216
5217 /* Socket shut down? */
5218 if (sk->sk_shutdown & RCV_SHUTDOWN)
5219 goto out;
5220
5221 /* Sequenced packets can come disconnected. If so we report the
5222 * problem.
5223 */
5224 error = -ENOTCONN;
5225
5226 /* Is there a good reason to think that we may receive some data? */
5227 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5228 goto out;
5229
5230 /* Handle signals. */
5231 if (signal_pending(current))
5232 goto interrupted;
5233
5234 /* Let another process have a go. Since we are going to sleep
5235 * anyway. Note: This may cause odd behaviors if the message
5236 * does not fit in the user's buffer, but this seems to be the
5237 * only way to honor MSG_DONTWAIT realistically.
5238 */
5239 sctp_release_sock(sk);
5240 *timeo_p = schedule_timeout(*timeo_p);
5241 sctp_lock_sock(sk);
5242
5243 ready:
5244 finish_wait(sk->sk_sleep, &wait);
5245 return 0;
5246
5247 interrupted:
5248 error = sock_intr_errno(*timeo_p);
5249
5250 out:
5251 finish_wait(sk->sk_sleep, &wait);
5252 *err = error;
5253 return error;
5254 }
5255
5256 /* Receive a datagram.
5257 * Note: This is pretty much the same routine as in core/datagram.c
5258 * with a few changes to make lksctp work.
5259 */
5260 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5261 int noblock, int *err)
5262 {
5263 int error;
5264 struct sk_buff *skb;
5265 long timeo;
5266
5267 timeo = sock_rcvtimeo(sk, noblock);
5268
5269 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5270 timeo, MAX_SCHEDULE_TIMEOUT);
5271
5272 do {
5273 /* Again only user level code calls this function,
5274 * so nothing interrupt level
5275 * will suddenly eat the receive_queue.
5276 *
5277 * Look at current nfs client by the way...
5278 * However, this function was corrent in any case. 8)
5279 */
5280 if (flags & MSG_PEEK) {
5281 spin_lock_bh(&sk->sk_receive_queue.lock);
5282 skb = skb_peek(&sk->sk_receive_queue);
5283 if (skb)
5284 atomic_inc(&skb->users);
5285 spin_unlock_bh(&sk->sk_receive_queue.lock);
5286 } else {
5287 skb = skb_dequeue(&sk->sk_receive_queue);
5288 }
5289
5290 if (skb)
5291 return skb;
5292
5293 /* Caller is allowed not to check sk->sk_err before calling. */
5294 error = sock_error(sk);
5295 if (error)
5296 goto no_packet;
5297
5298 if (sk->sk_shutdown & RCV_SHUTDOWN)
5299 break;
5300
5301 /* User doesn't want to wait. */
5302 error = -EAGAIN;
5303 if (!timeo)
5304 goto no_packet;
5305 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5306
5307 return NULL;
5308
5309 no_packet:
5310 *err = error;
5311 return NULL;
5312 }
5313
5314 /* If sndbuf has changed, wake up per association sndbuf waiters. */
5315 static void __sctp_write_space(struct sctp_association *asoc)
5316 {
5317 struct sock *sk = asoc->base.sk;
5318 struct socket *sock = sk->sk_socket;
5319
5320 if ((sctp_wspace(asoc) > 0) && sock) {
5321 if (waitqueue_active(&asoc->wait))
5322 wake_up_interruptible(&asoc->wait);
5323
5324 if (sctp_writeable(sk)) {
5325 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5326 wake_up_interruptible(sk->sk_sleep);
5327
5328 /* Note that we try to include the Async I/O support
5329 * here by modeling from the current TCP/UDP code.
5330 * We have not tested with it yet.
5331 */
5332 if (sock->fasync_list &&
5333 !(sk->sk_shutdown & SEND_SHUTDOWN))
5334 sock_wake_async(sock, 2, POLL_OUT);
5335 }
5336 }
5337 }
5338
5339 /* Do accounting for the sndbuf space.
5340 * Decrement the used sndbuf space of the corresponding association by the
5341 * data size which was just transmitted(freed).
5342 */
5343 static void sctp_wfree(struct sk_buff *skb)
5344 {
5345 struct sctp_association *asoc;
5346 struct sctp_chunk *chunk;
5347 struct sock *sk;
5348
5349 /* Get the saved chunk pointer. */
5350 chunk = *((struct sctp_chunk **)(skb->cb));
5351 asoc = chunk->asoc;
5352 sk = asoc->base.sk;
5353 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5354 sizeof(struct sk_buff) +
5355 sizeof(struct sctp_chunk);
5356
5357 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5358
5359 sock_wfree(skb);
5360 __sctp_write_space(asoc);
5361
5362 sctp_association_put(asoc);
5363 }
5364
5365 /* Do accounting for the receive space on the socket.
5366 * Accounting for the association is done in ulpevent.c
5367 * We set this as a destructor for the cloned data skbs so that
5368 * accounting is done at the correct time.
5369 */
5370 void sctp_sock_rfree(struct sk_buff *skb)
5371 {
5372 struct sock *sk = skb->sk;
5373 struct sctp_ulpevent *event = sctp_skb2event(skb);
5374
5375 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5376 }
5377
5378
5379 /* Helper function to wait for space in the sndbuf. */
5380 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5381 size_t msg_len)
5382 {
5383 struct sock *sk = asoc->base.sk;
5384 int err = 0;
5385 long current_timeo = *timeo_p;
5386 DEFINE_WAIT(wait);
5387
5388 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5389 asoc, (long)(*timeo_p), msg_len);
5390
5391 /* Increment the association's refcnt. */
5392 sctp_association_hold(asoc);
5393
5394 /* Wait on the association specific sndbuf space. */
5395 for (;;) {
5396 prepare_to_wait_exclusive(&asoc->wait, &wait,
5397 TASK_INTERRUPTIBLE);
5398 if (!*timeo_p)
5399 goto do_nonblock;
5400 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5401 asoc->base.dead)
5402 goto do_error;
5403 if (signal_pending(current))
5404 goto do_interrupted;
5405 if (msg_len <= sctp_wspace(asoc))
5406 break;
5407
5408 /* Let another process have a go. Since we are going
5409 * to sleep anyway.
5410 */
5411 sctp_release_sock(sk);
5412 current_timeo = schedule_timeout(current_timeo);
5413 BUG_ON(sk != asoc->base.sk);
5414 sctp_lock_sock(sk);
5415
5416 *timeo_p = current_timeo;
5417 }
5418
5419 out:
5420 finish_wait(&asoc->wait, &wait);
5421
5422 /* Release the association's refcnt. */
5423 sctp_association_put(asoc);
5424
5425 return err;
5426
5427 do_error:
5428 err = -EPIPE;
5429 goto out;
5430
5431 do_interrupted:
5432 err = sock_intr_errno(*timeo_p);
5433 goto out;
5434
5435 do_nonblock:
5436 err = -EAGAIN;
5437 goto out;
5438 }
5439
5440 /* If socket sndbuf has changed, wake up all per association waiters. */
5441 void sctp_write_space(struct sock *sk)
5442 {
5443 struct sctp_association *asoc;
5444 struct list_head *pos;
5445
5446 /* Wake up the tasks in each wait queue. */
5447 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5448 asoc = list_entry(pos, struct sctp_association, asocs);
5449 __sctp_write_space(asoc);
5450 }
5451 }
5452
5453 /* Is there any sndbuf space available on the socket?
5454 *
5455 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5456 * associations on the same socket. For a UDP-style socket with
5457 * multiple associations, it is possible for it to be "unwriteable"
5458 * prematurely. I assume that this is acceptable because
5459 * a premature "unwriteable" is better than an accidental "writeable" which
5460 * would cause an unwanted block under certain circumstances. For the 1-1
5461 * UDP-style sockets or TCP-style sockets, this code should work.
5462 * - Daisy
5463 */
5464 static int sctp_writeable(struct sock *sk)
5465 {
5466 int amt = 0;
5467
5468 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5469 if (amt < 0)
5470 amt = 0;
5471 return amt;
5472 }
5473
5474 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5475 * returns immediately with EINPROGRESS.
5476 */
5477 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5478 {
5479 struct sock *sk = asoc->base.sk;
5480 int err = 0;
5481 long current_timeo = *timeo_p;
5482 DEFINE_WAIT(wait);
5483
5484 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5485 (long)(*timeo_p));
5486
5487 /* Increment the association's refcnt. */
5488 sctp_association_hold(asoc);
5489
5490 for (;;) {
5491 prepare_to_wait_exclusive(&asoc->wait, &wait,
5492 TASK_INTERRUPTIBLE);
5493 if (!*timeo_p)
5494 goto do_nonblock;
5495 if (sk->sk_shutdown & RCV_SHUTDOWN)
5496 break;
5497 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5498 asoc->base.dead)
5499 goto do_error;
5500 if (signal_pending(current))
5501 goto do_interrupted;
5502
5503 if (sctp_state(asoc, ESTABLISHED))
5504 break;
5505
5506 /* Let another process have a go. Since we are going
5507 * to sleep anyway.
5508 */
5509 sctp_release_sock(sk);
5510 current_timeo = schedule_timeout(current_timeo);
5511 sctp_lock_sock(sk);
5512
5513 *timeo_p = current_timeo;
5514 }
5515
5516 out:
5517 finish_wait(&asoc->wait, &wait);
5518
5519 /* Release the association's refcnt. */
5520 sctp_association_put(asoc);
5521
5522 return err;
5523
5524 do_error:
5525 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5526 err = -ETIMEDOUT;
5527 else
5528 err = -ECONNREFUSED;
5529 goto out;
5530
5531 do_interrupted:
5532 err = sock_intr_errno(*timeo_p);
5533 goto out;
5534
5535 do_nonblock:
5536 err = -EINPROGRESS;
5537 goto out;
5538 }
5539
5540 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5541 {
5542 struct sctp_endpoint *ep;
5543 int err = 0;
5544 DEFINE_WAIT(wait);
5545
5546 ep = sctp_sk(sk)->ep;
5547
5548
5549 for (;;) {
5550 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5551 TASK_INTERRUPTIBLE);
5552
5553 if (list_empty(&ep->asocs)) {
5554 sctp_release_sock(sk);
5555 timeo = schedule_timeout(timeo);
5556 sctp_lock_sock(sk);
5557 }
5558
5559 err = -EINVAL;
5560 if (!sctp_sstate(sk, LISTENING))
5561 break;
5562
5563 err = 0;
5564 if (!list_empty(&ep->asocs))
5565 break;
5566
5567 err = sock_intr_errno(timeo);
5568 if (signal_pending(current))
5569 break;
5570
5571 err = -EAGAIN;
5572 if (!timeo)
5573 break;
5574 }
5575
5576 finish_wait(sk->sk_sleep, &wait);
5577
5578 return err;
5579 }
5580
5581 void sctp_wait_for_close(struct sock *sk, long timeout)
5582 {
5583 DEFINE_WAIT(wait);
5584
5585 do {
5586 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5587 if (list_empty(&sctp_sk(sk)->ep->asocs))
5588 break;
5589 sctp_release_sock(sk);
5590 timeout = schedule_timeout(timeout);
5591 sctp_lock_sock(sk);
5592 } while (!signal_pending(current) && timeout);
5593
5594 finish_wait(sk->sk_sleep, &wait);
5595 }
5596
5597 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5598 * and its messages to the newsk.
5599 */
5600 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5601 struct sctp_association *assoc,
5602 sctp_socket_type_t type)
5603 {
5604 struct sctp_sock *oldsp = sctp_sk(oldsk);
5605 struct sctp_sock *newsp = sctp_sk(newsk);
5606 struct sctp_bind_bucket *pp; /* hash list port iterator */
5607 struct sctp_endpoint *newep = newsp->ep;
5608 struct sk_buff *skb, *tmp;
5609 struct sctp_ulpevent *event;
5610 int flags = 0;
5611
5612 /* Migrate socket buffer sizes and all the socket level options to the
5613 * new socket.
5614 */
5615 newsk->sk_sndbuf = oldsk->sk_sndbuf;
5616 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5617 /* Brute force copy old sctp opt. */
5618 inet_sk_copy_descendant(newsk, oldsk);
5619
5620 /* Restore the ep value that was overwritten with the above structure
5621 * copy.
5622 */
5623 newsp->ep = newep;
5624 newsp->hmac = NULL;
5625
5626 /* Hook this new socket in to the bind_hash list. */
5627 pp = sctp_sk(oldsk)->bind_hash;
5628 sk_add_bind_node(newsk, &pp->owner);
5629 sctp_sk(newsk)->bind_hash = pp;
5630 inet_sk(newsk)->num = inet_sk(oldsk)->num;
5631
5632 /* Copy the bind_addr list from the original endpoint to the new
5633 * endpoint so that we can handle restarts properly
5634 */
5635 if (PF_INET6 == assoc->base.sk->sk_family)
5636 flags = SCTP_ADDR6_ALLOWED;
5637 if (assoc->peer.ipv4_address)
5638 flags |= SCTP_ADDR4_PEERSUPP;
5639 if (assoc->peer.ipv6_address)
5640 flags |= SCTP_ADDR6_PEERSUPP;
5641 sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5642 &oldsp->ep->base.bind_addr,
5643 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5644
5645 /* Move any messages in the old socket's receive queue that are for the
5646 * peeled off association to the new socket's receive queue.
5647 */
5648 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5649 event = sctp_skb2event(skb);
5650 if (event->asoc == assoc) {
5651 sctp_sock_rfree(skb);
5652 __skb_unlink(skb, &oldsk->sk_receive_queue);
5653 __skb_queue_tail(&newsk->sk_receive_queue, skb);
5654 sctp_skb_set_owner_r(skb, newsk);
5655 }
5656 }
5657
5658 /* Clean up any messages pending delivery due to partial
5659 * delivery. Three cases:
5660 * 1) No partial deliver; no work.
5661 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5662 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5663 */
5664 skb_queue_head_init(&newsp->pd_lobby);
5665 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5666
5667 if (sctp_sk(oldsk)->pd_mode) {
5668 struct sk_buff_head *queue;
5669
5670 /* Decide which queue to move pd_lobby skbs to. */
5671 if (assoc->ulpq.pd_mode) {
5672 queue = &newsp->pd_lobby;
5673 } else
5674 queue = &newsk->sk_receive_queue;
5675
5676 /* Walk through the pd_lobby, looking for skbs that
5677 * need moved to the new socket.
5678 */
5679 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5680 event = sctp_skb2event(skb);
5681 if (event->asoc == assoc) {
5682 sctp_sock_rfree(skb);
5683 __skb_unlink(skb, &oldsp->pd_lobby);
5684 __skb_queue_tail(queue, skb);
5685 sctp_skb_set_owner_r(skb, newsk);
5686 }
5687 }
5688
5689 /* Clear up any skbs waiting for the partial
5690 * delivery to finish.
5691 */
5692 if (assoc->ulpq.pd_mode)
5693 sctp_clear_pd(oldsk);
5694
5695 }
5696
5697 /* Set the type of socket to indicate that it is peeled off from the
5698 * original UDP-style socket or created with the accept() call on a
5699 * TCP-style socket..
5700 */
5701 newsp->type = type;
5702
5703 /* Mark the new socket "in-use" by the user so that any packets
5704 * that may arrive on the association after we've moved it are
5705 * queued to the backlog. This prevents a potential race between
5706 * backlog processing on the old socket and new-packet processing
5707 * on the new socket.
5708 */
5709 sctp_lock_sock(newsk);
5710 sctp_assoc_migrate(assoc, newsk);
5711
5712 /* If the association on the newsk is already closed before accept()
5713 * is called, set RCV_SHUTDOWN flag.
5714 */
5715 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5716 newsk->sk_shutdown |= RCV_SHUTDOWN;
5717
5718 newsk->sk_state = SCTP_SS_ESTABLISHED;
5719 sctp_release_sock(newsk);
5720 }
5721
5722 /* This proto struct describes the ULP interface for SCTP. */
5723 struct proto sctp_prot = {
5724 .name = "SCTP",
5725 .owner = THIS_MODULE,
5726 .close = sctp_close,
5727 .connect = sctp_connect,
5728 .disconnect = sctp_disconnect,
5729 .accept = sctp_accept,
5730 .ioctl = sctp_ioctl,
5731 .init = sctp_init_sock,
5732 .destroy = sctp_destroy_sock,
5733 .shutdown = sctp_shutdown,
5734 .setsockopt = sctp_setsockopt,
5735 .getsockopt = sctp_getsockopt,
5736 .sendmsg = sctp_sendmsg,
5737 .recvmsg = sctp_recvmsg,
5738 .bind = sctp_bind,
5739 .backlog_rcv = sctp_backlog_rcv,
5740 .hash = sctp_hash,
5741 .unhash = sctp_unhash,
5742 .get_port = sctp_get_port,
5743 .obj_size = sizeof(struct sctp_sock),
5744 };
5745
5746 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5747 struct proto sctpv6_prot = {
5748 .name = "SCTPv6",
5749 .owner = THIS_MODULE,
5750 .close = sctp_close,
5751 .connect = sctp_connect,
5752 .disconnect = sctp_disconnect,
5753 .accept = sctp_accept,
5754 .ioctl = sctp_ioctl,
5755 .init = sctp_init_sock,
5756 .destroy = sctp_destroy_sock,
5757 .shutdown = sctp_shutdown,
5758 .setsockopt = sctp_setsockopt,
5759 .getsockopt = sctp_getsockopt,
5760 .sendmsg = sctp_sendmsg,
5761 .recvmsg = sctp_recvmsg,
5762 .bind = sctp_bind,
5763 .backlog_rcv = sctp_backlog_rcv,
5764 .hash = sctp_hash,
5765 .unhash = sctp_unhash,
5766 .get_port = sctp_get_port,
5767 .obj_size = sizeof(struct sctp6_sock),
5768 };
5769 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */