]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/socket.c
Introduce a sysctl that modifies the value of PROT_SOCK.
[mirror_ubuntu-artful-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL;
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL;
251
252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256 }
257
258 /* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 addr, addr_len);
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL;
283
284 release_sock(sk);
285
286 return retval;
287 }
288
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294 {
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL;
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET6 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET, opt))
305 return NULL;
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL;
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL;
317
318 return af;
319 }
320
321 /* Bind a local address either to an endpoint or to an association. */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 __func__, sk, addr, len);
337 return -EINVAL;
338 }
339
340 snum = ntohs(addr->v4.sin_port);
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 __func__, sk, &addr->sa, bp->port, snum, len);
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "
358 "%d\n", __func__, snum, bp->port);
359 return -EINVAL;
360 }
361 }
362
363 if (snum && snum < inet_prot_sock(net) &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 return -EACCES;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 SCTP_ADDR_SRC, GFP_ATOMIC);
391
392 /* Copy back into socket for getsockname() use. */
393 if (!ret) {
394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
395 sp->pf->to_sk_saddr(addr, sk);
396 }
397
398 return ret;
399 }
400
401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402 *
403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404 * at any one time. If a sender, after sending an ASCONF chunk, decides
405 * it needs to transfer another ASCONF Chunk, it MUST wait until the
406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407 * subsequent ASCONF. Note this restriction binds each side, so at any
408 * time two ASCONF may be in-transit on any given association (one sent
409 * from each endpoint).
410 */
411 static int sctp_send_asconf(struct sctp_association *asoc,
412 struct sctp_chunk *chunk)
413 {
414 struct net *net = sock_net(asoc->base.sk);
415 int retval = 0;
416
417 /* If there is an outstanding ASCONF chunk, queue it for later
418 * transmission.
419 */
420 if (asoc->addip_last_asconf) {
421 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 goto out;
423 }
424
425 /* Hold the chunk until an ASCONF_ACK is received. */
426 sctp_chunk_hold(chunk);
427 retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 if (retval)
429 sctp_chunk_free(chunk);
430 else
431 asoc->addip_last_asconf = chunk;
432
433 out:
434 return retval;
435 }
436
437 /* Add a list of addresses as bind addresses to local endpoint or
438 * association.
439 *
440 * Basically run through each address specified in the addrs/addrcnt
441 * array/length pair, determine if it is IPv6 or IPv4 and call
442 * sctp_do_bind() on it.
443 *
444 * If any of them fails, then the operation will be reversed and the
445 * ones that were added will be removed.
446 *
447 * Only sctp_setsockopt_bindx() is supposed to call this function.
448 */
449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450 {
451 int cnt;
452 int retval = 0;
453 void *addr_buf;
454 struct sockaddr *sa_addr;
455 struct sctp_af *af;
456
457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
458 addrs, addrcnt);
459
460 addr_buf = addrs;
461 for (cnt = 0; cnt < addrcnt; cnt++) {
462 /* The list may contain either IPv4 or IPv6 address;
463 * determine the address length for walking thru the list.
464 */
465 sa_addr = addr_buf;
466 af = sctp_get_af_specific(sa_addr->sa_family);
467 if (!af) {
468 retval = -EINVAL;
469 goto err_bindx_add;
470 }
471
472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 af->sockaddr_len);
474
475 addr_buf += af->sockaddr_len;
476
477 err_bindx_add:
478 if (retval < 0) {
479 /* Failed. Cleanup the ones that have been added */
480 if (cnt > 0)
481 sctp_bindx_rem(sk, addrs, cnt);
482 return retval;
483 }
484 }
485
486 return retval;
487 }
488
489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490 * associations that are part of the endpoint indicating that a list of local
491 * addresses are added to the endpoint.
492 *
493 * If any of the addresses is already in the bind address list of the
494 * association, we do not send the chunk for that association. But it will not
495 * affect other associations.
496 *
497 * Only sctp_setsockopt_bindx() is supposed to call this function.
498 */
499 static int sctp_send_asconf_add_ip(struct sock *sk,
500 struct sockaddr *addrs,
501 int addrcnt)
502 {
503 struct net *net = sock_net(sk);
504 struct sctp_sock *sp;
505 struct sctp_endpoint *ep;
506 struct sctp_association *asoc;
507 struct sctp_bind_addr *bp;
508 struct sctp_chunk *chunk;
509 struct sctp_sockaddr_entry *laddr;
510 union sctp_addr *addr;
511 union sctp_addr saveaddr;
512 void *addr_buf;
513 struct sctp_af *af;
514 struct list_head *p;
515 int i;
516 int retval = 0;
517
518 if (!net->sctp.addip_enable)
519 return retval;
520
521 sp = sctp_sk(sk);
522 ep = sp->ep;
523
524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
525 __func__, sk, addrs, addrcnt);
526
527 list_for_each_entry(asoc, &ep->asocs, asocs) {
528 if (!asoc->peer.asconf_capable)
529 continue;
530
531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 continue;
533
534 if (!sctp_state(asoc, ESTABLISHED))
535 continue;
536
537 /* Check if any address in the packed array of addresses is
538 * in the bind address list of the association. If so,
539 * do not send the asconf chunk to its peer, but continue with
540 * other associations.
541 */
542 addr_buf = addrs;
543 for (i = 0; i < addrcnt; i++) {
544 addr = addr_buf;
545 af = sctp_get_af_specific(addr->v4.sin_family);
546 if (!af) {
547 retval = -EINVAL;
548 goto out;
549 }
550
551 if (sctp_assoc_lookup_laddr(asoc, addr))
552 break;
553
554 addr_buf += af->sockaddr_len;
555 }
556 if (i < addrcnt)
557 continue;
558
559 /* Use the first valid address in bind addr list of
560 * association as Address Parameter of ASCONF CHUNK.
561 */
562 bp = &asoc->base.bind_addr;
563 p = bp->address_list.next;
564 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 addrcnt, SCTP_PARAM_ADD_IP);
567 if (!chunk) {
568 retval = -ENOMEM;
569 goto out;
570 }
571
572 /* Add the new addresses to the bind address list with
573 * use_as_src set to 0.
574 */
575 addr_buf = addrs;
576 for (i = 0; i < addrcnt; i++) {
577 addr = addr_buf;
578 af = sctp_get_af_specific(addr->v4.sin_family);
579 memcpy(&saveaddr, addr, af->sockaddr_len);
580 retval = sctp_add_bind_addr(bp, &saveaddr,
581 sizeof(saveaddr),
582 SCTP_ADDR_NEW, GFP_ATOMIC);
583 addr_buf += af->sockaddr_len;
584 }
585 if (asoc->src_out_of_asoc_ok) {
586 struct sctp_transport *trans;
587
588 list_for_each_entry(trans,
589 &asoc->peer.transport_addr_list, transports) {
590 /* Clear the source and route cache */
591 dst_release(trans->dst);
592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
593 2*asoc->pathmtu, 4380));
594 trans->ssthresh = asoc->peer.i.a_rwnd;
595 trans->rto = asoc->rto_initial;
596 sctp_max_rto(asoc, trans);
597 trans->rtt = trans->srtt = trans->rttvar = 0;
598 sctp_transport_route(trans, NULL,
599 sctp_sk(asoc->base.sk));
600 }
601 }
602 retval = sctp_send_asconf(asoc, chunk);
603 }
604
605 out:
606 return retval;
607 }
608
609 /* Remove a list of addresses from bind addresses list. Do not remove the
610 * last address.
611 *
612 * Basically run through each address specified in the addrs/addrcnt
613 * array/length pair, determine if it is IPv6 or IPv4 and call
614 * sctp_del_bind() on it.
615 *
616 * If any of them fails, then the operation will be reversed and the
617 * ones that were removed will be added back.
618 *
619 * At least one address has to be left; if only one address is
620 * available, the operation will return -EBUSY.
621 *
622 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 */
624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625 {
626 struct sctp_sock *sp = sctp_sk(sk);
627 struct sctp_endpoint *ep = sp->ep;
628 int cnt;
629 struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 int retval = 0;
631 void *addr_buf;
632 union sctp_addr *sa_addr;
633 struct sctp_af *af;
634
635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
636 __func__, sk, addrs, addrcnt);
637
638 addr_buf = addrs;
639 for (cnt = 0; cnt < addrcnt; cnt++) {
640 /* If the bind address list is empty or if there is only one
641 * bind address, there is nothing more to be removed (we need
642 * at least one address here).
643 */
644 if (list_empty(&bp->address_list) ||
645 (sctp_list_single_entry(&bp->address_list))) {
646 retval = -EBUSY;
647 goto err_bindx_rem;
648 }
649
650 sa_addr = addr_buf;
651 af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 if (!af) {
653 retval = -EINVAL;
654 goto err_bindx_rem;
655 }
656
657 if (!af->addr_valid(sa_addr, sp, NULL)) {
658 retval = -EADDRNOTAVAIL;
659 goto err_bindx_rem;
660 }
661
662 if (sa_addr->v4.sin_port &&
663 sa_addr->v4.sin_port != htons(bp->port)) {
664 retval = -EINVAL;
665 goto err_bindx_rem;
666 }
667
668 if (!sa_addr->v4.sin_port)
669 sa_addr->v4.sin_port = htons(bp->port);
670
671 /* FIXME - There is probably a need to check if sk->sk_saddr and
672 * sk->sk_rcv_addr are currently set to one of the addresses to
673 * be removed. This is something which needs to be looked into
674 * when we are fixing the outstanding issues with multi-homing
675 * socket routing and failover schemes. Refer to comments in
676 * sctp_do_bind(). -daisy
677 */
678 retval = sctp_del_bind_addr(bp, sa_addr);
679
680 addr_buf += af->sockaddr_len;
681 err_bindx_rem:
682 if (retval < 0) {
683 /* Failed. Add the ones that has been removed back */
684 if (cnt > 0)
685 sctp_bindx_add(sk, addrs, cnt);
686 return retval;
687 }
688 }
689
690 return retval;
691 }
692
693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694 * the associations that are part of the endpoint indicating that a list of
695 * local addresses are removed from the endpoint.
696 *
697 * If any of the addresses is already in the bind address list of the
698 * association, we do not send the chunk for that association. But it will not
699 * affect other associations.
700 *
701 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 */
703 static int sctp_send_asconf_del_ip(struct sock *sk,
704 struct sockaddr *addrs,
705 int addrcnt)
706 {
707 struct net *net = sock_net(sk);
708 struct sctp_sock *sp;
709 struct sctp_endpoint *ep;
710 struct sctp_association *asoc;
711 struct sctp_transport *transport;
712 struct sctp_bind_addr *bp;
713 struct sctp_chunk *chunk;
714 union sctp_addr *laddr;
715 void *addr_buf;
716 struct sctp_af *af;
717 struct sctp_sockaddr_entry *saddr;
718 int i;
719 int retval = 0;
720 int stored = 0;
721
722 chunk = NULL;
723 if (!net->sctp.addip_enable)
724 return retval;
725
726 sp = sctp_sk(sk);
727 ep = sp->ep;
728
729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
730 __func__, sk, addrs, addrcnt);
731
732 list_for_each_entry(asoc, &ep->asocs, asocs) {
733
734 if (!asoc->peer.asconf_capable)
735 continue;
736
737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 continue;
739
740 if (!sctp_state(asoc, ESTABLISHED))
741 continue;
742
743 /* Check if any address in the packed array of addresses is
744 * not present in the bind address list of the association.
745 * If so, do not send the asconf chunk to its peer, but
746 * continue with other associations.
747 */
748 addr_buf = addrs;
749 for (i = 0; i < addrcnt; i++) {
750 laddr = addr_buf;
751 af = sctp_get_af_specific(laddr->v4.sin_family);
752 if (!af) {
753 retval = -EINVAL;
754 goto out;
755 }
756
757 if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 break;
759
760 addr_buf += af->sockaddr_len;
761 }
762 if (i < addrcnt)
763 continue;
764
765 /* Find one address in the association's bind address list
766 * that is not in the packed array of addresses. This is to
767 * make sure that we do not delete all the addresses in the
768 * association.
769 */
770 bp = &asoc->base.bind_addr;
771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 addrcnt, sp);
773 if ((laddr == NULL) && (addrcnt == 1)) {
774 if (asoc->asconf_addr_del_pending)
775 continue;
776 asoc->asconf_addr_del_pending =
777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
778 if (asoc->asconf_addr_del_pending == NULL) {
779 retval = -ENOMEM;
780 goto out;
781 }
782 asoc->asconf_addr_del_pending->sa.sa_family =
783 addrs->sa_family;
784 asoc->asconf_addr_del_pending->v4.sin_port =
785 htons(bp->port);
786 if (addrs->sa_family == AF_INET) {
787 struct sockaddr_in *sin;
788
789 sin = (struct sockaddr_in *)addrs;
790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 } else if (addrs->sa_family == AF_INET6) {
792 struct sockaddr_in6 *sin6;
793
794 sin6 = (struct sockaddr_in6 *)addrs;
795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 }
797
798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
799 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
800 asoc->asconf_addr_del_pending);
801
802 asoc->src_out_of_asoc_ok = 1;
803 stored = 1;
804 goto skip_mkasconf;
805 }
806
807 if (laddr == NULL)
808 return -EINVAL;
809
810 /* We do not need RCU protection throughout this loop
811 * because this is done under a socket lock from the
812 * setsockopt call.
813 */
814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 SCTP_PARAM_DEL_IP);
816 if (!chunk) {
817 retval = -ENOMEM;
818 goto out;
819 }
820
821 skip_mkasconf:
822 /* Reset use_as_src flag for the addresses in the bind address
823 * list that are to be deleted.
824 */
825 addr_buf = addrs;
826 for (i = 0; i < addrcnt; i++) {
827 laddr = addr_buf;
828 af = sctp_get_af_specific(laddr->v4.sin_family);
829 list_for_each_entry(saddr, &bp->address_list, list) {
830 if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 saddr->state = SCTP_ADDR_DEL;
832 }
833 addr_buf += af->sockaddr_len;
834 }
835
836 /* Update the route and saddr entries for all the transports
837 * as some of the addresses in the bind address list are
838 * about to be deleted and cannot be used as source addresses.
839 */
840 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
841 transports) {
842 dst_release(transport->dst);
843 sctp_transport_route(transport, NULL,
844 sctp_sk(asoc->base.sk));
845 }
846
847 if (stored)
848 /* We don't need to transmit ASCONF */
849 continue;
850 retval = sctp_send_asconf(asoc, chunk);
851 }
852 out:
853 return retval;
854 }
855
856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858 {
859 struct sock *sk = sctp_opt2sk(sp);
860 union sctp_addr *addr;
861 struct sctp_af *af;
862
863 /* It is safe to write port space in caller. */
864 addr = &addrw->a;
865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
866 af = sctp_get_af_specific(addr->sa.sa_family);
867 if (!af)
868 return -EINVAL;
869 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 return -EINVAL;
871
872 if (addrw->state == SCTP_ADDR_NEW)
873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 else
875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876 }
877
878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879 *
880 * API 8.1
881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882 * int flags);
883 *
884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886 * or IPv6 addresses.
887 *
888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889 * Section 3.1.2 for this usage.
890 *
891 * addrs is a pointer to an array of one or more socket addresses. Each
892 * address is contained in its appropriate structure (i.e. struct
893 * sockaddr_in or struct sockaddr_in6) the family of the address type
894 * must be used to distinguish the address length (note that this
895 * representation is termed a "packed array" of addresses). The caller
896 * specifies the number of addresses in the array with addrcnt.
897 *
898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899 * -1, and sets errno to the appropriate error code.
900 *
901 * For SCTP, the port given in each socket address must be the same, or
902 * sctp_bindx() will fail, setting errno to EINVAL.
903 *
904 * The flags parameter is formed from the bitwise OR of zero or more of
905 * the following currently defined flags:
906 *
907 * SCTP_BINDX_ADD_ADDR
908 *
909 * SCTP_BINDX_REM_ADDR
910 *
911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913 * addresses from the association. The two flags are mutually exclusive;
914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915 * not remove all addresses from an association; sctp_bindx() will
916 * reject such an attempt with EINVAL.
917 *
918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919 * additional addresses with an endpoint after calling bind(). Or use
920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921 * socket is associated with so that no new association accepted will be
922 * associated with those addresses. If the endpoint supports dynamic
923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924 * endpoint to send the appropriate message to the peer to change the
925 * peers address lists.
926 *
927 * Adding and removing addresses from a connected association is
928 * optional functionality. Implementations that do not support this
929 * functionality should return EOPNOTSUPP.
930 *
931 * Basically do nothing but copying the addresses from user to kernel
932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934 * from userspace.
935 *
936 * We don't use copy_from_user() for optimization: we first do the
937 * sanity checks (buffer size -fast- and access check-healthy
938 * pointer); if all of those succeed, then we can alloc the memory
939 * (expensive operation) needed to copy the data to kernel. Then we do
940 * the copying without checking the user space area
941 * (__copy_from_user()).
942 *
943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944 * it.
945 *
946 * sk The sk of the socket
947 * addrs The pointer to the addresses in user land
948 * addrssize Size of the addrs buffer
949 * op Operation to perform (add or remove, see the flags of
950 * sctp_bindx)
951 *
952 * Returns 0 if ok, <0 errno code on error.
953 */
954 static int sctp_setsockopt_bindx(struct sock *sk,
955 struct sockaddr __user *addrs,
956 int addrs_size, int op)
957 {
958 struct sockaddr *kaddrs;
959 int err;
960 int addrcnt = 0;
961 int walk_size = 0;
962 struct sockaddr *sa_addr;
963 void *addr_buf;
964 struct sctp_af *af;
965
966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
967 __func__, sk, addrs, addrs_size, op);
968
969 if (unlikely(addrs_size <= 0))
970 return -EINVAL;
971
972 /* Check the user passed a healthy pointer. */
973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
974 return -EFAULT;
975
976 /* Alloc space for the address array in kernel memory. */
977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
978 if (unlikely(!kaddrs))
979 return -ENOMEM;
980
981 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 kfree(kaddrs);
983 return -EFAULT;
984 }
985
986 /* Walk through the addrs buffer and count the number of addresses. */
987 addr_buf = kaddrs;
988 while (walk_size < addrs_size) {
989 if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 kfree(kaddrs);
991 return -EINVAL;
992 }
993
994 sa_addr = addr_buf;
995 af = sctp_get_af_specific(sa_addr->sa_family);
996
997 /* If the address family is not supported or if this address
998 * causes the address buffer to overflow return EINVAL.
999 */
1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL;
1003 }
1004 addrcnt++;
1005 addr_buf += af->sockaddr_len;
1006 walk_size += af->sockaddr_len;
1007 }
1008
1009 /* Do the work. */
1010 switch (op) {
1011 case SCTP_BINDX_ADD_ADDR:
1012 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 if (err)
1014 goto out;
1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 break;
1017
1018 case SCTP_BINDX_REM_ADDR:
1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 default:
1026 err = -EINVAL;
1027 break;
1028 }
1029
1030 out:
1031 kfree(kaddrs);
1032
1033 return err;
1034 }
1035
1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037 *
1038 * Common routine for handling connect() and sctp_connectx().
1039 * Connect will come in with just a single address.
1040 */
1041 static int __sctp_connect(struct sock *sk,
1042 struct sockaddr *kaddrs,
1043 int addrs_size,
1044 sctp_assoc_t *assoc_id)
1045 {
1046 struct net *net = sock_net(sk);
1047 struct sctp_sock *sp;
1048 struct sctp_endpoint *ep;
1049 struct sctp_association *asoc = NULL;
1050 struct sctp_association *asoc2;
1051 struct sctp_transport *transport;
1052 union sctp_addr to;
1053 sctp_scope_t scope;
1054 long timeo;
1055 int err = 0;
1056 int addrcnt = 0;
1057 int walk_size = 0;
1058 union sctp_addr *sa_addr = NULL;
1059 void *addr_buf;
1060 unsigned short port;
1061 unsigned int f_flags = 0;
1062
1063 sp = sctp_sk(sk);
1064 ep = sp->ep;
1065
1066 /* connect() cannot be done on a socket that is already in ESTABLISHED
1067 * state - UDP-style peeled off socket or a TCP-style socket that
1068 * is already connected.
1069 * It cannot be done even on a TCP-style listening socket.
1070 */
1071 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 err = -EISCONN;
1074 goto out_free;
1075 }
1076
1077 /* Walk through the addrs buffer and count the number of addresses. */
1078 addr_buf = kaddrs;
1079 while (walk_size < addrs_size) {
1080 struct sctp_af *af;
1081
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN;
1122 else
1123 err = -EALREADY;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port <
1156 inet_prot_sock(net) &&
1157 !ns_capable(net->user_ns,
1158 CAP_NET_BIND_SERVICE)) {
1159 err = -EACCES;
1160 goto out_free;
1161 }
1162 }
1163
1164 scope = sctp_scope(&to);
1165 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1166 if (!asoc) {
1167 err = -ENOMEM;
1168 goto out_free;
1169 }
1170
1171 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1172 GFP_KERNEL);
1173 if (err < 0) {
1174 goto out_free;
1175 }
1176
1177 }
1178
1179 /* Prime the peer's transport structures. */
1180 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1181 SCTP_UNKNOWN);
1182 if (!transport) {
1183 err = -ENOMEM;
1184 goto out_free;
1185 }
1186
1187 addrcnt++;
1188 addr_buf += af->sockaddr_len;
1189 walk_size += af->sockaddr_len;
1190 }
1191
1192 /* In case the user of sctp_connectx() wants an association
1193 * id back, assign one now.
1194 */
1195 if (assoc_id) {
1196 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1197 if (err < 0)
1198 goto out_free;
1199 }
1200
1201 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1202 if (err < 0) {
1203 goto out_free;
1204 }
1205
1206 /* Initialize sk's dport and daddr for getpeername() */
1207 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1208 sp->pf->to_sk_daddr(sa_addr, sk);
1209 sk->sk_err = 0;
1210
1211 /* in-kernel sockets don't generally have a file allocated to them
1212 * if all they do is call sock_create_kern().
1213 */
1214 if (sk->sk_socket->file)
1215 f_flags = sk->sk_socket->file->f_flags;
1216
1217 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1218
1219 if (assoc_id)
1220 *assoc_id = asoc->assoc_id;
1221 err = sctp_wait_for_connect(asoc, &timeo);
1222 /* Note: the asoc may be freed after the return of
1223 * sctp_wait_for_connect.
1224 */
1225
1226 /* Don't free association on exit. */
1227 asoc = NULL;
1228
1229 out_free:
1230 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1231 __func__, asoc, kaddrs, err);
1232
1233 if (asoc) {
1234 /* sctp_primitive_ASSOCIATE may have added this association
1235 * To the hash table, try to unhash it, just in case, its a noop
1236 * if it wasn't hashed so we're safe
1237 */
1238 sctp_association_free(asoc);
1239 }
1240 return err;
1241 }
1242
1243 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1244 *
1245 * API 8.9
1246 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1247 * sctp_assoc_t *asoc);
1248 *
1249 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1250 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1251 * or IPv6 addresses.
1252 *
1253 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1254 * Section 3.1.2 for this usage.
1255 *
1256 * addrs is a pointer to an array of one or more socket addresses. Each
1257 * address is contained in its appropriate structure (i.e. struct
1258 * sockaddr_in or struct sockaddr_in6) the family of the address type
1259 * must be used to distengish the address length (note that this
1260 * representation is termed a "packed array" of addresses). The caller
1261 * specifies the number of addresses in the array with addrcnt.
1262 *
1263 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1264 * the association id of the new association. On failure, sctp_connectx()
1265 * returns -1, and sets errno to the appropriate error code. The assoc_id
1266 * is not touched by the kernel.
1267 *
1268 * For SCTP, the port given in each socket address must be the same, or
1269 * sctp_connectx() will fail, setting errno to EINVAL.
1270 *
1271 * An application can use sctp_connectx to initiate an association with
1272 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1273 * allows a caller to specify multiple addresses at which a peer can be
1274 * reached. The way the SCTP stack uses the list of addresses to set up
1275 * the association is implementation dependent. This function only
1276 * specifies that the stack will try to make use of all the addresses in
1277 * the list when needed.
1278 *
1279 * Note that the list of addresses passed in is only used for setting up
1280 * the association. It does not necessarily equal the set of addresses
1281 * the peer uses for the resulting association. If the caller wants to
1282 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1283 * retrieve them after the association has been set up.
1284 *
1285 * Basically do nothing but copying the addresses from user to kernel
1286 * land and invoking either sctp_connectx(). This is used for tunneling
1287 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1288 *
1289 * We don't use copy_from_user() for optimization: we first do the
1290 * sanity checks (buffer size -fast- and access check-healthy
1291 * pointer); if all of those succeed, then we can alloc the memory
1292 * (expensive operation) needed to copy the data to kernel. Then we do
1293 * the copying without checking the user space area
1294 * (__copy_from_user()).
1295 *
1296 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1297 * it.
1298 *
1299 * sk The sk of the socket
1300 * addrs The pointer to the addresses in user land
1301 * addrssize Size of the addrs buffer
1302 *
1303 * Returns >=0 if ok, <0 errno code on error.
1304 */
1305 static int __sctp_setsockopt_connectx(struct sock *sk,
1306 struct sockaddr __user *addrs,
1307 int addrs_size,
1308 sctp_assoc_t *assoc_id)
1309 {
1310 struct sockaddr *kaddrs;
1311 gfp_t gfp = GFP_KERNEL;
1312 int err = 0;
1313
1314 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1315 __func__, sk, addrs, addrs_size);
1316
1317 if (unlikely(addrs_size <= 0))
1318 return -EINVAL;
1319
1320 /* Check the user passed a healthy pointer. */
1321 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1322 return -EFAULT;
1323
1324 /* Alloc space for the address array in kernel memory. */
1325 if (sk->sk_socket->file)
1326 gfp = GFP_USER | __GFP_NOWARN;
1327 kaddrs = kmalloc(addrs_size, gfp);
1328 if (unlikely(!kaddrs))
1329 return -ENOMEM;
1330
1331 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1332 err = -EFAULT;
1333 } else {
1334 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1335 }
1336
1337 kfree(kaddrs);
1338
1339 return err;
1340 }
1341
1342 /*
1343 * This is an older interface. It's kept for backward compatibility
1344 * to the option that doesn't provide association id.
1345 */
1346 static int sctp_setsockopt_connectx_old(struct sock *sk,
1347 struct sockaddr __user *addrs,
1348 int addrs_size)
1349 {
1350 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1351 }
1352
1353 /*
1354 * New interface for the API. The since the API is done with a socket
1355 * option, to make it simple we feed back the association id is as a return
1356 * indication to the call. Error is always negative and association id is
1357 * always positive.
1358 */
1359 static int sctp_setsockopt_connectx(struct sock *sk,
1360 struct sockaddr __user *addrs,
1361 int addrs_size)
1362 {
1363 sctp_assoc_t assoc_id = 0;
1364 int err = 0;
1365
1366 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1367
1368 if (err)
1369 return err;
1370 else
1371 return assoc_id;
1372 }
1373
1374 /*
1375 * New (hopefully final) interface for the API.
1376 * We use the sctp_getaddrs_old structure so that use-space library
1377 * can avoid any unnecessary allocations. The only different part
1378 * is that we store the actual length of the address buffer into the
1379 * addrs_num structure member. That way we can re-use the existing
1380 * code.
1381 */
1382 #ifdef CONFIG_COMPAT
1383 struct compat_sctp_getaddrs_old {
1384 sctp_assoc_t assoc_id;
1385 s32 addr_num;
1386 compat_uptr_t addrs; /* struct sockaddr * */
1387 };
1388 #endif
1389
1390 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1391 char __user *optval,
1392 int __user *optlen)
1393 {
1394 struct sctp_getaddrs_old param;
1395 sctp_assoc_t assoc_id = 0;
1396 int err = 0;
1397
1398 #ifdef CONFIG_COMPAT
1399 if (in_compat_syscall()) {
1400 struct compat_sctp_getaddrs_old param32;
1401
1402 if (len < sizeof(param32))
1403 return -EINVAL;
1404 if (copy_from_user(&param32, optval, sizeof(param32)))
1405 return -EFAULT;
1406
1407 param.assoc_id = param32.assoc_id;
1408 param.addr_num = param32.addr_num;
1409 param.addrs = compat_ptr(param32.addrs);
1410 } else
1411 #endif
1412 {
1413 if (len < sizeof(param))
1414 return -EINVAL;
1415 if (copy_from_user(&param, optval, sizeof(param)))
1416 return -EFAULT;
1417 }
1418
1419 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1420 param.addrs, param.addr_num,
1421 &assoc_id);
1422 if (err == 0 || err == -EINPROGRESS) {
1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1424 return -EFAULT;
1425 if (put_user(sizeof(assoc_id), optlen))
1426 return -EFAULT;
1427 }
1428
1429 return err;
1430 }
1431
1432 /* API 3.1.4 close() - UDP Style Syntax
1433 * Applications use close() to perform graceful shutdown (as described in
1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1435 * by a UDP-style socket.
1436 *
1437 * The syntax is
1438 *
1439 * ret = close(int sd);
1440 *
1441 * sd - the socket descriptor of the associations to be closed.
1442 *
1443 * To gracefully shutdown a specific association represented by the
1444 * UDP-style socket, an application should use the sendmsg() call,
1445 * passing no user data, but including the appropriate flag in the
1446 * ancillary data (see Section xxxx).
1447 *
1448 * If sd in the close() call is a branched-off socket representing only
1449 * one association, the shutdown is performed on that association only.
1450 *
1451 * 4.1.6 close() - TCP Style Syntax
1452 *
1453 * Applications use close() to gracefully close down an association.
1454 *
1455 * The syntax is:
1456 *
1457 * int close(int sd);
1458 *
1459 * sd - the socket descriptor of the association to be closed.
1460 *
1461 * After an application calls close() on a socket descriptor, no further
1462 * socket operations will succeed on that descriptor.
1463 *
1464 * API 7.1.4 SO_LINGER
1465 *
1466 * An application using the TCP-style socket can use this option to
1467 * perform the SCTP ABORT primitive. The linger option structure is:
1468 *
1469 * struct linger {
1470 * int l_onoff; // option on/off
1471 * int l_linger; // linger time
1472 * };
1473 *
1474 * To enable the option, set l_onoff to 1. If the l_linger value is set
1475 * to 0, calling close() is the same as the ABORT primitive. If the
1476 * value is set to a negative value, the setsockopt() call will return
1477 * an error. If the value is set to a positive value linger_time, the
1478 * close() can be blocked for at most linger_time ms. If the graceful
1479 * shutdown phase does not finish during this period, close() will
1480 * return but the graceful shutdown phase continues in the system.
1481 */
1482 static void sctp_close(struct sock *sk, long timeout)
1483 {
1484 struct net *net = sock_net(sk);
1485 struct sctp_endpoint *ep;
1486 struct sctp_association *asoc;
1487 struct list_head *pos, *temp;
1488 unsigned int data_was_unread;
1489
1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1491
1492 lock_sock(sk);
1493 sk->sk_shutdown = SHUTDOWN_MASK;
1494 sk->sk_state = SCTP_SS_CLOSING;
1495
1496 ep = sctp_sk(sk)->ep;
1497
1498 /* Clean up any skbs sitting on the receive queue. */
1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1501
1502 /* Walk all associations on an endpoint. */
1503 list_for_each_safe(pos, temp, &ep->asocs) {
1504 asoc = list_entry(pos, struct sctp_association, asocs);
1505
1506 if (sctp_style(sk, TCP)) {
1507 /* A closed association can still be in the list if
1508 * it belongs to a TCP-style listening socket that is
1509 * not yet accepted. If so, free it. If not, send an
1510 * ABORT or SHUTDOWN based on the linger options.
1511 */
1512 if (sctp_state(asoc, CLOSED)) {
1513 sctp_association_free(asoc);
1514 continue;
1515 }
1516 }
1517
1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1519 !skb_queue_empty(&asoc->ulpq.reasm) ||
1520 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1521 struct sctp_chunk *chunk;
1522
1523 chunk = sctp_make_abort_user(asoc, NULL, 0);
1524 sctp_primitive_ABORT(net, asoc, chunk);
1525 } else
1526 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1527 }
1528
1529 /* On a TCP-style socket, block for at most linger_time if set. */
1530 if (sctp_style(sk, TCP) && timeout)
1531 sctp_wait_for_close(sk, timeout);
1532
1533 /* This will run the backlog queue. */
1534 release_sock(sk);
1535
1536 /* Supposedly, no process has access to the socket, but
1537 * the net layers still may.
1538 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1539 * held and that should be grabbed before socket lock.
1540 */
1541 spin_lock_bh(&net->sctp.addr_wq_lock);
1542 bh_lock_sock(sk);
1543
1544 /* Hold the sock, since sk_common_release() will put sock_put()
1545 * and we have just a little more cleanup.
1546 */
1547 sock_hold(sk);
1548 sk_common_release(sk);
1549
1550 bh_unlock_sock(sk);
1551 spin_unlock_bh(&net->sctp.addr_wq_lock);
1552
1553 sock_put(sk);
1554
1555 SCTP_DBG_OBJCNT_DEC(sock);
1556 }
1557
1558 /* Handle EPIPE error. */
1559 static int sctp_error(struct sock *sk, int flags, int err)
1560 {
1561 if (err == -EPIPE)
1562 err = sock_error(sk) ? : -EPIPE;
1563 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1564 send_sig(SIGPIPE, current, 0);
1565 return err;
1566 }
1567
1568 /* API 3.1.3 sendmsg() - UDP Style Syntax
1569 *
1570 * An application uses sendmsg() and recvmsg() calls to transmit data to
1571 * and receive data from its peer.
1572 *
1573 * ssize_t sendmsg(int socket, const struct msghdr *message,
1574 * int flags);
1575 *
1576 * socket - the socket descriptor of the endpoint.
1577 * message - pointer to the msghdr structure which contains a single
1578 * user message and possibly some ancillary data.
1579 *
1580 * See Section 5 for complete description of the data
1581 * structures.
1582 *
1583 * flags - flags sent or received with the user message, see Section
1584 * 5 for complete description of the flags.
1585 *
1586 * Note: This function could use a rewrite especially when explicit
1587 * connect support comes in.
1588 */
1589 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1590
1591 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1592
1593 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1594 {
1595 struct net *net = sock_net(sk);
1596 struct sctp_sock *sp;
1597 struct sctp_endpoint *ep;
1598 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1599 struct sctp_transport *transport, *chunk_tp;
1600 struct sctp_chunk *chunk;
1601 union sctp_addr to;
1602 struct sockaddr *msg_name = NULL;
1603 struct sctp_sndrcvinfo default_sinfo;
1604 struct sctp_sndrcvinfo *sinfo;
1605 struct sctp_initmsg *sinit;
1606 sctp_assoc_t associd = 0;
1607 sctp_cmsgs_t cmsgs = { NULL };
1608 sctp_scope_t scope;
1609 bool fill_sinfo_ttl = false, wait_connect = false;
1610 struct sctp_datamsg *datamsg;
1611 int msg_flags = msg->msg_flags;
1612 __u16 sinfo_flags = 0;
1613 long timeo;
1614 int err;
1615
1616 err = 0;
1617 sp = sctp_sk(sk);
1618 ep = sp->ep;
1619
1620 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1621 msg, msg_len, ep);
1622
1623 /* We cannot send a message over a TCP-style listening socket. */
1624 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1625 err = -EPIPE;
1626 goto out_nounlock;
1627 }
1628
1629 /* Parse out the SCTP CMSGs. */
1630 err = sctp_msghdr_parse(msg, &cmsgs);
1631 if (err) {
1632 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1633 goto out_nounlock;
1634 }
1635
1636 /* Fetch the destination address for this packet. This
1637 * address only selects the association--it is not necessarily
1638 * the address we will send to.
1639 * For a peeled-off socket, msg_name is ignored.
1640 */
1641 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1642 int msg_namelen = msg->msg_namelen;
1643
1644 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1645 msg_namelen);
1646 if (err)
1647 return err;
1648
1649 if (msg_namelen > sizeof(to))
1650 msg_namelen = sizeof(to);
1651 memcpy(&to, msg->msg_name, msg_namelen);
1652 msg_name = msg->msg_name;
1653 }
1654
1655 sinit = cmsgs.init;
1656 if (cmsgs.sinfo != NULL) {
1657 memset(&default_sinfo, 0, sizeof(default_sinfo));
1658 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1659 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1660 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1661 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1662 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1663
1664 sinfo = &default_sinfo;
1665 fill_sinfo_ttl = true;
1666 } else {
1667 sinfo = cmsgs.srinfo;
1668 }
1669 /* Did the user specify SNDINFO/SNDRCVINFO? */
1670 if (sinfo) {
1671 sinfo_flags = sinfo->sinfo_flags;
1672 associd = sinfo->sinfo_assoc_id;
1673 }
1674
1675 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1676 msg_len, sinfo_flags);
1677
1678 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1679 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1680 err = -EINVAL;
1681 goto out_nounlock;
1682 }
1683
1684 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1685 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1686 * If SCTP_ABORT is set, the message length could be non zero with
1687 * the msg_iov set to the user abort reason.
1688 */
1689 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1690 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1691 err = -EINVAL;
1692 goto out_nounlock;
1693 }
1694
1695 /* If SCTP_ADDR_OVER is set, there must be an address
1696 * specified in msg_name.
1697 */
1698 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1699 err = -EINVAL;
1700 goto out_nounlock;
1701 }
1702
1703 transport = NULL;
1704
1705 pr_debug("%s: about to look up association\n", __func__);
1706
1707 lock_sock(sk);
1708
1709 /* If a msg_name has been specified, assume this is to be used. */
1710 if (msg_name) {
1711 /* Look for a matching association on the endpoint. */
1712 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1713
1714 /* If we could not find a matching association on the
1715 * endpoint, make sure that it is not a TCP-style
1716 * socket that already has an association or there is
1717 * no peeled-off association on another socket.
1718 */
1719 if (!asoc &&
1720 ((sctp_style(sk, TCP) &&
1721 (sctp_sstate(sk, ESTABLISHED) ||
1722 sctp_sstate(sk, CLOSING))) ||
1723 sctp_endpoint_is_peeled_off(ep, &to))) {
1724 err = -EADDRNOTAVAIL;
1725 goto out_unlock;
1726 }
1727 } else {
1728 asoc = sctp_id2assoc(sk, associd);
1729 if (!asoc) {
1730 err = -EPIPE;
1731 goto out_unlock;
1732 }
1733 }
1734
1735 if (asoc) {
1736 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1737
1738 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1739 * socket that has an association in CLOSED state. This can
1740 * happen when an accepted socket has an association that is
1741 * already CLOSED.
1742 */
1743 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1744 err = -EPIPE;
1745 goto out_unlock;
1746 }
1747
1748 if (sinfo_flags & SCTP_EOF) {
1749 pr_debug("%s: shutting down association:%p\n",
1750 __func__, asoc);
1751
1752 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1753 err = 0;
1754 goto out_unlock;
1755 }
1756 if (sinfo_flags & SCTP_ABORT) {
1757
1758 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1759 if (!chunk) {
1760 err = -ENOMEM;
1761 goto out_unlock;
1762 }
1763
1764 pr_debug("%s: aborting association:%p\n",
1765 __func__, asoc);
1766
1767 sctp_primitive_ABORT(net, asoc, chunk);
1768 err = 0;
1769 goto out_unlock;
1770 }
1771 }
1772
1773 /* Do we need to create the association? */
1774 if (!asoc) {
1775 pr_debug("%s: there is no association yet\n", __func__);
1776
1777 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1778 err = -EINVAL;
1779 goto out_unlock;
1780 }
1781
1782 /* Check for invalid stream against the stream counts,
1783 * either the default or the user specified stream counts.
1784 */
1785 if (sinfo) {
1786 if (!sinit || !sinit->sinit_num_ostreams) {
1787 /* Check against the defaults. */
1788 if (sinfo->sinfo_stream >=
1789 sp->initmsg.sinit_num_ostreams) {
1790 err = -EINVAL;
1791 goto out_unlock;
1792 }
1793 } else {
1794 /* Check against the requested. */
1795 if (sinfo->sinfo_stream >=
1796 sinit->sinit_num_ostreams) {
1797 err = -EINVAL;
1798 goto out_unlock;
1799 }
1800 }
1801 }
1802
1803 /*
1804 * API 3.1.2 bind() - UDP Style Syntax
1805 * If a bind() or sctp_bindx() is not called prior to a
1806 * sendmsg() call that initiates a new association, the
1807 * system picks an ephemeral port and will choose an address
1808 * set equivalent to binding with a wildcard address.
1809 */
1810 if (!ep->base.bind_addr.port) {
1811 if (sctp_autobind(sk)) {
1812 err = -EAGAIN;
1813 goto out_unlock;
1814 }
1815 } else {
1816 /*
1817 * If an unprivileged user inherits a one-to-many
1818 * style socket with open associations on a privileged
1819 * port, it MAY be permitted to accept new associations,
1820 * but it SHOULD NOT be permitted to open new
1821 * associations.
1822 */
1823 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1824 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1825 err = -EACCES;
1826 goto out_unlock;
1827 }
1828 }
1829
1830 scope = sctp_scope(&to);
1831 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1832 if (!new_asoc) {
1833 err = -ENOMEM;
1834 goto out_unlock;
1835 }
1836 asoc = new_asoc;
1837 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1838 if (err < 0) {
1839 err = -ENOMEM;
1840 goto out_free;
1841 }
1842
1843 /* If the SCTP_INIT ancillary data is specified, set all
1844 * the association init values accordingly.
1845 */
1846 if (sinit) {
1847 if (sinit->sinit_num_ostreams) {
1848 asoc->c.sinit_num_ostreams =
1849 sinit->sinit_num_ostreams;
1850 }
1851 if (sinit->sinit_max_instreams) {
1852 asoc->c.sinit_max_instreams =
1853 sinit->sinit_max_instreams;
1854 }
1855 if (sinit->sinit_max_attempts) {
1856 asoc->max_init_attempts
1857 = sinit->sinit_max_attempts;
1858 }
1859 if (sinit->sinit_max_init_timeo) {
1860 asoc->max_init_timeo =
1861 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1862 }
1863 }
1864
1865 /* Prime the peer's transport structures. */
1866 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1867 if (!transport) {
1868 err = -ENOMEM;
1869 goto out_free;
1870 }
1871 }
1872
1873 /* ASSERT: we have a valid association at this point. */
1874 pr_debug("%s: we have a valid association\n", __func__);
1875
1876 if (!sinfo) {
1877 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1878 * one with some defaults.
1879 */
1880 memset(&default_sinfo, 0, sizeof(default_sinfo));
1881 default_sinfo.sinfo_stream = asoc->default_stream;
1882 default_sinfo.sinfo_flags = asoc->default_flags;
1883 default_sinfo.sinfo_ppid = asoc->default_ppid;
1884 default_sinfo.sinfo_context = asoc->default_context;
1885 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1886 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1887
1888 sinfo = &default_sinfo;
1889 } else if (fill_sinfo_ttl) {
1890 /* In case SNDINFO was specified, we still need to fill
1891 * it with a default ttl from the assoc here.
1892 */
1893 sinfo->sinfo_timetolive = asoc->default_timetolive;
1894 }
1895
1896 /* API 7.1.7, the sndbuf size per association bounds the
1897 * maximum size of data that can be sent in a single send call.
1898 */
1899 if (msg_len > sk->sk_sndbuf) {
1900 err = -EMSGSIZE;
1901 goto out_free;
1902 }
1903
1904 if (asoc->pmtu_pending)
1905 sctp_assoc_pending_pmtu(sk, asoc);
1906
1907 /* If fragmentation is disabled and the message length exceeds the
1908 * association fragmentation point, return EMSGSIZE. The I-D
1909 * does not specify what this error is, but this looks like
1910 * a great fit.
1911 */
1912 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1913 err = -EMSGSIZE;
1914 goto out_free;
1915 }
1916
1917 /* Check for invalid stream. */
1918 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1919 err = -EINVAL;
1920 goto out_free;
1921 }
1922
1923 if (sctp_wspace(asoc) < msg_len)
1924 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1925
1926 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1927 if (!sctp_wspace(asoc)) {
1928 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1929 if (err)
1930 goto out_free;
1931 }
1932
1933 /* If an address is passed with the sendto/sendmsg call, it is used
1934 * to override the primary destination address in the TCP model, or
1935 * when SCTP_ADDR_OVER flag is set in the UDP model.
1936 */
1937 if ((sctp_style(sk, TCP) && msg_name) ||
1938 (sinfo_flags & SCTP_ADDR_OVER)) {
1939 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1940 if (!chunk_tp) {
1941 err = -EINVAL;
1942 goto out_free;
1943 }
1944 } else
1945 chunk_tp = NULL;
1946
1947 /* Auto-connect, if we aren't connected already. */
1948 if (sctp_state(asoc, CLOSED)) {
1949 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1950 if (err < 0)
1951 goto out_free;
1952
1953 wait_connect = true;
1954 pr_debug("%s: we associated primitively\n", __func__);
1955 }
1956
1957 /* Break the message into multiple chunks of maximum size. */
1958 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1959 if (IS_ERR(datamsg)) {
1960 err = PTR_ERR(datamsg);
1961 goto out_free;
1962 }
1963
1964 /* Now send the (possibly) fragmented message. */
1965 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1966 sctp_chunk_hold(chunk);
1967
1968 /* Do accounting for the write space. */
1969 sctp_set_owner_w(chunk);
1970
1971 chunk->transport = chunk_tp;
1972 }
1973
1974 /* Send it to the lower layers. Note: all chunks
1975 * must either fail or succeed. The lower layer
1976 * works that way today. Keep it that way or this
1977 * breaks.
1978 */
1979 err = sctp_primitive_SEND(net, asoc, datamsg);
1980 /* Did the lower layer accept the chunk? */
1981 if (err) {
1982 sctp_datamsg_free(datamsg);
1983 goto out_free;
1984 }
1985
1986 pr_debug("%s: we sent primitively\n", __func__);
1987
1988 sctp_datamsg_put(datamsg);
1989 err = msg_len;
1990
1991 if (unlikely(wait_connect)) {
1992 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1993 sctp_wait_for_connect(asoc, &timeo);
1994 }
1995
1996 /* If we are already past ASSOCIATE, the lower
1997 * layers are responsible for association cleanup.
1998 */
1999 goto out_unlock;
2000
2001 out_free:
2002 if (new_asoc)
2003 sctp_association_free(asoc);
2004 out_unlock:
2005 release_sock(sk);
2006
2007 out_nounlock:
2008 return sctp_error(sk, msg_flags, err);
2009
2010 #if 0
2011 do_sock_err:
2012 if (msg_len)
2013 err = msg_len;
2014 else
2015 err = sock_error(sk);
2016 goto out;
2017
2018 do_interrupted:
2019 if (msg_len)
2020 err = msg_len;
2021 goto out;
2022 #endif /* 0 */
2023 }
2024
2025 /* This is an extended version of skb_pull() that removes the data from the
2026 * start of a skb even when data is spread across the list of skb's in the
2027 * frag_list. len specifies the total amount of data that needs to be removed.
2028 * when 'len' bytes could be removed from the skb, it returns 0.
2029 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2030 * could not be removed.
2031 */
2032 static int sctp_skb_pull(struct sk_buff *skb, int len)
2033 {
2034 struct sk_buff *list;
2035 int skb_len = skb_headlen(skb);
2036 int rlen;
2037
2038 if (len <= skb_len) {
2039 __skb_pull(skb, len);
2040 return 0;
2041 }
2042 len -= skb_len;
2043 __skb_pull(skb, skb_len);
2044
2045 skb_walk_frags(skb, list) {
2046 rlen = sctp_skb_pull(list, len);
2047 skb->len -= (len-rlen);
2048 skb->data_len -= (len-rlen);
2049
2050 if (!rlen)
2051 return 0;
2052
2053 len = rlen;
2054 }
2055
2056 return len;
2057 }
2058
2059 /* API 3.1.3 recvmsg() - UDP Style Syntax
2060 *
2061 * ssize_t recvmsg(int socket, struct msghdr *message,
2062 * int flags);
2063 *
2064 * socket - the socket descriptor of the endpoint.
2065 * message - pointer to the msghdr structure which contains a single
2066 * user message and possibly some ancillary data.
2067 *
2068 * See Section 5 for complete description of the data
2069 * structures.
2070 *
2071 * flags - flags sent or received with the user message, see Section
2072 * 5 for complete description of the flags.
2073 */
2074 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2075 int noblock, int flags, int *addr_len)
2076 {
2077 struct sctp_ulpevent *event = NULL;
2078 struct sctp_sock *sp = sctp_sk(sk);
2079 struct sk_buff *skb, *head_skb;
2080 int copied;
2081 int err = 0;
2082 int skb_len;
2083
2084 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2085 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2086 addr_len);
2087
2088 lock_sock(sk);
2089
2090 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2091 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2092 err = -ENOTCONN;
2093 goto out;
2094 }
2095
2096 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2097 if (!skb)
2098 goto out;
2099
2100 /* Get the total length of the skb including any skb's in the
2101 * frag_list.
2102 */
2103 skb_len = skb->len;
2104
2105 copied = skb_len;
2106 if (copied > len)
2107 copied = len;
2108
2109 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2110
2111 event = sctp_skb2event(skb);
2112
2113 if (err)
2114 goto out_free;
2115
2116 if (event->chunk && event->chunk->head_skb)
2117 head_skb = event->chunk->head_skb;
2118 else
2119 head_skb = skb;
2120 sock_recv_ts_and_drops(msg, sk, head_skb);
2121 if (sctp_ulpevent_is_notification(event)) {
2122 msg->msg_flags |= MSG_NOTIFICATION;
2123 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2124 } else {
2125 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2126 }
2127
2128 /* Check if we allow SCTP_NXTINFO. */
2129 if (sp->recvnxtinfo)
2130 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2131 /* Check if we allow SCTP_RCVINFO. */
2132 if (sp->recvrcvinfo)
2133 sctp_ulpevent_read_rcvinfo(event, msg);
2134 /* Check if we allow SCTP_SNDRCVINFO. */
2135 if (sp->subscribe.sctp_data_io_event)
2136 sctp_ulpevent_read_sndrcvinfo(event, msg);
2137
2138 err = copied;
2139
2140 /* If skb's length exceeds the user's buffer, update the skb and
2141 * push it back to the receive_queue so that the next call to
2142 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2143 */
2144 if (skb_len > copied) {
2145 msg->msg_flags &= ~MSG_EOR;
2146 if (flags & MSG_PEEK)
2147 goto out_free;
2148 sctp_skb_pull(skb, copied);
2149 skb_queue_head(&sk->sk_receive_queue, skb);
2150
2151 /* When only partial message is copied to the user, increase
2152 * rwnd by that amount. If all the data in the skb is read,
2153 * rwnd is updated when the event is freed.
2154 */
2155 if (!sctp_ulpevent_is_notification(event))
2156 sctp_assoc_rwnd_increase(event->asoc, copied);
2157 goto out;
2158 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2159 (event->msg_flags & MSG_EOR))
2160 msg->msg_flags |= MSG_EOR;
2161 else
2162 msg->msg_flags &= ~MSG_EOR;
2163
2164 out_free:
2165 if (flags & MSG_PEEK) {
2166 /* Release the skb reference acquired after peeking the skb in
2167 * sctp_skb_recv_datagram().
2168 */
2169 kfree_skb(skb);
2170 } else {
2171 /* Free the event which includes releasing the reference to
2172 * the owner of the skb, freeing the skb and updating the
2173 * rwnd.
2174 */
2175 sctp_ulpevent_free(event);
2176 }
2177 out:
2178 release_sock(sk);
2179 return err;
2180 }
2181
2182 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2183 *
2184 * This option is a on/off flag. If enabled no SCTP message
2185 * fragmentation will be performed. Instead if a message being sent
2186 * exceeds the current PMTU size, the message will NOT be sent and
2187 * instead a error will be indicated to the user.
2188 */
2189 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2190 char __user *optval,
2191 unsigned int optlen)
2192 {
2193 int val;
2194
2195 if (optlen < sizeof(int))
2196 return -EINVAL;
2197
2198 if (get_user(val, (int __user *)optval))
2199 return -EFAULT;
2200
2201 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2202
2203 return 0;
2204 }
2205
2206 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2207 unsigned int optlen)
2208 {
2209 struct sctp_association *asoc;
2210 struct sctp_ulpevent *event;
2211
2212 if (optlen > sizeof(struct sctp_event_subscribe))
2213 return -EINVAL;
2214 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2215 return -EFAULT;
2216
2217 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2218 * if there is no data to be sent or retransmit, the stack will
2219 * immediately send up this notification.
2220 */
2221 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2222 &sctp_sk(sk)->subscribe)) {
2223 asoc = sctp_id2assoc(sk, 0);
2224
2225 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2226 event = sctp_ulpevent_make_sender_dry_event(asoc,
2227 GFP_ATOMIC);
2228 if (!event)
2229 return -ENOMEM;
2230
2231 sctp_ulpq_tail_event(&asoc->ulpq, event);
2232 }
2233 }
2234
2235 return 0;
2236 }
2237
2238 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2239 *
2240 * This socket option is applicable to the UDP-style socket only. When
2241 * set it will cause associations that are idle for more than the
2242 * specified number of seconds to automatically close. An association
2243 * being idle is defined an association that has NOT sent or received
2244 * user data. The special value of '0' indicates that no automatic
2245 * close of any associations should be performed. The option expects an
2246 * integer defining the number of seconds of idle time before an
2247 * association is closed.
2248 */
2249 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2250 unsigned int optlen)
2251 {
2252 struct sctp_sock *sp = sctp_sk(sk);
2253 struct net *net = sock_net(sk);
2254
2255 /* Applicable to UDP-style socket only */
2256 if (sctp_style(sk, TCP))
2257 return -EOPNOTSUPP;
2258 if (optlen != sizeof(int))
2259 return -EINVAL;
2260 if (copy_from_user(&sp->autoclose, optval, optlen))
2261 return -EFAULT;
2262
2263 if (sp->autoclose > net->sctp.max_autoclose)
2264 sp->autoclose = net->sctp.max_autoclose;
2265
2266 return 0;
2267 }
2268
2269 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2270 *
2271 * Applications can enable or disable heartbeats for any peer address of
2272 * an association, modify an address's heartbeat interval, force a
2273 * heartbeat to be sent immediately, and adjust the address's maximum
2274 * number of retransmissions sent before an address is considered
2275 * unreachable. The following structure is used to access and modify an
2276 * address's parameters:
2277 *
2278 * struct sctp_paddrparams {
2279 * sctp_assoc_t spp_assoc_id;
2280 * struct sockaddr_storage spp_address;
2281 * uint32_t spp_hbinterval;
2282 * uint16_t spp_pathmaxrxt;
2283 * uint32_t spp_pathmtu;
2284 * uint32_t spp_sackdelay;
2285 * uint32_t spp_flags;
2286 * };
2287 *
2288 * spp_assoc_id - (one-to-many style socket) This is filled in the
2289 * application, and identifies the association for
2290 * this query.
2291 * spp_address - This specifies which address is of interest.
2292 * spp_hbinterval - This contains the value of the heartbeat interval,
2293 * in milliseconds. If a value of zero
2294 * is present in this field then no changes are to
2295 * be made to this parameter.
2296 * spp_pathmaxrxt - This contains the maximum number of
2297 * retransmissions before this address shall be
2298 * considered unreachable. If a value of zero
2299 * is present in this field then no changes are to
2300 * be made to this parameter.
2301 * spp_pathmtu - When Path MTU discovery is disabled the value
2302 * specified here will be the "fixed" path mtu.
2303 * Note that if the spp_address field is empty
2304 * then all associations on this address will
2305 * have this fixed path mtu set upon them.
2306 *
2307 * spp_sackdelay - When delayed sack is enabled, this value specifies
2308 * the number of milliseconds that sacks will be delayed
2309 * for. This value will apply to all addresses of an
2310 * association if the spp_address field is empty. Note
2311 * also, that if delayed sack is enabled and this
2312 * value is set to 0, no change is made to the last
2313 * recorded delayed sack timer value.
2314 *
2315 * spp_flags - These flags are used to control various features
2316 * on an association. The flag field may contain
2317 * zero or more of the following options.
2318 *
2319 * SPP_HB_ENABLE - Enable heartbeats on the
2320 * specified address. Note that if the address
2321 * field is empty all addresses for the association
2322 * have heartbeats enabled upon them.
2323 *
2324 * SPP_HB_DISABLE - Disable heartbeats on the
2325 * speicifed address. Note that if the address
2326 * field is empty all addresses for the association
2327 * will have their heartbeats disabled. Note also
2328 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2329 * mutually exclusive, only one of these two should
2330 * be specified. Enabling both fields will have
2331 * undetermined results.
2332 *
2333 * SPP_HB_DEMAND - Request a user initiated heartbeat
2334 * to be made immediately.
2335 *
2336 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2337 * heartbeat delayis to be set to the value of 0
2338 * milliseconds.
2339 *
2340 * SPP_PMTUD_ENABLE - This field will enable PMTU
2341 * discovery upon the specified address. Note that
2342 * if the address feild is empty then all addresses
2343 * on the association are effected.
2344 *
2345 * SPP_PMTUD_DISABLE - This field will disable PMTU
2346 * discovery upon the specified address. Note that
2347 * if the address feild is empty then all addresses
2348 * on the association are effected. Not also that
2349 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2350 * exclusive. Enabling both will have undetermined
2351 * results.
2352 *
2353 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2354 * on delayed sack. The time specified in spp_sackdelay
2355 * is used to specify the sack delay for this address. Note
2356 * that if spp_address is empty then all addresses will
2357 * enable delayed sack and take on the sack delay
2358 * value specified in spp_sackdelay.
2359 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2360 * off delayed sack. If the spp_address field is blank then
2361 * delayed sack is disabled for the entire association. Note
2362 * also that this field is mutually exclusive to
2363 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2364 * results.
2365 */
2366 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2367 struct sctp_transport *trans,
2368 struct sctp_association *asoc,
2369 struct sctp_sock *sp,
2370 int hb_change,
2371 int pmtud_change,
2372 int sackdelay_change)
2373 {
2374 int error;
2375
2376 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2377 struct net *net = sock_net(trans->asoc->base.sk);
2378
2379 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2380 if (error)
2381 return error;
2382 }
2383
2384 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2385 * this field is ignored. Note also that a value of zero indicates
2386 * the current setting should be left unchanged.
2387 */
2388 if (params->spp_flags & SPP_HB_ENABLE) {
2389
2390 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2391 * set. This lets us use 0 value when this flag
2392 * is set.
2393 */
2394 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2395 params->spp_hbinterval = 0;
2396
2397 if (params->spp_hbinterval ||
2398 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2399 if (trans) {
2400 trans->hbinterval =
2401 msecs_to_jiffies(params->spp_hbinterval);
2402 } else if (asoc) {
2403 asoc->hbinterval =
2404 msecs_to_jiffies(params->spp_hbinterval);
2405 } else {
2406 sp->hbinterval = params->spp_hbinterval;
2407 }
2408 }
2409 }
2410
2411 if (hb_change) {
2412 if (trans) {
2413 trans->param_flags =
2414 (trans->param_flags & ~SPP_HB) | hb_change;
2415 } else if (asoc) {
2416 asoc->param_flags =
2417 (asoc->param_flags & ~SPP_HB) | hb_change;
2418 } else {
2419 sp->param_flags =
2420 (sp->param_flags & ~SPP_HB) | hb_change;
2421 }
2422 }
2423
2424 /* When Path MTU discovery is disabled the value specified here will
2425 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2426 * include the flag SPP_PMTUD_DISABLE for this field to have any
2427 * effect).
2428 */
2429 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2430 if (trans) {
2431 trans->pathmtu = params->spp_pathmtu;
2432 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2433 } else if (asoc) {
2434 asoc->pathmtu = params->spp_pathmtu;
2435 } else {
2436 sp->pathmtu = params->spp_pathmtu;
2437 }
2438 }
2439
2440 if (pmtud_change) {
2441 if (trans) {
2442 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2443 (params->spp_flags & SPP_PMTUD_ENABLE);
2444 trans->param_flags =
2445 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2446 if (update) {
2447 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2448 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2449 }
2450 } else if (asoc) {
2451 asoc->param_flags =
2452 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2453 } else {
2454 sp->param_flags =
2455 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2456 }
2457 }
2458
2459 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2460 * value of this field is ignored. Note also that a value of zero
2461 * indicates the current setting should be left unchanged.
2462 */
2463 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2464 if (trans) {
2465 trans->sackdelay =
2466 msecs_to_jiffies(params->spp_sackdelay);
2467 } else if (asoc) {
2468 asoc->sackdelay =
2469 msecs_to_jiffies(params->spp_sackdelay);
2470 } else {
2471 sp->sackdelay = params->spp_sackdelay;
2472 }
2473 }
2474
2475 if (sackdelay_change) {
2476 if (trans) {
2477 trans->param_flags =
2478 (trans->param_flags & ~SPP_SACKDELAY) |
2479 sackdelay_change;
2480 } else if (asoc) {
2481 asoc->param_flags =
2482 (asoc->param_flags & ~SPP_SACKDELAY) |
2483 sackdelay_change;
2484 } else {
2485 sp->param_flags =
2486 (sp->param_flags & ~SPP_SACKDELAY) |
2487 sackdelay_change;
2488 }
2489 }
2490
2491 /* Note that a value of zero indicates the current setting should be
2492 left unchanged.
2493 */
2494 if (params->spp_pathmaxrxt) {
2495 if (trans) {
2496 trans->pathmaxrxt = params->spp_pathmaxrxt;
2497 } else if (asoc) {
2498 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2499 } else {
2500 sp->pathmaxrxt = params->spp_pathmaxrxt;
2501 }
2502 }
2503
2504 return 0;
2505 }
2506
2507 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2508 char __user *optval,
2509 unsigned int optlen)
2510 {
2511 struct sctp_paddrparams params;
2512 struct sctp_transport *trans = NULL;
2513 struct sctp_association *asoc = NULL;
2514 struct sctp_sock *sp = sctp_sk(sk);
2515 int error;
2516 int hb_change, pmtud_change, sackdelay_change;
2517
2518 if (optlen != sizeof(struct sctp_paddrparams))
2519 return -EINVAL;
2520
2521 if (copy_from_user(&params, optval, optlen))
2522 return -EFAULT;
2523
2524 /* Validate flags and value parameters. */
2525 hb_change = params.spp_flags & SPP_HB;
2526 pmtud_change = params.spp_flags & SPP_PMTUD;
2527 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2528
2529 if (hb_change == SPP_HB ||
2530 pmtud_change == SPP_PMTUD ||
2531 sackdelay_change == SPP_SACKDELAY ||
2532 params.spp_sackdelay > 500 ||
2533 (params.spp_pathmtu &&
2534 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2535 return -EINVAL;
2536
2537 /* If an address other than INADDR_ANY is specified, and
2538 * no transport is found, then the request is invalid.
2539 */
2540 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2541 trans = sctp_addr_id2transport(sk, &params.spp_address,
2542 params.spp_assoc_id);
2543 if (!trans)
2544 return -EINVAL;
2545 }
2546
2547 /* Get association, if assoc_id != 0 and the socket is a one
2548 * to many style socket, and an association was not found, then
2549 * the id was invalid.
2550 */
2551 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2552 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2553 return -EINVAL;
2554
2555 /* Heartbeat demand can only be sent on a transport or
2556 * association, but not a socket.
2557 */
2558 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2559 return -EINVAL;
2560
2561 /* Process parameters. */
2562 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2563 hb_change, pmtud_change,
2564 sackdelay_change);
2565
2566 if (error)
2567 return error;
2568
2569 /* If changes are for association, also apply parameters to each
2570 * transport.
2571 */
2572 if (!trans && asoc) {
2573 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2574 transports) {
2575 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2576 hb_change, pmtud_change,
2577 sackdelay_change);
2578 }
2579 }
2580
2581 return 0;
2582 }
2583
2584 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2585 {
2586 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2587 }
2588
2589 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2590 {
2591 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2592 }
2593
2594 /*
2595 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2596 *
2597 * This option will effect the way delayed acks are performed. This
2598 * option allows you to get or set the delayed ack time, in
2599 * milliseconds. It also allows changing the delayed ack frequency.
2600 * Changing the frequency to 1 disables the delayed sack algorithm. If
2601 * the assoc_id is 0, then this sets or gets the endpoints default
2602 * values. If the assoc_id field is non-zero, then the set or get
2603 * effects the specified association for the one to many model (the
2604 * assoc_id field is ignored by the one to one model). Note that if
2605 * sack_delay or sack_freq are 0 when setting this option, then the
2606 * current values will remain unchanged.
2607 *
2608 * struct sctp_sack_info {
2609 * sctp_assoc_t sack_assoc_id;
2610 * uint32_t sack_delay;
2611 * uint32_t sack_freq;
2612 * };
2613 *
2614 * sack_assoc_id - This parameter, indicates which association the user
2615 * is performing an action upon. Note that if this field's value is
2616 * zero then the endpoints default value is changed (effecting future
2617 * associations only).
2618 *
2619 * sack_delay - This parameter contains the number of milliseconds that
2620 * the user is requesting the delayed ACK timer be set to. Note that
2621 * this value is defined in the standard to be between 200 and 500
2622 * milliseconds.
2623 *
2624 * sack_freq - This parameter contains the number of packets that must
2625 * be received before a sack is sent without waiting for the delay
2626 * timer to expire. The default value for this is 2, setting this
2627 * value to 1 will disable the delayed sack algorithm.
2628 */
2629
2630 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2631 char __user *optval, unsigned int optlen)
2632 {
2633 struct sctp_sack_info params;
2634 struct sctp_transport *trans = NULL;
2635 struct sctp_association *asoc = NULL;
2636 struct sctp_sock *sp = sctp_sk(sk);
2637
2638 if (optlen == sizeof(struct sctp_sack_info)) {
2639 if (copy_from_user(&params, optval, optlen))
2640 return -EFAULT;
2641
2642 if (params.sack_delay == 0 && params.sack_freq == 0)
2643 return 0;
2644 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2645 pr_warn_ratelimited(DEPRECATED
2646 "%s (pid %d) "
2647 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2648 "Use struct sctp_sack_info instead\n",
2649 current->comm, task_pid_nr(current));
2650 if (copy_from_user(&params, optval, optlen))
2651 return -EFAULT;
2652
2653 if (params.sack_delay == 0)
2654 params.sack_freq = 1;
2655 else
2656 params.sack_freq = 0;
2657 } else
2658 return -EINVAL;
2659
2660 /* Validate value parameter. */
2661 if (params.sack_delay > 500)
2662 return -EINVAL;
2663
2664 /* Get association, if sack_assoc_id != 0 and the socket is a one
2665 * to many style socket, and an association was not found, then
2666 * the id was invalid.
2667 */
2668 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2669 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2670 return -EINVAL;
2671
2672 if (params.sack_delay) {
2673 if (asoc) {
2674 asoc->sackdelay =
2675 msecs_to_jiffies(params.sack_delay);
2676 asoc->param_flags =
2677 sctp_spp_sackdelay_enable(asoc->param_flags);
2678 } else {
2679 sp->sackdelay = params.sack_delay;
2680 sp->param_flags =
2681 sctp_spp_sackdelay_enable(sp->param_flags);
2682 }
2683 }
2684
2685 if (params.sack_freq == 1) {
2686 if (asoc) {
2687 asoc->param_flags =
2688 sctp_spp_sackdelay_disable(asoc->param_flags);
2689 } else {
2690 sp->param_flags =
2691 sctp_spp_sackdelay_disable(sp->param_flags);
2692 }
2693 } else if (params.sack_freq > 1) {
2694 if (asoc) {
2695 asoc->sackfreq = params.sack_freq;
2696 asoc->param_flags =
2697 sctp_spp_sackdelay_enable(asoc->param_flags);
2698 } else {
2699 sp->sackfreq = params.sack_freq;
2700 sp->param_flags =
2701 sctp_spp_sackdelay_enable(sp->param_flags);
2702 }
2703 }
2704
2705 /* If change is for association, also apply to each transport. */
2706 if (asoc) {
2707 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2708 transports) {
2709 if (params.sack_delay) {
2710 trans->sackdelay =
2711 msecs_to_jiffies(params.sack_delay);
2712 trans->param_flags =
2713 sctp_spp_sackdelay_enable(trans->param_flags);
2714 }
2715 if (params.sack_freq == 1) {
2716 trans->param_flags =
2717 sctp_spp_sackdelay_disable(trans->param_flags);
2718 } else if (params.sack_freq > 1) {
2719 trans->sackfreq = params.sack_freq;
2720 trans->param_flags =
2721 sctp_spp_sackdelay_enable(trans->param_flags);
2722 }
2723 }
2724 }
2725
2726 return 0;
2727 }
2728
2729 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2730 *
2731 * Applications can specify protocol parameters for the default association
2732 * initialization. The option name argument to setsockopt() and getsockopt()
2733 * is SCTP_INITMSG.
2734 *
2735 * Setting initialization parameters is effective only on an unconnected
2736 * socket (for UDP-style sockets only future associations are effected
2737 * by the change). With TCP-style sockets, this option is inherited by
2738 * sockets derived from a listener socket.
2739 */
2740 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2741 {
2742 struct sctp_initmsg sinit;
2743 struct sctp_sock *sp = sctp_sk(sk);
2744
2745 if (optlen != sizeof(struct sctp_initmsg))
2746 return -EINVAL;
2747 if (copy_from_user(&sinit, optval, optlen))
2748 return -EFAULT;
2749
2750 if (sinit.sinit_num_ostreams)
2751 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2752 if (sinit.sinit_max_instreams)
2753 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2754 if (sinit.sinit_max_attempts)
2755 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2756 if (sinit.sinit_max_init_timeo)
2757 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2758
2759 return 0;
2760 }
2761
2762 /*
2763 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2764 *
2765 * Applications that wish to use the sendto() system call may wish to
2766 * specify a default set of parameters that would normally be supplied
2767 * through the inclusion of ancillary data. This socket option allows
2768 * such an application to set the default sctp_sndrcvinfo structure.
2769 * The application that wishes to use this socket option simply passes
2770 * in to this call the sctp_sndrcvinfo structure defined in Section
2771 * 5.2.2) The input parameters accepted by this call include
2772 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2773 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2774 * to this call if the caller is using the UDP model.
2775 */
2776 static int sctp_setsockopt_default_send_param(struct sock *sk,
2777 char __user *optval,
2778 unsigned int optlen)
2779 {
2780 struct sctp_sock *sp = sctp_sk(sk);
2781 struct sctp_association *asoc;
2782 struct sctp_sndrcvinfo info;
2783
2784 if (optlen != sizeof(info))
2785 return -EINVAL;
2786 if (copy_from_user(&info, optval, optlen))
2787 return -EFAULT;
2788 if (info.sinfo_flags &
2789 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2790 SCTP_ABORT | SCTP_EOF))
2791 return -EINVAL;
2792
2793 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2794 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2795 return -EINVAL;
2796 if (asoc) {
2797 asoc->default_stream = info.sinfo_stream;
2798 asoc->default_flags = info.sinfo_flags;
2799 asoc->default_ppid = info.sinfo_ppid;
2800 asoc->default_context = info.sinfo_context;
2801 asoc->default_timetolive = info.sinfo_timetolive;
2802 } else {
2803 sp->default_stream = info.sinfo_stream;
2804 sp->default_flags = info.sinfo_flags;
2805 sp->default_ppid = info.sinfo_ppid;
2806 sp->default_context = info.sinfo_context;
2807 sp->default_timetolive = info.sinfo_timetolive;
2808 }
2809
2810 return 0;
2811 }
2812
2813 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2814 * (SCTP_DEFAULT_SNDINFO)
2815 */
2816 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2817 char __user *optval,
2818 unsigned int optlen)
2819 {
2820 struct sctp_sock *sp = sctp_sk(sk);
2821 struct sctp_association *asoc;
2822 struct sctp_sndinfo info;
2823
2824 if (optlen != sizeof(info))
2825 return -EINVAL;
2826 if (copy_from_user(&info, optval, optlen))
2827 return -EFAULT;
2828 if (info.snd_flags &
2829 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2830 SCTP_ABORT | SCTP_EOF))
2831 return -EINVAL;
2832
2833 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2834 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2835 return -EINVAL;
2836 if (asoc) {
2837 asoc->default_stream = info.snd_sid;
2838 asoc->default_flags = info.snd_flags;
2839 asoc->default_ppid = info.snd_ppid;
2840 asoc->default_context = info.snd_context;
2841 } else {
2842 sp->default_stream = info.snd_sid;
2843 sp->default_flags = info.snd_flags;
2844 sp->default_ppid = info.snd_ppid;
2845 sp->default_context = info.snd_context;
2846 }
2847
2848 return 0;
2849 }
2850
2851 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2852 *
2853 * Requests that the local SCTP stack use the enclosed peer address as
2854 * the association primary. The enclosed address must be one of the
2855 * association peer's addresses.
2856 */
2857 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2858 unsigned int optlen)
2859 {
2860 struct sctp_prim prim;
2861 struct sctp_transport *trans;
2862
2863 if (optlen != sizeof(struct sctp_prim))
2864 return -EINVAL;
2865
2866 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2867 return -EFAULT;
2868
2869 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2870 if (!trans)
2871 return -EINVAL;
2872
2873 sctp_assoc_set_primary(trans->asoc, trans);
2874
2875 return 0;
2876 }
2877
2878 /*
2879 * 7.1.5 SCTP_NODELAY
2880 *
2881 * Turn on/off any Nagle-like algorithm. This means that packets are
2882 * generally sent as soon as possible and no unnecessary delays are
2883 * introduced, at the cost of more packets in the network. Expects an
2884 * integer boolean flag.
2885 */
2886 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2887 unsigned int optlen)
2888 {
2889 int val;
2890
2891 if (optlen < sizeof(int))
2892 return -EINVAL;
2893 if (get_user(val, (int __user *)optval))
2894 return -EFAULT;
2895
2896 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2897 return 0;
2898 }
2899
2900 /*
2901 *
2902 * 7.1.1 SCTP_RTOINFO
2903 *
2904 * The protocol parameters used to initialize and bound retransmission
2905 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2906 * and modify these parameters.
2907 * All parameters are time values, in milliseconds. A value of 0, when
2908 * modifying the parameters, indicates that the current value should not
2909 * be changed.
2910 *
2911 */
2912 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2913 {
2914 struct sctp_rtoinfo rtoinfo;
2915 struct sctp_association *asoc;
2916 unsigned long rto_min, rto_max;
2917 struct sctp_sock *sp = sctp_sk(sk);
2918
2919 if (optlen != sizeof (struct sctp_rtoinfo))
2920 return -EINVAL;
2921
2922 if (copy_from_user(&rtoinfo, optval, optlen))
2923 return -EFAULT;
2924
2925 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2926
2927 /* Set the values to the specific association */
2928 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2929 return -EINVAL;
2930
2931 rto_max = rtoinfo.srto_max;
2932 rto_min = rtoinfo.srto_min;
2933
2934 if (rto_max)
2935 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2936 else
2937 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2938
2939 if (rto_min)
2940 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2941 else
2942 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2943
2944 if (rto_min > rto_max)
2945 return -EINVAL;
2946
2947 if (asoc) {
2948 if (rtoinfo.srto_initial != 0)
2949 asoc->rto_initial =
2950 msecs_to_jiffies(rtoinfo.srto_initial);
2951 asoc->rto_max = rto_max;
2952 asoc->rto_min = rto_min;
2953 } else {
2954 /* If there is no association or the association-id = 0
2955 * set the values to the endpoint.
2956 */
2957 if (rtoinfo.srto_initial != 0)
2958 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2959 sp->rtoinfo.srto_max = rto_max;
2960 sp->rtoinfo.srto_min = rto_min;
2961 }
2962
2963 return 0;
2964 }
2965
2966 /*
2967 *
2968 * 7.1.2 SCTP_ASSOCINFO
2969 *
2970 * This option is used to tune the maximum retransmission attempts
2971 * of the association.
2972 * Returns an error if the new association retransmission value is
2973 * greater than the sum of the retransmission value of the peer.
2974 * See [SCTP] for more information.
2975 *
2976 */
2977 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2978 {
2979
2980 struct sctp_assocparams assocparams;
2981 struct sctp_association *asoc;
2982
2983 if (optlen != sizeof(struct sctp_assocparams))
2984 return -EINVAL;
2985 if (copy_from_user(&assocparams, optval, optlen))
2986 return -EFAULT;
2987
2988 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2989
2990 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2991 return -EINVAL;
2992
2993 /* Set the values to the specific association */
2994 if (asoc) {
2995 if (assocparams.sasoc_asocmaxrxt != 0) {
2996 __u32 path_sum = 0;
2997 int paths = 0;
2998 struct sctp_transport *peer_addr;
2999
3000 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3001 transports) {
3002 path_sum += peer_addr->pathmaxrxt;
3003 paths++;
3004 }
3005
3006 /* Only validate asocmaxrxt if we have more than
3007 * one path/transport. We do this because path
3008 * retransmissions are only counted when we have more
3009 * then one path.
3010 */
3011 if (paths > 1 &&
3012 assocparams.sasoc_asocmaxrxt > path_sum)
3013 return -EINVAL;
3014
3015 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3016 }
3017
3018 if (assocparams.sasoc_cookie_life != 0)
3019 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3020 } else {
3021 /* Set the values to the endpoint */
3022 struct sctp_sock *sp = sctp_sk(sk);
3023
3024 if (assocparams.sasoc_asocmaxrxt != 0)
3025 sp->assocparams.sasoc_asocmaxrxt =
3026 assocparams.sasoc_asocmaxrxt;
3027 if (assocparams.sasoc_cookie_life != 0)
3028 sp->assocparams.sasoc_cookie_life =
3029 assocparams.sasoc_cookie_life;
3030 }
3031 return 0;
3032 }
3033
3034 /*
3035 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3036 *
3037 * This socket option is a boolean flag which turns on or off mapped V4
3038 * addresses. If this option is turned on and the socket is type
3039 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3040 * If this option is turned off, then no mapping will be done of V4
3041 * addresses and a user will receive both PF_INET6 and PF_INET type
3042 * addresses on the socket.
3043 */
3044 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3045 {
3046 int val;
3047 struct sctp_sock *sp = sctp_sk(sk);
3048
3049 if (optlen < sizeof(int))
3050 return -EINVAL;
3051 if (get_user(val, (int __user *)optval))
3052 return -EFAULT;
3053 if (val)
3054 sp->v4mapped = 1;
3055 else
3056 sp->v4mapped = 0;
3057
3058 return 0;
3059 }
3060
3061 /*
3062 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3063 * This option will get or set the maximum size to put in any outgoing
3064 * SCTP DATA chunk. If a message is larger than this size it will be
3065 * fragmented by SCTP into the specified size. Note that the underlying
3066 * SCTP implementation may fragment into smaller sized chunks when the
3067 * PMTU of the underlying association is smaller than the value set by
3068 * the user. The default value for this option is '0' which indicates
3069 * the user is NOT limiting fragmentation and only the PMTU will effect
3070 * SCTP's choice of DATA chunk size. Note also that values set larger
3071 * than the maximum size of an IP datagram will effectively let SCTP
3072 * control fragmentation (i.e. the same as setting this option to 0).
3073 *
3074 * The following structure is used to access and modify this parameter:
3075 *
3076 * struct sctp_assoc_value {
3077 * sctp_assoc_t assoc_id;
3078 * uint32_t assoc_value;
3079 * };
3080 *
3081 * assoc_id: This parameter is ignored for one-to-one style sockets.
3082 * For one-to-many style sockets this parameter indicates which
3083 * association the user is performing an action upon. Note that if
3084 * this field's value is zero then the endpoints default value is
3085 * changed (effecting future associations only).
3086 * assoc_value: This parameter specifies the maximum size in bytes.
3087 */
3088 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3089 {
3090 struct sctp_assoc_value params;
3091 struct sctp_association *asoc;
3092 struct sctp_sock *sp = sctp_sk(sk);
3093 int val;
3094
3095 if (optlen == sizeof(int)) {
3096 pr_warn_ratelimited(DEPRECATED
3097 "%s (pid %d) "
3098 "Use of int in maxseg socket option.\n"
3099 "Use struct sctp_assoc_value instead\n",
3100 current->comm, task_pid_nr(current));
3101 if (copy_from_user(&val, optval, optlen))
3102 return -EFAULT;
3103 params.assoc_id = 0;
3104 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3105 if (copy_from_user(&params, optval, optlen))
3106 return -EFAULT;
3107 val = params.assoc_value;
3108 } else
3109 return -EINVAL;
3110
3111 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3112 return -EINVAL;
3113
3114 asoc = sctp_id2assoc(sk, params.assoc_id);
3115 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3116 return -EINVAL;
3117
3118 if (asoc) {
3119 if (val == 0) {
3120 val = asoc->pathmtu;
3121 val -= sp->pf->af->net_header_len;
3122 val -= sizeof(struct sctphdr) +
3123 sizeof(struct sctp_data_chunk);
3124 }
3125 asoc->user_frag = val;
3126 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3127 } else {
3128 sp->user_frag = val;
3129 }
3130
3131 return 0;
3132 }
3133
3134
3135 /*
3136 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3137 *
3138 * Requests that the peer mark the enclosed address as the association
3139 * primary. The enclosed address must be one of the association's
3140 * locally bound addresses. The following structure is used to make a
3141 * set primary request:
3142 */
3143 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3144 unsigned int optlen)
3145 {
3146 struct net *net = sock_net(sk);
3147 struct sctp_sock *sp;
3148 struct sctp_association *asoc = NULL;
3149 struct sctp_setpeerprim prim;
3150 struct sctp_chunk *chunk;
3151 struct sctp_af *af;
3152 int err;
3153
3154 sp = sctp_sk(sk);
3155
3156 if (!net->sctp.addip_enable)
3157 return -EPERM;
3158
3159 if (optlen != sizeof(struct sctp_setpeerprim))
3160 return -EINVAL;
3161
3162 if (copy_from_user(&prim, optval, optlen))
3163 return -EFAULT;
3164
3165 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3166 if (!asoc)
3167 return -EINVAL;
3168
3169 if (!asoc->peer.asconf_capable)
3170 return -EPERM;
3171
3172 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3173 return -EPERM;
3174
3175 if (!sctp_state(asoc, ESTABLISHED))
3176 return -ENOTCONN;
3177
3178 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3179 if (!af)
3180 return -EINVAL;
3181
3182 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3183 return -EADDRNOTAVAIL;
3184
3185 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3186 return -EADDRNOTAVAIL;
3187
3188 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3189 chunk = sctp_make_asconf_set_prim(asoc,
3190 (union sctp_addr *)&prim.sspp_addr);
3191 if (!chunk)
3192 return -ENOMEM;
3193
3194 err = sctp_send_asconf(asoc, chunk);
3195
3196 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3197
3198 return err;
3199 }
3200
3201 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3202 unsigned int optlen)
3203 {
3204 struct sctp_setadaptation adaptation;
3205
3206 if (optlen != sizeof(struct sctp_setadaptation))
3207 return -EINVAL;
3208 if (copy_from_user(&adaptation, optval, optlen))
3209 return -EFAULT;
3210
3211 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3212
3213 return 0;
3214 }
3215
3216 /*
3217 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3218 *
3219 * The context field in the sctp_sndrcvinfo structure is normally only
3220 * used when a failed message is retrieved holding the value that was
3221 * sent down on the actual send call. This option allows the setting of
3222 * a default context on an association basis that will be received on
3223 * reading messages from the peer. This is especially helpful in the
3224 * one-2-many model for an application to keep some reference to an
3225 * internal state machine that is processing messages on the
3226 * association. Note that the setting of this value only effects
3227 * received messages from the peer and does not effect the value that is
3228 * saved with outbound messages.
3229 */
3230 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3231 unsigned int optlen)
3232 {
3233 struct sctp_assoc_value params;
3234 struct sctp_sock *sp;
3235 struct sctp_association *asoc;
3236
3237 if (optlen != sizeof(struct sctp_assoc_value))
3238 return -EINVAL;
3239 if (copy_from_user(&params, optval, optlen))
3240 return -EFAULT;
3241
3242 sp = sctp_sk(sk);
3243
3244 if (params.assoc_id != 0) {
3245 asoc = sctp_id2assoc(sk, params.assoc_id);
3246 if (!asoc)
3247 return -EINVAL;
3248 asoc->default_rcv_context = params.assoc_value;
3249 } else {
3250 sp->default_rcv_context = params.assoc_value;
3251 }
3252
3253 return 0;
3254 }
3255
3256 /*
3257 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3258 *
3259 * This options will at a minimum specify if the implementation is doing
3260 * fragmented interleave. Fragmented interleave, for a one to many
3261 * socket, is when subsequent calls to receive a message may return
3262 * parts of messages from different associations. Some implementations
3263 * may allow you to turn this value on or off. If so, when turned off,
3264 * no fragment interleave will occur (which will cause a head of line
3265 * blocking amongst multiple associations sharing the same one to many
3266 * socket). When this option is turned on, then each receive call may
3267 * come from a different association (thus the user must receive data
3268 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3269 * association each receive belongs to.
3270 *
3271 * This option takes a boolean value. A non-zero value indicates that
3272 * fragmented interleave is on. A value of zero indicates that
3273 * fragmented interleave is off.
3274 *
3275 * Note that it is important that an implementation that allows this
3276 * option to be turned on, have it off by default. Otherwise an unaware
3277 * application using the one to many model may become confused and act
3278 * incorrectly.
3279 */
3280 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3281 char __user *optval,
3282 unsigned int optlen)
3283 {
3284 int val;
3285
3286 if (optlen != sizeof(int))
3287 return -EINVAL;
3288 if (get_user(val, (int __user *)optval))
3289 return -EFAULT;
3290
3291 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3292
3293 return 0;
3294 }
3295
3296 /*
3297 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3298 * (SCTP_PARTIAL_DELIVERY_POINT)
3299 *
3300 * This option will set or get the SCTP partial delivery point. This
3301 * point is the size of a message where the partial delivery API will be
3302 * invoked to help free up rwnd space for the peer. Setting this to a
3303 * lower value will cause partial deliveries to happen more often. The
3304 * calls argument is an integer that sets or gets the partial delivery
3305 * point. Note also that the call will fail if the user attempts to set
3306 * this value larger than the socket receive buffer size.
3307 *
3308 * Note that any single message having a length smaller than or equal to
3309 * the SCTP partial delivery point will be delivered in one single read
3310 * call as long as the user provided buffer is large enough to hold the
3311 * message.
3312 */
3313 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3314 char __user *optval,
3315 unsigned int optlen)
3316 {
3317 u32 val;
3318
3319 if (optlen != sizeof(u32))
3320 return -EINVAL;
3321 if (get_user(val, (int __user *)optval))
3322 return -EFAULT;
3323
3324 /* Note: We double the receive buffer from what the user sets
3325 * it to be, also initial rwnd is based on rcvbuf/2.
3326 */
3327 if (val > (sk->sk_rcvbuf >> 1))
3328 return -EINVAL;
3329
3330 sctp_sk(sk)->pd_point = val;
3331
3332 return 0; /* is this the right error code? */
3333 }
3334
3335 /*
3336 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3337 *
3338 * This option will allow a user to change the maximum burst of packets
3339 * that can be emitted by this association. Note that the default value
3340 * is 4, and some implementations may restrict this setting so that it
3341 * can only be lowered.
3342 *
3343 * NOTE: This text doesn't seem right. Do this on a socket basis with
3344 * future associations inheriting the socket value.
3345 */
3346 static int sctp_setsockopt_maxburst(struct sock *sk,
3347 char __user *optval,
3348 unsigned int optlen)
3349 {
3350 struct sctp_assoc_value params;
3351 struct sctp_sock *sp;
3352 struct sctp_association *asoc;
3353 int val;
3354 int assoc_id = 0;
3355
3356 if (optlen == sizeof(int)) {
3357 pr_warn_ratelimited(DEPRECATED
3358 "%s (pid %d) "
3359 "Use of int in max_burst socket option deprecated.\n"
3360 "Use struct sctp_assoc_value instead\n",
3361 current->comm, task_pid_nr(current));
3362 if (copy_from_user(&val, optval, optlen))
3363 return -EFAULT;
3364 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3365 if (copy_from_user(&params, optval, optlen))
3366 return -EFAULT;
3367 val = params.assoc_value;
3368 assoc_id = params.assoc_id;
3369 } else
3370 return -EINVAL;
3371
3372 sp = sctp_sk(sk);
3373
3374 if (assoc_id != 0) {
3375 asoc = sctp_id2assoc(sk, assoc_id);
3376 if (!asoc)
3377 return -EINVAL;
3378 asoc->max_burst = val;
3379 } else
3380 sp->max_burst = val;
3381
3382 return 0;
3383 }
3384
3385 /*
3386 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3387 *
3388 * This set option adds a chunk type that the user is requesting to be
3389 * received only in an authenticated way. Changes to the list of chunks
3390 * will only effect future associations on the socket.
3391 */
3392 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3393 char __user *optval,
3394 unsigned int optlen)
3395 {
3396 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3397 struct sctp_authchunk val;
3398
3399 if (!ep->auth_enable)
3400 return -EACCES;
3401
3402 if (optlen != sizeof(struct sctp_authchunk))
3403 return -EINVAL;
3404 if (copy_from_user(&val, optval, optlen))
3405 return -EFAULT;
3406
3407 switch (val.sauth_chunk) {
3408 case SCTP_CID_INIT:
3409 case SCTP_CID_INIT_ACK:
3410 case SCTP_CID_SHUTDOWN_COMPLETE:
3411 case SCTP_CID_AUTH:
3412 return -EINVAL;
3413 }
3414
3415 /* add this chunk id to the endpoint */
3416 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3417 }
3418
3419 /*
3420 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3421 *
3422 * This option gets or sets the list of HMAC algorithms that the local
3423 * endpoint requires the peer to use.
3424 */
3425 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3426 char __user *optval,
3427 unsigned int optlen)
3428 {
3429 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3430 struct sctp_hmacalgo *hmacs;
3431 u32 idents;
3432 int err;
3433
3434 if (!ep->auth_enable)
3435 return -EACCES;
3436
3437 if (optlen < sizeof(struct sctp_hmacalgo))
3438 return -EINVAL;
3439
3440 hmacs = memdup_user(optval, optlen);
3441 if (IS_ERR(hmacs))
3442 return PTR_ERR(hmacs);
3443
3444 idents = hmacs->shmac_num_idents;
3445 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3446 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3447 err = -EINVAL;
3448 goto out;
3449 }
3450
3451 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3452 out:
3453 kfree(hmacs);
3454 return err;
3455 }
3456
3457 /*
3458 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3459 *
3460 * This option will set a shared secret key which is used to build an
3461 * association shared key.
3462 */
3463 static int sctp_setsockopt_auth_key(struct sock *sk,
3464 char __user *optval,
3465 unsigned int optlen)
3466 {
3467 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3468 struct sctp_authkey *authkey;
3469 struct sctp_association *asoc;
3470 int ret;
3471
3472 if (!ep->auth_enable)
3473 return -EACCES;
3474
3475 if (optlen <= sizeof(struct sctp_authkey))
3476 return -EINVAL;
3477
3478 authkey = memdup_user(optval, optlen);
3479 if (IS_ERR(authkey))
3480 return PTR_ERR(authkey);
3481
3482 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3483 ret = -EINVAL;
3484 goto out;
3485 }
3486
3487 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3488 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3489 ret = -EINVAL;
3490 goto out;
3491 }
3492
3493 ret = sctp_auth_set_key(ep, asoc, authkey);
3494 out:
3495 kzfree(authkey);
3496 return ret;
3497 }
3498
3499 /*
3500 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3501 *
3502 * This option will get or set the active shared key to be used to build
3503 * the association shared key.
3504 */
3505 static int sctp_setsockopt_active_key(struct sock *sk,
3506 char __user *optval,
3507 unsigned int optlen)
3508 {
3509 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3510 struct sctp_authkeyid val;
3511 struct sctp_association *asoc;
3512
3513 if (!ep->auth_enable)
3514 return -EACCES;
3515
3516 if (optlen != sizeof(struct sctp_authkeyid))
3517 return -EINVAL;
3518 if (copy_from_user(&val, optval, optlen))
3519 return -EFAULT;
3520
3521 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3522 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3523 return -EINVAL;
3524
3525 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3526 }
3527
3528 /*
3529 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3530 *
3531 * This set option will delete a shared secret key from use.
3532 */
3533 static int sctp_setsockopt_del_key(struct sock *sk,
3534 char __user *optval,
3535 unsigned int optlen)
3536 {
3537 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3538 struct sctp_authkeyid val;
3539 struct sctp_association *asoc;
3540
3541 if (!ep->auth_enable)
3542 return -EACCES;
3543
3544 if (optlen != sizeof(struct sctp_authkeyid))
3545 return -EINVAL;
3546 if (copy_from_user(&val, optval, optlen))
3547 return -EFAULT;
3548
3549 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3550 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3551 return -EINVAL;
3552
3553 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3554
3555 }
3556
3557 /*
3558 * 8.1.23 SCTP_AUTO_ASCONF
3559 *
3560 * This option will enable or disable the use of the automatic generation of
3561 * ASCONF chunks to add and delete addresses to an existing association. Note
3562 * that this option has two caveats namely: a) it only affects sockets that
3563 * are bound to all addresses available to the SCTP stack, and b) the system
3564 * administrator may have an overriding control that turns the ASCONF feature
3565 * off no matter what setting the socket option may have.
3566 * This option expects an integer boolean flag, where a non-zero value turns on
3567 * the option, and a zero value turns off the option.
3568 * Note. In this implementation, socket operation overrides default parameter
3569 * being set by sysctl as well as FreeBSD implementation
3570 */
3571 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3572 unsigned int optlen)
3573 {
3574 int val;
3575 struct sctp_sock *sp = sctp_sk(sk);
3576
3577 if (optlen < sizeof(int))
3578 return -EINVAL;
3579 if (get_user(val, (int __user *)optval))
3580 return -EFAULT;
3581 if (!sctp_is_ep_boundall(sk) && val)
3582 return -EINVAL;
3583 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3584 return 0;
3585
3586 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3587 if (val == 0 && sp->do_auto_asconf) {
3588 list_del(&sp->auto_asconf_list);
3589 sp->do_auto_asconf = 0;
3590 } else if (val && !sp->do_auto_asconf) {
3591 list_add_tail(&sp->auto_asconf_list,
3592 &sock_net(sk)->sctp.auto_asconf_splist);
3593 sp->do_auto_asconf = 1;
3594 }
3595 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3596 return 0;
3597 }
3598
3599 /*
3600 * SCTP_PEER_ADDR_THLDS
3601 *
3602 * This option allows us to alter the partially failed threshold for one or all
3603 * transports in an association. See Section 6.1 of:
3604 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3605 */
3606 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3607 char __user *optval,
3608 unsigned int optlen)
3609 {
3610 struct sctp_paddrthlds val;
3611 struct sctp_transport *trans;
3612 struct sctp_association *asoc;
3613
3614 if (optlen < sizeof(struct sctp_paddrthlds))
3615 return -EINVAL;
3616 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3617 sizeof(struct sctp_paddrthlds)))
3618 return -EFAULT;
3619
3620
3621 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3622 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3623 if (!asoc)
3624 return -ENOENT;
3625 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3626 transports) {
3627 if (val.spt_pathmaxrxt)
3628 trans->pathmaxrxt = val.spt_pathmaxrxt;
3629 trans->pf_retrans = val.spt_pathpfthld;
3630 }
3631
3632 if (val.spt_pathmaxrxt)
3633 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3634 asoc->pf_retrans = val.spt_pathpfthld;
3635 } else {
3636 trans = sctp_addr_id2transport(sk, &val.spt_address,
3637 val.spt_assoc_id);
3638 if (!trans)
3639 return -ENOENT;
3640
3641 if (val.spt_pathmaxrxt)
3642 trans->pathmaxrxt = val.spt_pathmaxrxt;
3643 trans->pf_retrans = val.spt_pathpfthld;
3644 }
3645
3646 return 0;
3647 }
3648
3649 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3650 char __user *optval,
3651 unsigned int optlen)
3652 {
3653 int val;
3654
3655 if (optlen < sizeof(int))
3656 return -EINVAL;
3657 if (get_user(val, (int __user *) optval))
3658 return -EFAULT;
3659
3660 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3661
3662 return 0;
3663 }
3664
3665 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3666 char __user *optval,
3667 unsigned int optlen)
3668 {
3669 int val;
3670
3671 if (optlen < sizeof(int))
3672 return -EINVAL;
3673 if (get_user(val, (int __user *) optval))
3674 return -EFAULT;
3675
3676 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3677
3678 return 0;
3679 }
3680
3681 static int sctp_setsockopt_pr_supported(struct sock *sk,
3682 char __user *optval,
3683 unsigned int optlen)
3684 {
3685 struct sctp_assoc_value params;
3686 struct sctp_association *asoc;
3687 int retval = -EINVAL;
3688
3689 if (optlen != sizeof(params))
3690 goto out;
3691
3692 if (copy_from_user(&params, optval, optlen)) {
3693 retval = -EFAULT;
3694 goto out;
3695 }
3696
3697 asoc = sctp_id2assoc(sk, params.assoc_id);
3698 if (asoc) {
3699 asoc->prsctp_enable = !!params.assoc_value;
3700 } else if (!params.assoc_id) {
3701 struct sctp_sock *sp = sctp_sk(sk);
3702
3703 sp->ep->prsctp_enable = !!params.assoc_value;
3704 } else {
3705 goto out;
3706 }
3707
3708 retval = 0;
3709
3710 out:
3711 return retval;
3712 }
3713
3714 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3715 char __user *optval,
3716 unsigned int optlen)
3717 {
3718 struct sctp_default_prinfo info;
3719 struct sctp_association *asoc;
3720 int retval = -EINVAL;
3721
3722 if (optlen != sizeof(info))
3723 goto out;
3724
3725 if (copy_from_user(&info, optval, sizeof(info))) {
3726 retval = -EFAULT;
3727 goto out;
3728 }
3729
3730 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3731 goto out;
3732
3733 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3734 info.pr_value = 0;
3735
3736 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3737 if (asoc) {
3738 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3739 asoc->default_timetolive = info.pr_value;
3740 } else if (!info.pr_assoc_id) {
3741 struct sctp_sock *sp = sctp_sk(sk);
3742
3743 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3744 sp->default_timetolive = info.pr_value;
3745 } else {
3746 goto out;
3747 }
3748
3749 retval = 0;
3750
3751 out:
3752 return retval;
3753 }
3754
3755 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3756 char __user *optval,
3757 unsigned int optlen)
3758 {
3759 struct sctp_assoc_value params;
3760 struct sctp_association *asoc;
3761 int retval = -EINVAL;
3762
3763 if (optlen != sizeof(params))
3764 goto out;
3765
3766 if (copy_from_user(&params, optval, optlen)) {
3767 retval = -EFAULT;
3768 goto out;
3769 }
3770
3771 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3772 goto out;
3773
3774 asoc = sctp_id2assoc(sk, params.assoc_id);
3775 if (asoc) {
3776 asoc->strreset_enable = params.assoc_value;
3777 } else if (!params.assoc_id) {
3778 struct sctp_sock *sp = sctp_sk(sk);
3779
3780 sp->ep->strreset_enable = params.assoc_value;
3781 } else {
3782 goto out;
3783 }
3784
3785 retval = 0;
3786
3787 out:
3788 return retval;
3789 }
3790
3791 static int sctp_setsockopt_reset_streams(struct sock *sk,
3792 char __user *optval,
3793 unsigned int optlen)
3794 {
3795 struct sctp_reset_streams *params;
3796 struct sctp_association *asoc;
3797 int retval = -EINVAL;
3798
3799 if (optlen < sizeof(struct sctp_reset_streams))
3800 return -EINVAL;
3801
3802 params = memdup_user(optval, optlen);
3803 if (IS_ERR(params))
3804 return PTR_ERR(params);
3805
3806 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3807 if (!asoc)
3808 goto out;
3809
3810 retval = sctp_send_reset_streams(asoc, params);
3811
3812 out:
3813 kfree(params);
3814 return retval;
3815 }
3816
3817 /* API 6.2 setsockopt(), getsockopt()
3818 *
3819 * Applications use setsockopt() and getsockopt() to set or retrieve
3820 * socket options. Socket options are used to change the default
3821 * behavior of sockets calls. They are described in Section 7.
3822 *
3823 * The syntax is:
3824 *
3825 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3826 * int __user *optlen);
3827 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3828 * int optlen);
3829 *
3830 * sd - the socket descript.
3831 * level - set to IPPROTO_SCTP for all SCTP options.
3832 * optname - the option name.
3833 * optval - the buffer to store the value of the option.
3834 * optlen - the size of the buffer.
3835 */
3836 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3837 char __user *optval, unsigned int optlen)
3838 {
3839 int retval = 0;
3840
3841 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3842
3843 /* I can hardly begin to describe how wrong this is. This is
3844 * so broken as to be worse than useless. The API draft
3845 * REALLY is NOT helpful here... I am not convinced that the
3846 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3847 * are at all well-founded.
3848 */
3849 if (level != SOL_SCTP) {
3850 struct sctp_af *af = sctp_sk(sk)->pf->af;
3851 retval = af->setsockopt(sk, level, optname, optval, optlen);
3852 goto out_nounlock;
3853 }
3854
3855 lock_sock(sk);
3856
3857 switch (optname) {
3858 case SCTP_SOCKOPT_BINDX_ADD:
3859 /* 'optlen' is the size of the addresses buffer. */
3860 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3861 optlen, SCTP_BINDX_ADD_ADDR);
3862 break;
3863
3864 case SCTP_SOCKOPT_BINDX_REM:
3865 /* 'optlen' is the size of the addresses buffer. */
3866 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3867 optlen, SCTP_BINDX_REM_ADDR);
3868 break;
3869
3870 case SCTP_SOCKOPT_CONNECTX_OLD:
3871 /* 'optlen' is the size of the addresses buffer. */
3872 retval = sctp_setsockopt_connectx_old(sk,
3873 (struct sockaddr __user *)optval,
3874 optlen);
3875 break;
3876
3877 case SCTP_SOCKOPT_CONNECTX:
3878 /* 'optlen' is the size of the addresses buffer. */
3879 retval = sctp_setsockopt_connectx(sk,
3880 (struct sockaddr __user *)optval,
3881 optlen);
3882 break;
3883
3884 case SCTP_DISABLE_FRAGMENTS:
3885 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3886 break;
3887
3888 case SCTP_EVENTS:
3889 retval = sctp_setsockopt_events(sk, optval, optlen);
3890 break;
3891
3892 case SCTP_AUTOCLOSE:
3893 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3894 break;
3895
3896 case SCTP_PEER_ADDR_PARAMS:
3897 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3898 break;
3899
3900 case SCTP_DELAYED_SACK:
3901 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3902 break;
3903 case SCTP_PARTIAL_DELIVERY_POINT:
3904 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3905 break;
3906
3907 case SCTP_INITMSG:
3908 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3909 break;
3910 case SCTP_DEFAULT_SEND_PARAM:
3911 retval = sctp_setsockopt_default_send_param(sk, optval,
3912 optlen);
3913 break;
3914 case SCTP_DEFAULT_SNDINFO:
3915 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3916 break;
3917 case SCTP_PRIMARY_ADDR:
3918 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3919 break;
3920 case SCTP_SET_PEER_PRIMARY_ADDR:
3921 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3922 break;
3923 case SCTP_NODELAY:
3924 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3925 break;
3926 case SCTP_RTOINFO:
3927 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3928 break;
3929 case SCTP_ASSOCINFO:
3930 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3931 break;
3932 case SCTP_I_WANT_MAPPED_V4_ADDR:
3933 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3934 break;
3935 case SCTP_MAXSEG:
3936 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3937 break;
3938 case SCTP_ADAPTATION_LAYER:
3939 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3940 break;
3941 case SCTP_CONTEXT:
3942 retval = sctp_setsockopt_context(sk, optval, optlen);
3943 break;
3944 case SCTP_FRAGMENT_INTERLEAVE:
3945 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3946 break;
3947 case SCTP_MAX_BURST:
3948 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3949 break;
3950 case SCTP_AUTH_CHUNK:
3951 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3952 break;
3953 case SCTP_HMAC_IDENT:
3954 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3955 break;
3956 case SCTP_AUTH_KEY:
3957 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3958 break;
3959 case SCTP_AUTH_ACTIVE_KEY:
3960 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3961 break;
3962 case SCTP_AUTH_DELETE_KEY:
3963 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3964 break;
3965 case SCTP_AUTO_ASCONF:
3966 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3967 break;
3968 case SCTP_PEER_ADDR_THLDS:
3969 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3970 break;
3971 case SCTP_RECVRCVINFO:
3972 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3973 break;
3974 case SCTP_RECVNXTINFO:
3975 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3976 break;
3977 case SCTP_PR_SUPPORTED:
3978 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3979 break;
3980 case SCTP_DEFAULT_PRINFO:
3981 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3982 break;
3983 case SCTP_ENABLE_STREAM_RESET:
3984 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
3985 break;
3986 case SCTP_RESET_STREAMS:
3987 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
3988 break;
3989 default:
3990 retval = -ENOPROTOOPT;
3991 break;
3992 }
3993
3994 release_sock(sk);
3995
3996 out_nounlock:
3997 return retval;
3998 }
3999
4000 /* API 3.1.6 connect() - UDP Style Syntax
4001 *
4002 * An application may use the connect() call in the UDP model to initiate an
4003 * association without sending data.
4004 *
4005 * The syntax is:
4006 *
4007 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4008 *
4009 * sd: the socket descriptor to have a new association added to.
4010 *
4011 * nam: the address structure (either struct sockaddr_in or struct
4012 * sockaddr_in6 defined in RFC2553 [7]).
4013 *
4014 * len: the size of the address.
4015 */
4016 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4017 int addr_len)
4018 {
4019 int err = 0;
4020 struct sctp_af *af;
4021
4022 lock_sock(sk);
4023
4024 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4025 addr, addr_len);
4026
4027 /* Validate addr_len before calling common connect/connectx routine. */
4028 af = sctp_get_af_specific(addr->sa_family);
4029 if (!af || addr_len < af->sockaddr_len) {
4030 err = -EINVAL;
4031 } else {
4032 /* Pass correct addr len to common routine (so it knows there
4033 * is only one address being passed.
4034 */
4035 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4036 }
4037
4038 release_sock(sk);
4039 return err;
4040 }
4041
4042 /* FIXME: Write comments. */
4043 static int sctp_disconnect(struct sock *sk, int flags)
4044 {
4045 return -EOPNOTSUPP; /* STUB */
4046 }
4047
4048 /* 4.1.4 accept() - TCP Style Syntax
4049 *
4050 * Applications use accept() call to remove an established SCTP
4051 * association from the accept queue of the endpoint. A new socket
4052 * descriptor will be returned from accept() to represent the newly
4053 * formed association.
4054 */
4055 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
4056 {
4057 struct sctp_sock *sp;
4058 struct sctp_endpoint *ep;
4059 struct sock *newsk = NULL;
4060 struct sctp_association *asoc;
4061 long timeo;
4062 int error = 0;
4063
4064 lock_sock(sk);
4065
4066 sp = sctp_sk(sk);
4067 ep = sp->ep;
4068
4069 if (!sctp_style(sk, TCP)) {
4070 error = -EOPNOTSUPP;
4071 goto out;
4072 }
4073
4074 if (!sctp_sstate(sk, LISTENING)) {
4075 error = -EINVAL;
4076 goto out;
4077 }
4078
4079 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4080
4081 error = sctp_wait_for_accept(sk, timeo);
4082 if (error)
4083 goto out;
4084
4085 /* We treat the list of associations on the endpoint as the accept
4086 * queue and pick the first association on the list.
4087 */
4088 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4089
4090 newsk = sp->pf->create_accept_sk(sk, asoc);
4091 if (!newsk) {
4092 error = -ENOMEM;
4093 goto out;
4094 }
4095
4096 /* Populate the fields of the newsk from the oldsk and migrate the
4097 * asoc to the newsk.
4098 */
4099 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4100
4101 out:
4102 release_sock(sk);
4103 *err = error;
4104 return newsk;
4105 }
4106
4107 /* The SCTP ioctl handler. */
4108 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4109 {
4110 int rc = -ENOTCONN;
4111
4112 lock_sock(sk);
4113
4114 /*
4115 * SEQPACKET-style sockets in LISTENING state are valid, for
4116 * SCTP, so only discard TCP-style sockets in LISTENING state.
4117 */
4118 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4119 goto out;
4120
4121 switch (cmd) {
4122 case SIOCINQ: {
4123 struct sk_buff *skb;
4124 unsigned int amount = 0;
4125
4126 skb = skb_peek(&sk->sk_receive_queue);
4127 if (skb != NULL) {
4128 /*
4129 * We will only return the amount of this packet since
4130 * that is all that will be read.
4131 */
4132 amount = skb->len;
4133 }
4134 rc = put_user(amount, (int __user *)arg);
4135 break;
4136 }
4137 default:
4138 rc = -ENOIOCTLCMD;
4139 break;
4140 }
4141 out:
4142 release_sock(sk);
4143 return rc;
4144 }
4145
4146 /* This is the function which gets called during socket creation to
4147 * initialized the SCTP-specific portion of the sock.
4148 * The sock structure should already be zero-filled memory.
4149 */
4150 static int sctp_init_sock(struct sock *sk)
4151 {
4152 struct net *net = sock_net(sk);
4153 struct sctp_sock *sp;
4154
4155 pr_debug("%s: sk:%p\n", __func__, sk);
4156
4157 sp = sctp_sk(sk);
4158
4159 /* Initialize the SCTP per socket area. */
4160 switch (sk->sk_type) {
4161 case SOCK_SEQPACKET:
4162 sp->type = SCTP_SOCKET_UDP;
4163 break;
4164 case SOCK_STREAM:
4165 sp->type = SCTP_SOCKET_TCP;
4166 break;
4167 default:
4168 return -ESOCKTNOSUPPORT;
4169 }
4170
4171 sk->sk_gso_type = SKB_GSO_SCTP;
4172
4173 /* Initialize default send parameters. These parameters can be
4174 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4175 */
4176 sp->default_stream = 0;
4177 sp->default_ppid = 0;
4178 sp->default_flags = 0;
4179 sp->default_context = 0;
4180 sp->default_timetolive = 0;
4181
4182 sp->default_rcv_context = 0;
4183 sp->max_burst = net->sctp.max_burst;
4184
4185 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4186
4187 /* Initialize default setup parameters. These parameters
4188 * can be modified with the SCTP_INITMSG socket option or
4189 * overridden by the SCTP_INIT CMSG.
4190 */
4191 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4192 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4193 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4194 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4195
4196 /* Initialize default RTO related parameters. These parameters can
4197 * be modified for with the SCTP_RTOINFO socket option.
4198 */
4199 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4200 sp->rtoinfo.srto_max = net->sctp.rto_max;
4201 sp->rtoinfo.srto_min = net->sctp.rto_min;
4202
4203 /* Initialize default association related parameters. These parameters
4204 * can be modified with the SCTP_ASSOCINFO socket option.
4205 */
4206 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4207 sp->assocparams.sasoc_number_peer_destinations = 0;
4208 sp->assocparams.sasoc_peer_rwnd = 0;
4209 sp->assocparams.sasoc_local_rwnd = 0;
4210 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4211
4212 /* Initialize default event subscriptions. By default, all the
4213 * options are off.
4214 */
4215 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4216
4217 /* Default Peer Address Parameters. These defaults can
4218 * be modified via SCTP_PEER_ADDR_PARAMS
4219 */
4220 sp->hbinterval = net->sctp.hb_interval;
4221 sp->pathmaxrxt = net->sctp.max_retrans_path;
4222 sp->pathmtu = 0; /* allow default discovery */
4223 sp->sackdelay = net->sctp.sack_timeout;
4224 sp->sackfreq = 2;
4225 sp->param_flags = SPP_HB_ENABLE |
4226 SPP_PMTUD_ENABLE |
4227 SPP_SACKDELAY_ENABLE;
4228
4229 /* If enabled no SCTP message fragmentation will be performed.
4230 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4231 */
4232 sp->disable_fragments = 0;
4233
4234 /* Enable Nagle algorithm by default. */
4235 sp->nodelay = 0;
4236
4237 sp->recvrcvinfo = 0;
4238 sp->recvnxtinfo = 0;
4239
4240 /* Enable by default. */
4241 sp->v4mapped = 1;
4242
4243 /* Auto-close idle associations after the configured
4244 * number of seconds. A value of 0 disables this
4245 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4246 * for UDP-style sockets only.
4247 */
4248 sp->autoclose = 0;
4249
4250 /* User specified fragmentation limit. */
4251 sp->user_frag = 0;
4252
4253 sp->adaptation_ind = 0;
4254
4255 sp->pf = sctp_get_pf_specific(sk->sk_family);
4256
4257 /* Control variables for partial data delivery. */
4258 atomic_set(&sp->pd_mode, 0);
4259 skb_queue_head_init(&sp->pd_lobby);
4260 sp->frag_interleave = 0;
4261
4262 /* Create a per socket endpoint structure. Even if we
4263 * change the data structure relationships, this may still
4264 * be useful for storing pre-connect address information.
4265 */
4266 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4267 if (!sp->ep)
4268 return -ENOMEM;
4269
4270 sp->hmac = NULL;
4271
4272 sk->sk_destruct = sctp_destruct_sock;
4273
4274 SCTP_DBG_OBJCNT_INC(sock);
4275
4276 local_bh_disable();
4277 percpu_counter_inc(&sctp_sockets_allocated);
4278 sock_prot_inuse_add(net, sk->sk_prot, 1);
4279
4280 /* Nothing can fail after this block, otherwise
4281 * sctp_destroy_sock() will be called without addr_wq_lock held
4282 */
4283 if (net->sctp.default_auto_asconf) {
4284 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4285 list_add_tail(&sp->auto_asconf_list,
4286 &net->sctp.auto_asconf_splist);
4287 sp->do_auto_asconf = 1;
4288 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4289 } else {
4290 sp->do_auto_asconf = 0;
4291 }
4292
4293 local_bh_enable();
4294
4295 return 0;
4296 }
4297
4298 /* Cleanup any SCTP per socket resources. Must be called with
4299 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4300 */
4301 static void sctp_destroy_sock(struct sock *sk)
4302 {
4303 struct sctp_sock *sp;
4304
4305 pr_debug("%s: sk:%p\n", __func__, sk);
4306
4307 /* Release our hold on the endpoint. */
4308 sp = sctp_sk(sk);
4309 /* This could happen during socket init, thus we bail out
4310 * early, since the rest of the below is not setup either.
4311 */
4312 if (sp->ep == NULL)
4313 return;
4314
4315 if (sp->do_auto_asconf) {
4316 sp->do_auto_asconf = 0;
4317 list_del(&sp->auto_asconf_list);
4318 }
4319 sctp_endpoint_free(sp->ep);
4320 local_bh_disable();
4321 percpu_counter_dec(&sctp_sockets_allocated);
4322 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4323 local_bh_enable();
4324 }
4325
4326 /* Triggered when there are no references on the socket anymore */
4327 static void sctp_destruct_sock(struct sock *sk)
4328 {
4329 struct sctp_sock *sp = sctp_sk(sk);
4330
4331 /* Free up the HMAC transform. */
4332 crypto_free_shash(sp->hmac);
4333
4334 inet_sock_destruct(sk);
4335 }
4336
4337 /* API 4.1.7 shutdown() - TCP Style Syntax
4338 * int shutdown(int socket, int how);
4339 *
4340 * sd - the socket descriptor of the association to be closed.
4341 * how - Specifies the type of shutdown. The values are
4342 * as follows:
4343 * SHUT_RD
4344 * Disables further receive operations. No SCTP
4345 * protocol action is taken.
4346 * SHUT_WR
4347 * Disables further send operations, and initiates
4348 * the SCTP shutdown sequence.
4349 * SHUT_RDWR
4350 * Disables further send and receive operations
4351 * and initiates the SCTP shutdown sequence.
4352 */
4353 static void sctp_shutdown(struct sock *sk, int how)
4354 {
4355 struct net *net = sock_net(sk);
4356 struct sctp_endpoint *ep;
4357
4358 if (!sctp_style(sk, TCP))
4359 return;
4360
4361 ep = sctp_sk(sk)->ep;
4362 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4363 struct sctp_association *asoc;
4364
4365 sk->sk_state = SCTP_SS_CLOSING;
4366 asoc = list_entry(ep->asocs.next,
4367 struct sctp_association, asocs);
4368 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4369 }
4370 }
4371
4372 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4373 struct sctp_info *info)
4374 {
4375 struct sctp_transport *prim;
4376 struct list_head *pos;
4377 int mask;
4378
4379 memset(info, 0, sizeof(*info));
4380 if (!asoc) {
4381 struct sctp_sock *sp = sctp_sk(sk);
4382
4383 info->sctpi_s_autoclose = sp->autoclose;
4384 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4385 info->sctpi_s_pd_point = sp->pd_point;
4386 info->sctpi_s_nodelay = sp->nodelay;
4387 info->sctpi_s_disable_fragments = sp->disable_fragments;
4388 info->sctpi_s_v4mapped = sp->v4mapped;
4389 info->sctpi_s_frag_interleave = sp->frag_interleave;
4390 info->sctpi_s_type = sp->type;
4391
4392 return 0;
4393 }
4394
4395 info->sctpi_tag = asoc->c.my_vtag;
4396 info->sctpi_state = asoc->state;
4397 info->sctpi_rwnd = asoc->a_rwnd;
4398 info->sctpi_unackdata = asoc->unack_data;
4399 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4400 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4401 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4402 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4403 info->sctpi_inqueue++;
4404 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4405 info->sctpi_outqueue++;
4406 info->sctpi_overall_error = asoc->overall_error_count;
4407 info->sctpi_max_burst = asoc->max_burst;
4408 info->sctpi_maxseg = asoc->frag_point;
4409 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4410 info->sctpi_peer_tag = asoc->c.peer_vtag;
4411
4412 mask = asoc->peer.ecn_capable << 1;
4413 mask = (mask | asoc->peer.ipv4_address) << 1;
4414 mask = (mask | asoc->peer.ipv6_address) << 1;
4415 mask = (mask | asoc->peer.hostname_address) << 1;
4416 mask = (mask | asoc->peer.asconf_capable) << 1;
4417 mask = (mask | asoc->peer.prsctp_capable) << 1;
4418 mask = (mask | asoc->peer.auth_capable);
4419 info->sctpi_peer_capable = mask;
4420 mask = asoc->peer.sack_needed << 1;
4421 mask = (mask | asoc->peer.sack_generation) << 1;
4422 mask = (mask | asoc->peer.zero_window_announced);
4423 info->sctpi_peer_sack = mask;
4424
4425 info->sctpi_isacks = asoc->stats.isacks;
4426 info->sctpi_osacks = asoc->stats.osacks;
4427 info->sctpi_opackets = asoc->stats.opackets;
4428 info->sctpi_ipackets = asoc->stats.ipackets;
4429 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4430 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4431 info->sctpi_idupchunks = asoc->stats.idupchunks;
4432 info->sctpi_gapcnt = asoc->stats.gapcnt;
4433 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4434 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4435 info->sctpi_oodchunks = asoc->stats.oodchunks;
4436 info->sctpi_iodchunks = asoc->stats.iodchunks;
4437 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4438 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4439
4440 prim = asoc->peer.primary_path;
4441 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4442 sizeof(struct sockaddr_storage));
4443 info->sctpi_p_state = prim->state;
4444 info->sctpi_p_cwnd = prim->cwnd;
4445 info->sctpi_p_srtt = prim->srtt;
4446 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4447 info->sctpi_p_hbinterval = prim->hbinterval;
4448 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4449 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4450 info->sctpi_p_ssthresh = prim->ssthresh;
4451 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4452 info->sctpi_p_flight_size = prim->flight_size;
4453 info->sctpi_p_error = prim->error_count;
4454
4455 return 0;
4456 }
4457 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4458
4459 /* use callback to avoid exporting the core structure */
4460 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4461 {
4462 int err;
4463
4464 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4465
4466 err = rhashtable_walk_start(iter);
4467 if (err && err != -EAGAIN) {
4468 rhashtable_walk_stop(iter);
4469 rhashtable_walk_exit(iter);
4470 return err;
4471 }
4472
4473 return 0;
4474 }
4475
4476 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4477 {
4478 rhashtable_walk_stop(iter);
4479 rhashtable_walk_exit(iter);
4480 }
4481
4482 struct sctp_transport *sctp_transport_get_next(struct net *net,
4483 struct rhashtable_iter *iter)
4484 {
4485 struct sctp_transport *t;
4486
4487 t = rhashtable_walk_next(iter);
4488 for (; t; t = rhashtable_walk_next(iter)) {
4489 if (IS_ERR(t)) {
4490 if (PTR_ERR(t) == -EAGAIN)
4491 continue;
4492 break;
4493 }
4494
4495 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4496 t->asoc->peer.primary_path == t)
4497 break;
4498 }
4499
4500 return t;
4501 }
4502
4503 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4504 struct rhashtable_iter *iter,
4505 int pos)
4506 {
4507 void *obj = SEQ_START_TOKEN;
4508
4509 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4510 !IS_ERR(obj))
4511 pos--;
4512
4513 return obj;
4514 }
4515
4516 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4517 void *p) {
4518 int err = 0;
4519 int hash = 0;
4520 struct sctp_ep_common *epb;
4521 struct sctp_hashbucket *head;
4522
4523 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4524 hash++, head++) {
4525 read_lock(&head->lock);
4526 sctp_for_each_hentry(epb, &head->chain) {
4527 err = cb(sctp_ep(epb), p);
4528 if (err)
4529 break;
4530 }
4531 read_unlock(&head->lock);
4532 }
4533
4534 return err;
4535 }
4536 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4537
4538 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4539 struct net *net,
4540 const union sctp_addr *laddr,
4541 const union sctp_addr *paddr, void *p)
4542 {
4543 struct sctp_transport *transport;
4544 int err;
4545
4546 rcu_read_lock();
4547 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4548 rcu_read_unlock();
4549 if (!transport)
4550 return -ENOENT;
4551
4552 err = cb(transport, p);
4553 sctp_transport_put(transport);
4554
4555 return err;
4556 }
4557 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4558
4559 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4560 struct net *net, int pos, void *p) {
4561 struct rhashtable_iter hti;
4562 void *obj;
4563 int err;
4564
4565 err = sctp_transport_walk_start(&hti);
4566 if (err)
4567 return err;
4568
4569 sctp_transport_get_idx(net, &hti, pos);
4570 obj = sctp_transport_get_next(net, &hti);
4571 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4572 struct sctp_transport *transport = obj;
4573
4574 if (!sctp_transport_hold(transport))
4575 continue;
4576 err = cb(transport, p);
4577 sctp_transport_put(transport);
4578 if (err)
4579 break;
4580 }
4581 sctp_transport_walk_stop(&hti);
4582
4583 return err;
4584 }
4585 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4586
4587 /* 7.2.1 Association Status (SCTP_STATUS)
4588
4589 * Applications can retrieve current status information about an
4590 * association, including association state, peer receiver window size,
4591 * number of unacked data chunks, and number of data chunks pending
4592 * receipt. This information is read-only.
4593 */
4594 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4595 char __user *optval,
4596 int __user *optlen)
4597 {
4598 struct sctp_status status;
4599 struct sctp_association *asoc = NULL;
4600 struct sctp_transport *transport;
4601 sctp_assoc_t associd;
4602 int retval = 0;
4603
4604 if (len < sizeof(status)) {
4605 retval = -EINVAL;
4606 goto out;
4607 }
4608
4609 len = sizeof(status);
4610 if (copy_from_user(&status, optval, len)) {
4611 retval = -EFAULT;
4612 goto out;
4613 }
4614
4615 associd = status.sstat_assoc_id;
4616 asoc = sctp_id2assoc(sk, associd);
4617 if (!asoc) {
4618 retval = -EINVAL;
4619 goto out;
4620 }
4621
4622 transport = asoc->peer.primary_path;
4623
4624 status.sstat_assoc_id = sctp_assoc2id(asoc);
4625 status.sstat_state = sctp_assoc_to_state(asoc);
4626 status.sstat_rwnd = asoc->peer.rwnd;
4627 status.sstat_unackdata = asoc->unack_data;
4628
4629 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4630 status.sstat_instrms = asoc->c.sinit_max_instreams;
4631 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4632 status.sstat_fragmentation_point = asoc->frag_point;
4633 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4634 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4635 transport->af_specific->sockaddr_len);
4636 /* Map ipv4 address into v4-mapped-on-v6 address. */
4637 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4638 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4639 status.sstat_primary.spinfo_state = transport->state;
4640 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4641 status.sstat_primary.spinfo_srtt = transport->srtt;
4642 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4643 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4644
4645 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4646 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4647
4648 if (put_user(len, optlen)) {
4649 retval = -EFAULT;
4650 goto out;
4651 }
4652
4653 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4654 __func__, len, status.sstat_state, status.sstat_rwnd,
4655 status.sstat_assoc_id);
4656
4657 if (copy_to_user(optval, &status, len)) {
4658 retval = -EFAULT;
4659 goto out;
4660 }
4661
4662 out:
4663 return retval;
4664 }
4665
4666
4667 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4668 *
4669 * Applications can retrieve information about a specific peer address
4670 * of an association, including its reachability state, congestion
4671 * window, and retransmission timer values. This information is
4672 * read-only.
4673 */
4674 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4675 char __user *optval,
4676 int __user *optlen)
4677 {
4678 struct sctp_paddrinfo pinfo;
4679 struct sctp_transport *transport;
4680 int retval = 0;
4681
4682 if (len < sizeof(pinfo)) {
4683 retval = -EINVAL;
4684 goto out;
4685 }
4686
4687 len = sizeof(pinfo);
4688 if (copy_from_user(&pinfo, optval, len)) {
4689 retval = -EFAULT;
4690 goto out;
4691 }
4692
4693 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4694 pinfo.spinfo_assoc_id);
4695 if (!transport)
4696 return -EINVAL;
4697
4698 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4699 pinfo.spinfo_state = transport->state;
4700 pinfo.spinfo_cwnd = transport->cwnd;
4701 pinfo.spinfo_srtt = transport->srtt;
4702 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4703 pinfo.spinfo_mtu = transport->pathmtu;
4704
4705 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4706 pinfo.spinfo_state = SCTP_ACTIVE;
4707
4708 if (put_user(len, optlen)) {
4709 retval = -EFAULT;
4710 goto out;
4711 }
4712
4713 if (copy_to_user(optval, &pinfo, len)) {
4714 retval = -EFAULT;
4715 goto out;
4716 }
4717
4718 out:
4719 return retval;
4720 }
4721
4722 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4723 *
4724 * This option is a on/off flag. If enabled no SCTP message
4725 * fragmentation will be performed. Instead if a message being sent
4726 * exceeds the current PMTU size, the message will NOT be sent and
4727 * instead a error will be indicated to the user.
4728 */
4729 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4730 char __user *optval, int __user *optlen)
4731 {
4732 int val;
4733
4734 if (len < sizeof(int))
4735 return -EINVAL;
4736
4737 len = sizeof(int);
4738 val = (sctp_sk(sk)->disable_fragments == 1);
4739 if (put_user(len, optlen))
4740 return -EFAULT;
4741 if (copy_to_user(optval, &val, len))
4742 return -EFAULT;
4743 return 0;
4744 }
4745
4746 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4747 *
4748 * This socket option is used to specify various notifications and
4749 * ancillary data the user wishes to receive.
4750 */
4751 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4752 int __user *optlen)
4753 {
4754 if (len == 0)
4755 return -EINVAL;
4756 if (len > sizeof(struct sctp_event_subscribe))
4757 len = sizeof(struct sctp_event_subscribe);
4758 if (put_user(len, optlen))
4759 return -EFAULT;
4760 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4761 return -EFAULT;
4762 return 0;
4763 }
4764
4765 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4766 *
4767 * This socket option is applicable to the UDP-style socket only. When
4768 * set it will cause associations that are idle for more than the
4769 * specified number of seconds to automatically close. An association
4770 * being idle is defined an association that has NOT sent or received
4771 * user data. The special value of '0' indicates that no automatic
4772 * close of any associations should be performed. The option expects an
4773 * integer defining the number of seconds of idle time before an
4774 * association is closed.
4775 */
4776 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4777 {
4778 /* Applicable to UDP-style socket only */
4779 if (sctp_style(sk, TCP))
4780 return -EOPNOTSUPP;
4781 if (len < sizeof(int))
4782 return -EINVAL;
4783 len = sizeof(int);
4784 if (put_user(len, optlen))
4785 return -EFAULT;
4786 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4787 return -EFAULT;
4788 return 0;
4789 }
4790
4791 /* Helper routine to branch off an association to a new socket. */
4792 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4793 {
4794 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4795 struct sctp_sock *sp = sctp_sk(sk);
4796 struct socket *sock;
4797 int err = 0;
4798
4799 if (!asoc)
4800 return -EINVAL;
4801
4802 /* An association cannot be branched off from an already peeled-off
4803 * socket, nor is this supported for tcp style sockets.
4804 */
4805 if (!sctp_style(sk, UDP))
4806 return -EINVAL;
4807
4808 /* Create a new socket. */
4809 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4810 if (err < 0)
4811 return err;
4812
4813 sctp_copy_sock(sock->sk, sk, asoc);
4814
4815 /* Make peeled-off sockets more like 1-1 accepted sockets.
4816 * Set the daddr and initialize id to something more random
4817 */
4818 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4819
4820 /* Populate the fields of the newsk from the oldsk and migrate the
4821 * asoc to the newsk.
4822 */
4823 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4824
4825 *sockp = sock;
4826
4827 return err;
4828 }
4829 EXPORT_SYMBOL(sctp_do_peeloff);
4830
4831 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4832 {
4833 sctp_peeloff_arg_t peeloff;
4834 struct socket *newsock;
4835 struct file *newfile;
4836 int retval = 0;
4837
4838 if (len < sizeof(sctp_peeloff_arg_t))
4839 return -EINVAL;
4840 len = sizeof(sctp_peeloff_arg_t);
4841 if (copy_from_user(&peeloff, optval, len))
4842 return -EFAULT;
4843
4844 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4845 if (retval < 0)
4846 goto out;
4847
4848 /* Map the socket to an unused fd that can be returned to the user. */
4849 retval = get_unused_fd_flags(0);
4850 if (retval < 0) {
4851 sock_release(newsock);
4852 goto out;
4853 }
4854
4855 newfile = sock_alloc_file(newsock, 0, NULL);
4856 if (IS_ERR(newfile)) {
4857 put_unused_fd(retval);
4858 sock_release(newsock);
4859 return PTR_ERR(newfile);
4860 }
4861
4862 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4863 retval);
4864
4865 /* Return the fd mapped to the new socket. */
4866 if (put_user(len, optlen)) {
4867 fput(newfile);
4868 put_unused_fd(retval);
4869 return -EFAULT;
4870 }
4871 peeloff.sd = retval;
4872 if (copy_to_user(optval, &peeloff, len)) {
4873 fput(newfile);
4874 put_unused_fd(retval);
4875 return -EFAULT;
4876 }
4877 fd_install(retval, newfile);
4878 out:
4879 return retval;
4880 }
4881
4882 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4883 *
4884 * Applications can enable or disable heartbeats for any peer address of
4885 * an association, modify an address's heartbeat interval, force a
4886 * heartbeat to be sent immediately, and adjust the address's maximum
4887 * number of retransmissions sent before an address is considered
4888 * unreachable. The following structure is used to access and modify an
4889 * address's parameters:
4890 *
4891 * struct sctp_paddrparams {
4892 * sctp_assoc_t spp_assoc_id;
4893 * struct sockaddr_storage spp_address;
4894 * uint32_t spp_hbinterval;
4895 * uint16_t spp_pathmaxrxt;
4896 * uint32_t spp_pathmtu;
4897 * uint32_t spp_sackdelay;
4898 * uint32_t spp_flags;
4899 * };
4900 *
4901 * spp_assoc_id - (one-to-many style socket) This is filled in the
4902 * application, and identifies the association for
4903 * this query.
4904 * spp_address - This specifies which address is of interest.
4905 * spp_hbinterval - This contains the value of the heartbeat interval,
4906 * in milliseconds. If a value of zero
4907 * is present in this field then no changes are to
4908 * be made to this parameter.
4909 * spp_pathmaxrxt - This contains the maximum number of
4910 * retransmissions before this address shall be
4911 * considered unreachable. If a value of zero
4912 * is present in this field then no changes are to
4913 * be made to this parameter.
4914 * spp_pathmtu - When Path MTU discovery is disabled the value
4915 * specified here will be the "fixed" path mtu.
4916 * Note that if the spp_address field is empty
4917 * then all associations on this address will
4918 * have this fixed path mtu set upon them.
4919 *
4920 * spp_sackdelay - When delayed sack is enabled, this value specifies
4921 * the number of milliseconds that sacks will be delayed
4922 * for. This value will apply to all addresses of an
4923 * association if the spp_address field is empty. Note
4924 * also, that if delayed sack is enabled and this
4925 * value is set to 0, no change is made to the last
4926 * recorded delayed sack timer value.
4927 *
4928 * spp_flags - These flags are used to control various features
4929 * on an association. The flag field may contain
4930 * zero or more of the following options.
4931 *
4932 * SPP_HB_ENABLE - Enable heartbeats on the
4933 * specified address. Note that if the address
4934 * field is empty all addresses for the association
4935 * have heartbeats enabled upon them.
4936 *
4937 * SPP_HB_DISABLE - Disable heartbeats on the
4938 * speicifed address. Note that if the address
4939 * field is empty all addresses for the association
4940 * will have their heartbeats disabled. Note also
4941 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4942 * mutually exclusive, only one of these two should
4943 * be specified. Enabling both fields will have
4944 * undetermined results.
4945 *
4946 * SPP_HB_DEMAND - Request a user initiated heartbeat
4947 * to be made immediately.
4948 *
4949 * SPP_PMTUD_ENABLE - This field will enable PMTU
4950 * discovery upon the specified address. Note that
4951 * if the address feild is empty then all addresses
4952 * on the association are effected.
4953 *
4954 * SPP_PMTUD_DISABLE - This field will disable PMTU
4955 * discovery upon the specified address. Note that
4956 * if the address feild is empty then all addresses
4957 * on the association are effected. Not also that
4958 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4959 * exclusive. Enabling both will have undetermined
4960 * results.
4961 *
4962 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4963 * on delayed sack. The time specified in spp_sackdelay
4964 * is used to specify the sack delay for this address. Note
4965 * that if spp_address is empty then all addresses will
4966 * enable delayed sack and take on the sack delay
4967 * value specified in spp_sackdelay.
4968 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4969 * off delayed sack. If the spp_address field is blank then
4970 * delayed sack is disabled for the entire association. Note
4971 * also that this field is mutually exclusive to
4972 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4973 * results.
4974 */
4975 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4976 char __user *optval, int __user *optlen)
4977 {
4978 struct sctp_paddrparams params;
4979 struct sctp_transport *trans = NULL;
4980 struct sctp_association *asoc = NULL;
4981 struct sctp_sock *sp = sctp_sk(sk);
4982
4983 if (len < sizeof(struct sctp_paddrparams))
4984 return -EINVAL;
4985 len = sizeof(struct sctp_paddrparams);
4986 if (copy_from_user(&params, optval, len))
4987 return -EFAULT;
4988
4989 /* If an address other than INADDR_ANY is specified, and
4990 * no transport is found, then the request is invalid.
4991 */
4992 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4993 trans = sctp_addr_id2transport(sk, &params.spp_address,
4994 params.spp_assoc_id);
4995 if (!trans) {
4996 pr_debug("%s: failed no transport\n", __func__);
4997 return -EINVAL;
4998 }
4999 }
5000
5001 /* Get association, if assoc_id != 0 and the socket is a one
5002 * to many style socket, and an association was not found, then
5003 * the id was invalid.
5004 */
5005 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5006 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5007 pr_debug("%s: failed no association\n", __func__);
5008 return -EINVAL;
5009 }
5010
5011 if (trans) {
5012 /* Fetch transport values. */
5013 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5014 params.spp_pathmtu = trans->pathmtu;
5015 params.spp_pathmaxrxt = trans->pathmaxrxt;
5016 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5017
5018 /*draft-11 doesn't say what to return in spp_flags*/
5019 params.spp_flags = trans->param_flags;
5020 } else if (asoc) {
5021 /* Fetch association values. */
5022 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5023 params.spp_pathmtu = asoc->pathmtu;
5024 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5025 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5026
5027 /*draft-11 doesn't say what to return in spp_flags*/
5028 params.spp_flags = asoc->param_flags;
5029 } else {
5030 /* Fetch socket values. */
5031 params.spp_hbinterval = sp->hbinterval;
5032 params.spp_pathmtu = sp->pathmtu;
5033 params.spp_sackdelay = sp->sackdelay;
5034 params.spp_pathmaxrxt = sp->pathmaxrxt;
5035
5036 /*draft-11 doesn't say what to return in spp_flags*/
5037 params.spp_flags = sp->param_flags;
5038 }
5039
5040 if (copy_to_user(optval, &params, len))
5041 return -EFAULT;
5042
5043 if (put_user(len, optlen))
5044 return -EFAULT;
5045
5046 return 0;
5047 }
5048
5049 /*
5050 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5051 *
5052 * This option will effect the way delayed acks are performed. This
5053 * option allows you to get or set the delayed ack time, in
5054 * milliseconds. It also allows changing the delayed ack frequency.
5055 * Changing the frequency to 1 disables the delayed sack algorithm. If
5056 * the assoc_id is 0, then this sets or gets the endpoints default
5057 * values. If the assoc_id field is non-zero, then the set or get
5058 * effects the specified association for the one to many model (the
5059 * assoc_id field is ignored by the one to one model). Note that if
5060 * sack_delay or sack_freq are 0 when setting this option, then the
5061 * current values will remain unchanged.
5062 *
5063 * struct sctp_sack_info {
5064 * sctp_assoc_t sack_assoc_id;
5065 * uint32_t sack_delay;
5066 * uint32_t sack_freq;
5067 * };
5068 *
5069 * sack_assoc_id - This parameter, indicates which association the user
5070 * is performing an action upon. Note that if this field's value is
5071 * zero then the endpoints default value is changed (effecting future
5072 * associations only).
5073 *
5074 * sack_delay - This parameter contains the number of milliseconds that
5075 * the user is requesting the delayed ACK timer be set to. Note that
5076 * this value is defined in the standard to be between 200 and 500
5077 * milliseconds.
5078 *
5079 * sack_freq - This parameter contains the number of packets that must
5080 * be received before a sack is sent without waiting for the delay
5081 * timer to expire. The default value for this is 2, setting this
5082 * value to 1 will disable the delayed sack algorithm.
5083 */
5084 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5085 char __user *optval,
5086 int __user *optlen)
5087 {
5088 struct sctp_sack_info params;
5089 struct sctp_association *asoc = NULL;
5090 struct sctp_sock *sp = sctp_sk(sk);
5091
5092 if (len >= sizeof(struct sctp_sack_info)) {
5093 len = sizeof(struct sctp_sack_info);
5094
5095 if (copy_from_user(&params, optval, len))
5096 return -EFAULT;
5097 } else if (len == sizeof(struct sctp_assoc_value)) {
5098 pr_warn_ratelimited(DEPRECATED
5099 "%s (pid %d) "
5100 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5101 "Use struct sctp_sack_info instead\n",
5102 current->comm, task_pid_nr(current));
5103 if (copy_from_user(&params, optval, len))
5104 return -EFAULT;
5105 } else
5106 return -EINVAL;
5107
5108 /* Get association, if sack_assoc_id != 0 and the socket is a one
5109 * to many style socket, and an association was not found, then
5110 * the id was invalid.
5111 */
5112 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5113 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5114 return -EINVAL;
5115
5116 if (asoc) {
5117 /* Fetch association values. */
5118 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5119 params.sack_delay = jiffies_to_msecs(
5120 asoc->sackdelay);
5121 params.sack_freq = asoc->sackfreq;
5122
5123 } else {
5124 params.sack_delay = 0;
5125 params.sack_freq = 1;
5126 }
5127 } else {
5128 /* Fetch socket values. */
5129 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5130 params.sack_delay = sp->sackdelay;
5131 params.sack_freq = sp->sackfreq;
5132 } else {
5133 params.sack_delay = 0;
5134 params.sack_freq = 1;
5135 }
5136 }
5137
5138 if (copy_to_user(optval, &params, len))
5139 return -EFAULT;
5140
5141 if (put_user(len, optlen))
5142 return -EFAULT;
5143
5144 return 0;
5145 }
5146
5147 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5148 *
5149 * Applications can specify protocol parameters for the default association
5150 * initialization. The option name argument to setsockopt() and getsockopt()
5151 * is SCTP_INITMSG.
5152 *
5153 * Setting initialization parameters is effective only on an unconnected
5154 * socket (for UDP-style sockets only future associations are effected
5155 * by the change). With TCP-style sockets, this option is inherited by
5156 * sockets derived from a listener socket.
5157 */
5158 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5159 {
5160 if (len < sizeof(struct sctp_initmsg))
5161 return -EINVAL;
5162 len = sizeof(struct sctp_initmsg);
5163 if (put_user(len, optlen))
5164 return -EFAULT;
5165 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5166 return -EFAULT;
5167 return 0;
5168 }
5169
5170
5171 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5172 char __user *optval, int __user *optlen)
5173 {
5174 struct sctp_association *asoc;
5175 int cnt = 0;
5176 struct sctp_getaddrs getaddrs;
5177 struct sctp_transport *from;
5178 void __user *to;
5179 union sctp_addr temp;
5180 struct sctp_sock *sp = sctp_sk(sk);
5181 int addrlen;
5182 size_t space_left;
5183 int bytes_copied;
5184
5185 if (len < sizeof(struct sctp_getaddrs))
5186 return -EINVAL;
5187
5188 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5189 return -EFAULT;
5190
5191 /* For UDP-style sockets, id specifies the association to query. */
5192 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5193 if (!asoc)
5194 return -EINVAL;
5195
5196 to = optval + offsetof(struct sctp_getaddrs, addrs);
5197 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5198
5199 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5200 transports) {
5201 memcpy(&temp, &from->ipaddr, sizeof(temp));
5202 addrlen = sctp_get_pf_specific(sk->sk_family)
5203 ->addr_to_user(sp, &temp);
5204 if (space_left < addrlen)
5205 return -ENOMEM;
5206 if (copy_to_user(to, &temp, addrlen))
5207 return -EFAULT;
5208 to += addrlen;
5209 cnt++;
5210 space_left -= addrlen;
5211 }
5212
5213 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5214 return -EFAULT;
5215 bytes_copied = ((char __user *)to) - optval;
5216 if (put_user(bytes_copied, optlen))
5217 return -EFAULT;
5218
5219 return 0;
5220 }
5221
5222 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5223 size_t space_left, int *bytes_copied)
5224 {
5225 struct sctp_sockaddr_entry *addr;
5226 union sctp_addr temp;
5227 int cnt = 0;
5228 int addrlen;
5229 struct net *net = sock_net(sk);
5230
5231 rcu_read_lock();
5232 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5233 if (!addr->valid)
5234 continue;
5235
5236 if ((PF_INET == sk->sk_family) &&
5237 (AF_INET6 == addr->a.sa.sa_family))
5238 continue;
5239 if ((PF_INET6 == sk->sk_family) &&
5240 inet_v6_ipv6only(sk) &&
5241 (AF_INET == addr->a.sa.sa_family))
5242 continue;
5243 memcpy(&temp, &addr->a, sizeof(temp));
5244 if (!temp.v4.sin_port)
5245 temp.v4.sin_port = htons(port);
5246
5247 addrlen = sctp_get_pf_specific(sk->sk_family)
5248 ->addr_to_user(sctp_sk(sk), &temp);
5249
5250 if (space_left < addrlen) {
5251 cnt = -ENOMEM;
5252 break;
5253 }
5254 memcpy(to, &temp, addrlen);
5255
5256 to += addrlen;
5257 cnt++;
5258 space_left -= addrlen;
5259 *bytes_copied += addrlen;
5260 }
5261 rcu_read_unlock();
5262
5263 return cnt;
5264 }
5265
5266
5267 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5268 char __user *optval, int __user *optlen)
5269 {
5270 struct sctp_bind_addr *bp;
5271 struct sctp_association *asoc;
5272 int cnt = 0;
5273 struct sctp_getaddrs getaddrs;
5274 struct sctp_sockaddr_entry *addr;
5275 void __user *to;
5276 union sctp_addr temp;
5277 struct sctp_sock *sp = sctp_sk(sk);
5278 int addrlen;
5279 int err = 0;
5280 size_t space_left;
5281 int bytes_copied = 0;
5282 void *addrs;
5283 void *buf;
5284
5285 if (len < sizeof(struct sctp_getaddrs))
5286 return -EINVAL;
5287
5288 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5289 return -EFAULT;
5290
5291 /*
5292 * For UDP-style sockets, id specifies the association to query.
5293 * If the id field is set to the value '0' then the locally bound
5294 * addresses are returned without regard to any particular
5295 * association.
5296 */
5297 if (0 == getaddrs.assoc_id) {
5298 bp = &sctp_sk(sk)->ep->base.bind_addr;
5299 } else {
5300 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5301 if (!asoc)
5302 return -EINVAL;
5303 bp = &asoc->base.bind_addr;
5304 }
5305
5306 to = optval + offsetof(struct sctp_getaddrs, addrs);
5307 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5308
5309 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5310 if (!addrs)
5311 return -ENOMEM;
5312
5313 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5314 * addresses from the global local address list.
5315 */
5316 if (sctp_list_single_entry(&bp->address_list)) {
5317 addr = list_entry(bp->address_list.next,
5318 struct sctp_sockaddr_entry, list);
5319 if (sctp_is_any(sk, &addr->a)) {
5320 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5321 space_left, &bytes_copied);
5322 if (cnt < 0) {
5323 err = cnt;
5324 goto out;
5325 }
5326 goto copy_getaddrs;
5327 }
5328 }
5329
5330 buf = addrs;
5331 /* Protection on the bound address list is not needed since
5332 * in the socket option context we hold a socket lock and
5333 * thus the bound address list can't change.
5334 */
5335 list_for_each_entry(addr, &bp->address_list, list) {
5336 memcpy(&temp, &addr->a, sizeof(temp));
5337 addrlen = sctp_get_pf_specific(sk->sk_family)
5338 ->addr_to_user(sp, &temp);
5339 if (space_left < addrlen) {
5340 err = -ENOMEM; /*fixme: right error?*/
5341 goto out;
5342 }
5343 memcpy(buf, &temp, addrlen);
5344 buf += addrlen;
5345 bytes_copied += addrlen;
5346 cnt++;
5347 space_left -= addrlen;
5348 }
5349
5350 copy_getaddrs:
5351 if (copy_to_user(to, addrs, bytes_copied)) {
5352 err = -EFAULT;
5353 goto out;
5354 }
5355 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5356 err = -EFAULT;
5357 goto out;
5358 }
5359 if (put_user(bytes_copied, optlen))
5360 err = -EFAULT;
5361 out:
5362 kfree(addrs);
5363 return err;
5364 }
5365
5366 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5367 *
5368 * Requests that the local SCTP stack use the enclosed peer address as
5369 * the association primary. The enclosed address must be one of the
5370 * association peer's addresses.
5371 */
5372 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5373 char __user *optval, int __user *optlen)
5374 {
5375 struct sctp_prim prim;
5376 struct sctp_association *asoc;
5377 struct sctp_sock *sp = sctp_sk(sk);
5378
5379 if (len < sizeof(struct sctp_prim))
5380 return -EINVAL;
5381
5382 len = sizeof(struct sctp_prim);
5383
5384 if (copy_from_user(&prim, optval, len))
5385 return -EFAULT;
5386
5387 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5388 if (!asoc)
5389 return -EINVAL;
5390
5391 if (!asoc->peer.primary_path)
5392 return -ENOTCONN;
5393
5394 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5395 asoc->peer.primary_path->af_specific->sockaddr_len);
5396
5397 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5398 (union sctp_addr *)&prim.ssp_addr);
5399
5400 if (put_user(len, optlen))
5401 return -EFAULT;
5402 if (copy_to_user(optval, &prim, len))
5403 return -EFAULT;
5404
5405 return 0;
5406 }
5407
5408 /*
5409 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5410 *
5411 * Requests that the local endpoint set the specified Adaptation Layer
5412 * Indication parameter for all future INIT and INIT-ACK exchanges.
5413 */
5414 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5415 char __user *optval, int __user *optlen)
5416 {
5417 struct sctp_setadaptation adaptation;
5418
5419 if (len < sizeof(struct sctp_setadaptation))
5420 return -EINVAL;
5421
5422 len = sizeof(struct sctp_setadaptation);
5423
5424 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5425
5426 if (put_user(len, optlen))
5427 return -EFAULT;
5428 if (copy_to_user(optval, &adaptation, len))
5429 return -EFAULT;
5430
5431 return 0;
5432 }
5433
5434 /*
5435 *
5436 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5437 *
5438 * Applications that wish to use the sendto() system call may wish to
5439 * specify a default set of parameters that would normally be supplied
5440 * through the inclusion of ancillary data. This socket option allows
5441 * such an application to set the default sctp_sndrcvinfo structure.
5442
5443
5444 * The application that wishes to use this socket option simply passes
5445 * in to this call the sctp_sndrcvinfo structure defined in Section
5446 * 5.2.2) The input parameters accepted by this call include
5447 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5448 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5449 * to this call if the caller is using the UDP model.
5450 *
5451 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5452 */
5453 static int sctp_getsockopt_default_send_param(struct sock *sk,
5454 int len, char __user *optval,
5455 int __user *optlen)
5456 {
5457 struct sctp_sock *sp = sctp_sk(sk);
5458 struct sctp_association *asoc;
5459 struct sctp_sndrcvinfo info;
5460
5461 if (len < sizeof(info))
5462 return -EINVAL;
5463
5464 len = sizeof(info);
5465
5466 if (copy_from_user(&info, optval, len))
5467 return -EFAULT;
5468
5469 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5470 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5471 return -EINVAL;
5472 if (asoc) {
5473 info.sinfo_stream = asoc->default_stream;
5474 info.sinfo_flags = asoc->default_flags;
5475 info.sinfo_ppid = asoc->default_ppid;
5476 info.sinfo_context = asoc->default_context;
5477 info.sinfo_timetolive = asoc->default_timetolive;
5478 } else {
5479 info.sinfo_stream = sp->default_stream;
5480 info.sinfo_flags = sp->default_flags;
5481 info.sinfo_ppid = sp->default_ppid;
5482 info.sinfo_context = sp->default_context;
5483 info.sinfo_timetolive = sp->default_timetolive;
5484 }
5485
5486 if (put_user(len, optlen))
5487 return -EFAULT;
5488 if (copy_to_user(optval, &info, len))
5489 return -EFAULT;
5490
5491 return 0;
5492 }
5493
5494 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5495 * (SCTP_DEFAULT_SNDINFO)
5496 */
5497 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5498 char __user *optval,
5499 int __user *optlen)
5500 {
5501 struct sctp_sock *sp = sctp_sk(sk);
5502 struct sctp_association *asoc;
5503 struct sctp_sndinfo info;
5504
5505 if (len < sizeof(info))
5506 return -EINVAL;
5507
5508 len = sizeof(info);
5509
5510 if (copy_from_user(&info, optval, len))
5511 return -EFAULT;
5512
5513 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5514 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5515 return -EINVAL;
5516 if (asoc) {
5517 info.snd_sid = asoc->default_stream;
5518 info.snd_flags = asoc->default_flags;
5519 info.snd_ppid = asoc->default_ppid;
5520 info.snd_context = asoc->default_context;
5521 } else {
5522 info.snd_sid = sp->default_stream;
5523 info.snd_flags = sp->default_flags;
5524 info.snd_ppid = sp->default_ppid;
5525 info.snd_context = sp->default_context;
5526 }
5527
5528 if (put_user(len, optlen))
5529 return -EFAULT;
5530 if (copy_to_user(optval, &info, len))
5531 return -EFAULT;
5532
5533 return 0;
5534 }
5535
5536 /*
5537 *
5538 * 7.1.5 SCTP_NODELAY
5539 *
5540 * Turn on/off any Nagle-like algorithm. This means that packets are
5541 * generally sent as soon as possible and no unnecessary delays are
5542 * introduced, at the cost of more packets in the network. Expects an
5543 * integer boolean flag.
5544 */
5545
5546 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5547 char __user *optval, int __user *optlen)
5548 {
5549 int val;
5550
5551 if (len < sizeof(int))
5552 return -EINVAL;
5553
5554 len = sizeof(int);
5555 val = (sctp_sk(sk)->nodelay == 1);
5556 if (put_user(len, optlen))
5557 return -EFAULT;
5558 if (copy_to_user(optval, &val, len))
5559 return -EFAULT;
5560 return 0;
5561 }
5562
5563 /*
5564 *
5565 * 7.1.1 SCTP_RTOINFO
5566 *
5567 * The protocol parameters used to initialize and bound retransmission
5568 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5569 * and modify these parameters.
5570 * All parameters are time values, in milliseconds. A value of 0, when
5571 * modifying the parameters, indicates that the current value should not
5572 * be changed.
5573 *
5574 */
5575 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5576 char __user *optval,
5577 int __user *optlen) {
5578 struct sctp_rtoinfo rtoinfo;
5579 struct sctp_association *asoc;
5580
5581 if (len < sizeof (struct sctp_rtoinfo))
5582 return -EINVAL;
5583
5584 len = sizeof(struct sctp_rtoinfo);
5585
5586 if (copy_from_user(&rtoinfo, optval, len))
5587 return -EFAULT;
5588
5589 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5590
5591 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5592 return -EINVAL;
5593
5594 /* Values corresponding to the specific association. */
5595 if (asoc) {
5596 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5597 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5598 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5599 } else {
5600 /* Values corresponding to the endpoint. */
5601 struct sctp_sock *sp = sctp_sk(sk);
5602
5603 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5604 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5605 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5606 }
5607
5608 if (put_user(len, optlen))
5609 return -EFAULT;
5610
5611 if (copy_to_user(optval, &rtoinfo, len))
5612 return -EFAULT;
5613
5614 return 0;
5615 }
5616
5617 /*
5618 *
5619 * 7.1.2 SCTP_ASSOCINFO
5620 *
5621 * This option is used to tune the maximum retransmission attempts
5622 * of the association.
5623 * Returns an error if the new association retransmission value is
5624 * greater than the sum of the retransmission value of the peer.
5625 * See [SCTP] for more information.
5626 *
5627 */
5628 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5629 char __user *optval,
5630 int __user *optlen)
5631 {
5632
5633 struct sctp_assocparams assocparams;
5634 struct sctp_association *asoc;
5635 struct list_head *pos;
5636 int cnt = 0;
5637
5638 if (len < sizeof (struct sctp_assocparams))
5639 return -EINVAL;
5640
5641 len = sizeof(struct sctp_assocparams);
5642
5643 if (copy_from_user(&assocparams, optval, len))
5644 return -EFAULT;
5645
5646 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5647
5648 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5649 return -EINVAL;
5650
5651 /* Values correspoinding to the specific association */
5652 if (asoc) {
5653 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5654 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5655 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5656 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5657
5658 list_for_each(pos, &asoc->peer.transport_addr_list) {
5659 cnt++;
5660 }
5661
5662 assocparams.sasoc_number_peer_destinations = cnt;
5663 } else {
5664 /* Values corresponding to the endpoint */
5665 struct sctp_sock *sp = sctp_sk(sk);
5666
5667 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5668 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5669 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5670 assocparams.sasoc_cookie_life =
5671 sp->assocparams.sasoc_cookie_life;
5672 assocparams.sasoc_number_peer_destinations =
5673 sp->assocparams.
5674 sasoc_number_peer_destinations;
5675 }
5676
5677 if (put_user(len, optlen))
5678 return -EFAULT;
5679
5680 if (copy_to_user(optval, &assocparams, len))
5681 return -EFAULT;
5682
5683 return 0;
5684 }
5685
5686 /*
5687 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5688 *
5689 * This socket option is a boolean flag which turns on or off mapped V4
5690 * addresses. If this option is turned on and the socket is type
5691 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5692 * If this option is turned off, then no mapping will be done of V4
5693 * addresses and a user will receive both PF_INET6 and PF_INET type
5694 * addresses on the socket.
5695 */
5696 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5697 char __user *optval, int __user *optlen)
5698 {
5699 int val;
5700 struct sctp_sock *sp = sctp_sk(sk);
5701
5702 if (len < sizeof(int))
5703 return -EINVAL;
5704
5705 len = sizeof(int);
5706 val = sp->v4mapped;
5707 if (put_user(len, optlen))
5708 return -EFAULT;
5709 if (copy_to_user(optval, &val, len))
5710 return -EFAULT;
5711
5712 return 0;
5713 }
5714
5715 /*
5716 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5717 * (chapter and verse is quoted at sctp_setsockopt_context())
5718 */
5719 static int sctp_getsockopt_context(struct sock *sk, int len,
5720 char __user *optval, int __user *optlen)
5721 {
5722 struct sctp_assoc_value params;
5723 struct sctp_sock *sp;
5724 struct sctp_association *asoc;
5725
5726 if (len < sizeof(struct sctp_assoc_value))
5727 return -EINVAL;
5728
5729 len = sizeof(struct sctp_assoc_value);
5730
5731 if (copy_from_user(&params, optval, len))
5732 return -EFAULT;
5733
5734 sp = sctp_sk(sk);
5735
5736 if (params.assoc_id != 0) {
5737 asoc = sctp_id2assoc(sk, params.assoc_id);
5738 if (!asoc)
5739 return -EINVAL;
5740 params.assoc_value = asoc->default_rcv_context;
5741 } else {
5742 params.assoc_value = sp->default_rcv_context;
5743 }
5744
5745 if (put_user(len, optlen))
5746 return -EFAULT;
5747 if (copy_to_user(optval, &params, len))
5748 return -EFAULT;
5749
5750 return 0;
5751 }
5752
5753 /*
5754 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5755 * This option will get or set the maximum size to put in any outgoing
5756 * SCTP DATA chunk. If a message is larger than this size it will be
5757 * fragmented by SCTP into the specified size. Note that the underlying
5758 * SCTP implementation may fragment into smaller sized chunks when the
5759 * PMTU of the underlying association is smaller than the value set by
5760 * the user. The default value for this option is '0' which indicates
5761 * the user is NOT limiting fragmentation and only the PMTU will effect
5762 * SCTP's choice of DATA chunk size. Note also that values set larger
5763 * than the maximum size of an IP datagram will effectively let SCTP
5764 * control fragmentation (i.e. the same as setting this option to 0).
5765 *
5766 * The following structure is used to access and modify this parameter:
5767 *
5768 * struct sctp_assoc_value {
5769 * sctp_assoc_t assoc_id;
5770 * uint32_t assoc_value;
5771 * };
5772 *
5773 * assoc_id: This parameter is ignored for one-to-one style sockets.
5774 * For one-to-many style sockets this parameter indicates which
5775 * association the user is performing an action upon. Note that if
5776 * this field's value is zero then the endpoints default value is
5777 * changed (effecting future associations only).
5778 * assoc_value: This parameter specifies the maximum size in bytes.
5779 */
5780 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5781 char __user *optval, int __user *optlen)
5782 {
5783 struct sctp_assoc_value params;
5784 struct sctp_association *asoc;
5785
5786 if (len == sizeof(int)) {
5787 pr_warn_ratelimited(DEPRECATED
5788 "%s (pid %d) "
5789 "Use of int in maxseg socket option.\n"
5790 "Use struct sctp_assoc_value instead\n",
5791 current->comm, task_pid_nr(current));
5792 params.assoc_id = 0;
5793 } else if (len >= sizeof(struct sctp_assoc_value)) {
5794 len = sizeof(struct sctp_assoc_value);
5795 if (copy_from_user(&params, optval, sizeof(params)))
5796 return -EFAULT;
5797 } else
5798 return -EINVAL;
5799
5800 asoc = sctp_id2assoc(sk, params.assoc_id);
5801 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5802 return -EINVAL;
5803
5804 if (asoc)
5805 params.assoc_value = asoc->frag_point;
5806 else
5807 params.assoc_value = sctp_sk(sk)->user_frag;
5808
5809 if (put_user(len, optlen))
5810 return -EFAULT;
5811 if (len == sizeof(int)) {
5812 if (copy_to_user(optval, &params.assoc_value, len))
5813 return -EFAULT;
5814 } else {
5815 if (copy_to_user(optval, &params, len))
5816 return -EFAULT;
5817 }
5818
5819 return 0;
5820 }
5821
5822 /*
5823 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5824 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5825 */
5826 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5827 char __user *optval, int __user *optlen)
5828 {
5829 int val;
5830
5831 if (len < sizeof(int))
5832 return -EINVAL;
5833
5834 len = sizeof(int);
5835
5836 val = sctp_sk(sk)->frag_interleave;
5837 if (put_user(len, optlen))
5838 return -EFAULT;
5839 if (copy_to_user(optval, &val, len))
5840 return -EFAULT;
5841
5842 return 0;
5843 }
5844
5845 /*
5846 * 7.1.25. Set or Get the sctp partial delivery point
5847 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5848 */
5849 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5850 char __user *optval,
5851 int __user *optlen)
5852 {
5853 u32 val;
5854
5855 if (len < sizeof(u32))
5856 return -EINVAL;
5857
5858 len = sizeof(u32);
5859
5860 val = sctp_sk(sk)->pd_point;
5861 if (put_user(len, optlen))
5862 return -EFAULT;
5863 if (copy_to_user(optval, &val, len))
5864 return -EFAULT;
5865
5866 return 0;
5867 }
5868
5869 /*
5870 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5871 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5872 */
5873 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5874 char __user *optval,
5875 int __user *optlen)
5876 {
5877 struct sctp_assoc_value params;
5878 struct sctp_sock *sp;
5879 struct sctp_association *asoc;
5880
5881 if (len == sizeof(int)) {
5882 pr_warn_ratelimited(DEPRECATED
5883 "%s (pid %d) "
5884 "Use of int in max_burst socket option.\n"
5885 "Use struct sctp_assoc_value instead\n",
5886 current->comm, task_pid_nr(current));
5887 params.assoc_id = 0;
5888 } else if (len >= sizeof(struct sctp_assoc_value)) {
5889 len = sizeof(struct sctp_assoc_value);
5890 if (copy_from_user(&params, optval, len))
5891 return -EFAULT;
5892 } else
5893 return -EINVAL;
5894
5895 sp = sctp_sk(sk);
5896
5897 if (params.assoc_id != 0) {
5898 asoc = sctp_id2assoc(sk, params.assoc_id);
5899 if (!asoc)
5900 return -EINVAL;
5901 params.assoc_value = asoc->max_burst;
5902 } else
5903 params.assoc_value = sp->max_burst;
5904
5905 if (len == sizeof(int)) {
5906 if (copy_to_user(optval, &params.assoc_value, len))
5907 return -EFAULT;
5908 } else {
5909 if (copy_to_user(optval, &params, len))
5910 return -EFAULT;
5911 }
5912
5913 return 0;
5914
5915 }
5916
5917 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5918 char __user *optval, int __user *optlen)
5919 {
5920 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5921 struct sctp_hmacalgo __user *p = (void __user *)optval;
5922 struct sctp_hmac_algo_param *hmacs;
5923 __u16 data_len = 0;
5924 u32 num_idents;
5925 int i;
5926
5927 if (!ep->auth_enable)
5928 return -EACCES;
5929
5930 hmacs = ep->auth_hmacs_list;
5931 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5932
5933 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5934 return -EINVAL;
5935
5936 len = sizeof(struct sctp_hmacalgo) + data_len;
5937 num_idents = data_len / sizeof(u16);
5938
5939 if (put_user(len, optlen))
5940 return -EFAULT;
5941 if (put_user(num_idents, &p->shmac_num_idents))
5942 return -EFAULT;
5943 for (i = 0; i < num_idents; i++) {
5944 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5945
5946 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5947 return -EFAULT;
5948 }
5949 return 0;
5950 }
5951
5952 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5953 char __user *optval, int __user *optlen)
5954 {
5955 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5956 struct sctp_authkeyid val;
5957 struct sctp_association *asoc;
5958
5959 if (!ep->auth_enable)
5960 return -EACCES;
5961
5962 if (len < sizeof(struct sctp_authkeyid))
5963 return -EINVAL;
5964 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5965 return -EFAULT;
5966
5967 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5968 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5969 return -EINVAL;
5970
5971 if (asoc)
5972 val.scact_keynumber = asoc->active_key_id;
5973 else
5974 val.scact_keynumber = ep->active_key_id;
5975
5976 len = sizeof(struct sctp_authkeyid);
5977 if (put_user(len, optlen))
5978 return -EFAULT;
5979 if (copy_to_user(optval, &val, len))
5980 return -EFAULT;
5981
5982 return 0;
5983 }
5984
5985 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5986 char __user *optval, int __user *optlen)
5987 {
5988 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5989 struct sctp_authchunks __user *p = (void __user *)optval;
5990 struct sctp_authchunks val;
5991 struct sctp_association *asoc;
5992 struct sctp_chunks_param *ch;
5993 u32 num_chunks = 0;
5994 char __user *to;
5995
5996 if (!ep->auth_enable)
5997 return -EACCES;
5998
5999 if (len < sizeof(struct sctp_authchunks))
6000 return -EINVAL;
6001
6002 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6003 return -EFAULT;
6004
6005 to = p->gauth_chunks;
6006 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6007 if (!asoc)
6008 return -EINVAL;
6009
6010 ch = asoc->peer.peer_chunks;
6011 if (!ch)
6012 goto num;
6013
6014 /* See if the user provided enough room for all the data */
6015 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6016 if (len < num_chunks)
6017 return -EINVAL;
6018
6019 if (copy_to_user(to, ch->chunks, num_chunks))
6020 return -EFAULT;
6021 num:
6022 len = sizeof(struct sctp_authchunks) + num_chunks;
6023 if (put_user(len, optlen))
6024 return -EFAULT;
6025 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6026 return -EFAULT;
6027 return 0;
6028 }
6029
6030 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6031 char __user *optval, int __user *optlen)
6032 {
6033 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6034 struct sctp_authchunks __user *p = (void __user *)optval;
6035 struct sctp_authchunks val;
6036 struct sctp_association *asoc;
6037 struct sctp_chunks_param *ch;
6038 u32 num_chunks = 0;
6039 char __user *to;
6040
6041 if (!ep->auth_enable)
6042 return -EACCES;
6043
6044 if (len < sizeof(struct sctp_authchunks))
6045 return -EINVAL;
6046
6047 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6048 return -EFAULT;
6049
6050 to = p->gauth_chunks;
6051 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6052 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6053 return -EINVAL;
6054
6055 if (asoc)
6056 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6057 else
6058 ch = ep->auth_chunk_list;
6059
6060 if (!ch)
6061 goto num;
6062
6063 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6064 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6065 return -EINVAL;
6066
6067 if (copy_to_user(to, ch->chunks, num_chunks))
6068 return -EFAULT;
6069 num:
6070 len = sizeof(struct sctp_authchunks) + num_chunks;
6071 if (put_user(len, optlen))
6072 return -EFAULT;
6073 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6074 return -EFAULT;
6075
6076 return 0;
6077 }
6078
6079 /*
6080 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6081 * This option gets the current number of associations that are attached
6082 * to a one-to-many style socket. The option value is an uint32_t.
6083 */
6084 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6085 char __user *optval, int __user *optlen)
6086 {
6087 struct sctp_sock *sp = sctp_sk(sk);
6088 struct sctp_association *asoc;
6089 u32 val = 0;
6090
6091 if (sctp_style(sk, TCP))
6092 return -EOPNOTSUPP;
6093
6094 if (len < sizeof(u32))
6095 return -EINVAL;
6096
6097 len = sizeof(u32);
6098
6099 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6100 val++;
6101 }
6102
6103 if (put_user(len, optlen))
6104 return -EFAULT;
6105 if (copy_to_user(optval, &val, len))
6106 return -EFAULT;
6107
6108 return 0;
6109 }
6110
6111 /*
6112 * 8.1.23 SCTP_AUTO_ASCONF
6113 * See the corresponding setsockopt entry as description
6114 */
6115 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6116 char __user *optval, int __user *optlen)
6117 {
6118 int val = 0;
6119
6120 if (len < sizeof(int))
6121 return -EINVAL;
6122
6123 len = sizeof(int);
6124 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6125 val = 1;
6126 if (put_user(len, optlen))
6127 return -EFAULT;
6128 if (copy_to_user(optval, &val, len))
6129 return -EFAULT;
6130 return 0;
6131 }
6132
6133 /*
6134 * 8.2.6. Get the Current Identifiers of Associations
6135 * (SCTP_GET_ASSOC_ID_LIST)
6136 *
6137 * This option gets the current list of SCTP association identifiers of
6138 * the SCTP associations handled by a one-to-many style socket.
6139 */
6140 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6141 char __user *optval, int __user *optlen)
6142 {
6143 struct sctp_sock *sp = sctp_sk(sk);
6144 struct sctp_association *asoc;
6145 struct sctp_assoc_ids *ids;
6146 u32 num = 0;
6147
6148 if (sctp_style(sk, TCP))
6149 return -EOPNOTSUPP;
6150
6151 if (len < sizeof(struct sctp_assoc_ids))
6152 return -EINVAL;
6153
6154 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6155 num++;
6156 }
6157
6158 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6159 return -EINVAL;
6160
6161 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6162
6163 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6164 if (unlikely(!ids))
6165 return -ENOMEM;
6166
6167 ids->gaids_number_of_ids = num;
6168 num = 0;
6169 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6170 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6171 }
6172
6173 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6174 kfree(ids);
6175 return -EFAULT;
6176 }
6177
6178 kfree(ids);
6179 return 0;
6180 }
6181
6182 /*
6183 * SCTP_PEER_ADDR_THLDS
6184 *
6185 * This option allows us to fetch the partially failed threshold for one or all
6186 * transports in an association. See Section 6.1 of:
6187 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6188 */
6189 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6190 char __user *optval,
6191 int len,
6192 int __user *optlen)
6193 {
6194 struct sctp_paddrthlds val;
6195 struct sctp_transport *trans;
6196 struct sctp_association *asoc;
6197
6198 if (len < sizeof(struct sctp_paddrthlds))
6199 return -EINVAL;
6200 len = sizeof(struct sctp_paddrthlds);
6201 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6202 return -EFAULT;
6203
6204 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6205 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6206 if (!asoc)
6207 return -ENOENT;
6208
6209 val.spt_pathpfthld = asoc->pf_retrans;
6210 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6211 } else {
6212 trans = sctp_addr_id2transport(sk, &val.spt_address,
6213 val.spt_assoc_id);
6214 if (!trans)
6215 return -ENOENT;
6216
6217 val.spt_pathmaxrxt = trans->pathmaxrxt;
6218 val.spt_pathpfthld = trans->pf_retrans;
6219 }
6220
6221 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6222 return -EFAULT;
6223
6224 return 0;
6225 }
6226
6227 /*
6228 * SCTP_GET_ASSOC_STATS
6229 *
6230 * This option retrieves local per endpoint statistics. It is modeled
6231 * after OpenSolaris' implementation
6232 */
6233 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6234 char __user *optval,
6235 int __user *optlen)
6236 {
6237 struct sctp_assoc_stats sas;
6238 struct sctp_association *asoc = NULL;
6239
6240 /* User must provide at least the assoc id */
6241 if (len < sizeof(sctp_assoc_t))
6242 return -EINVAL;
6243
6244 /* Allow the struct to grow and fill in as much as possible */
6245 len = min_t(size_t, len, sizeof(sas));
6246
6247 if (copy_from_user(&sas, optval, len))
6248 return -EFAULT;
6249
6250 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6251 if (!asoc)
6252 return -EINVAL;
6253
6254 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6255 sas.sas_gapcnt = asoc->stats.gapcnt;
6256 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6257 sas.sas_osacks = asoc->stats.osacks;
6258 sas.sas_isacks = asoc->stats.isacks;
6259 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6260 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6261 sas.sas_oodchunks = asoc->stats.oodchunks;
6262 sas.sas_iodchunks = asoc->stats.iodchunks;
6263 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6264 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6265 sas.sas_idupchunks = asoc->stats.idupchunks;
6266 sas.sas_opackets = asoc->stats.opackets;
6267 sas.sas_ipackets = asoc->stats.ipackets;
6268
6269 /* New high max rto observed, will return 0 if not a single
6270 * RTO update took place. obs_rto_ipaddr will be bogus
6271 * in such a case
6272 */
6273 sas.sas_maxrto = asoc->stats.max_obs_rto;
6274 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6275 sizeof(struct sockaddr_storage));
6276
6277 /* Mark beginning of a new observation period */
6278 asoc->stats.max_obs_rto = asoc->rto_min;
6279
6280 if (put_user(len, optlen))
6281 return -EFAULT;
6282
6283 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6284
6285 if (copy_to_user(optval, &sas, len))
6286 return -EFAULT;
6287
6288 return 0;
6289 }
6290
6291 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6292 char __user *optval,
6293 int __user *optlen)
6294 {
6295 int val = 0;
6296
6297 if (len < sizeof(int))
6298 return -EINVAL;
6299
6300 len = sizeof(int);
6301 if (sctp_sk(sk)->recvrcvinfo)
6302 val = 1;
6303 if (put_user(len, optlen))
6304 return -EFAULT;
6305 if (copy_to_user(optval, &val, len))
6306 return -EFAULT;
6307
6308 return 0;
6309 }
6310
6311 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6312 char __user *optval,
6313 int __user *optlen)
6314 {
6315 int val = 0;
6316
6317 if (len < sizeof(int))
6318 return -EINVAL;
6319
6320 len = sizeof(int);
6321 if (sctp_sk(sk)->recvnxtinfo)
6322 val = 1;
6323 if (put_user(len, optlen))
6324 return -EFAULT;
6325 if (copy_to_user(optval, &val, len))
6326 return -EFAULT;
6327
6328 return 0;
6329 }
6330
6331 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6332 char __user *optval,
6333 int __user *optlen)
6334 {
6335 struct sctp_assoc_value params;
6336 struct sctp_association *asoc;
6337 int retval = -EFAULT;
6338
6339 if (len < sizeof(params)) {
6340 retval = -EINVAL;
6341 goto out;
6342 }
6343
6344 len = sizeof(params);
6345 if (copy_from_user(&params, optval, len))
6346 goto out;
6347
6348 asoc = sctp_id2assoc(sk, params.assoc_id);
6349 if (asoc) {
6350 params.assoc_value = asoc->prsctp_enable;
6351 } else if (!params.assoc_id) {
6352 struct sctp_sock *sp = sctp_sk(sk);
6353
6354 params.assoc_value = sp->ep->prsctp_enable;
6355 } else {
6356 retval = -EINVAL;
6357 goto out;
6358 }
6359
6360 if (put_user(len, optlen))
6361 goto out;
6362
6363 if (copy_to_user(optval, &params, len))
6364 goto out;
6365
6366 retval = 0;
6367
6368 out:
6369 return retval;
6370 }
6371
6372 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6373 char __user *optval,
6374 int __user *optlen)
6375 {
6376 struct sctp_default_prinfo info;
6377 struct sctp_association *asoc;
6378 int retval = -EFAULT;
6379
6380 if (len < sizeof(info)) {
6381 retval = -EINVAL;
6382 goto out;
6383 }
6384
6385 len = sizeof(info);
6386 if (copy_from_user(&info, optval, len))
6387 goto out;
6388
6389 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6390 if (asoc) {
6391 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6392 info.pr_value = asoc->default_timetolive;
6393 } else if (!info.pr_assoc_id) {
6394 struct sctp_sock *sp = sctp_sk(sk);
6395
6396 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6397 info.pr_value = sp->default_timetolive;
6398 } else {
6399 retval = -EINVAL;
6400 goto out;
6401 }
6402
6403 if (put_user(len, optlen))
6404 goto out;
6405
6406 if (copy_to_user(optval, &info, len))
6407 goto out;
6408
6409 retval = 0;
6410
6411 out:
6412 return retval;
6413 }
6414
6415 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6416 char __user *optval,
6417 int __user *optlen)
6418 {
6419 struct sctp_prstatus params;
6420 struct sctp_association *asoc;
6421 int policy;
6422 int retval = -EINVAL;
6423
6424 if (len < sizeof(params))
6425 goto out;
6426
6427 len = sizeof(params);
6428 if (copy_from_user(&params, optval, len)) {
6429 retval = -EFAULT;
6430 goto out;
6431 }
6432
6433 policy = params.sprstat_policy;
6434 if (policy & ~SCTP_PR_SCTP_MASK)
6435 goto out;
6436
6437 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6438 if (!asoc)
6439 goto out;
6440
6441 if (policy == SCTP_PR_SCTP_NONE) {
6442 params.sprstat_abandoned_unsent = 0;
6443 params.sprstat_abandoned_sent = 0;
6444 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6445 params.sprstat_abandoned_unsent +=
6446 asoc->abandoned_unsent[policy];
6447 params.sprstat_abandoned_sent +=
6448 asoc->abandoned_sent[policy];
6449 }
6450 } else {
6451 params.sprstat_abandoned_unsent =
6452 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6453 params.sprstat_abandoned_sent =
6454 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6455 }
6456
6457 if (put_user(len, optlen)) {
6458 retval = -EFAULT;
6459 goto out;
6460 }
6461
6462 if (copy_to_user(optval, &params, len)) {
6463 retval = -EFAULT;
6464 goto out;
6465 }
6466
6467 retval = 0;
6468
6469 out:
6470 return retval;
6471 }
6472
6473 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6474 char __user *optval,
6475 int __user *optlen)
6476 {
6477 struct sctp_assoc_value params;
6478 struct sctp_association *asoc;
6479 int retval = -EFAULT;
6480
6481 if (len < sizeof(params)) {
6482 retval = -EINVAL;
6483 goto out;
6484 }
6485
6486 len = sizeof(params);
6487 if (copy_from_user(&params, optval, len))
6488 goto out;
6489
6490 asoc = sctp_id2assoc(sk, params.assoc_id);
6491 if (asoc) {
6492 params.assoc_value = asoc->strreset_enable;
6493 } else if (!params.assoc_id) {
6494 struct sctp_sock *sp = sctp_sk(sk);
6495
6496 params.assoc_value = sp->ep->strreset_enable;
6497 } else {
6498 retval = -EINVAL;
6499 goto out;
6500 }
6501
6502 if (put_user(len, optlen))
6503 goto out;
6504
6505 if (copy_to_user(optval, &params, len))
6506 goto out;
6507
6508 retval = 0;
6509
6510 out:
6511 return retval;
6512 }
6513
6514 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6515 char __user *optval, int __user *optlen)
6516 {
6517 int retval = 0;
6518 int len;
6519
6520 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6521
6522 /* I can hardly begin to describe how wrong this is. This is
6523 * so broken as to be worse than useless. The API draft
6524 * REALLY is NOT helpful here... I am not convinced that the
6525 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6526 * are at all well-founded.
6527 */
6528 if (level != SOL_SCTP) {
6529 struct sctp_af *af = sctp_sk(sk)->pf->af;
6530
6531 retval = af->getsockopt(sk, level, optname, optval, optlen);
6532 return retval;
6533 }
6534
6535 if (get_user(len, optlen))
6536 return -EFAULT;
6537
6538 if (len < 0)
6539 return -EINVAL;
6540
6541 lock_sock(sk);
6542
6543 switch (optname) {
6544 case SCTP_STATUS:
6545 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6546 break;
6547 case SCTP_DISABLE_FRAGMENTS:
6548 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6549 optlen);
6550 break;
6551 case SCTP_EVENTS:
6552 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6553 break;
6554 case SCTP_AUTOCLOSE:
6555 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6556 break;
6557 case SCTP_SOCKOPT_PEELOFF:
6558 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6559 break;
6560 case SCTP_PEER_ADDR_PARAMS:
6561 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6562 optlen);
6563 break;
6564 case SCTP_DELAYED_SACK:
6565 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6566 optlen);
6567 break;
6568 case SCTP_INITMSG:
6569 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6570 break;
6571 case SCTP_GET_PEER_ADDRS:
6572 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6573 optlen);
6574 break;
6575 case SCTP_GET_LOCAL_ADDRS:
6576 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6577 optlen);
6578 break;
6579 case SCTP_SOCKOPT_CONNECTX3:
6580 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6581 break;
6582 case SCTP_DEFAULT_SEND_PARAM:
6583 retval = sctp_getsockopt_default_send_param(sk, len,
6584 optval, optlen);
6585 break;
6586 case SCTP_DEFAULT_SNDINFO:
6587 retval = sctp_getsockopt_default_sndinfo(sk, len,
6588 optval, optlen);
6589 break;
6590 case SCTP_PRIMARY_ADDR:
6591 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6592 break;
6593 case SCTP_NODELAY:
6594 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6595 break;
6596 case SCTP_RTOINFO:
6597 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6598 break;
6599 case SCTP_ASSOCINFO:
6600 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6601 break;
6602 case SCTP_I_WANT_MAPPED_V4_ADDR:
6603 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6604 break;
6605 case SCTP_MAXSEG:
6606 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6607 break;
6608 case SCTP_GET_PEER_ADDR_INFO:
6609 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6610 optlen);
6611 break;
6612 case SCTP_ADAPTATION_LAYER:
6613 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6614 optlen);
6615 break;
6616 case SCTP_CONTEXT:
6617 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6618 break;
6619 case SCTP_FRAGMENT_INTERLEAVE:
6620 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6621 optlen);
6622 break;
6623 case SCTP_PARTIAL_DELIVERY_POINT:
6624 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6625 optlen);
6626 break;
6627 case SCTP_MAX_BURST:
6628 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6629 break;
6630 case SCTP_AUTH_KEY:
6631 case SCTP_AUTH_CHUNK:
6632 case SCTP_AUTH_DELETE_KEY:
6633 retval = -EOPNOTSUPP;
6634 break;
6635 case SCTP_HMAC_IDENT:
6636 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6637 break;
6638 case SCTP_AUTH_ACTIVE_KEY:
6639 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6640 break;
6641 case SCTP_PEER_AUTH_CHUNKS:
6642 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6643 optlen);
6644 break;
6645 case SCTP_LOCAL_AUTH_CHUNKS:
6646 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6647 optlen);
6648 break;
6649 case SCTP_GET_ASSOC_NUMBER:
6650 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6651 break;
6652 case SCTP_GET_ASSOC_ID_LIST:
6653 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6654 break;
6655 case SCTP_AUTO_ASCONF:
6656 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6657 break;
6658 case SCTP_PEER_ADDR_THLDS:
6659 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6660 break;
6661 case SCTP_GET_ASSOC_STATS:
6662 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6663 break;
6664 case SCTP_RECVRCVINFO:
6665 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6666 break;
6667 case SCTP_RECVNXTINFO:
6668 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6669 break;
6670 case SCTP_PR_SUPPORTED:
6671 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6672 break;
6673 case SCTP_DEFAULT_PRINFO:
6674 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6675 optlen);
6676 break;
6677 case SCTP_PR_ASSOC_STATUS:
6678 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6679 optlen);
6680 break;
6681 case SCTP_ENABLE_STREAM_RESET:
6682 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
6683 optlen);
6684 break;
6685 default:
6686 retval = -ENOPROTOOPT;
6687 break;
6688 }
6689
6690 release_sock(sk);
6691 return retval;
6692 }
6693
6694 static int sctp_hash(struct sock *sk)
6695 {
6696 /* STUB */
6697 return 0;
6698 }
6699
6700 static void sctp_unhash(struct sock *sk)
6701 {
6702 /* STUB */
6703 }
6704
6705 /* Check if port is acceptable. Possibly find first available port.
6706 *
6707 * The port hash table (contained in the 'global' SCTP protocol storage
6708 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6709 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6710 * list (the list number is the port number hashed out, so as you
6711 * would expect from a hash function, all the ports in a given list have
6712 * such a number that hashes out to the same list number; you were
6713 * expecting that, right?); so each list has a set of ports, with a
6714 * link to the socket (struct sock) that uses it, the port number and
6715 * a fastreuse flag (FIXME: NPI ipg).
6716 */
6717 static struct sctp_bind_bucket *sctp_bucket_create(
6718 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6719
6720 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6721 {
6722 struct sctp_bind_hashbucket *head; /* hash list */
6723 struct sctp_bind_bucket *pp;
6724 unsigned short snum;
6725 int ret;
6726
6727 snum = ntohs(addr->v4.sin_port);
6728
6729 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6730
6731 local_bh_disable();
6732
6733 if (snum == 0) {
6734 /* Search for an available port. */
6735 int low, high, remaining, index;
6736 unsigned int rover;
6737 struct net *net = sock_net(sk);
6738
6739 inet_get_local_port_range(net, &low, &high);
6740 remaining = (high - low) + 1;
6741 rover = prandom_u32() % remaining + low;
6742
6743 do {
6744 rover++;
6745 if ((rover < low) || (rover > high))
6746 rover = low;
6747 if (inet_is_local_reserved_port(net, rover))
6748 continue;
6749 index = sctp_phashfn(sock_net(sk), rover);
6750 head = &sctp_port_hashtable[index];
6751 spin_lock(&head->lock);
6752 sctp_for_each_hentry(pp, &head->chain)
6753 if ((pp->port == rover) &&
6754 net_eq(sock_net(sk), pp->net))
6755 goto next;
6756 break;
6757 next:
6758 spin_unlock(&head->lock);
6759 } while (--remaining > 0);
6760
6761 /* Exhausted local port range during search? */
6762 ret = 1;
6763 if (remaining <= 0)
6764 goto fail;
6765
6766 /* OK, here is the one we will use. HEAD (the port
6767 * hash table list entry) is non-NULL and we hold it's
6768 * mutex.
6769 */
6770 snum = rover;
6771 } else {
6772 /* We are given an specific port number; we verify
6773 * that it is not being used. If it is used, we will
6774 * exahust the search in the hash list corresponding
6775 * to the port number (snum) - we detect that with the
6776 * port iterator, pp being NULL.
6777 */
6778 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6779 spin_lock(&head->lock);
6780 sctp_for_each_hentry(pp, &head->chain) {
6781 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6782 goto pp_found;
6783 }
6784 }
6785 pp = NULL;
6786 goto pp_not_found;
6787 pp_found:
6788 if (!hlist_empty(&pp->owner)) {
6789 /* We had a port hash table hit - there is an
6790 * available port (pp != NULL) and it is being
6791 * used by other socket (pp->owner not empty); that other
6792 * socket is going to be sk2.
6793 */
6794 int reuse = sk->sk_reuse;
6795 struct sock *sk2;
6796
6797 pr_debug("%s: found a possible match\n", __func__);
6798
6799 if (pp->fastreuse && sk->sk_reuse &&
6800 sk->sk_state != SCTP_SS_LISTENING)
6801 goto success;
6802
6803 /* Run through the list of sockets bound to the port
6804 * (pp->port) [via the pointers bind_next and
6805 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6806 * we get the endpoint they describe and run through
6807 * the endpoint's list of IP (v4 or v6) addresses,
6808 * comparing each of the addresses with the address of
6809 * the socket sk. If we find a match, then that means
6810 * that this port/socket (sk) combination are already
6811 * in an endpoint.
6812 */
6813 sk_for_each_bound(sk2, &pp->owner) {
6814 struct sctp_endpoint *ep2;
6815 ep2 = sctp_sk(sk2)->ep;
6816
6817 if (sk == sk2 ||
6818 (reuse && sk2->sk_reuse &&
6819 sk2->sk_state != SCTP_SS_LISTENING))
6820 continue;
6821
6822 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6823 sctp_sk(sk2), sctp_sk(sk))) {
6824 ret = (long)sk2;
6825 goto fail_unlock;
6826 }
6827 }
6828
6829 pr_debug("%s: found a match\n", __func__);
6830 }
6831 pp_not_found:
6832 /* If there was a hash table miss, create a new port. */
6833 ret = 1;
6834 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6835 goto fail_unlock;
6836
6837 /* In either case (hit or miss), make sure fastreuse is 1 only
6838 * if sk->sk_reuse is too (that is, if the caller requested
6839 * SO_REUSEADDR on this socket -sk-).
6840 */
6841 if (hlist_empty(&pp->owner)) {
6842 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6843 pp->fastreuse = 1;
6844 else
6845 pp->fastreuse = 0;
6846 } else if (pp->fastreuse &&
6847 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6848 pp->fastreuse = 0;
6849
6850 /* We are set, so fill up all the data in the hash table
6851 * entry, tie the socket list information with the rest of the
6852 * sockets FIXME: Blurry, NPI (ipg).
6853 */
6854 success:
6855 if (!sctp_sk(sk)->bind_hash) {
6856 inet_sk(sk)->inet_num = snum;
6857 sk_add_bind_node(sk, &pp->owner);
6858 sctp_sk(sk)->bind_hash = pp;
6859 }
6860 ret = 0;
6861
6862 fail_unlock:
6863 spin_unlock(&head->lock);
6864
6865 fail:
6866 local_bh_enable();
6867 return ret;
6868 }
6869
6870 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6871 * port is requested.
6872 */
6873 static int sctp_get_port(struct sock *sk, unsigned short snum)
6874 {
6875 union sctp_addr addr;
6876 struct sctp_af *af = sctp_sk(sk)->pf->af;
6877
6878 /* Set up a dummy address struct from the sk. */
6879 af->from_sk(&addr, sk);
6880 addr.v4.sin_port = htons(snum);
6881
6882 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6883 return !!sctp_get_port_local(sk, &addr);
6884 }
6885
6886 /*
6887 * Move a socket to LISTENING state.
6888 */
6889 static int sctp_listen_start(struct sock *sk, int backlog)
6890 {
6891 struct sctp_sock *sp = sctp_sk(sk);
6892 struct sctp_endpoint *ep = sp->ep;
6893 struct crypto_shash *tfm = NULL;
6894 char alg[32];
6895
6896 /* Allocate HMAC for generating cookie. */
6897 if (!sp->hmac && sp->sctp_hmac_alg) {
6898 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6899 tfm = crypto_alloc_shash(alg, 0, 0);
6900 if (IS_ERR(tfm)) {
6901 net_info_ratelimited("failed to load transform for %s: %ld\n",
6902 sp->sctp_hmac_alg, PTR_ERR(tfm));
6903 return -ENOSYS;
6904 }
6905 sctp_sk(sk)->hmac = tfm;
6906 }
6907
6908 /*
6909 * If a bind() or sctp_bindx() is not called prior to a listen()
6910 * call that allows new associations to be accepted, the system
6911 * picks an ephemeral port and will choose an address set equivalent
6912 * to binding with a wildcard address.
6913 *
6914 * This is not currently spelled out in the SCTP sockets
6915 * extensions draft, but follows the practice as seen in TCP
6916 * sockets.
6917 *
6918 */
6919 sk->sk_state = SCTP_SS_LISTENING;
6920 if (!ep->base.bind_addr.port) {
6921 if (sctp_autobind(sk))
6922 return -EAGAIN;
6923 } else {
6924 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6925 sk->sk_state = SCTP_SS_CLOSED;
6926 return -EADDRINUSE;
6927 }
6928 }
6929
6930 sk->sk_max_ack_backlog = backlog;
6931 sctp_hash_endpoint(ep);
6932 return 0;
6933 }
6934
6935 /*
6936 * 4.1.3 / 5.1.3 listen()
6937 *
6938 * By default, new associations are not accepted for UDP style sockets.
6939 * An application uses listen() to mark a socket as being able to
6940 * accept new associations.
6941 *
6942 * On TCP style sockets, applications use listen() to ready the SCTP
6943 * endpoint for accepting inbound associations.
6944 *
6945 * On both types of endpoints a backlog of '0' disables listening.
6946 *
6947 * Move a socket to LISTENING state.
6948 */
6949 int sctp_inet_listen(struct socket *sock, int backlog)
6950 {
6951 struct sock *sk = sock->sk;
6952 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6953 int err = -EINVAL;
6954
6955 if (unlikely(backlog < 0))
6956 return err;
6957
6958 lock_sock(sk);
6959
6960 /* Peeled-off sockets are not allowed to listen(). */
6961 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6962 goto out;
6963
6964 if (sock->state != SS_UNCONNECTED)
6965 goto out;
6966
6967 /* If backlog is zero, disable listening. */
6968 if (!backlog) {
6969 if (sctp_sstate(sk, CLOSED))
6970 goto out;
6971
6972 err = 0;
6973 sctp_unhash_endpoint(ep);
6974 sk->sk_state = SCTP_SS_CLOSED;
6975 if (sk->sk_reuse)
6976 sctp_sk(sk)->bind_hash->fastreuse = 1;
6977 goto out;
6978 }
6979
6980 /* If we are already listening, just update the backlog */
6981 if (sctp_sstate(sk, LISTENING))
6982 sk->sk_max_ack_backlog = backlog;
6983 else {
6984 err = sctp_listen_start(sk, backlog);
6985 if (err)
6986 goto out;
6987 }
6988
6989 err = 0;
6990 out:
6991 release_sock(sk);
6992 return err;
6993 }
6994
6995 /*
6996 * This function is done by modeling the current datagram_poll() and the
6997 * tcp_poll(). Note that, based on these implementations, we don't
6998 * lock the socket in this function, even though it seems that,
6999 * ideally, locking or some other mechanisms can be used to ensure
7000 * the integrity of the counters (sndbuf and wmem_alloc) used
7001 * in this place. We assume that we don't need locks either until proven
7002 * otherwise.
7003 *
7004 * Another thing to note is that we include the Async I/O support
7005 * here, again, by modeling the current TCP/UDP code. We don't have
7006 * a good way to test with it yet.
7007 */
7008 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7009 {
7010 struct sock *sk = sock->sk;
7011 struct sctp_sock *sp = sctp_sk(sk);
7012 unsigned int mask;
7013
7014 poll_wait(file, sk_sleep(sk), wait);
7015
7016 sock_rps_record_flow(sk);
7017
7018 /* A TCP-style listening socket becomes readable when the accept queue
7019 * is not empty.
7020 */
7021 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7022 return (!list_empty(&sp->ep->asocs)) ?
7023 (POLLIN | POLLRDNORM) : 0;
7024
7025 mask = 0;
7026
7027 /* Is there any exceptional events? */
7028 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7029 mask |= POLLERR |
7030 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7031 if (sk->sk_shutdown & RCV_SHUTDOWN)
7032 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7033 if (sk->sk_shutdown == SHUTDOWN_MASK)
7034 mask |= POLLHUP;
7035
7036 /* Is it readable? Reconsider this code with TCP-style support. */
7037 if (!skb_queue_empty(&sk->sk_receive_queue))
7038 mask |= POLLIN | POLLRDNORM;
7039
7040 /* The association is either gone or not ready. */
7041 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7042 return mask;
7043
7044 /* Is it writable? */
7045 if (sctp_writeable(sk)) {
7046 mask |= POLLOUT | POLLWRNORM;
7047 } else {
7048 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7049 /*
7050 * Since the socket is not locked, the buffer
7051 * might be made available after the writeable check and
7052 * before the bit is set. This could cause a lost I/O
7053 * signal. tcp_poll() has a race breaker for this race
7054 * condition. Based on their implementation, we put
7055 * in the following code to cover it as well.
7056 */
7057 if (sctp_writeable(sk))
7058 mask |= POLLOUT | POLLWRNORM;
7059 }
7060 return mask;
7061 }
7062
7063 /********************************************************************
7064 * 2nd Level Abstractions
7065 ********************************************************************/
7066
7067 static struct sctp_bind_bucket *sctp_bucket_create(
7068 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7069 {
7070 struct sctp_bind_bucket *pp;
7071
7072 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7073 if (pp) {
7074 SCTP_DBG_OBJCNT_INC(bind_bucket);
7075 pp->port = snum;
7076 pp->fastreuse = 0;
7077 INIT_HLIST_HEAD(&pp->owner);
7078 pp->net = net;
7079 hlist_add_head(&pp->node, &head->chain);
7080 }
7081 return pp;
7082 }
7083
7084 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7085 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7086 {
7087 if (pp && hlist_empty(&pp->owner)) {
7088 __hlist_del(&pp->node);
7089 kmem_cache_free(sctp_bucket_cachep, pp);
7090 SCTP_DBG_OBJCNT_DEC(bind_bucket);
7091 }
7092 }
7093
7094 /* Release this socket's reference to a local port. */
7095 static inline void __sctp_put_port(struct sock *sk)
7096 {
7097 struct sctp_bind_hashbucket *head =
7098 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7099 inet_sk(sk)->inet_num)];
7100 struct sctp_bind_bucket *pp;
7101
7102 spin_lock(&head->lock);
7103 pp = sctp_sk(sk)->bind_hash;
7104 __sk_del_bind_node(sk);
7105 sctp_sk(sk)->bind_hash = NULL;
7106 inet_sk(sk)->inet_num = 0;
7107 sctp_bucket_destroy(pp);
7108 spin_unlock(&head->lock);
7109 }
7110
7111 void sctp_put_port(struct sock *sk)
7112 {
7113 local_bh_disable();
7114 __sctp_put_port(sk);
7115 local_bh_enable();
7116 }
7117
7118 /*
7119 * The system picks an ephemeral port and choose an address set equivalent
7120 * to binding with a wildcard address.
7121 * One of those addresses will be the primary address for the association.
7122 * This automatically enables the multihoming capability of SCTP.
7123 */
7124 static int sctp_autobind(struct sock *sk)
7125 {
7126 union sctp_addr autoaddr;
7127 struct sctp_af *af;
7128 __be16 port;
7129
7130 /* Initialize a local sockaddr structure to INADDR_ANY. */
7131 af = sctp_sk(sk)->pf->af;
7132
7133 port = htons(inet_sk(sk)->inet_num);
7134 af->inaddr_any(&autoaddr, port);
7135
7136 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7137 }
7138
7139 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7140 *
7141 * From RFC 2292
7142 * 4.2 The cmsghdr Structure *
7143 *
7144 * When ancillary data is sent or received, any number of ancillary data
7145 * objects can be specified by the msg_control and msg_controllen members of
7146 * the msghdr structure, because each object is preceded by
7147 * a cmsghdr structure defining the object's length (the cmsg_len member).
7148 * Historically Berkeley-derived implementations have passed only one object
7149 * at a time, but this API allows multiple objects to be
7150 * passed in a single call to sendmsg() or recvmsg(). The following example
7151 * shows two ancillary data objects in a control buffer.
7152 *
7153 * |<--------------------------- msg_controllen -------------------------->|
7154 * | |
7155 *
7156 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7157 *
7158 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7159 * | | |
7160 *
7161 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7162 *
7163 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7164 * | | | | |
7165 *
7166 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7167 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7168 *
7169 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7170 *
7171 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7172 * ^
7173 * |
7174 *
7175 * msg_control
7176 * points here
7177 */
7178 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7179 {
7180 struct cmsghdr *cmsg;
7181 struct msghdr *my_msg = (struct msghdr *)msg;
7182
7183 for_each_cmsghdr(cmsg, my_msg) {
7184 if (!CMSG_OK(my_msg, cmsg))
7185 return -EINVAL;
7186
7187 /* Should we parse this header or ignore? */
7188 if (cmsg->cmsg_level != IPPROTO_SCTP)
7189 continue;
7190
7191 /* Strictly check lengths following example in SCM code. */
7192 switch (cmsg->cmsg_type) {
7193 case SCTP_INIT:
7194 /* SCTP Socket API Extension
7195 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7196 *
7197 * This cmsghdr structure provides information for
7198 * initializing new SCTP associations with sendmsg().
7199 * The SCTP_INITMSG socket option uses this same data
7200 * structure. This structure is not used for
7201 * recvmsg().
7202 *
7203 * cmsg_level cmsg_type cmsg_data[]
7204 * ------------ ------------ ----------------------
7205 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7206 */
7207 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7208 return -EINVAL;
7209
7210 cmsgs->init = CMSG_DATA(cmsg);
7211 break;
7212
7213 case SCTP_SNDRCV:
7214 /* SCTP Socket API Extension
7215 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7216 *
7217 * This cmsghdr structure specifies SCTP options for
7218 * sendmsg() and describes SCTP header information
7219 * about a received message through recvmsg().
7220 *
7221 * cmsg_level cmsg_type cmsg_data[]
7222 * ------------ ------------ ----------------------
7223 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7224 */
7225 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7226 return -EINVAL;
7227
7228 cmsgs->srinfo = CMSG_DATA(cmsg);
7229
7230 if (cmsgs->srinfo->sinfo_flags &
7231 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7232 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7233 SCTP_ABORT | SCTP_EOF))
7234 return -EINVAL;
7235 break;
7236
7237 case SCTP_SNDINFO:
7238 /* SCTP Socket API Extension
7239 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7240 *
7241 * This cmsghdr structure specifies SCTP options for
7242 * sendmsg(). This structure and SCTP_RCVINFO replaces
7243 * SCTP_SNDRCV which has been deprecated.
7244 *
7245 * cmsg_level cmsg_type cmsg_data[]
7246 * ------------ ------------ ---------------------
7247 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7248 */
7249 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7250 return -EINVAL;
7251
7252 cmsgs->sinfo = CMSG_DATA(cmsg);
7253
7254 if (cmsgs->sinfo->snd_flags &
7255 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7256 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7257 SCTP_ABORT | SCTP_EOF))
7258 return -EINVAL;
7259 break;
7260 default:
7261 return -EINVAL;
7262 }
7263 }
7264
7265 return 0;
7266 }
7267
7268 /*
7269 * Wait for a packet..
7270 * Note: This function is the same function as in core/datagram.c
7271 * with a few modifications to make lksctp work.
7272 */
7273 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7274 {
7275 int error;
7276 DEFINE_WAIT(wait);
7277
7278 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7279
7280 /* Socket errors? */
7281 error = sock_error(sk);
7282 if (error)
7283 goto out;
7284
7285 if (!skb_queue_empty(&sk->sk_receive_queue))
7286 goto ready;
7287
7288 /* Socket shut down? */
7289 if (sk->sk_shutdown & RCV_SHUTDOWN)
7290 goto out;
7291
7292 /* Sequenced packets can come disconnected. If so we report the
7293 * problem.
7294 */
7295 error = -ENOTCONN;
7296
7297 /* Is there a good reason to think that we may receive some data? */
7298 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7299 goto out;
7300
7301 /* Handle signals. */
7302 if (signal_pending(current))
7303 goto interrupted;
7304
7305 /* Let another process have a go. Since we are going to sleep
7306 * anyway. Note: This may cause odd behaviors if the message
7307 * does not fit in the user's buffer, but this seems to be the
7308 * only way to honor MSG_DONTWAIT realistically.
7309 */
7310 release_sock(sk);
7311 *timeo_p = schedule_timeout(*timeo_p);
7312 lock_sock(sk);
7313
7314 ready:
7315 finish_wait(sk_sleep(sk), &wait);
7316 return 0;
7317
7318 interrupted:
7319 error = sock_intr_errno(*timeo_p);
7320
7321 out:
7322 finish_wait(sk_sleep(sk), &wait);
7323 *err = error;
7324 return error;
7325 }
7326
7327 /* Receive a datagram.
7328 * Note: This is pretty much the same routine as in core/datagram.c
7329 * with a few changes to make lksctp work.
7330 */
7331 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7332 int noblock, int *err)
7333 {
7334 int error;
7335 struct sk_buff *skb;
7336 long timeo;
7337
7338 timeo = sock_rcvtimeo(sk, noblock);
7339
7340 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7341 MAX_SCHEDULE_TIMEOUT);
7342
7343 do {
7344 /* Again only user level code calls this function,
7345 * so nothing interrupt level
7346 * will suddenly eat the receive_queue.
7347 *
7348 * Look at current nfs client by the way...
7349 * However, this function was correct in any case. 8)
7350 */
7351 if (flags & MSG_PEEK) {
7352 skb = skb_peek(&sk->sk_receive_queue);
7353 if (skb)
7354 atomic_inc(&skb->users);
7355 } else {
7356 skb = __skb_dequeue(&sk->sk_receive_queue);
7357 }
7358
7359 if (skb)
7360 return skb;
7361
7362 /* Caller is allowed not to check sk->sk_err before calling. */
7363 error = sock_error(sk);
7364 if (error)
7365 goto no_packet;
7366
7367 if (sk->sk_shutdown & RCV_SHUTDOWN)
7368 break;
7369
7370 if (sk_can_busy_loop(sk) &&
7371 sk_busy_loop(sk, noblock))
7372 continue;
7373
7374 /* User doesn't want to wait. */
7375 error = -EAGAIN;
7376 if (!timeo)
7377 goto no_packet;
7378 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7379
7380 return NULL;
7381
7382 no_packet:
7383 *err = error;
7384 return NULL;
7385 }
7386
7387 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7388 static void __sctp_write_space(struct sctp_association *asoc)
7389 {
7390 struct sock *sk = asoc->base.sk;
7391
7392 if (sctp_wspace(asoc) <= 0)
7393 return;
7394
7395 if (waitqueue_active(&asoc->wait))
7396 wake_up_interruptible(&asoc->wait);
7397
7398 if (sctp_writeable(sk)) {
7399 struct socket_wq *wq;
7400
7401 rcu_read_lock();
7402 wq = rcu_dereference(sk->sk_wq);
7403 if (wq) {
7404 if (waitqueue_active(&wq->wait))
7405 wake_up_interruptible(&wq->wait);
7406
7407 /* Note that we try to include the Async I/O support
7408 * here by modeling from the current TCP/UDP code.
7409 * We have not tested with it yet.
7410 */
7411 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7412 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7413 }
7414 rcu_read_unlock();
7415 }
7416 }
7417
7418 static void sctp_wake_up_waiters(struct sock *sk,
7419 struct sctp_association *asoc)
7420 {
7421 struct sctp_association *tmp = asoc;
7422
7423 /* We do accounting for the sndbuf space per association,
7424 * so we only need to wake our own association.
7425 */
7426 if (asoc->ep->sndbuf_policy)
7427 return __sctp_write_space(asoc);
7428
7429 /* If association goes down and is just flushing its
7430 * outq, then just normally notify others.
7431 */
7432 if (asoc->base.dead)
7433 return sctp_write_space(sk);
7434
7435 /* Accounting for the sndbuf space is per socket, so we
7436 * need to wake up others, try to be fair and in case of
7437 * other associations, let them have a go first instead
7438 * of just doing a sctp_write_space() call.
7439 *
7440 * Note that we reach sctp_wake_up_waiters() only when
7441 * associations free up queued chunks, thus we are under
7442 * lock and the list of associations on a socket is
7443 * guaranteed not to change.
7444 */
7445 for (tmp = list_next_entry(tmp, asocs); 1;
7446 tmp = list_next_entry(tmp, asocs)) {
7447 /* Manually skip the head element. */
7448 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7449 continue;
7450 /* Wake up association. */
7451 __sctp_write_space(tmp);
7452 /* We've reached the end. */
7453 if (tmp == asoc)
7454 break;
7455 }
7456 }
7457
7458 /* Do accounting for the sndbuf space.
7459 * Decrement the used sndbuf space of the corresponding association by the
7460 * data size which was just transmitted(freed).
7461 */
7462 static void sctp_wfree(struct sk_buff *skb)
7463 {
7464 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7465 struct sctp_association *asoc = chunk->asoc;
7466 struct sock *sk = asoc->base.sk;
7467
7468 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7469 sizeof(struct sk_buff) +
7470 sizeof(struct sctp_chunk);
7471
7472 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7473
7474 /*
7475 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7476 */
7477 sk->sk_wmem_queued -= skb->truesize;
7478 sk_mem_uncharge(sk, skb->truesize);
7479
7480 sock_wfree(skb);
7481 sctp_wake_up_waiters(sk, asoc);
7482
7483 sctp_association_put(asoc);
7484 }
7485
7486 /* Do accounting for the receive space on the socket.
7487 * Accounting for the association is done in ulpevent.c
7488 * We set this as a destructor for the cloned data skbs so that
7489 * accounting is done at the correct time.
7490 */
7491 void sctp_sock_rfree(struct sk_buff *skb)
7492 {
7493 struct sock *sk = skb->sk;
7494 struct sctp_ulpevent *event = sctp_skb2event(skb);
7495
7496 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7497
7498 /*
7499 * Mimic the behavior of sock_rfree
7500 */
7501 sk_mem_uncharge(sk, event->rmem_len);
7502 }
7503
7504
7505 /* Helper function to wait for space in the sndbuf. */
7506 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7507 size_t msg_len)
7508 {
7509 struct sock *sk = asoc->base.sk;
7510 int err = 0;
7511 long current_timeo = *timeo_p;
7512 DEFINE_WAIT(wait);
7513
7514 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7515 *timeo_p, msg_len);
7516
7517 /* Increment the association's refcnt. */
7518 sctp_association_hold(asoc);
7519
7520 /* Wait on the association specific sndbuf space. */
7521 for (;;) {
7522 prepare_to_wait_exclusive(&asoc->wait, &wait,
7523 TASK_INTERRUPTIBLE);
7524 if (!*timeo_p)
7525 goto do_nonblock;
7526 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7527 asoc->base.dead)
7528 goto do_error;
7529 if (signal_pending(current))
7530 goto do_interrupted;
7531 if (msg_len <= sctp_wspace(asoc))
7532 break;
7533
7534 /* Let another process have a go. Since we are going
7535 * to sleep anyway.
7536 */
7537 release_sock(sk);
7538 current_timeo = schedule_timeout(current_timeo);
7539 BUG_ON(sk != asoc->base.sk);
7540 lock_sock(sk);
7541
7542 *timeo_p = current_timeo;
7543 }
7544
7545 out:
7546 finish_wait(&asoc->wait, &wait);
7547
7548 /* Release the association's refcnt. */
7549 sctp_association_put(asoc);
7550
7551 return err;
7552
7553 do_error:
7554 err = -EPIPE;
7555 goto out;
7556
7557 do_interrupted:
7558 err = sock_intr_errno(*timeo_p);
7559 goto out;
7560
7561 do_nonblock:
7562 err = -EAGAIN;
7563 goto out;
7564 }
7565
7566 void sctp_data_ready(struct sock *sk)
7567 {
7568 struct socket_wq *wq;
7569
7570 rcu_read_lock();
7571 wq = rcu_dereference(sk->sk_wq);
7572 if (skwq_has_sleeper(wq))
7573 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7574 POLLRDNORM | POLLRDBAND);
7575 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7576 rcu_read_unlock();
7577 }
7578
7579 /* If socket sndbuf has changed, wake up all per association waiters. */
7580 void sctp_write_space(struct sock *sk)
7581 {
7582 struct sctp_association *asoc;
7583
7584 /* Wake up the tasks in each wait queue. */
7585 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7586 __sctp_write_space(asoc);
7587 }
7588 }
7589
7590 /* Is there any sndbuf space available on the socket?
7591 *
7592 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7593 * associations on the same socket. For a UDP-style socket with
7594 * multiple associations, it is possible for it to be "unwriteable"
7595 * prematurely. I assume that this is acceptable because
7596 * a premature "unwriteable" is better than an accidental "writeable" which
7597 * would cause an unwanted block under certain circumstances. For the 1-1
7598 * UDP-style sockets or TCP-style sockets, this code should work.
7599 * - Daisy
7600 */
7601 static int sctp_writeable(struct sock *sk)
7602 {
7603 int amt = 0;
7604
7605 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7606 if (amt < 0)
7607 amt = 0;
7608 return amt;
7609 }
7610
7611 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7612 * returns immediately with EINPROGRESS.
7613 */
7614 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7615 {
7616 struct sock *sk = asoc->base.sk;
7617 int err = 0;
7618 long current_timeo = *timeo_p;
7619 DEFINE_WAIT(wait);
7620
7621 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7622
7623 /* Increment the association's refcnt. */
7624 sctp_association_hold(asoc);
7625
7626 for (;;) {
7627 prepare_to_wait_exclusive(&asoc->wait, &wait,
7628 TASK_INTERRUPTIBLE);
7629 if (!*timeo_p)
7630 goto do_nonblock;
7631 if (sk->sk_shutdown & RCV_SHUTDOWN)
7632 break;
7633 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7634 asoc->base.dead)
7635 goto do_error;
7636 if (signal_pending(current))
7637 goto do_interrupted;
7638
7639 if (sctp_state(asoc, ESTABLISHED))
7640 break;
7641
7642 /* Let another process have a go. Since we are going
7643 * to sleep anyway.
7644 */
7645 release_sock(sk);
7646 current_timeo = schedule_timeout(current_timeo);
7647 lock_sock(sk);
7648
7649 *timeo_p = current_timeo;
7650 }
7651
7652 out:
7653 finish_wait(&asoc->wait, &wait);
7654
7655 /* Release the association's refcnt. */
7656 sctp_association_put(asoc);
7657
7658 return err;
7659
7660 do_error:
7661 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7662 err = -ETIMEDOUT;
7663 else
7664 err = -ECONNREFUSED;
7665 goto out;
7666
7667 do_interrupted:
7668 err = sock_intr_errno(*timeo_p);
7669 goto out;
7670
7671 do_nonblock:
7672 err = -EINPROGRESS;
7673 goto out;
7674 }
7675
7676 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7677 {
7678 struct sctp_endpoint *ep;
7679 int err = 0;
7680 DEFINE_WAIT(wait);
7681
7682 ep = sctp_sk(sk)->ep;
7683
7684
7685 for (;;) {
7686 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7687 TASK_INTERRUPTIBLE);
7688
7689 if (list_empty(&ep->asocs)) {
7690 release_sock(sk);
7691 timeo = schedule_timeout(timeo);
7692 lock_sock(sk);
7693 }
7694
7695 err = -EINVAL;
7696 if (!sctp_sstate(sk, LISTENING))
7697 break;
7698
7699 err = 0;
7700 if (!list_empty(&ep->asocs))
7701 break;
7702
7703 err = sock_intr_errno(timeo);
7704 if (signal_pending(current))
7705 break;
7706
7707 err = -EAGAIN;
7708 if (!timeo)
7709 break;
7710 }
7711
7712 finish_wait(sk_sleep(sk), &wait);
7713
7714 return err;
7715 }
7716
7717 static void sctp_wait_for_close(struct sock *sk, long timeout)
7718 {
7719 DEFINE_WAIT(wait);
7720
7721 do {
7722 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7723 if (list_empty(&sctp_sk(sk)->ep->asocs))
7724 break;
7725 release_sock(sk);
7726 timeout = schedule_timeout(timeout);
7727 lock_sock(sk);
7728 } while (!signal_pending(current) && timeout);
7729
7730 finish_wait(sk_sleep(sk), &wait);
7731 }
7732
7733 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7734 {
7735 struct sk_buff *frag;
7736
7737 if (!skb->data_len)
7738 goto done;
7739
7740 /* Don't forget the fragments. */
7741 skb_walk_frags(skb, frag)
7742 sctp_skb_set_owner_r_frag(frag, sk);
7743
7744 done:
7745 sctp_skb_set_owner_r(skb, sk);
7746 }
7747
7748 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7749 struct sctp_association *asoc)
7750 {
7751 struct inet_sock *inet = inet_sk(sk);
7752 struct inet_sock *newinet;
7753
7754 newsk->sk_type = sk->sk_type;
7755 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7756 newsk->sk_flags = sk->sk_flags;
7757 newsk->sk_tsflags = sk->sk_tsflags;
7758 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7759 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7760 newsk->sk_reuse = sk->sk_reuse;
7761
7762 newsk->sk_shutdown = sk->sk_shutdown;
7763 newsk->sk_destruct = sctp_destruct_sock;
7764 newsk->sk_family = sk->sk_family;
7765 newsk->sk_protocol = IPPROTO_SCTP;
7766 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7767 newsk->sk_sndbuf = sk->sk_sndbuf;
7768 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7769 newsk->sk_lingertime = sk->sk_lingertime;
7770 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7771 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7772 newsk->sk_rxhash = sk->sk_rxhash;
7773
7774 newinet = inet_sk(newsk);
7775
7776 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7777 * getsockname() and getpeername()
7778 */
7779 newinet->inet_sport = inet->inet_sport;
7780 newinet->inet_saddr = inet->inet_saddr;
7781 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7782 newinet->inet_dport = htons(asoc->peer.port);
7783 newinet->pmtudisc = inet->pmtudisc;
7784 newinet->inet_id = asoc->next_tsn ^ jiffies;
7785
7786 newinet->uc_ttl = inet->uc_ttl;
7787 newinet->mc_loop = 1;
7788 newinet->mc_ttl = 1;
7789 newinet->mc_index = 0;
7790 newinet->mc_list = NULL;
7791
7792 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7793 net_enable_timestamp();
7794
7795 security_sk_clone(sk, newsk);
7796 }
7797
7798 static inline void sctp_copy_descendant(struct sock *sk_to,
7799 const struct sock *sk_from)
7800 {
7801 int ancestor_size = sizeof(struct inet_sock) +
7802 sizeof(struct sctp_sock) -
7803 offsetof(struct sctp_sock, auto_asconf_list);
7804
7805 if (sk_from->sk_family == PF_INET6)
7806 ancestor_size += sizeof(struct ipv6_pinfo);
7807
7808 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7809 }
7810
7811 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7812 * and its messages to the newsk.
7813 */
7814 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7815 struct sctp_association *assoc,
7816 sctp_socket_type_t type)
7817 {
7818 struct sctp_sock *oldsp = sctp_sk(oldsk);
7819 struct sctp_sock *newsp = sctp_sk(newsk);
7820 struct sctp_bind_bucket *pp; /* hash list port iterator */
7821 struct sctp_endpoint *newep = newsp->ep;
7822 struct sk_buff *skb, *tmp;
7823 struct sctp_ulpevent *event;
7824 struct sctp_bind_hashbucket *head;
7825
7826 /* Migrate socket buffer sizes and all the socket level options to the
7827 * new socket.
7828 */
7829 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7830 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7831 /* Brute force copy old sctp opt. */
7832 sctp_copy_descendant(newsk, oldsk);
7833
7834 /* Restore the ep value that was overwritten with the above structure
7835 * copy.
7836 */
7837 newsp->ep = newep;
7838 newsp->hmac = NULL;
7839
7840 /* Hook this new socket in to the bind_hash list. */
7841 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7842 inet_sk(oldsk)->inet_num)];
7843 spin_lock_bh(&head->lock);
7844 pp = sctp_sk(oldsk)->bind_hash;
7845 sk_add_bind_node(newsk, &pp->owner);
7846 sctp_sk(newsk)->bind_hash = pp;
7847 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7848 spin_unlock_bh(&head->lock);
7849
7850 /* Copy the bind_addr list from the original endpoint to the new
7851 * endpoint so that we can handle restarts properly
7852 */
7853 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7854 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7855
7856 /* Move any messages in the old socket's receive queue that are for the
7857 * peeled off association to the new socket's receive queue.
7858 */
7859 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7860 event = sctp_skb2event(skb);
7861 if (event->asoc == assoc) {
7862 __skb_unlink(skb, &oldsk->sk_receive_queue);
7863 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7864 sctp_skb_set_owner_r_frag(skb, newsk);
7865 }
7866 }
7867
7868 /* Clean up any messages pending delivery due to partial
7869 * delivery. Three cases:
7870 * 1) No partial deliver; no work.
7871 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7872 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7873 */
7874 skb_queue_head_init(&newsp->pd_lobby);
7875 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7876
7877 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7878 struct sk_buff_head *queue;
7879
7880 /* Decide which queue to move pd_lobby skbs to. */
7881 if (assoc->ulpq.pd_mode) {
7882 queue = &newsp->pd_lobby;
7883 } else
7884 queue = &newsk->sk_receive_queue;
7885
7886 /* Walk through the pd_lobby, looking for skbs that
7887 * need moved to the new socket.
7888 */
7889 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7890 event = sctp_skb2event(skb);
7891 if (event->asoc == assoc) {
7892 __skb_unlink(skb, &oldsp->pd_lobby);
7893 __skb_queue_tail(queue, skb);
7894 sctp_skb_set_owner_r_frag(skb, newsk);
7895 }
7896 }
7897
7898 /* Clear up any skbs waiting for the partial
7899 * delivery to finish.
7900 */
7901 if (assoc->ulpq.pd_mode)
7902 sctp_clear_pd(oldsk, NULL);
7903
7904 }
7905
7906 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7907 sctp_skb_set_owner_r_frag(skb, newsk);
7908
7909 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7910 sctp_skb_set_owner_r_frag(skb, newsk);
7911
7912 /* Set the type of socket to indicate that it is peeled off from the
7913 * original UDP-style socket or created with the accept() call on a
7914 * TCP-style socket..
7915 */
7916 newsp->type = type;
7917
7918 /* Mark the new socket "in-use" by the user so that any packets
7919 * that may arrive on the association after we've moved it are
7920 * queued to the backlog. This prevents a potential race between
7921 * backlog processing on the old socket and new-packet processing
7922 * on the new socket.
7923 *
7924 * The caller has just allocated newsk so we can guarantee that other
7925 * paths won't try to lock it and then oldsk.
7926 */
7927 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7928 sctp_assoc_migrate(assoc, newsk);
7929
7930 /* If the association on the newsk is already closed before accept()
7931 * is called, set RCV_SHUTDOWN flag.
7932 */
7933 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7934 newsk->sk_state = SCTP_SS_CLOSED;
7935 newsk->sk_shutdown |= RCV_SHUTDOWN;
7936 } else {
7937 newsk->sk_state = SCTP_SS_ESTABLISHED;
7938 }
7939
7940 release_sock(newsk);
7941 }
7942
7943
7944 /* This proto struct describes the ULP interface for SCTP. */
7945 struct proto sctp_prot = {
7946 .name = "SCTP",
7947 .owner = THIS_MODULE,
7948 .close = sctp_close,
7949 .connect = sctp_connect,
7950 .disconnect = sctp_disconnect,
7951 .accept = sctp_accept,
7952 .ioctl = sctp_ioctl,
7953 .init = sctp_init_sock,
7954 .destroy = sctp_destroy_sock,
7955 .shutdown = sctp_shutdown,
7956 .setsockopt = sctp_setsockopt,
7957 .getsockopt = sctp_getsockopt,
7958 .sendmsg = sctp_sendmsg,
7959 .recvmsg = sctp_recvmsg,
7960 .bind = sctp_bind,
7961 .backlog_rcv = sctp_backlog_rcv,
7962 .hash = sctp_hash,
7963 .unhash = sctp_unhash,
7964 .get_port = sctp_get_port,
7965 .obj_size = sizeof(struct sctp_sock),
7966 .sysctl_mem = sysctl_sctp_mem,
7967 .sysctl_rmem = sysctl_sctp_rmem,
7968 .sysctl_wmem = sysctl_sctp_wmem,
7969 .memory_pressure = &sctp_memory_pressure,
7970 .enter_memory_pressure = sctp_enter_memory_pressure,
7971 .memory_allocated = &sctp_memory_allocated,
7972 .sockets_allocated = &sctp_sockets_allocated,
7973 };
7974
7975 #if IS_ENABLED(CONFIG_IPV6)
7976
7977 #include <net/transp_v6.h>
7978 static void sctp_v6_destroy_sock(struct sock *sk)
7979 {
7980 sctp_destroy_sock(sk);
7981 inet6_destroy_sock(sk);
7982 }
7983
7984 struct proto sctpv6_prot = {
7985 .name = "SCTPv6",
7986 .owner = THIS_MODULE,
7987 .close = sctp_close,
7988 .connect = sctp_connect,
7989 .disconnect = sctp_disconnect,
7990 .accept = sctp_accept,
7991 .ioctl = sctp_ioctl,
7992 .init = sctp_init_sock,
7993 .destroy = sctp_v6_destroy_sock,
7994 .shutdown = sctp_shutdown,
7995 .setsockopt = sctp_setsockopt,
7996 .getsockopt = sctp_getsockopt,
7997 .sendmsg = sctp_sendmsg,
7998 .recvmsg = sctp_recvmsg,
7999 .bind = sctp_bind,
8000 .backlog_rcv = sctp_backlog_rcv,
8001 .hash = sctp_hash,
8002 .unhash = sctp_unhash,
8003 .get_port = sctp_get_port,
8004 .obj_size = sizeof(struct sctp6_sock),
8005 .sysctl_mem = sysctl_sctp_mem,
8006 .sysctl_rmem = sysctl_sctp_rmem,
8007 .sysctl_wmem = sysctl_sctp_wmem,
8008 .memory_pressure = &sctp_memory_pressure,
8009 .enter_memory_pressure = sctp_enter_memory_pressure,
8010 .memory_allocated = &sctp_memory_allocated,
8011 .sockets_allocated = &sctp_sockets_allocated,
8012 };
8013 #endif /* IS_ENABLED(CONFIG_IPV6) */