]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sctp/socket.c
sctp: implement sender-side procedures for SSN Reset Request Parameter
[mirror_ubuntu-artful-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 sctp_memory_pressure = 1;
112 }
113
114
115 /* Get the sndbuf space available at the time on the association. */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137 }
138
139 /* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169 }
170
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174 {
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190 }
191
192 /* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227 }
228
229 /* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236 {
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL;
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL;
251
252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256 }
257
258 /* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 addr, addr_len);
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL;
283
284 release_sock(sk);
285
286 return retval;
287 }
288
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294 {
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL;
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET6 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET, opt))
305 return NULL;
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL;
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL;
317
318 return af;
319 }
320
321 /* Bind a local address either to an endpoint or to an association. */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 __func__, sk, addr, len);
337 return -EINVAL;
338 }
339
340 snum = ntohs(addr->v4.sin_port);
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 __func__, sk, &addr->sa, bp->port, snum, len);
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "
358 "%d\n", __func__, snum, bp->port);
359 return -EINVAL;
360 }
361 }
362
363 if (snum && snum < PROT_SOCK &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 return -EACCES;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 SCTP_ADDR_SRC, GFP_ATOMIC);
391
392 /* Copy back into socket for getsockname() use. */
393 if (!ret) {
394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
395 sp->pf->to_sk_saddr(addr, sk);
396 }
397
398 return ret;
399 }
400
401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402 *
403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404 * at any one time. If a sender, after sending an ASCONF chunk, decides
405 * it needs to transfer another ASCONF Chunk, it MUST wait until the
406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407 * subsequent ASCONF. Note this restriction binds each side, so at any
408 * time two ASCONF may be in-transit on any given association (one sent
409 * from each endpoint).
410 */
411 static int sctp_send_asconf(struct sctp_association *asoc,
412 struct sctp_chunk *chunk)
413 {
414 struct net *net = sock_net(asoc->base.sk);
415 int retval = 0;
416
417 /* If there is an outstanding ASCONF chunk, queue it for later
418 * transmission.
419 */
420 if (asoc->addip_last_asconf) {
421 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 goto out;
423 }
424
425 /* Hold the chunk until an ASCONF_ACK is received. */
426 sctp_chunk_hold(chunk);
427 retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 if (retval)
429 sctp_chunk_free(chunk);
430 else
431 asoc->addip_last_asconf = chunk;
432
433 out:
434 return retval;
435 }
436
437 /* Add a list of addresses as bind addresses to local endpoint or
438 * association.
439 *
440 * Basically run through each address specified in the addrs/addrcnt
441 * array/length pair, determine if it is IPv6 or IPv4 and call
442 * sctp_do_bind() on it.
443 *
444 * If any of them fails, then the operation will be reversed and the
445 * ones that were added will be removed.
446 *
447 * Only sctp_setsockopt_bindx() is supposed to call this function.
448 */
449 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450 {
451 int cnt;
452 int retval = 0;
453 void *addr_buf;
454 struct sockaddr *sa_addr;
455 struct sctp_af *af;
456
457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
458 addrs, addrcnt);
459
460 addr_buf = addrs;
461 for (cnt = 0; cnt < addrcnt; cnt++) {
462 /* The list may contain either IPv4 or IPv6 address;
463 * determine the address length for walking thru the list.
464 */
465 sa_addr = addr_buf;
466 af = sctp_get_af_specific(sa_addr->sa_family);
467 if (!af) {
468 retval = -EINVAL;
469 goto err_bindx_add;
470 }
471
472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 af->sockaddr_len);
474
475 addr_buf += af->sockaddr_len;
476
477 err_bindx_add:
478 if (retval < 0) {
479 /* Failed. Cleanup the ones that have been added */
480 if (cnt > 0)
481 sctp_bindx_rem(sk, addrs, cnt);
482 return retval;
483 }
484 }
485
486 return retval;
487 }
488
489 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490 * associations that are part of the endpoint indicating that a list of local
491 * addresses are added to the endpoint.
492 *
493 * If any of the addresses is already in the bind address list of the
494 * association, we do not send the chunk for that association. But it will not
495 * affect other associations.
496 *
497 * Only sctp_setsockopt_bindx() is supposed to call this function.
498 */
499 static int sctp_send_asconf_add_ip(struct sock *sk,
500 struct sockaddr *addrs,
501 int addrcnt)
502 {
503 struct net *net = sock_net(sk);
504 struct sctp_sock *sp;
505 struct sctp_endpoint *ep;
506 struct sctp_association *asoc;
507 struct sctp_bind_addr *bp;
508 struct sctp_chunk *chunk;
509 struct sctp_sockaddr_entry *laddr;
510 union sctp_addr *addr;
511 union sctp_addr saveaddr;
512 void *addr_buf;
513 struct sctp_af *af;
514 struct list_head *p;
515 int i;
516 int retval = 0;
517
518 if (!net->sctp.addip_enable)
519 return retval;
520
521 sp = sctp_sk(sk);
522 ep = sp->ep;
523
524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
525 __func__, sk, addrs, addrcnt);
526
527 list_for_each_entry(asoc, &ep->asocs, asocs) {
528 if (!asoc->peer.asconf_capable)
529 continue;
530
531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 continue;
533
534 if (!sctp_state(asoc, ESTABLISHED))
535 continue;
536
537 /* Check if any address in the packed array of addresses is
538 * in the bind address list of the association. If so,
539 * do not send the asconf chunk to its peer, but continue with
540 * other associations.
541 */
542 addr_buf = addrs;
543 for (i = 0; i < addrcnt; i++) {
544 addr = addr_buf;
545 af = sctp_get_af_specific(addr->v4.sin_family);
546 if (!af) {
547 retval = -EINVAL;
548 goto out;
549 }
550
551 if (sctp_assoc_lookup_laddr(asoc, addr))
552 break;
553
554 addr_buf += af->sockaddr_len;
555 }
556 if (i < addrcnt)
557 continue;
558
559 /* Use the first valid address in bind addr list of
560 * association as Address Parameter of ASCONF CHUNK.
561 */
562 bp = &asoc->base.bind_addr;
563 p = bp->address_list.next;
564 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 addrcnt, SCTP_PARAM_ADD_IP);
567 if (!chunk) {
568 retval = -ENOMEM;
569 goto out;
570 }
571
572 /* Add the new addresses to the bind address list with
573 * use_as_src set to 0.
574 */
575 addr_buf = addrs;
576 for (i = 0; i < addrcnt; i++) {
577 addr = addr_buf;
578 af = sctp_get_af_specific(addr->v4.sin_family);
579 memcpy(&saveaddr, addr, af->sockaddr_len);
580 retval = sctp_add_bind_addr(bp, &saveaddr,
581 sizeof(saveaddr),
582 SCTP_ADDR_NEW, GFP_ATOMIC);
583 addr_buf += af->sockaddr_len;
584 }
585 if (asoc->src_out_of_asoc_ok) {
586 struct sctp_transport *trans;
587
588 list_for_each_entry(trans,
589 &asoc->peer.transport_addr_list, transports) {
590 /* Clear the source and route cache */
591 dst_release(trans->dst);
592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
593 2*asoc->pathmtu, 4380));
594 trans->ssthresh = asoc->peer.i.a_rwnd;
595 trans->rto = asoc->rto_initial;
596 sctp_max_rto(asoc, trans);
597 trans->rtt = trans->srtt = trans->rttvar = 0;
598 sctp_transport_route(trans, NULL,
599 sctp_sk(asoc->base.sk));
600 }
601 }
602 retval = sctp_send_asconf(asoc, chunk);
603 }
604
605 out:
606 return retval;
607 }
608
609 /* Remove a list of addresses from bind addresses list. Do not remove the
610 * last address.
611 *
612 * Basically run through each address specified in the addrs/addrcnt
613 * array/length pair, determine if it is IPv6 or IPv4 and call
614 * sctp_del_bind() on it.
615 *
616 * If any of them fails, then the operation will be reversed and the
617 * ones that were removed will be added back.
618 *
619 * At least one address has to be left; if only one address is
620 * available, the operation will return -EBUSY.
621 *
622 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 */
624 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625 {
626 struct sctp_sock *sp = sctp_sk(sk);
627 struct sctp_endpoint *ep = sp->ep;
628 int cnt;
629 struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 int retval = 0;
631 void *addr_buf;
632 union sctp_addr *sa_addr;
633 struct sctp_af *af;
634
635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
636 __func__, sk, addrs, addrcnt);
637
638 addr_buf = addrs;
639 for (cnt = 0; cnt < addrcnt; cnt++) {
640 /* If the bind address list is empty or if there is only one
641 * bind address, there is nothing more to be removed (we need
642 * at least one address here).
643 */
644 if (list_empty(&bp->address_list) ||
645 (sctp_list_single_entry(&bp->address_list))) {
646 retval = -EBUSY;
647 goto err_bindx_rem;
648 }
649
650 sa_addr = addr_buf;
651 af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 if (!af) {
653 retval = -EINVAL;
654 goto err_bindx_rem;
655 }
656
657 if (!af->addr_valid(sa_addr, sp, NULL)) {
658 retval = -EADDRNOTAVAIL;
659 goto err_bindx_rem;
660 }
661
662 if (sa_addr->v4.sin_port &&
663 sa_addr->v4.sin_port != htons(bp->port)) {
664 retval = -EINVAL;
665 goto err_bindx_rem;
666 }
667
668 if (!sa_addr->v4.sin_port)
669 sa_addr->v4.sin_port = htons(bp->port);
670
671 /* FIXME - There is probably a need to check if sk->sk_saddr and
672 * sk->sk_rcv_addr are currently set to one of the addresses to
673 * be removed. This is something which needs to be looked into
674 * when we are fixing the outstanding issues with multi-homing
675 * socket routing and failover schemes. Refer to comments in
676 * sctp_do_bind(). -daisy
677 */
678 retval = sctp_del_bind_addr(bp, sa_addr);
679
680 addr_buf += af->sockaddr_len;
681 err_bindx_rem:
682 if (retval < 0) {
683 /* Failed. Add the ones that has been removed back */
684 if (cnt > 0)
685 sctp_bindx_add(sk, addrs, cnt);
686 return retval;
687 }
688 }
689
690 return retval;
691 }
692
693 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694 * the associations that are part of the endpoint indicating that a list of
695 * local addresses are removed from the endpoint.
696 *
697 * If any of the addresses is already in the bind address list of the
698 * association, we do not send the chunk for that association. But it will not
699 * affect other associations.
700 *
701 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 */
703 static int sctp_send_asconf_del_ip(struct sock *sk,
704 struct sockaddr *addrs,
705 int addrcnt)
706 {
707 struct net *net = sock_net(sk);
708 struct sctp_sock *sp;
709 struct sctp_endpoint *ep;
710 struct sctp_association *asoc;
711 struct sctp_transport *transport;
712 struct sctp_bind_addr *bp;
713 struct sctp_chunk *chunk;
714 union sctp_addr *laddr;
715 void *addr_buf;
716 struct sctp_af *af;
717 struct sctp_sockaddr_entry *saddr;
718 int i;
719 int retval = 0;
720 int stored = 0;
721
722 chunk = NULL;
723 if (!net->sctp.addip_enable)
724 return retval;
725
726 sp = sctp_sk(sk);
727 ep = sp->ep;
728
729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
730 __func__, sk, addrs, addrcnt);
731
732 list_for_each_entry(asoc, &ep->asocs, asocs) {
733
734 if (!asoc->peer.asconf_capable)
735 continue;
736
737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 continue;
739
740 if (!sctp_state(asoc, ESTABLISHED))
741 continue;
742
743 /* Check if any address in the packed array of addresses is
744 * not present in the bind address list of the association.
745 * If so, do not send the asconf chunk to its peer, but
746 * continue with other associations.
747 */
748 addr_buf = addrs;
749 for (i = 0; i < addrcnt; i++) {
750 laddr = addr_buf;
751 af = sctp_get_af_specific(laddr->v4.sin_family);
752 if (!af) {
753 retval = -EINVAL;
754 goto out;
755 }
756
757 if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 break;
759
760 addr_buf += af->sockaddr_len;
761 }
762 if (i < addrcnt)
763 continue;
764
765 /* Find one address in the association's bind address list
766 * that is not in the packed array of addresses. This is to
767 * make sure that we do not delete all the addresses in the
768 * association.
769 */
770 bp = &asoc->base.bind_addr;
771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 addrcnt, sp);
773 if ((laddr == NULL) && (addrcnt == 1)) {
774 if (asoc->asconf_addr_del_pending)
775 continue;
776 asoc->asconf_addr_del_pending =
777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
778 if (asoc->asconf_addr_del_pending == NULL) {
779 retval = -ENOMEM;
780 goto out;
781 }
782 asoc->asconf_addr_del_pending->sa.sa_family =
783 addrs->sa_family;
784 asoc->asconf_addr_del_pending->v4.sin_port =
785 htons(bp->port);
786 if (addrs->sa_family == AF_INET) {
787 struct sockaddr_in *sin;
788
789 sin = (struct sockaddr_in *)addrs;
790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 } else if (addrs->sa_family == AF_INET6) {
792 struct sockaddr_in6 *sin6;
793
794 sin6 = (struct sockaddr_in6 *)addrs;
795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 }
797
798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
799 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
800 asoc->asconf_addr_del_pending);
801
802 asoc->src_out_of_asoc_ok = 1;
803 stored = 1;
804 goto skip_mkasconf;
805 }
806
807 if (laddr == NULL)
808 return -EINVAL;
809
810 /* We do not need RCU protection throughout this loop
811 * because this is done under a socket lock from the
812 * setsockopt call.
813 */
814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 SCTP_PARAM_DEL_IP);
816 if (!chunk) {
817 retval = -ENOMEM;
818 goto out;
819 }
820
821 skip_mkasconf:
822 /* Reset use_as_src flag for the addresses in the bind address
823 * list that are to be deleted.
824 */
825 addr_buf = addrs;
826 for (i = 0; i < addrcnt; i++) {
827 laddr = addr_buf;
828 af = sctp_get_af_specific(laddr->v4.sin_family);
829 list_for_each_entry(saddr, &bp->address_list, list) {
830 if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 saddr->state = SCTP_ADDR_DEL;
832 }
833 addr_buf += af->sockaddr_len;
834 }
835
836 /* Update the route and saddr entries for all the transports
837 * as some of the addresses in the bind address list are
838 * about to be deleted and cannot be used as source addresses.
839 */
840 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
841 transports) {
842 dst_release(transport->dst);
843 sctp_transport_route(transport, NULL,
844 sctp_sk(asoc->base.sk));
845 }
846
847 if (stored)
848 /* We don't need to transmit ASCONF */
849 continue;
850 retval = sctp_send_asconf(asoc, chunk);
851 }
852 out:
853 return retval;
854 }
855
856 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
857 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858 {
859 struct sock *sk = sctp_opt2sk(sp);
860 union sctp_addr *addr;
861 struct sctp_af *af;
862
863 /* It is safe to write port space in caller. */
864 addr = &addrw->a;
865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
866 af = sctp_get_af_specific(addr->sa.sa_family);
867 if (!af)
868 return -EINVAL;
869 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 return -EINVAL;
871
872 if (addrw->state == SCTP_ADDR_NEW)
873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 else
875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876 }
877
878 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879 *
880 * API 8.1
881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882 * int flags);
883 *
884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886 * or IPv6 addresses.
887 *
888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889 * Section 3.1.2 for this usage.
890 *
891 * addrs is a pointer to an array of one or more socket addresses. Each
892 * address is contained in its appropriate structure (i.e. struct
893 * sockaddr_in or struct sockaddr_in6) the family of the address type
894 * must be used to distinguish the address length (note that this
895 * representation is termed a "packed array" of addresses). The caller
896 * specifies the number of addresses in the array with addrcnt.
897 *
898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899 * -1, and sets errno to the appropriate error code.
900 *
901 * For SCTP, the port given in each socket address must be the same, or
902 * sctp_bindx() will fail, setting errno to EINVAL.
903 *
904 * The flags parameter is formed from the bitwise OR of zero or more of
905 * the following currently defined flags:
906 *
907 * SCTP_BINDX_ADD_ADDR
908 *
909 * SCTP_BINDX_REM_ADDR
910 *
911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913 * addresses from the association. The two flags are mutually exclusive;
914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915 * not remove all addresses from an association; sctp_bindx() will
916 * reject such an attempt with EINVAL.
917 *
918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919 * additional addresses with an endpoint after calling bind(). Or use
920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921 * socket is associated with so that no new association accepted will be
922 * associated with those addresses. If the endpoint supports dynamic
923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924 * endpoint to send the appropriate message to the peer to change the
925 * peers address lists.
926 *
927 * Adding and removing addresses from a connected association is
928 * optional functionality. Implementations that do not support this
929 * functionality should return EOPNOTSUPP.
930 *
931 * Basically do nothing but copying the addresses from user to kernel
932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934 * from userspace.
935 *
936 * We don't use copy_from_user() for optimization: we first do the
937 * sanity checks (buffer size -fast- and access check-healthy
938 * pointer); if all of those succeed, then we can alloc the memory
939 * (expensive operation) needed to copy the data to kernel. Then we do
940 * the copying without checking the user space area
941 * (__copy_from_user()).
942 *
943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944 * it.
945 *
946 * sk The sk of the socket
947 * addrs The pointer to the addresses in user land
948 * addrssize Size of the addrs buffer
949 * op Operation to perform (add or remove, see the flags of
950 * sctp_bindx)
951 *
952 * Returns 0 if ok, <0 errno code on error.
953 */
954 static int sctp_setsockopt_bindx(struct sock *sk,
955 struct sockaddr __user *addrs,
956 int addrs_size, int op)
957 {
958 struct sockaddr *kaddrs;
959 int err;
960 int addrcnt = 0;
961 int walk_size = 0;
962 struct sockaddr *sa_addr;
963 void *addr_buf;
964 struct sctp_af *af;
965
966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
967 __func__, sk, addrs, addrs_size, op);
968
969 if (unlikely(addrs_size <= 0))
970 return -EINVAL;
971
972 /* Check the user passed a healthy pointer. */
973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
974 return -EFAULT;
975
976 /* Alloc space for the address array in kernel memory. */
977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
978 if (unlikely(!kaddrs))
979 return -ENOMEM;
980
981 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 kfree(kaddrs);
983 return -EFAULT;
984 }
985
986 /* Walk through the addrs buffer and count the number of addresses. */
987 addr_buf = kaddrs;
988 while (walk_size < addrs_size) {
989 if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 kfree(kaddrs);
991 return -EINVAL;
992 }
993
994 sa_addr = addr_buf;
995 af = sctp_get_af_specific(sa_addr->sa_family);
996
997 /* If the address family is not supported or if this address
998 * causes the address buffer to overflow return EINVAL.
999 */
1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL;
1003 }
1004 addrcnt++;
1005 addr_buf += af->sockaddr_len;
1006 walk_size += af->sockaddr_len;
1007 }
1008
1009 /* Do the work. */
1010 switch (op) {
1011 case SCTP_BINDX_ADD_ADDR:
1012 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 if (err)
1014 goto out;
1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 break;
1017
1018 case SCTP_BINDX_REM_ADDR:
1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 default:
1026 err = -EINVAL;
1027 break;
1028 }
1029
1030 out:
1031 kfree(kaddrs);
1032
1033 return err;
1034 }
1035
1036 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037 *
1038 * Common routine for handling connect() and sctp_connectx().
1039 * Connect will come in with just a single address.
1040 */
1041 static int __sctp_connect(struct sock *sk,
1042 struct sockaddr *kaddrs,
1043 int addrs_size,
1044 sctp_assoc_t *assoc_id)
1045 {
1046 struct net *net = sock_net(sk);
1047 struct sctp_sock *sp;
1048 struct sctp_endpoint *ep;
1049 struct sctp_association *asoc = NULL;
1050 struct sctp_association *asoc2;
1051 struct sctp_transport *transport;
1052 union sctp_addr to;
1053 sctp_scope_t scope;
1054 long timeo;
1055 int err = 0;
1056 int addrcnt = 0;
1057 int walk_size = 0;
1058 union sctp_addr *sa_addr = NULL;
1059 void *addr_buf;
1060 unsigned short port;
1061 unsigned int f_flags = 0;
1062
1063 sp = sctp_sk(sk);
1064 ep = sp->ep;
1065
1066 /* connect() cannot be done on a socket that is already in ESTABLISHED
1067 * state - UDP-style peeled off socket or a TCP-style socket that
1068 * is already connected.
1069 * It cannot be done even on a TCP-style listening socket.
1070 */
1071 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 err = -EISCONN;
1074 goto out_free;
1075 }
1076
1077 /* Walk through the addrs buffer and count the number of addresses. */
1078 addr_buf = kaddrs;
1079 while (walk_size < addrs_size) {
1080 struct sctp_af *af;
1081
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN;
1122 else
1123 err = -EALREADY;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port < PROT_SOCK &&
1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 err = -EACCES;
1158 goto out_free;
1159 }
1160 }
1161
1162 scope = sctp_scope(&to);
1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 if (!asoc) {
1165 err = -ENOMEM;
1166 goto out_free;
1167 }
1168
1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 GFP_KERNEL);
1171 if (err < 0) {
1172 goto out_free;
1173 }
1174
1175 }
1176
1177 /* Prime the peer's transport structures. */
1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 SCTP_UNKNOWN);
1180 if (!transport) {
1181 err = -ENOMEM;
1182 goto out_free;
1183 }
1184
1185 addrcnt++;
1186 addr_buf += af->sockaddr_len;
1187 walk_size += af->sockaddr_len;
1188 }
1189
1190 /* In case the user of sctp_connectx() wants an association
1191 * id back, assign one now.
1192 */
1193 if (assoc_id) {
1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 if (err < 0)
1196 goto out_free;
1197 }
1198
1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 if (err < 0) {
1201 goto out_free;
1202 }
1203
1204 /* Initialize sk's dport and daddr for getpeername() */
1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 sp->pf->to_sk_daddr(sa_addr, sk);
1207 sk->sk_err = 0;
1208
1209 /* in-kernel sockets don't generally have a file allocated to them
1210 * if all they do is call sock_create_kern().
1211 */
1212 if (sk->sk_socket->file)
1213 f_flags = sk->sk_socket->file->f_flags;
1214
1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1216
1217 if (assoc_id)
1218 *assoc_id = asoc->assoc_id;
1219 err = sctp_wait_for_connect(asoc, &timeo);
1220 /* Note: the asoc may be freed after the return of
1221 * sctp_wait_for_connect.
1222 */
1223
1224 /* Don't free association on exit. */
1225 asoc = NULL;
1226
1227 out_free:
1228 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1229 __func__, asoc, kaddrs, err);
1230
1231 if (asoc) {
1232 /* sctp_primitive_ASSOCIATE may have added this association
1233 * To the hash table, try to unhash it, just in case, its a noop
1234 * if it wasn't hashed so we're safe
1235 */
1236 sctp_association_free(asoc);
1237 }
1238 return err;
1239 }
1240
1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242 *
1243 * API 8.9
1244 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245 * sctp_assoc_t *asoc);
1246 *
1247 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249 * or IPv6 addresses.
1250 *
1251 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252 * Section 3.1.2 for this usage.
1253 *
1254 * addrs is a pointer to an array of one or more socket addresses. Each
1255 * address is contained in its appropriate structure (i.e. struct
1256 * sockaddr_in or struct sockaddr_in6) the family of the address type
1257 * must be used to distengish the address length (note that this
1258 * representation is termed a "packed array" of addresses). The caller
1259 * specifies the number of addresses in the array with addrcnt.
1260 *
1261 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262 * the association id of the new association. On failure, sctp_connectx()
1263 * returns -1, and sets errno to the appropriate error code. The assoc_id
1264 * is not touched by the kernel.
1265 *
1266 * For SCTP, the port given in each socket address must be the same, or
1267 * sctp_connectx() will fail, setting errno to EINVAL.
1268 *
1269 * An application can use sctp_connectx to initiate an association with
1270 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1271 * allows a caller to specify multiple addresses at which a peer can be
1272 * reached. The way the SCTP stack uses the list of addresses to set up
1273 * the association is implementation dependent. This function only
1274 * specifies that the stack will try to make use of all the addresses in
1275 * the list when needed.
1276 *
1277 * Note that the list of addresses passed in is only used for setting up
1278 * the association. It does not necessarily equal the set of addresses
1279 * the peer uses for the resulting association. If the caller wants to
1280 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281 * retrieve them after the association has been set up.
1282 *
1283 * Basically do nothing but copying the addresses from user to kernel
1284 * land and invoking either sctp_connectx(). This is used for tunneling
1285 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286 *
1287 * We don't use copy_from_user() for optimization: we first do the
1288 * sanity checks (buffer size -fast- and access check-healthy
1289 * pointer); if all of those succeed, then we can alloc the memory
1290 * (expensive operation) needed to copy the data to kernel. Then we do
1291 * the copying without checking the user space area
1292 * (__copy_from_user()).
1293 *
1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295 * it.
1296 *
1297 * sk The sk of the socket
1298 * addrs The pointer to the addresses in user land
1299 * addrssize Size of the addrs buffer
1300 *
1301 * Returns >=0 if ok, <0 errno code on error.
1302 */
1303 static int __sctp_setsockopt_connectx(struct sock *sk,
1304 struct sockaddr __user *addrs,
1305 int addrs_size,
1306 sctp_assoc_t *assoc_id)
1307 {
1308 struct sockaddr *kaddrs;
1309 gfp_t gfp = GFP_KERNEL;
1310 int err = 0;
1311
1312 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1313 __func__, sk, addrs, addrs_size);
1314
1315 if (unlikely(addrs_size <= 0))
1316 return -EINVAL;
1317
1318 /* Check the user passed a healthy pointer. */
1319 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1320 return -EFAULT;
1321
1322 /* Alloc space for the address array in kernel memory. */
1323 if (sk->sk_socket->file)
1324 gfp = GFP_USER | __GFP_NOWARN;
1325 kaddrs = kmalloc(addrs_size, gfp);
1326 if (unlikely(!kaddrs))
1327 return -ENOMEM;
1328
1329 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1330 err = -EFAULT;
1331 } else {
1332 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1333 }
1334
1335 kfree(kaddrs);
1336
1337 return err;
1338 }
1339
1340 /*
1341 * This is an older interface. It's kept for backward compatibility
1342 * to the option that doesn't provide association id.
1343 */
1344 static int sctp_setsockopt_connectx_old(struct sock *sk,
1345 struct sockaddr __user *addrs,
1346 int addrs_size)
1347 {
1348 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1349 }
1350
1351 /*
1352 * New interface for the API. The since the API is done with a socket
1353 * option, to make it simple we feed back the association id is as a return
1354 * indication to the call. Error is always negative and association id is
1355 * always positive.
1356 */
1357 static int sctp_setsockopt_connectx(struct sock *sk,
1358 struct sockaddr __user *addrs,
1359 int addrs_size)
1360 {
1361 sctp_assoc_t assoc_id = 0;
1362 int err = 0;
1363
1364 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1365
1366 if (err)
1367 return err;
1368 else
1369 return assoc_id;
1370 }
1371
1372 /*
1373 * New (hopefully final) interface for the API.
1374 * We use the sctp_getaddrs_old structure so that use-space library
1375 * can avoid any unnecessary allocations. The only different part
1376 * is that we store the actual length of the address buffer into the
1377 * addrs_num structure member. That way we can re-use the existing
1378 * code.
1379 */
1380 #ifdef CONFIG_COMPAT
1381 struct compat_sctp_getaddrs_old {
1382 sctp_assoc_t assoc_id;
1383 s32 addr_num;
1384 compat_uptr_t addrs; /* struct sockaddr * */
1385 };
1386 #endif
1387
1388 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1389 char __user *optval,
1390 int __user *optlen)
1391 {
1392 struct sctp_getaddrs_old param;
1393 sctp_assoc_t assoc_id = 0;
1394 int err = 0;
1395
1396 #ifdef CONFIG_COMPAT
1397 if (in_compat_syscall()) {
1398 struct compat_sctp_getaddrs_old param32;
1399
1400 if (len < sizeof(param32))
1401 return -EINVAL;
1402 if (copy_from_user(&param32, optval, sizeof(param32)))
1403 return -EFAULT;
1404
1405 param.assoc_id = param32.assoc_id;
1406 param.addr_num = param32.addr_num;
1407 param.addrs = compat_ptr(param32.addrs);
1408 } else
1409 #endif
1410 {
1411 if (len < sizeof(param))
1412 return -EINVAL;
1413 if (copy_from_user(&param, optval, sizeof(param)))
1414 return -EFAULT;
1415 }
1416
1417 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1418 param.addrs, param.addr_num,
1419 &assoc_id);
1420 if (err == 0 || err == -EINPROGRESS) {
1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 return -EFAULT;
1423 if (put_user(sizeof(assoc_id), optlen))
1424 return -EFAULT;
1425 }
1426
1427 return err;
1428 }
1429
1430 /* API 3.1.4 close() - UDP Style Syntax
1431 * Applications use close() to perform graceful shutdown (as described in
1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433 * by a UDP-style socket.
1434 *
1435 * The syntax is
1436 *
1437 * ret = close(int sd);
1438 *
1439 * sd - the socket descriptor of the associations to be closed.
1440 *
1441 * To gracefully shutdown a specific association represented by the
1442 * UDP-style socket, an application should use the sendmsg() call,
1443 * passing no user data, but including the appropriate flag in the
1444 * ancillary data (see Section xxxx).
1445 *
1446 * If sd in the close() call is a branched-off socket representing only
1447 * one association, the shutdown is performed on that association only.
1448 *
1449 * 4.1.6 close() - TCP Style Syntax
1450 *
1451 * Applications use close() to gracefully close down an association.
1452 *
1453 * The syntax is:
1454 *
1455 * int close(int sd);
1456 *
1457 * sd - the socket descriptor of the association to be closed.
1458 *
1459 * After an application calls close() on a socket descriptor, no further
1460 * socket operations will succeed on that descriptor.
1461 *
1462 * API 7.1.4 SO_LINGER
1463 *
1464 * An application using the TCP-style socket can use this option to
1465 * perform the SCTP ABORT primitive. The linger option structure is:
1466 *
1467 * struct linger {
1468 * int l_onoff; // option on/off
1469 * int l_linger; // linger time
1470 * };
1471 *
1472 * To enable the option, set l_onoff to 1. If the l_linger value is set
1473 * to 0, calling close() is the same as the ABORT primitive. If the
1474 * value is set to a negative value, the setsockopt() call will return
1475 * an error. If the value is set to a positive value linger_time, the
1476 * close() can be blocked for at most linger_time ms. If the graceful
1477 * shutdown phase does not finish during this period, close() will
1478 * return but the graceful shutdown phase continues in the system.
1479 */
1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 struct net *net = sock_net(sk);
1483 struct sctp_endpoint *ep;
1484 struct sctp_association *asoc;
1485 struct list_head *pos, *temp;
1486 unsigned int data_was_unread;
1487
1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489
1490 lock_sock(sk);
1491 sk->sk_shutdown = SHUTDOWN_MASK;
1492 sk->sk_state = SCTP_SS_CLOSING;
1493
1494 ep = sctp_sk(sk)->ep;
1495
1496 /* Clean up any skbs sitting on the receive queue. */
1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499
1500 /* Walk all associations on an endpoint. */
1501 list_for_each_safe(pos, temp, &ep->asocs) {
1502 asoc = list_entry(pos, struct sctp_association, asocs);
1503
1504 if (sctp_style(sk, TCP)) {
1505 /* A closed association can still be in the list if
1506 * it belongs to a TCP-style listening socket that is
1507 * not yet accepted. If so, free it. If not, send an
1508 * ABORT or SHUTDOWN based on the linger options.
1509 */
1510 if (sctp_state(asoc, CLOSED)) {
1511 sctp_association_free(asoc);
1512 continue;
1513 }
1514 }
1515
1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1519 struct sctp_chunk *chunk;
1520
1521 chunk = sctp_make_abort_user(asoc, NULL, 0);
1522 sctp_primitive_ABORT(net, asoc, chunk);
1523 } else
1524 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1525 }
1526
1527 /* On a TCP-style socket, block for at most linger_time if set. */
1528 if (sctp_style(sk, TCP) && timeout)
1529 sctp_wait_for_close(sk, timeout);
1530
1531 /* This will run the backlog queue. */
1532 release_sock(sk);
1533
1534 /* Supposedly, no process has access to the socket, but
1535 * the net layers still may.
1536 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1537 * held and that should be grabbed before socket lock.
1538 */
1539 spin_lock_bh(&net->sctp.addr_wq_lock);
1540 bh_lock_sock(sk);
1541
1542 /* Hold the sock, since sk_common_release() will put sock_put()
1543 * and we have just a little more cleanup.
1544 */
1545 sock_hold(sk);
1546 sk_common_release(sk);
1547
1548 bh_unlock_sock(sk);
1549 spin_unlock_bh(&net->sctp.addr_wq_lock);
1550
1551 sock_put(sk);
1552
1553 SCTP_DBG_OBJCNT_DEC(sock);
1554 }
1555
1556 /* Handle EPIPE error. */
1557 static int sctp_error(struct sock *sk, int flags, int err)
1558 {
1559 if (err == -EPIPE)
1560 err = sock_error(sk) ? : -EPIPE;
1561 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1562 send_sig(SIGPIPE, current, 0);
1563 return err;
1564 }
1565
1566 /* API 3.1.3 sendmsg() - UDP Style Syntax
1567 *
1568 * An application uses sendmsg() and recvmsg() calls to transmit data to
1569 * and receive data from its peer.
1570 *
1571 * ssize_t sendmsg(int socket, const struct msghdr *message,
1572 * int flags);
1573 *
1574 * socket - the socket descriptor of the endpoint.
1575 * message - pointer to the msghdr structure which contains a single
1576 * user message and possibly some ancillary data.
1577 *
1578 * See Section 5 for complete description of the data
1579 * structures.
1580 *
1581 * flags - flags sent or received with the user message, see Section
1582 * 5 for complete description of the flags.
1583 *
1584 * Note: This function could use a rewrite especially when explicit
1585 * connect support comes in.
1586 */
1587 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1588
1589 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1590
1591 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1592 {
1593 struct net *net = sock_net(sk);
1594 struct sctp_sock *sp;
1595 struct sctp_endpoint *ep;
1596 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1597 struct sctp_transport *transport, *chunk_tp;
1598 struct sctp_chunk *chunk;
1599 union sctp_addr to;
1600 struct sockaddr *msg_name = NULL;
1601 struct sctp_sndrcvinfo default_sinfo;
1602 struct sctp_sndrcvinfo *sinfo;
1603 struct sctp_initmsg *sinit;
1604 sctp_assoc_t associd = 0;
1605 sctp_cmsgs_t cmsgs = { NULL };
1606 sctp_scope_t scope;
1607 bool fill_sinfo_ttl = false, wait_connect = false;
1608 struct sctp_datamsg *datamsg;
1609 int msg_flags = msg->msg_flags;
1610 __u16 sinfo_flags = 0;
1611 long timeo;
1612 int err;
1613
1614 err = 0;
1615 sp = sctp_sk(sk);
1616 ep = sp->ep;
1617
1618 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1619 msg, msg_len, ep);
1620
1621 /* We cannot send a message over a TCP-style listening socket. */
1622 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1623 err = -EPIPE;
1624 goto out_nounlock;
1625 }
1626
1627 /* Parse out the SCTP CMSGs. */
1628 err = sctp_msghdr_parse(msg, &cmsgs);
1629 if (err) {
1630 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1631 goto out_nounlock;
1632 }
1633
1634 /* Fetch the destination address for this packet. This
1635 * address only selects the association--it is not necessarily
1636 * the address we will send to.
1637 * For a peeled-off socket, msg_name is ignored.
1638 */
1639 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1640 int msg_namelen = msg->msg_namelen;
1641
1642 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1643 msg_namelen);
1644 if (err)
1645 return err;
1646
1647 if (msg_namelen > sizeof(to))
1648 msg_namelen = sizeof(to);
1649 memcpy(&to, msg->msg_name, msg_namelen);
1650 msg_name = msg->msg_name;
1651 }
1652
1653 sinit = cmsgs.init;
1654 if (cmsgs.sinfo != NULL) {
1655 memset(&default_sinfo, 0, sizeof(default_sinfo));
1656 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1657 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1658 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1659 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1660 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1661
1662 sinfo = &default_sinfo;
1663 fill_sinfo_ttl = true;
1664 } else {
1665 sinfo = cmsgs.srinfo;
1666 }
1667 /* Did the user specify SNDINFO/SNDRCVINFO? */
1668 if (sinfo) {
1669 sinfo_flags = sinfo->sinfo_flags;
1670 associd = sinfo->sinfo_assoc_id;
1671 }
1672
1673 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1674 msg_len, sinfo_flags);
1675
1676 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1677 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1678 err = -EINVAL;
1679 goto out_nounlock;
1680 }
1681
1682 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1683 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1684 * If SCTP_ABORT is set, the message length could be non zero with
1685 * the msg_iov set to the user abort reason.
1686 */
1687 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1688 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1689 err = -EINVAL;
1690 goto out_nounlock;
1691 }
1692
1693 /* If SCTP_ADDR_OVER is set, there must be an address
1694 * specified in msg_name.
1695 */
1696 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1697 err = -EINVAL;
1698 goto out_nounlock;
1699 }
1700
1701 transport = NULL;
1702
1703 pr_debug("%s: about to look up association\n", __func__);
1704
1705 lock_sock(sk);
1706
1707 /* If a msg_name has been specified, assume this is to be used. */
1708 if (msg_name) {
1709 /* Look for a matching association on the endpoint. */
1710 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1711
1712 /* If we could not find a matching association on the
1713 * endpoint, make sure that it is not a TCP-style
1714 * socket that already has an association or there is
1715 * no peeled-off association on another socket.
1716 */
1717 if (!asoc &&
1718 ((sctp_style(sk, TCP) &&
1719 (sctp_sstate(sk, ESTABLISHED) ||
1720 sctp_sstate(sk, CLOSING))) ||
1721 sctp_endpoint_is_peeled_off(ep, &to))) {
1722 err = -EADDRNOTAVAIL;
1723 goto out_unlock;
1724 }
1725 } else {
1726 asoc = sctp_id2assoc(sk, associd);
1727 if (!asoc) {
1728 err = -EPIPE;
1729 goto out_unlock;
1730 }
1731 }
1732
1733 if (asoc) {
1734 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1735
1736 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1737 * socket that has an association in CLOSED state. This can
1738 * happen when an accepted socket has an association that is
1739 * already CLOSED.
1740 */
1741 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1742 err = -EPIPE;
1743 goto out_unlock;
1744 }
1745
1746 if (sinfo_flags & SCTP_EOF) {
1747 pr_debug("%s: shutting down association:%p\n",
1748 __func__, asoc);
1749
1750 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1751 err = 0;
1752 goto out_unlock;
1753 }
1754 if (sinfo_flags & SCTP_ABORT) {
1755
1756 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1757 if (!chunk) {
1758 err = -ENOMEM;
1759 goto out_unlock;
1760 }
1761
1762 pr_debug("%s: aborting association:%p\n",
1763 __func__, asoc);
1764
1765 sctp_primitive_ABORT(net, asoc, chunk);
1766 err = 0;
1767 goto out_unlock;
1768 }
1769 }
1770
1771 /* Do we need to create the association? */
1772 if (!asoc) {
1773 pr_debug("%s: there is no association yet\n", __func__);
1774
1775 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1776 err = -EINVAL;
1777 goto out_unlock;
1778 }
1779
1780 /* Check for invalid stream against the stream counts,
1781 * either the default or the user specified stream counts.
1782 */
1783 if (sinfo) {
1784 if (!sinit || !sinit->sinit_num_ostreams) {
1785 /* Check against the defaults. */
1786 if (sinfo->sinfo_stream >=
1787 sp->initmsg.sinit_num_ostreams) {
1788 err = -EINVAL;
1789 goto out_unlock;
1790 }
1791 } else {
1792 /* Check against the requested. */
1793 if (sinfo->sinfo_stream >=
1794 sinit->sinit_num_ostreams) {
1795 err = -EINVAL;
1796 goto out_unlock;
1797 }
1798 }
1799 }
1800
1801 /*
1802 * API 3.1.2 bind() - UDP Style Syntax
1803 * If a bind() or sctp_bindx() is not called prior to a
1804 * sendmsg() call that initiates a new association, the
1805 * system picks an ephemeral port and will choose an address
1806 * set equivalent to binding with a wildcard address.
1807 */
1808 if (!ep->base.bind_addr.port) {
1809 if (sctp_autobind(sk)) {
1810 err = -EAGAIN;
1811 goto out_unlock;
1812 }
1813 } else {
1814 /*
1815 * If an unprivileged user inherits a one-to-many
1816 * style socket with open associations on a privileged
1817 * port, it MAY be permitted to accept new associations,
1818 * but it SHOULD NOT be permitted to open new
1819 * associations.
1820 */
1821 if (ep->base.bind_addr.port < PROT_SOCK &&
1822 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1823 err = -EACCES;
1824 goto out_unlock;
1825 }
1826 }
1827
1828 scope = sctp_scope(&to);
1829 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1830 if (!new_asoc) {
1831 err = -ENOMEM;
1832 goto out_unlock;
1833 }
1834 asoc = new_asoc;
1835 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1836 if (err < 0) {
1837 err = -ENOMEM;
1838 goto out_free;
1839 }
1840
1841 /* If the SCTP_INIT ancillary data is specified, set all
1842 * the association init values accordingly.
1843 */
1844 if (sinit) {
1845 if (sinit->sinit_num_ostreams) {
1846 asoc->c.sinit_num_ostreams =
1847 sinit->sinit_num_ostreams;
1848 }
1849 if (sinit->sinit_max_instreams) {
1850 asoc->c.sinit_max_instreams =
1851 sinit->sinit_max_instreams;
1852 }
1853 if (sinit->sinit_max_attempts) {
1854 asoc->max_init_attempts
1855 = sinit->sinit_max_attempts;
1856 }
1857 if (sinit->sinit_max_init_timeo) {
1858 asoc->max_init_timeo =
1859 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1860 }
1861 }
1862
1863 /* Prime the peer's transport structures. */
1864 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1865 if (!transport) {
1866 err = -ENOMEM;
1867 goto out_free;
1868 }
1869 }
1870
1871 /* ASSERT: we have a valid association at this point. */
1872 pr_debug("%s: we have a valid association\n", __func__);
1873
1874 if (!sinfo) {
1875 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1876 * one with some defaults.
1877 */
1878 memset(&default_sinfo, 0, sizeof(default_sinfo));
1879 default_sinfo.sinfo_stream = asoc->default_stream;
1880 default_sinfo.sinfo_flags = asoc->default_flags;
1881 default_sinfo.sinfo_ppid = asoc->default_ppid;
1882 default_sinfo.sinfo_context = asoc->default_context;
1883 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1884 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1885
1886 sinfo = &default_sinfo;
1887 } else if (fill_sinfo_ttl) {
1888 /* In case SNDINFO was specified, we still need to fill
1889 * it with a default ttl from the assoc here.
1890 */
1891 sinfo->sinfo_timetolive = asoc->default_timetolive;
1892 }
1893
1894 /* API 7.1.7, the sndbuf size per association bounds the
1895 * maximum size of data that can be sent in a single send call.
1896 */
1897 if (msg_len > sk->sk_sndbuf) {
1898 err = -EMSGSIZE;
1899 goto out_free;
1900 }
1901
1902 if (asoc->pmtu_pending)
1903 sctp_assoc_pending_pmtu(sk, asoc);
1904
1905 /* If fragmentation is disabled and the message length exceeds the
1906 * association fragmentation point, return EMSGSIZE. The I-D
1907 * does not specify what this error is, but this looks like
1908 * a great fit.
1909 */
1910 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1911 err = -EMSGSIZE;
1912 goto out_free;
1913 }
1914
1915 /* Check for invalid stream. */
1916 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1917 err = -EINVAL;
1918 goto out_free;
1919 }
1920
1921 if (sctp_wspace(asoc) < msg_len)
1922 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1923
1924 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1925 if (!sctp_wspace(asoc)) {
1926 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1927 if (err)
1928 goto out_free;
1929 }
1930
1931 /* If an address is passed with the sendto/sendmsg call, it is used
1932 * to override the primary destination address in the TCP model, or
1933 * when SCTP_ADDR_OVER flag is set in the UDP model.
1934 */
1935 if ((sctp_style(sk, TCP) && msg_name) ||
1936 (sinfo_flags & SCTP_ADDR_OVER)) {
1937 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1938 if (!chunk_tp) {
1939 err = -EINVAL;
1940 goto out_free;
1941 }
1942 } else
1943 chunk_tp = NULL;
1944
1945 /* Auto-connect, if we aren't connected already. */
1946 if (sctp_state(asoc, CLOSED)) {
1947 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1948 if (err < 0)
1949 goto out_free;
1950
1951 wait_connect = true;
1952 pr_debug("%s: we associated primitively\n", __func__);
1953 }
1954
1955 /* Break the message into multiple chunks of maximum size. */
1956 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1957 if (IS_ERR(datamsg)) {
1958 err = PTR_ERR(datamsg);
1959 goto out_free;
1960 }
1961
1962 /* Now send the (possibly) fragmented message. */
1963 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1964 sctp_chunk_hold(chunk);
1965
1966 /* Do accounting for the write space. */
1967 sctp_set_owner_w(chunk);
1968
1969 chunk->transport = chunk_tp;
1970 }
1971
1972 /* Send it to the lower layers. Note: all chunks
1973 * must either fail or succeed. The lower layer
1974 * works that way today. Keep it that way or this
1975 * breaks.
1976 */
1977 err = sctp_primitive_SEND(net, asoc, datamsg);
1978 /* Did the lower layer accept the chunk? */
1979 if (err) {
1980 sctp_datamsg_free(datamsg);
1981 goto out_free;
1982 }
1983
1984 pr_debug("%s: we sent primitively\n", __func__);
1985
1986 sctp_datamsg_put(datamsg);
1987 err = msg_len;
1988
1989 if (unlikely(wait_connect)) {
1990 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1991 sctp_wait_for_connect(asoc, &timeo);
1992 }
1993
1994 /* If we are already past ASSOCIATE, the lower
1995 * layers are responsible for association cleanup.
1996 */
1997 goto out_unlock;
1998
1999 out_free:
2000 if (new_asoc)
2001 sctp_association_free(asoc);
2002 out_unlock:
2003 release_sock(sk);
2004
2005 out_nounlock:
2006 return sctp_error(sk, msg_flags, err);
2007
2008 #if 0
2009 do_sock_err:
2010 if (msg_len)
2011 err = msg_len;
2012 else
2013 err = sock_error(sk);
2014 goto out;
2015
2016 do_interrupted:
2017 if (msg_len)
2018 err = msg_len;
2019 goto out;
2020 #endif /* 0 */
2021 }
2022
2023 /* This is an extended version of skb_pull() that removes the data from the
2024 * start of a skb even when data is spread across the list of skb's in the
2025 * frag_list. len specifies the total amount of data that needs to be removed.
2026 * when 'len' bytes could be removed from the skb, it returns 0.
2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2028 * could not be removed.
2029 */
2030 static int sctp_skb_pull(struct sk_buff *skb, int len)
2031 {
2032 struct sk_buff *list;
2033 int skb_len = skb_headlen(skb);
2034 int rlen;
2035
2036 if (len <= skb_len) {
2037 __skb_pull(skb, len);
2038 return 0;
2039 }
2040 len -= skb_len;
2041 __skb_pull(skb, skb_len);
2042
2043 skb_walk_frags(skb, list) {
2044 rlen = sctp_skb_pull(list, len);
2045 skb->len -= (len-rlen);
2046 skb->data_len -= (len-rlen);
2047
2048 if (!rlen)
2049 return 0;
2050
2051 len = rlen;
2052 }
2053
2054 return len;
2055 }
2056
2057 /* API 3.1.3 recvmsg() - UDP Style Syntax
2058 *
2059 * ssize_t recvmsg(int socket, struct msghdr *message,
2060 * int flags);
2061 *
2062 * socket - the socket descriptor of the endpoint.
2063 * message - pointer to the msghdr structure which contains a single
2064 * user message and possibly some ancillary data.
2065 *
2066 * See Section 5 for complete description of the data
2067 * structures.
2068 *
2069 * flags - flags sent or received with the user message, see Section
2070 * 5 for complete description of the flags.
2071 */
2072 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2073 int noblock, int flags, int *addr_len)
2074 {
2075 struct sctp_ulpevent *event = NULL;
2076 struct sctp_sock *sp = sctp_sk(sk);
2077 struct sk_buff *skb, *head_skb;
2078 int copied;
2079 int err = 0;
2080 int skb_len;
2081
2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2084 addr_len);
2085
2086 lock_sock(sk);
2087
2088 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2089 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2090 err = -ENOTCONN;
2091 goto out;
2092 }
2093
2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2095 if (!skb)
2096 goto out;
2097
2098 /* Get the total length of the skb including any skb's in the
2099 * frag_list.
2100 */
2101 skb_len = skb->len;
2102
2103 copied = skb_len;
2104 if (copied > len)
2105 copied = len;
2106
2107 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2108
2109 event = sctp_skb2event(skb);
2110
2111 if (err)
2112 goto out_free;
2113
2114 if (event->chunk && event->chunk->head_skb)
2115 head_skb = event->chunk->head_skb;
2116 else
2117 head_skb = skb;
2118 sock_recv_ts_and_drops(msg, sk, head_skb);
2119 if (sctp_ulpevent_is_notification(event)) {
2120 msg->msg_flags |= MSG_NOTIFICATION;
2121 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2122 } else {
2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2124 }
2125
2126 /* Check if we allow SCTP_NXTINFO. */
2127 if (sp->recvnxtinfo)
2128 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2129 /* Check if we allow SCTP_RCVINFO. */
2130 if (sp->recvrcvinfo)
2131 sctp_ulpevent_read_rcvinfo(event, msg);
2132 /* Check if we allow SCTP_SNDRCVINFO. */
2133 if (sp->subscribe.sctp_data_io_event)
2134 sctp_ulpevent_read_sndrcvinfo(event, msg);
2135
2136 err = copied;
2137
2138 /* If skb's length exceeds the user's buffer, update the skb and
2139 * push it back to the receive_queue so that the next call to
2140 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2141 */
2142 if (skb_len > copied) {
2143 msg->msg_flags &= ~MSG_EOR;
2144 if (flags & MSG_PEEK)
2145 goto out_free;
2146 sctp_skb_pull(skb, copied);
2147 skb_queue_head(&sk->sk_receive_queue, skb);
2148
2149 /* When only partial message is copied to the user, increase
2150 * rwnd by that amount. If all the data in the skb is read,
2151 * rwnd is updated when the event is freed.
2152 */
2153 if (!sctp_ulpevent_is_notification(event))
2154 sctp_assoc_rwnd_increase(event->asoc, copied);
2155 goto out;
2156 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2157 (event->msg_flags & MSG_EOR))
2158 msg->msg_flags |= MSG_EOR;
2159 else
2160 msg->msg_flags &= ~MSG_EOR;
2161
2162 out_free:
2163 if (flags & MSG_PEEK) {
2164 /* Release the skb reference acquired after peeking the skb in
2165 * sctp_skb_recv_datagram().
2166 */
2167 kfree_skb(skb);
2168 } else {
2169 /* Free the event which includes releasing the reference to
2170 * the owner of the skb, freeing the skb and updating the
2171 * rwnd.
2172 */
2173 sctp_ulpevent_free(event);
2174 }
2175 out:
2176 release_sock(sk);
2177 return err;
2178 }
2179
2180 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2181 *
2182 * This option is a on/off flag. If enabled no SCTP message
2183 * fragmentation will be performed. Instead if a message being sent
2184 * exceeds the current PMTU size, the message will NOT be sent and
2185 * instead a error will be indicated to the user.
2186 */
2187 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2188 char __user *optval,
2189 unsigned int optlen)
2190 {
2191 int val;
2192
2193 if (optlen < sizeof(int))
2194 return -EINVAL;
2195
2196 if (get_user(val, (int __user *)optval))
2197 return -EFAULT;
2198
2199 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2200
2201 return 0;
2202 }
2203
2204 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2205 unsigned int optlen)
2206 {
2207 struct sctp_association *asoc;
2208 struct sctp_ulpevent *event;
2209
2210 if (optlen > sizeof(struct sctp_event_subscribe))
2211 return -EINVAL;
2212 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2213 return -EFAULT;
2214
2215 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2216 * if there is no data to be sent or retransmit, the stack will
2217 * immediately send up this notification.
2218 */
2219 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2220 &sctp_sk(sk)->subscribe)) {
2221 asoc = sctp_id2assoc(sk, 0);
2222
2223 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2224 event = sctp_ulpevent_make_sender_dry_event(asoc,
2225 GFP_ATOMIC);
2226 if (!event)
2227 return -ENOMEM;
2228
2229 sctp_ulpq_tail_event(&asoc->ulpq, event);
2230 }
2231 }
2232
2233 return 0;
2234 }
2235
2236 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2237 *
2238 * This socket option is applicable to the UDP-style socket only. When
2239 * set it will cause associations that are idle for more than the
2240 * specified number of seconds to automatically close. An association
2241 * being idle is defined an association that has NOT sent or received
2242 * user data. The special value of '0' indicates that no automatic
2243 * close of any associations should be performed. The option expects an
2244 * integer defining the number of seconds of idle time before an
2245 * association is closed.
2246 */
2247 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2248 unsigned int optlen)
2249 {
2250 struct sctp_sock *sp = sctp_sk(sk);
2251 struct net *net = sock_net(sk);
2252
2253 /* Applicable to UDP-style socket only */
2254 if (sctp_style(sk, TCP))
2255 return -EOPNOTSUPP;
2256 if (optlen != sizeof(int))
2257 return -EINVAL;
2258 if (copy_from_user(&sp->autoclose, optval, optlen))
2259 return -EFAULT;
2260
2261 if (sp->autoclose > net->sctp.max_autoclose)
2262 sp->autoclose = net->sctp.max_autoclose;
2263
2264 return 0;
2265 }
2266
2267 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2268 *
2269 * Applications can enable or disable heartbeats for any peer address of
2270 * an association, modify an address's heartbeat interval, force a
2271 * heartbeat to be sent immediately, and adjust the address's maximum
2272 * number of retransmissions sent before an address is considered
2273 * unreachable. The following structure is used to access and modify an
2274 * address's parameters:
2275 *
2276 * struct sctp_paddrparams {
2277 * sctp_assoc_t spp_assoc_id;
2278 * struct sockaddr_storage spp_address;
2279 * uint32_t spp_hbinterval;
2280 * uint16_t spp_pathmaxrxt;
2281 * uint32_t spp_pathmtu;
2282 * uint32_t spp_sackdelay;
2283 * uint32_t spp_flags;
2284 * };
2285 *
2286 * spp_assoc_id - (one-to-many style socket) This is filled in the
2287 * application, and identifies the association for
2288 * this query.
2289 * spp_address - This specifies which address is of interest.
2290 * spp_hbinterval - This contains the value of the heartbeat interval,
2291 * in milliseconds. If a value of zero
2292 * is present in this field then no changes are to
2293 * be made to this parameter.
2294 * spp_pathmaxrxt - This contains the maximum number of
2295 * retransmissions before this address shall be
2296 * considered unreachable. If a value of zero
2297 * is present in this field then no changes are to
2298 * be made to this parameter.
2299 * spp_pathmtu - When Path MTU discovery is disabled the value
2300 * specified here will be the "fixed" path mtu.
2301 * Note that if the spp_address field is empty
2302 * then all associations on this address will
2303 * have this fixed path mtu set upon them.
2304 *
2305 * spp_sackdelay - When delayed sack is enabled, this value specifies
2306 * the number of milliseconds that sacks will be delayed
2307 * for. This value will apply to all addresses of an
2308 * association if the spp_address field is empty. Note
2309 * also, that if delayed sack is enabled and this
2310 * value is set to 0, no change is made to the last
2311 * recorded delayed sack timer value.
2312 *
2313 * spp_flags - These flags are used to control various features
2314 * on an association. The flag field may contain
2315 * zero or more of the following options.
2316 *
2317 * SPP_HB_ENABLE - Enable heartbeats on the
2318 * specified address. Note that if the address
2319 * field is empty all addresses for the association
2320 * have heartbeats enabled upon them.
2321 *
2322 * SPP_HB_DISABLE - Disable heartbeats on the
2323 * speicifed address. Note that if the address
2324 * field is empty all addresses for the association
2325 * will have their heartbeats disabled. Note also
2326 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2327 * mutually exclusive, only one of these two should
2328 * be specified. Enabling both fields will have
2329 * undetermined results.
2330 *
2331 * SPP_HB_DEMAND - Request a user initiated heartbeat
2332 * to be made immediately.
2333 *
2334 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2335 * heartbeat delayis to be set to the value of 0
2336 * milliseconds.
2337 *
2338 * SPP_PMTUD_ENABLE - This field will enable PMTU
2339 * discovery upon the specified address. Note that
2340 * if the address feild is empty then all addresses
2341 * on the association are effected.
2342 *
2343 * SPP_PMTUD_DISABLE - This field will disable PMTU
2344 * discovery upon the specified address. Note that
2345 * if the address feild is empty then all addresses
2346 * on the association are effected. Not also that
2347 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2348 * exclusive. Enabling both will have undetermined
2349 * results.
2350 *
2351 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2352 * on delayed sack. The time specified in spp_sackdelay
2353 * is used to specify the sack delay for this address. Note
2354 * that if spp_address is empty then all addresses will
2355 * enable delayed sack and take on the sack delay
2356 * value specified in spp_sackdelay.
2357 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2358 * off delayed sack. If the spp_address field is blank then
2359 * delayed sack is disabled for the entire association. Note
2360 * also that this field is mutually exclusive to
2361 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2362 * results.
2363 */
2364 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2365 struct sctp_transport *trans,
2366 struct sctp_association *asoc,
2367 struct sctp_sock *sp,
2368 int hb_change,
2369 int pmtud_change,
2370 int sackdelay_change)
2371 {
2372 int error;
2373
2374 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2375 struct net *net = sock_net(trans->asoc->base.sk);
2376
2377 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2378 if (error)
2379 return error;
2380 }
2381
2382 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2383 * this field is ignored. Note also that a value of zero indicates
2384 * the current setting should be left unchanged.
2385 */
2386 if (params->spp_flags & SPP_HB_ENABLE) {
2387
2388 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2389 * set. This lets us use 0 value when this flag
2390 * is set.
2391 */
2392 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2393 params->spp_hbinterval = 0;
2394
2395 if (params->spp_hbinterval ||
2396 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2397 if (trans) {
2398 trans->hbinterval =
2399 msecs_to_jiffies(params->spp_hbinterval);
2400 } else if (asoc) {
2401 asoc->hbinterval =
2402 msecs_to_jiffies(params->spp_hbinterval);
2403 } else {
2404 sp->hbinterval = params->spp_hbinterval;
2405 }
2406 }
2407 }
2408
2409 if (hb_change) {
2410 if (trans) {
2411 trans->param_flags =
2412 (trans->param_flags & ~SPP_HB) | hb_change;
2413 } else if (asoc) {
2414 asoc->param_flags =
2415 (asoc->param_flags & ~SPP_HB) | hb_change;
2416 } else {
2417 sp->param_flags =
2418 (sp->param_flags & ~SPP_HB) | hb_change;
2419 }
2420 }
2421
2422 /* When Path MTU discovery is disabled the value specified here will
2423 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2424 * include the flag SPP_PMTUD_DISABLE for this field to have any
2425 * effect).
2426 */
2427 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2428 if (trans) {
2429 trans->pathmtu = params->spp_pathmtu;
2430 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2431 } else if (asoc) {
2432 asoc->pathmtu = params->spp_pathmtu;
2433 } else {
2434 sp->pathmtu = params->spp_pathmtu;
2435 }
2436 }
2437
2438 if (pmtud_change) {
2439 if (trans) {
2440 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2441 (params->spp_flags & SPP_PMTUD_ENABLE);
2442 trans->param_flags =
2443 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2444 if (update) {
2445 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2446 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2447 }
2448 } else if (asoc) {
2449 asoc->param_flags =
2450 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2451 } else {
2452 sp->param_flags =
2453 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2454 }
2455 }
2456
2457 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2458 * value of this field is ignored. Note also that a value of zero
2459 * indicates the current setting should be left unchanged.
2460 */
2461 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2462 if (trans) {
2463 trans->sackdelay =
2464 msecs_to_jiffies(params->spp_sackdelay);
2465 } else if (asoc) {
2466 asoc->sackdelay =
2467 msecs_to_jiffies(params->spp_sackdelay);
2468 } else {
2469 sp->sackdelay = params->spp_sackdelay;
2470 }
2471 }
2472
2473 if (sackdelay_change) {
2474 if (trans) {
2475 trans->param_flags =
2476 (trans->param_flags & ~SPP_SACKDELAY) |
2477 sackdelay_change;
2478 } else if (asoc) {
2479 asoc->param_flags =
2480 (asoc->param_flags & ~SPP_SACKDELAY) |
2481 sackdelay_change;
2482 } else {
2483 sp->param_flags =
2484 (sp->param_flags & ~SPP_SACKDELAY) |
2485 sackdelay_change;
2486 }
2487 }
2488
2489 /* Note that a value of zero indicates the current setting should be
2490 left unchanged.
2491 */
2492 if (params->spp_pathmaxrxt) {
2493 if (trans) {
2494 trans->pathmaxrxt = params->spp_pathmaxrxt;
2495 } else if (asoc) {
2496 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2497 } else {
2498 sp->pathmaxrxt = params->spp_pathmaxrxt;
2499 }
2500 }
2501
2502 return 0;
2503 }
2504
2505 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2506 char __user *optval,
2507 unsigned int optlen)
2508 {
2509 struct sctp_paddrparams params;
2510 struct sctp_transport *trans = NULL;
2511 struct sctp_association *asoc = NULL;
2512 struct sctp_sock *sp = sctp_sk(sk);
2513 int error;
2514 int hb_change, pmtud_change, sackdelay_change;
2515
2516 if (optlen != sizeof(struct sctp_paddrparams))
2517 return -EINVAL;
2518
2519 if (copy_from_user(&params, optval, optlen))
2520 return -EFAULT;
2521
2522 /* Validate flags and value parameters. */
2523 hb_change = params.spp_flags & SPP_HB;
2524 pmtud_change = params.spp_flags & SPP_PMTUD;
2525 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2526
2527 if (hb_change == SPP_HB ||
2528 pmtud_change == SPP_PMTUD ||
2529 sackdelay_change == SPP_SACKDELAY ||
2530 params.spp_sackdelay > 500 ||
2531 (params.spp_pathmtu &&
2532 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2533 return -EINVAL;
2534
2535 /* If an address other than INADDR_ANY is specified, and
2536 * no transport is found, then the request is invalid.
2537 */
2538 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2539 trans = sctp_addr_id2transport(sk, &params.spp_address,
2540 params.spp_assoc_id);
2541 if (!trans)
2542 return -EINVAL;
2543 }
2544
2545 /* Get association, if assoc_id != 0 and the socket is a one
2546 * to many style socket, and an association was not found, then
2547 * the id was invalid.
2548 */
2549 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2550 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2551 return -EINVAL;
2552
2553 /* Heartbeat demand can only be sent on a transport or
2554 * association, but not a socket.
2555 */
2556 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2557 return -EINVAL;
2558
2559 /* Process parameters. */
2560 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2561 hb_change, pmtud_change,
2562 sackdelay_change);
2563
2564 if (error)
2565 return error;
2566
2567 /* If changes are for association, also apply parameters to each
2568 * transport.
2569 */
2570 if (!trans && asoc) {
2571 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2572 transports) {
2573 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2574 hb_change, pmtud_change,
2575 sackdelay_change);
2576 }
2577 }
2578
2579 return 0;
2580 }
2581
2582 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2583 {
2584 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2585 }
2586
2587 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2588 {
2589 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2590 }
2591
2592 /*
2593 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2594 *
2595 * This option will effect the way delayed acks are performed. This
2596 * option allows you to get or set the delayed ack time, in
2597 * milliseconds. It also allows changing the delayed ack frequency.
2598 * Changing the frequency to 1 disables the delayed sack algorithm. If
2599 * the assoc_id is 0, then this sets or gets the endpoints default
2600 * values. If the assoc_id field is non-zero, then the set or get
2601 * effects the specified association for the one to many model (the
2602 * assoc_id field is ignored by the one to one model). Note that if
2603 * sack_delay or sack_freq are 0 when setting this option, then the
2604 * current values will remain unchanged.
2605 *
2606 * struct sctp_sack_info {
2607 * sctp_assoc_t sack_assoc_id;
2608 * uint32_t sack_delay;
2609 * uint32_t sack_freq;
2610 * };
2611 *
2612 * sack_assoc_id - This parameter, indicates which association the user
2613 * is performing an action upon. Note that if this field's value is
2614 * zero then the endpoints default value is changed (effecting future
2615 * associations only).
2616 *
2617 * sack_delay - This parameter contains the number of milliseconds that
2618 * the user is requesting the delayed ACK timer be set to. Note that
2619 * this value is defined in the standard to be between 200 and 500
2620 * milliseconds.
2621 *
2622 * sack_freq - This parameter contains the number of packets that must
2623 * be received before a sack is sent without waiting for the delay
2624 * timer to expire. The default value for this is 2, setting this
2625 * value to 1 will disable the delayed sack algorithm.
2626 */
2627
2628 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2629 char __user *optval, unsigned int optlen)
2630 {
2631 struct sctp_sack_info params;
2632 struct sctp_transport *trans = NULL;
2633 struct sctp_association *asoc = NULL;
2634 struct sctp_sock *sp = sctp_sk(sk);
2635
2636 if (optlen == sizeof(struct sctp_sack_info)) {
2637 if (copy_from_user(&params, optval, optlen))
2638 return -EFAULT;
2639
2640 if (params.sack_delay == 0 && params.sack_freq == 0)
2641 return 0;
2642 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2643 pr_warn_ratelimited(DEPRECATED
2644 "%s (pid %d) "
2645 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2646 "Use struct sctp_sack_info instead\n",
2647 current->comm, task_pid_nr(current));
2648 if (copy_from_user(&params, optval, optlen))
2649 return -EFAULT;
2650
2651 if (params.sack_delay == 0)
2652 params.sack_freq = 1;
2653 else
2654 params.sack_freq = 0;
2655 } else
2656 return -EINVAL;
2657
2658 /* Validate value parameter. */
2659 if (params.sack_delay > 500)
2660 return -EINVAL;
2661
2662 /* Get association, if sack_assoc_id != 0 and the socket is a one
2663 * to many style socket, and an association was not found, then
2664 * the id was invalid.
2665 */
2666 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2667 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2668 return -EINVAL;
2669
2670 if (params.sack_delay) {
2671 if (asoc) {
2672 asoc->sackdelay =
2673 msecs_to_jiffies(params.sack_delay);
2674 asoc->param_flags =
2675 sctp_spp_sackdelay_enable(asoc->param_flags);
2676 } else {
2677 sp->sackdelay = params.sack_delay;
2678 sp->param_flags =
2679 sctp_spp_sackdelay_enable(sp->param_flags);
2680 }
2681 }
2682
2683 if (params.sack_freq == 1) {
2684 if (asoc) {
2685 asoc->param_flags =
2686 sctp_spp_sackdelay_disable(asoc->param_flags);
2687 } else {
2688 sp->param_flags =
2689 sctp_spp_sackdelay_disable(sp->param_flags);
2690 }
2691 } else if (params.sack_freq > 1) {
2692 if (asoc) {
2693 asoc->sackfreq = params.sack_freq;
2694 asoc->param_flags =
2695 sctp_spp_sackdelay_enable(asoc->param_flags);
2696 } else {
2697 sp->sackfreq = params.sack_freq;
2698 sp->param_flags =
2699 sctp_spp_sackdelay_enable(sp->param_flags);
2700 }
2701 }
2702
2703 /* If change is for association, also apply to each transport. */
2704 if (asoc) {
2705 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2706 transports) {
2707 if (params.sack_delay) {
2708 trans->sackdelay =
2709 msecs_to_jiffies(params.sack_delay);
2710 trans->param_flags =
2711 sctp_spp_sackdelay_enable(trans->param_flags);
2712 }
2713 if (params.sack_freq == 1) {
2714 trans->param_flags =
2715 sctp_spp_sackdelay_disable(trans->param_flags);
2716 } else if (params.sack_freq > 1) {
2717 trans->sackfreq = params.sack_freq;
2718 trans->param_flags =
2719 sctp_spp_sackdelay_enable(trans->param_flags);
2720 }
2721 }
2722 }
2723
2724 return 0;
2725 }
2726
2727 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2728 *
2729 * Applications can specify protocol parameters for the default association
2730 * initialization. The option name argument to setsockopt() and getsockopt()
2731 * is SCTP_INITMSG.
2732 *
2733 * Setting initialization parameters is effective only on an unconnected
2734 * socket (for UDP-style sockets only future associations are effected
2735 * by the change). With TCP-style sockets, this option is inherited by
2736 * sockets derived from a listener socket.
2737 */
2738 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2739 {
2740 struct sctp_initmsg sinit;
2741 struct sctp_sock *sp = sctp_sk(sk);
2742
2743 if (optlen != sizeof(struct sctp_initmsg))
2744 return -EINVAL;
2745 if (copy_from_user(&sinit, optval, optlen))
2746 return -EFAULT;
2747
2748 if (sinit.sinit_num_ostreams)
2749 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2750 if (sinit.sinit_max_instreams)
2751 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2752 if (sinit.sinit_max_attempts)
2753 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2754 if (sinit.sinit_max_init_timeo)
2755 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2756
2757 return 0;
2758 }
2759
2760 /*
2761 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2762 *
2763 * Applications that wish to use the sendto() system call may wish to
2764 * specify a default set of parameters that would normally be supplied
2765 * through the inclusion of ancillary data. This socket option allows
2766 * such an application to set the default sctp_sndrcvinfo structure.
2767 * The application that wishes to use this socket option simply passes
2768 * in to this call the sctp_sndrcvinfo structure defined in Section
2769 * 5.2.2) The input parameters accepted by this call include
2770 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2771 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2772 * to this call if the caller is using the UDP model.
2773 */
2774 static int sctp_setsockopt_default_send_param(struct sock *sk,
2775 char __user *optval,
2776 unsigned int optlen)
2777 {
2778 struct sctp_sock *sp = sctp_sk(sk);
2779 struct sctp_association *asoc;
2780 struct sctp_sndrcvinfo info;
2781
2782 if (optlen != sizeof(info))
2783 return -EINVAL;
2784 if (copy_from_user(&info, optval, optlen))
2785 return -EFAULT;
2786 if (info.sinfo_flags &
2787 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2788 SCTP_ABORT | SCTP_EOF))
2789 return -EINVAL;
2790
2791 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2792 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2793 return -EINVAL;
2794 if (asoc) {
2795 asoc->default_stream = info.sinfo_stream;
2796 asoc->default_flags = info.sinfo_flags;
2797 asoc->default_ppid = info.sinfo_ppid;
2798 asoc->default_context = info.sinfo_context;
2799 asoc->default_timetolive = info.sinfo_timetolive;
2800 } else {
2801 sp->default_stream = info.sinfo_stream;
2802 sp->default_flags = info.sinfo_flags;
2803 sp->default_ppid = info.sinfo_ppid;
2804 sp->default_context = info.sinfo_context;
2805 sp->default_timetolive = info.sinfo_timetolive;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2812 * (SCTP_DEFAULT_SNDINFO)
2813 */
2814 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2815 char __user *optval,
2816 unsigned int optlen)
2817 {
2818 struct sctp_sock *sp = sctp_sk(sk);
2819 struct sctp_association *asoc;
2820 struct sctp_sndinfo info;
2821
2822 if (optlen != sizeof(info))
2823 return -EINVAL;
2824 if (copy_from_user(&info, optval, optlen))
2825 return -EFAULT;
2826 if (info.snd_flags &
2827 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2828 SCTP_ABORT | SCTP_EOF))
2829 return -EINVAL;
2830
2831 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2832 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2833 return -EINVAL;
2834 if (asoc) {
2835 asoc->default_stream = info.snd_sid;
2836 asoc->default_flags = info.snd_flags;
2837 asoc->default_ppid = info.snd_ppid;
2838 asoc->default_context = info.snd_context;
2839 } else {
2840 sp->default_stream = info.snd_sid;
2841 sp->default_flags = info.snd_flags;
2842 sp->default_ppid = info.snd_ppid;
2843 sp->default_context = info.snd_context;
2844 }
2845
2846 return 0;
2847 }
2848
2849 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2850 *
2851 * Requests that the local SCTP stack use the enclosed peer address as
2852 * the association primary. The enclosed address must be one of the
2853 * association peer's addresses.
2854 */
2855 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2856 unsigned int optlen)
2857 {
2858 struct sctp_prim prim;
2859 struct sctp_transport *trans;
2860
2861 if (optlen != sizeof(struct sctp_prim))
2862 return -EINVAL;
2863
2864 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2865 return -EFAULT;
2866
2867 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2868 if (!trans)
2869 return -EINVAL;
2870
2871 sctp_assoc_set_primary(trans->asoc, trans);
2872
2873 return 0;
2874 }
2875
2876 /*
2877 * 7.1.5 SCTP_NODELAY
2878 *
2879 * Turn on/off any Nagle-like algorithm. This means that packets are
2880 * generally sent as soon as possible and no unnecessary delays are
2881 * introduced, at the cost of more packets in the network. Expects an
2882 * integer boolean flag.
2883 */
2884 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2885 unsigned int optlen)
2886 {
2887 int val;
2888
2889 if (optlen < sizeof(int))
2890 return -EINVAL;
2891 if (get_user(val, (int __user *)optval))
2892 return -EFAULT;
2893
2894 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2895 return 0;
2896 }
2897
2898 /*
2899 *
2900 * 7.1.1 SCTP_RTOINFO
2901 *
2902 * The protocol parameters used to initialize and bound retransmission
2903 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2904 * and modify these parameters.
2905 * All parameters are time values, in milliseconds. A value of 0, when
2906 * modifying the parameters, indicates that the current value should not
2907 * be changed.
2908 *
2909 */
2910 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2911 {
2912 struct sctp_rtoinfo rtoinfo;
2913 struct sctp_association *asoc;
2914 unsigned long rto_min, rto_max;
2915 struct sctp_sock *sp = sctp_sk(sk);
2916
2917 if (optlen != sizeof (struct sctp_rtoinfo))
2918 return -EINVAL;
2919
2920 if (copy_from_user(&rtoinfo, optval, optlen))
2921 return -EFAULT;
2922
2923 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2924
2925 /* Set the values to the specific association */
2926 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2927 return -EINVAL;
2928
2929 rto_max = rtoinfo.srto_max;
2930 rto_min = rtoinfo.srto_min;
2931
2932 if (rto_max)
2933 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2934 else
2935 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2936
2937 if (rto_min)
2938 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2939 else
2940 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2941
2942 if (rto_min > rto_max)
2943 return -EINVAL;
2944
2945 if (asoc) {
2946 if (rtoinfo.srto_initial != 0)
2947 asoc->rto_initial =
2948 msecs_to_jiffies(rtoinfo.srto_initial);
2949 asoc->rto_max = rto_max;
2950 asoc->rto_min = rto_min;
2951 } else {
2952 /* If there is no association or the association-id = 0
2953 * set the values to the endpoint.
2954 */
2955 if (rtoinfo.srto_initial != 0)
2956 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2957 sp->rtoinfo.srto_max = rto_max;
2958 sp->rtoinfo.srto_min = rto_min;
2959 }
2960
2961 return 0;
2962 }
2963
2964 /*
2965 *
2966 * 7.1.2 SCTP_ASSOCINFO
2967 *
2968 * This option is used to tune the maximum retransmission attempts
2969 * of the association.
2970 * Returns an error if the new association retransmission value is
2971 * greater than the sum of the retransmission value of the peer.
2972 * See [SCTP] for more information.
2973 *
2974 */
2975 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2976 {
2977
2978 struct sctp_assocparams assocparams;
2979 struct sctp_association *asoc;
2980
2981 if (optlen != sizeof(struct sctp_assocparams))
2982 return -EINVAL;
2983 if (copy_from_user(&assocparams, optval, optlen))
2984 return -EFAULT;
2985
2986 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2987
2988 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2989 return -EINVAL;
2990
2991 /* Set the values to the specific association */
2992 if (asoc) {
2993 if (assocparams.sasoc_asocmaxrxt != 0) {
2994 __u32 path_sum = 0;
2995 int paths = 0;
2996 struct sctp_transport *peer_addr;
2997
2998 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2999 transports) {
3000 path_sum += peer_addr->pathmaxrxt;
3001 paths++;
3002 }
3003
3004 /* Only validate asocmaxrxt if we have more than
3005 * one path/transport. We do this because path
3006 * retransmissions are only counted when we have more
3007 * then one path.
3008 */
3009 if (paths > 1 &&
3010 assocparams.sasoc_asocmaxrxt > path_sum)
3011 return -EINVAL;
3012
3013 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3014 }
3015
3016 if (assocparams.sasoc_cookie_life != 0)
3017 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3018 } else {
3019 /* Set the values to the endpoint */
3020 struct sctp_sock *sp = sctp_sk(sk);
3021
3022 if (assocparams.sasoc_asocmaxrxt != 0)
3023 sp->assocparams.sasoc_asocmaxrxt =
3024 assocparams.sasoc_asocmaxrxt;
3025 if (assocparams.sasoc_cookie_life != 0)
3026 sp->assocparams.sasoc_cookie_life =
3027 assocparams.sasoc_cookie_life;
3028 }
3029 return 0;
3030 }
3031
3032 /*
3033 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3034 *
3035 * This socket option is a boolean flag which turns on or off mapped V4
3036 * addresses. If this option is turned on and the socket is type
3037 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3038 * If this option is turned off, then no mapping will be done of V4
3039 * addresses and a user will receive both PF_INET6 and PF_INET type
3040 * addresses on the socket.
3041 */
3042 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3043 {
3044 int val;
3045 struct sctp_sock *sp = sctp_sk(sk);
3046
3047 if (optlen < sizeof(int))
3048 return -EINVAL;
3049 if (get_user(val, (int __user *)optval))
3050 return -EFAULT;
3051 if (val)
3052 sp->v4mapped = 1;
3053 else
3054 sp->v4mapped = 0;
3055
3056 return 0;
3057 }
3058
3059 /*
3060 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3061 * This option will get or set the maximum size to put in any outgoing
3062 * SCTP DATA chunk. If a message is larger than this size it will be
3063 * fragmented by SCTP into the specified size. Note that the underlying
3064 * SCTP implementation may fragment into smaller sized chunks when the
3065 * PMTU of the underlying association is smaller than the value set by
3066 * the user. The default value for this option is '0' which indicates
3067 * the user is NOT limiting fragmentation and only the PMTU will effect
3068 * SCTP's choice of DATA chunk size. Note also that values set larger
3069 * than the maximum size of an IP datagram will effectively let SCTP
3070 * control fragmentation (i.e. the same as setting this option to 0).
3071 *
3072 * The following structure is used to access and modify this parameter:
3073 *
3074 * struct sctp_assoc_value {
3075 * sctp_assoc_t assoc_id;
3076 * uint32_t assoc_value;
3077 * };
3078 *
3079 * assoc_id: This parameter is ignored for one-to-one style sockets.
3080 * For one-to-many style sockets this parameter indicates which
3081 * association the user is performing an action upon. Note that if
3082 * this field's value is zero then the endpoints default value is
3083 * changed (effecting future associations only).
3084 * assoc_value: This parameter specifies the maximum size in bytes.
3085 */
3086 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3087 {
3088 struct sctp_assoc_value params;
3089 struct sctp_association *asoc;
3090 struct sctp_sock *sp = sctp_sk(sk);
3091 int val;
3092
3093 if (optlen == sizeof(int)) {
3094 pr_warn_ratelimited(DEPRECATED
3095 "%s (pid %d) "
3096 "Use of int in maxseg socket option.\n"
3097 "Use struct sctp_assoc_value instead\n",
3098 current->comm, task_pid_nr(current));
3099 if (copy_from_user(&val, optval, optlen))
3100 return -EFAULT;
3101 params.assoc_id = 0;
3102 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3103 if (copy_from_user(&params, optval, optlen))
3104 return -EFAULT;
3105 val = params.assoc_value;
3106 } else
3107 return -EINVAL;
3108
3109 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3110 return -EINVAL;
3111
3112 asoc = sctp_id2assoc(sk, params.assoc_id);
3113 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3114 return -EINVAL;
3115
3116 if (asoc) {
3117 if (val == 0) {
3118 val = asoc->pathmtu;
3119 val -= sp->pf->af->net_header_len;
3120 val -= sizeof(struct sctphdr) +
3121 sizeof(struct sctp_data_chunk);
3122 }
3123 asoc->user_frag = val;
3124 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3125 } else {
3126 sp->user_frag = val;
3127 }
3128
3129 return 0;
3130 }
3131
3132
3133 /*
3134 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3135 *
3136 * Requests that the peer mark the enclosed address as the association
3137 * primary. The enclosed address must be one of the association's
3138 * locally bound addresses. The following structure is used to make a
3139 * set primary request:
3140 */
3141 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3142 unsigned int optlen)
3143 {
3144 struct net *net = sock_net(sk);
3145 struct sctp_sock *sp;
3146 struct sctp_association *asoc = NULL;
3147 struct sctp_setpeerprim prim;
3148 struct sctp_chunk *chunk;
3149 struct sctp_af *af;
3150 int err;
3151
3152 sp = sctp_sk(sk);
3153
3154 if (!net->sctp.addip_enable)
3155 return -EPERM;
3156
3157 if (optlen != sizeof(struct sctp_setpeerprim))
3158 return -EINVAL;
3159
3160 if (copy_from_user(&prim, optval, optlen))
3161 return -EFAULT;
3162
3163 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3164 if (!asoc)
3165 return -EINVAL;
3166
3167 if (!asoc->peer.asconf_capable)
3168 return -EPERM;
3169
3170 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3171 return -EPERM;
3172
3173 if (!sctp_state(asoc, ESTABLISHED))
3174 return -ENOTCONN;
3175
3176 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3177 if (!af)
3178 return -EINVAL;
3179
3180 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3181 return -EADDRNOTAVAIL;
3182
3183 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3184 return -EADDRNOTAVAIL;
3185
3186 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3187 chunk = sctp_make_asconf_set_prim(asoc,
3188 (union sctp_addr *)&prim.sspp_addr);
3189 if (!chunk)
3190 return -ENOMEM;
3191
3192 err = sctp_send_asconf(asoc, chunk);
3193
3194 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3195
3196 return err;
3197 }
3198
3199 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3200 unsigned int optlen)
3201 {
3202 struct sctp_setadaptation adaptation;
3203
3204 if (optlen != sizeof(struct sctp_setadaptation))
3205 return -EINVAL;
3206 if (copy_from_user(&adaptation, optval, optlen))
3207 return -EFAULT;
3208
3209 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3210
3211 return 0;
3212 }
3213
3214 /*
3215 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3216 *
3217 * The context field in the sctp_sndrcvinfo structure is normally only
3218 * used when a failed message is retrieved holding the value that was
3219 * sent down on the actual send call. This option allows the setting of
3220 * a default context on an association basis that will be received on
3221 * reading messages from the peer. This is especially helpful in the
3222 * one-2-many model for an application to keep some reference to an
3223 * internal state machine that is processing messages on the
3224 * association. Note that the setting of this value only effects
3225 * received messages from the peer and does not effect the value that is
3226 * saved with outbound messages.
3227 */
3228 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3229 unsigned int optlen)
3230 {
3231 struct sctp_assoc_value params;
3232 struct sctp_sock *sp;
3233 struct sctp_association *asoc;
3234
3235 if (optlen != sizeof(struct sctp_assoc_value))
3236 return -EINVAL;
3237 if (copy_from_user(&params, optval, optlen))
3238 return -EFAULT;
3239
3240 sp = sctp_sk(sk);
3241
3242 if (params.assoc_id != 0) {
3243 asoc = sctp_id2assoc(sk, params.assoc_id);
3244 if (!asoc)
3245 return -EINVAL;
3246 asoc->default_rcv_context = params.assoc_value;
3247 } else {
3248 sp->default_rcv_context = params.assoc_value;
3249 }
3250
3251 return 0;
3252 }
3253
3254 /*
3255 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3256 *
3257 * This options will at a minimum specify if the implementation is doing
3258 * fragmented interleave. Fragmented interleave, for a one to many
3259 * socket, is when subsequent calls to receive a message may return
3260 * parts of messages from different associations. Some implementations
3261 * may allow you to turn this value on or off. If so, when turned off,
3262 * no fragment interleave will occur (which will cause a head of line
3263 * blocking amongst multiple associations sharing the same one to many
3264 * socket). When this option is turned on, then each receive call may
3265 * come from a different association (thus the user must receive data
3266 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3267 * association each receive belongs to.
3268 *
3269 * This option takes a boolean value. A non-zero value indicates that
3270 * fragmented interleave is on. A value of zero indicates that
3271 * fragmented interleave is off.
3272 *
3273 * Note that it is important that an implementation that allows this
3274 * option to be turned on, have it off by default. Otherwise an unaware
3275 * application using the one to many model may become confused and act
3276 * incorrectly.
3277 */
3278 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3279 char __user *optval,
3280 unsigned int optlen)
3281 {
3282 int val;
3283
3284 if (optlen != sizeof(int))
3285 return -EINVAL;
3286 if (get_user(val, (int __user *)optval))
3287 return -EFAULT;
3288
3289 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3290
3291 return 0;
3292 }
3293
3294 /*
3295 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3296 * (SCTP_PARTIAL_DELIVERY_POINT)
3297 *
3298 * This option will set or get the SCTP partial delivery point. This
3299 * point is the size of a message where the partial delivery API will be
3300 * invoked to help free up rwnd space for the peer. Setting this to a
3301 * lower value will cause partial deliveries to happen more often. The
3302 * calls argument is an integer that sets or gets the partial delivery
3303 * point. Note also that the call will fail if the user attempts to set
3304 * this value larger than the socket receive buffer size.
3305 *
3306 * Note that any single message having a length smaller than or equal to
3307 * the SCTP partial delivery point will be delivered in one single read
3308 * call as long as the user provided buffer is large enough to hold the
3309 * message.
3310 */
3311 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3312 char __user *optval,
3313 unsigned int optlen)
3314 {
3315 u32 val;
3316
3317 if (optlen != sizeof(u32))
3318 return -EINVAL;
3319 if (get_user(val, (int __user *)optval))
3320 return -EFAULT;
3321
3322 /* Note: We double the receive buffer from what the user sets
3323 * it to be, also initial rwnd is based on rcvbuf/2.
3324 */
3325 if (val > (sk->sk_rcvbuf >> 1))
3326 return -EINVAL;
3327
3328 sctp_sk(sk)->pd_point = val;
3329
3330 return 0; /* is this the right error code? */
3331 }
3332
3333 /*
3334 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3335 *
3336 * This option will allow a user to change the maximum burst of packets
3337 * that can be emitted by this association. Note that the default value
3338 * is 4, and some implementations may restrict this setting so that it
3339 * can only be lowered.
3340 *
3341 * NOTE: This text doesn't seem right. Do this on a socket basis with
3342 * future associations inheriting the socket value.
3343 */
3344 static int sctp_setsockopt_maxburst(struct sock *sk,
3345 char __user *optval,
3346 unsigned int optlen)
3347 {
3348 struct sctp_assoc_value params;
3349 struct sctp_sock *sp;
3350 struct sctp_association *asoc;
3351 int val;
3352 int assoc_id = 0;
3353
3354 if (optlen == sizeof(int)) {
3355 pr_warn_ratelimited(DEPRECATED
3356 "%s (pid %d) "
3357 "Use of int in max_burst socket option deprecated.\n"
3358 "Use struct sctp_assoc_value instead\n",
3359 current->comm, task_pid_nr(current));
3360 if (copy_from_user(&val, optval, optlen))
3361 return -EFAULT;
3362 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3363 if (copy_from_user(&params, optval, optlen))
3364 return -EFAULT;
3365 val = params.assoc_value;
3366 assoc_id = params.assoc_id;
3367 } else
3368 return -EINVAL;
3369
3370 sp = sctp_sk(sk);
3371
3372 if (assoc_id != 0) {
3373 asoc = sctp_id2assoc(sk, assoc_id);
3374 if (!asoc)
3375 return -EINVAL;
3376 asoc->max_burst = val;
3377 } else
3378 sp->max_burst = val;
3379
3380 return 0;
3381 }
3382
3383 /*
3384 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3385 *
3386 * This set option adds a chunk type that the user is requesting to be
3387 * received only in an authenticated way. Changes to the list of chunks
3388 * will only effect future associations on the socket.
3389 */
3390 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3391 char __user *optval,
3392 unsigned int optlen)
3393 {
3394 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3395 struct sctp_authchunk val;
3396
3397 if (!ep->auth_enable)
3398 return -EACCES;
3399
3400 if (optlen != sizeof(struct sctp_authchunk))
3401 return -EINVAL;
3402 if (copy_from_user(&val, optval, optlen))
3403 return -EFAULT;
3404
3405 switch (val.sauth_chunk) {
3406 case SCTP_CID_INIT:
3407 case SCTP_CID_INIT_ACK:
3408 case SCTP_CID_SHUTDOWN_COMPLETE:
3409 case SCTP_CID_AUTH:
3410 return -EINVAL;
3411 }
3412
3413 /* add this chunk id to the endpoint */
3414 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3415 }
3416
3417 /*
3418 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3419 *
3420 * This option gets or sets the list of HMAC algorithms that the local
3421 * endpoint requires the peer to use.
3422 */
3423 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3424 char __user *optval,
3425 unsigned int optlen)
3426 {
3427 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3428 struct sctp_hmacalgo *hmacs;
3429 u32 idents;
3430 int err;
3431
3432 if (!ep->auth_enable)
3433 return -EACCES;
3434
3435 if (optlen < sizeof(struct sctp_hmacalgo))
3436 return -EINVAL;
3437
3438 hmacs = memdup_user(optval, optlen);
3439 if (IS_ERR(hmacs))
3440 return PTR_ERR(hmacs);
3441
3442 idents = hmacs->shmac_num_idents;
3443 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3444 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3445 err = -EINVAL;
3446 goto out;
3447 }
3448
3449 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3450 out:
3451 kfree(hmacs);
3452 return err;
3453 }
3454
3455 /*
3456 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3457 *
3458 * This option will set a shared secret key which is used to build an
3459 * association shared key.
3460 */
3461 static int sctp_setsockopt_auth_key(struct sock *sk,
3462 char __user *optval,
3463 unsigned int optlen)
3464 {
3465 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3466 struct sctp_authkey *authkey;
3467 struct sctp_association *asoc;
3468 int ret;
3469
3470 if (!ep->auth_enable)
3471 return -EACCES;
3472
3473 if (optlen <= sizeof(struct sctp_authkey))
3474 return -EINVAL;
3475
3476 authkey = memdup_user(optval, optlen);
3477 if (IS_ERR(authkey))
3478 return PTR_ERR(authkey);
3479
3480 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3481 ret = -EINVAL;
3482 goto out;
3483 }
3484
3485 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3486 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3487 ret = -EINVAL;
3488 goto out;
3489 }
3490
3491 ret = sctp_auth_set_key(ep, asoc, authkey);
3492 out:
3493 kzfree(authkey);
3494 return ret;
3495 }
3496
3497 /*
3498 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3499 *
3500 * This option will get or set the active shared key to be used to build
3501 * the association shared key.
3502 */
3503 static int sctp_setsockopt_active_key(struct sock *sk,
3504 char __user *optval,
3505 unsigned int optlen)
3506 {
3507 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3508 struct sctp_authkeyid val;
3509 struct sctp_association *asoc;
3510
3511 if (!ep->auth_enable)
3512 return -EACCES;
3513
3514 if (optlen != sizeof(struct sctp_authkeyid))
3515 return -EINVAL;
3516 if (copy_from_user(&val, optval, optlen))
3517 return -EFAULT;
3518
3519 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3520 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3521 return -EINVAL;
3522
3523 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3524 }
3525
3526 /*
3527 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3528 *
3529 * This set option will delete a shared secret key from use.
3530 */
3531 static int sctp_setsockopt_del_key(struct sock *sk,
3532 char __user *optval,
3533 unsigned int optlen)
3534 {
3535 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3536 struct sctp_authkeyid val;
3537 struct sctp_association *asoc;
3538
3539 if (!ep->auth_enable)
3540 return -EACCES;
3541
3542 if (optlen != sizeof(struct sctp_authkeyid))
3543 return -EINVAL;
3544 if (copy_from_user(&val, optval, optlen))
3545 return -EFAULT;
3546
3547 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3548 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3549 return -EINVAL;
3550
3551 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3552
3553 }
3554
3555 /*
3556 * 8.1.23 SCTP_AUTO_ASCONF
3557 *
3558 * This option will enable or disable the use of the automatic generation of
3559 * ASCONF chunks to add and delete addresses to an existing association. Note
3560 * that this option has two caveats namely: a) it only affects sockets that
3561 * are bound to all addresses available to the SCTP stack, and b) the system
3562 * administrator may have an overriding control that turns the ASCONF feature
3563 * off no matter what setting the socket option may have.
3564 * This option expects an integer boolean flag, where a non-zero value turns on
3565 * the option, and a zero value turns off the option.
3566 * Note. In this implementation, socket operation overrides default parameter
3567 * being set by sysctl as well as FreeBSD implementation
3568 */
3569 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3570 unsigned int optlen)
3571 {
3572 int val;
3573 struct sctp_sock *sp = sctp_sk(sk);
3574
3575 if (optlen < sizeof(int))
3576 return -EINVAL;
3577 if (get_user(val, (int __user *)optval))
3578 return -EFAULT;
3579 if (!sctp_is_ep_boundall(sk) && val)
3580 return -EINVAL;
3581 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3582 return 0;
3583
3584 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3585 if (val == 0 && sp->do_auto_asconf) {
3586 list_del(&sp->auto_asconf_list);
3587 sp->do_auto_asconf = 0;
3588 } else if (val && !sp->do_auto_asconf) {
3589 list_add_tail(&sp->auto_asconf_list,
3590 &sock_net(sk)->sctp.auto_asconf_splist);
3591 sp->do_auto_asconf = 1;
3592 }
3593 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3594 return 0;
3595 }
3596
3597 /*
3598 * SCTP_PEER_ADDR_THLDS
3599 *
3600 * This option allows us to alter the partially failed threshold for one or all
3601 * transports in an association. See Section 6.1 of:
3602 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3603 */
3604 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3605 char __user *optval,
3606 unsigned int optlen)
3607 {
3608 struct sctp_paddrthlds val;
3609 struct sctp_transport *trans;
3610 struct sctp_association *asoc;
3611
3612 if (optlen < sizeof(struct sctp_paddrthlds))
3613 return -EINVAL;
3614 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3615 sizeof(struct sctp_paddrthlds)))
3616 return -EFAULT;
3617
3618
3619 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3620 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3621 if (!asoc)
3622 return -ENOENT;
3623 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3624 transports) {
3625 if (val.spt_pathmaxrxt)
3626 trans->pathmaxrxt = val.spt_pathmaxrxt;
3627 trans->pf_retrans = val.spt_pathpfthld;
3628 }
3629
3630 if (val.spt_pathmaxrxt)
3631 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3632 asoc->pf_retrans = val.spt_pathpfthld;
3633 } else {
3634 trans = sctp_addr_id2transport(sk, &val.spt_address,
3635 val.spt_assoc_id);
3636 if (!trans)
3637 return -ENOENT;
3638
3639 if (val.spt_pathmaxrxt)
3640 trans->pathmaxrxt = val.spt_pathmaxrxt;
3641 trans->pf_retrans = val.spt_pathpfthld;
3642 }
3643
3644 return 0;
3645 }
3646
3647 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3648 char __user *optval,
3649 unsigned int optlen)
3650 {
3651 int val;
3652
3653 if (optlen < sizeof(int))
3654 return -EINVAL;
3655 if (get_user(val, (int __user *) optval))
3656 return -EFAULT;
3657
3658 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3659
3660 return 0;
3661 }
3662
3663 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3664 char __user *optval,
3665 unsigned int optlen)
3666 {
3667 int val;
3668
3669 if (optlen < sizeof(int))
3670 return -EINVAL;
3671 if (get_user(val, (int __user *) optval))
3672 return -EFAULT;
3673
3674 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3675
3676 return 0;
3677 }
3678
3679 static int sctp_setsockopt_pr_supported(struct sock *sk,
3680 char __user *optval,
3681 unsigned int optlen)
3682 {
3683 struct sctp_assoc_value params;
3684 struct sctp_association *asoc;
3685 int retval = -EINVAL;
3686
3687 if (optlen != sizeof(params))
3688 goto out;
3689
3690 if (copy_from_user(&params, optval, optlen)) {
3691 retval = -EFAULT;
3692 goto out;
3693 }
3694
3695 asoc = sctp_id2assoc(sk, params.assoc_id);
3696 if (asoc) {
3697 asoc->prsctp_enable = !!params.assoc_value;
3698 } else if (!params.assoc_id) {
3699 struct sctp_sock *sp = sctp_sk(sk);
3700
3701 sp->ep->prsctp_enable = !!params.assoc_value;
3702 } else {
3703 goto out;
3704 }
3705
3706 retval = 0;
3707
3708 out:
3709 return retval;
3710 }
3711
3712 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3713 char __user *optval,
3714 unsigned int optlen)
3715 {
3716 struct sctp_default_prinfo info;
3717 struct sctp_association *asoc;
3718 int retval = -EINVAL;
3719
3720 if (optlen != sizeof(info))
3721 goto out;
3722
3723 if (copy_from_user(&info, optval, sizeof(info))) {
3724 retval = -EFAULT;
3725 goto out;
3726 }
3727
3728 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3729 goto out;
3730
3731 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3732 info.pr_value = 0;
3733
3734 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3735 if (asoc) {
3736 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3737 asoc->default_timetolive = info.pr_value;
3738 } else if (!info.pr_assoc_id) {
3739 struct sctp_sock *sp = sctp_sk(sk);
3740
3741 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3742 sp->default_timetolive = info.pr_value;
3743 } else {
3744 goto out;
3745 }
3746
3747 retval = 0;
3748
3749 out:
3750 return retval;
3751 }
3752
3753 static int sctp_setsockopt_enable_strreset(struct sock *sk,
3754 char __user *optval,
3755 unsigned int optlen)
3756 {
3757 struct sctp_assoc_value params;
3758 struct sctp_association *asoc;
3759 int retval = -EINVAL;
3760
3761 if (optlen != sizeof(params))
3762 goto out;
3763
3764 if (copy_from_user(&params, optval, optlen)) {
3765 retval = -EFAULT;
3766 goto out;
3767 }
3768
3769 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
3770 goto out;
3771
3772 asoc = sctp_id2assoc(sk, params.assoc_id);
3773 if (asoc) {
3774 asoc->strreset_enable = params.assoc_value;
3775 } else if (!params.assoc_id) {
3776 struct sctp_sock *sp = sctp_sk(sk);
3777
3778 sp->ep->strreset_enable = params.assoc_value;
3779 } else {
3780 goto out;
3781 }
3782
3783 retval = 0;
3784
3785 out:
3786 return retval;
3787 }
3788
3789 static int sctp_setsockopt_reset_streams(struct sock *sk,
3790 char __user *optval,
3791 unsigned int optlen)
3792 {
3793 struct sctp_reset_streams *params;
3794 struct sctp_association *asoc;
3795 int retval = -EINVAL;
3796
3797 if (optlen < sizeof(struct sctp_reset_streams))
3798 return -EINVAL;
3799
3800 params = memdup_user(optval, optlen);
3801 if (IS_ERR(params))
3802 return PTR_ERR(params);
3803
3804 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
3805 if (!asoc)
3806 goto out;
3807
3808 retval = sctp_send_reset_streams(asoc, params);
3809
3810 out:
3811 kfree(params);
3812 return retval;
3813 }
3814
3815 /* API 6.2 setsockopt(), getsockopt()
3816 *
3817 * Applications use setsockopt() and getsockopt() to set or retrieve
3818 * socket options. Socket options are used to change the default
3819 * behavior of sockets calls. They are described in Section 7.
3820 *
3821 * The syntax is:
3822 *
3823 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3824 * int __user *optlen);
3825 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3826 * int optlen);
3827 *
3828 * sd - the socket descript.
3829 * level - set to IPPROTO_SCTP for all SCTP options.
3830 * optname - the option name.
3831 * optval - the buffer to store the value of the option.
3832 * optlen - the size of the buffer.
3833 */
3834 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3835 char __user *optval, unsigned int optlen)
3836 {
3837 int retval = 0;
3838
3839 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3840
3841 /* I can hardly begin to describe how wrong this is. This is
3842 * so broken as to be worse than useless. The API draft
3843 * REALLY is NOT helpful here... I am not convinced that the
3844 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3845 * are at all well-founded.
3846 */
3847 if (level != SOL_SCTP) {
3848 struct sctp_af *af = sctp_sk(sk)->pf->af;
3849 retval = af->setsockopt(sk, level, optname, optval, optlen);
3850 goto out_nounlock;
3851 }
3852
3853 lock_sock(sk);
3854
3855 switch (optname) {
3856 case SCTP_SOCKOPT_BINDX_ADD:
3857 /* 'optlen' is the size of the addresses buffer. */
3858 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3859 optlen, SCTP_BINDX_ADD_ADDR);
3860 break;
3861
3862 case SCTP_SOCKOPT_BINDX_REM:
3863 /* 'optlen' is the size of the addresses buffer. */
3864 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3865 optlen, SCTP_BINDX_REM_ADDR);
3866 break;
3867
3868 case SCTP_SOCKOPT_CONNECTX_OLD:
3869 /* 'optlen' is the size of the addresses buffer. */
3870 retval = sctp_setsockopt_connectx_old(sk,
3871 (struct sockaddr __user *)optval,
3872 optlen);
3873 break;
3874
3875 case SCTP_SOCKOPT_CONNECTX:
3876 /* 'optlen' is the size of the addresses buffer. */
3877 retval = sctp_setsockopt_connectx(sk,
3878 (struct sockaddr __user *)optval,
3879 optlen);
3880 break;
3881
3882 case SCTP_DISABLE_FRAGMENTS:
3883 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3884 break;
3885
3886 case SCTP_EVENTS:
3887 retval = sctp_setsockopt_events(sk, optval, optlen);
3888 break;
3889
3890 case SCTP_AUTOCLOSE:
3891 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3892 break;
3893
3894 case SCTP_PEER_ADDR_PARAMS:
3895 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3896 break;
3897
3898 case SCTP_DELAYED_SACK:
3899 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3900 break;
3901 case SCTP_PARTIAL_DELIVERY_POINT:
3902 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3903 break;
3904
3905 case SCTP_INITMSG:
3906 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3907 break;
3908 case SCTP_DEFAULT_SEND_PARAM:
3909 retval = sctp_setsockopt_default_send_param(sk, optval,
3910 optlen);
3911 break;
3912 case SCTP_DEFAULT_SNDINFO:
3913 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3914 break;
3915 case SCTP_PRIMARY_ADDR:
3916 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3917 break;
3918 case SCTP_SET_PEER_PRIMARY_ADDR:
3919 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3920 break;
3921 case SCTP_NODELAY:
3922 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3923 break;
3924 case SCTP_RTOINFO:
3925 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3926 break;
3927 case SCTP_ASSOCINFO:
3928 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3929 break;
3930 case SCTP_I_WANT_MAPPED_V4_ADDR:
3931 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3932 break;
3933 case SCTP_MAXSEG:
3934 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3935 break;
3936 case SCTP_ADAPTATION_LAYER:
3937 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3938 break;
3939 case SCTP_CONTEXT:
3940 retval = sctp_setsockopt_context(sk, optval, optlen);
3941 break;
3942 case SCTP_FRAGMENT_INTERLEAVE:
3943 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3944 break;
3945 case SCTP_MAX_BURST:
3946 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3947 break;
3948 case SCTP_AUTH_CHUNK:
3949 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3950 break;
3951 case SCTP_HMAC_IDENT:
3952 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3953 break;
3954 case SCTP_AUTH_KEY:
3955 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3956 break;
3957 case SCTP_AUTH_ACTIVE_KEY:
3958 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3959 break;
3960 case SCTP_AUTH_DELETE_KEY:
3961 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3962 break;
3963 case SCTP_AUTO_ASCONF:
3964 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3965 break;
3966 case SCTP_PEER_ADDR_THLDS:
3967 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3968 break;
3969 case SCTP_RECVRCVINFO:
3970 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3971 break;
3972 case SCTP_RECVNXTINFO:
3973 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3974 break;
3975 case SCTP_PR_SUPPORTED:
3976 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3977 break;
3978 case SCTP_DEFAULT_PRINFO:
3979 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3980 break;
3981 case SCTP_ENABLE_STREAM_RESET:
3982 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
3983 break;
3984 case SCTP_RESET_STREAMS:
3985 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
3986 break;
3987 default:
3988 retval = -ENOPROTOOPT;
3989 break;
3990 }
3991
3992 release_sock(sk);
3993
3994 out_nounlock:
3995 return retval;
3996 }
3997
3998 /* API 3.1.6 connect() - UDP Style Syntax
3999 *
4000 * An application may use the connect() call in the UDP model to initiate an
4001 * association without sending data.
4002 *
4003 * The syntax is:
4004 *
4005 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4006 *
4007 * sd: the socket descriptor to have a new association added to.
4008 *
4009 * nam: the address structure (either struct sockaddr_in or struct
4010 * sockaddr_in6 defined in RFC2553 [7]).
4011 *
4012 * len: the size of the address.
4013 */
4014 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4015 int addr_len)
4016 {
4017 int err = 0;
4018 struct sctp_af *af;
4019
4020 lock_sock(sk);
4021
4022 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4023 addr, addr_len);
4024
4025 /* Validate addr_len before calling common connect/connectx routine. */
4026 af = sctp_get_af_specific(addr->sa_family);
4027 if (!af || addr_len < af->sockaddr_len) {
4028 err = -EINVAL;
4029 } else {
4030 /* Pass correct addr len to common routine (so it knows there
4031 * is only one address being passed.
4032 */
4033 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
4034 }
4035
4036 release_sock(sk);
4037 return err;
4038 }
4039
4040 /* FIXME: Write comments. */
4041 static int sctp_disconnect(struct sock *sk, int flags)
4042 {
4043 return -EOPNOTSUPP; /* STUB */
4044 }
4045
4046 /* 4.1.4 accept() - TCP Style Syntax
4047 *
4048 * Applications use accept() call to remove an established SCTP
4049 * association from the accept queue of the endpoint. A new socket
4050 * descriptor will be returned from accept() to represent the newly
4051 * formed association.
4052 */
4053 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
4054 {
4055 struct sctp_sock *sp;
4056 struct sctp_endpoint *ep;
4057 struct sock *newsk = NULL;
4058 struct sctp_association *asoc;
4059 long timeo;
4060 int error = 0;
4061
4062 lock_sock(sk);
4063
4064 sp = sctp_sk(sk);
4065 ep = sp->ep;
4066
4067 if (!sctp_style(sk, TCP)) {
4068 error = -EOPNOTSUPP;
4069 goto out;
4070 }
4071
4072 if (!sctp_sstate(sk, LISTENING)) {
4073 error = -EINVAL;
4074 goto out;
4075 }
4076
4077 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4078
4079 error = sctp_wait_for_accept(sk, timeo);
4080 if (error)
4081 goto out;
4082
4083 /* We treat the list of associations on the endpoint as the accept
4084 * queue and pick the first association on the list.
4085 */
4086 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4087
4088 newsk = sp->pf->create_accept_sk(sk, asoc);
4089 if (!newsk) {
4090 error = -ENOMEM;
4091 goto out;
4092 }
4093
4094 /* Populate the fields of the newsk from the oldsk and migrate the
4095 * asoc to the newsk.
4096 */
4097 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4098
4099 out:
4100 release_sock(sk);
4101 *err = error;
4102 return newsk;
4103 }
4104
4105 /* The SCTP ioctl handler. */
4106 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4107 {
4108 int rc = -ENOTCONN;
4109
4110 lock_sock(sk);
4111
4112 /*
4113 * SEQPACKET-style sockets in LISTENING state are valid, for
4114 * SCTP, so only discard TCP-style sockets in LISTENING state.
4115 */
4116 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4117 goto out;
4118
4119 switch (cmd) {
4120 case SIOCINQ: {
4121 struct sk_buff *skb;
4122 unsigned int amount = 0;
4123
4124 skb = skb_peek(&sk->sk_receive_queue);
4125 if (skb != NULL) {
4126 /*
4127 * We will only return the amount of this packet since
4128 * that is all that will be read.
4129 */
4130 amount = skb->len;
4131 }
4132 rc = put_user(amount, (int __user *)arg);
4133 break;
4134 }
4135 default:
4136 rc = -ENOIOCTLCMD;
4137 break;
4138 }
4139 out:
4140 release_sock(sk);
4141 return rc;
4142 }
4143
4144 /* This is the function which gets called during socket creation to
4145 * initialized the SCTP-specific portion of the sock.
4146 * The sock structure should already be zero-filled memory.
4147 */
4148 static int sctp_init_sock(struct sock *sk)
4149 {
4150 struct net *net = sock_net(sk);
4151 struct sctp_sock *sp;
4152
4153 pr_debug("%s: sk:%p\n", __func__, sk);
4154
4155 sp = sctp_sk(sk);
4156
4157 /* Initialize the SCTP per socket area. */
4158 switch (sk->sk_type) {
4159 case SOCK_SEQPACKET:
4160 sp->type = SCTP_SOCKET_UDP;
4161 break;
4162 case SOCK_STREAM:
4163 sp->type = SCTP_SOCKET_TCP;
4164 break;
4165 default:
4166 return -ESOCKTNOSUPPORT;
4167 }
4168
4169 sk->sk_gso_type = SKB_GSO_SCTP;
4170
4171 /* Initialize default send parameters. These parameters can be
4172 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4173 */
4174 sp->default_stream = 0;
4175 sp->default_ppid = 0;
4176 sp->default_flags = 0;
4177 sp->default_context = 0;
4178 sp->default_timetolive = 0;
4179
4180 sp->default_rcv_context = 0;
4181 sp->max_burst = net->sctp.max_burst;
4182
4183 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4184
4185 /* Initialize default setup parameters. These parameters
4186 * can be modified with the SCTP_INITMSG socket option or
4187 * overridden by the SCTP_INIT CMSG.
4188 */
4189 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4190 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4191 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4192 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4193
4194 /* Initialize default RTO related parameters. These parameters can
4195 * be modified for with the SCTP_RTOINFO socket option.
4196 */
4197 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4198 sp->rtoinfo.srto_max = net->sctp.rto_max;
4199 sp->rtoinfo.srto_min = net->sctp.rto_min;
4200
4201 /* Initialize default association related parameters. These parameters
4202 * can be modified with the SCTP_ASSOCINFO socket option.
4203 */
4204 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4205 sp->assocparams.sasoc_number_peer_destinations = 0;
4206 sp->assocparams.sasoc_peer_rwnd = 0;
4207 sp->assocparams.sasoc_local_rwnd = 0;
4208 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4209
4210 /* Initialize default event subscriptions. By default, all the
4211 * options are off.
4212 */
4213 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4214
4215 /* Default Peer Address Parameters. These defaults can
4216 * be modified via SCTP_PEER_ADDR_PARAMS
4217 */
4218 sp->hbinterval = net->sctp.hb_interval;
4219 sp->pathmaxrxt = net->sctp.max_retrans_path;
4220 sp->pathmtu = 0; /* allow default discovery */
4221 sp->sackdelay = net->sctp.sack_timeout;
4222 sp->sackfreq = 2;
4223 sp->param_flags = SPP_HB_ENABLE |
4224 SPP_PMTUD_ENABLE |
4225 SPP_SACKDELAY_ENABLE;
4226
4227 /* If enabled no SCTP message fragmentation will be performed.
4228 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4229 */
4230 sp->disable_fragments = 0;
4231
4232 /* Enable Nagle algorithm by default. */
4233 sp->nodelay = 0;
4234
4235 sp->recvrcvinfo = 0;
4236 sp->recvnxtinfo = 0;
4237
4238 /* Enable by default. */
4239 sp->v4mapped = 1;
4240
4241 /* Auto-close idle associations after the configured
4242 * number of seconds. A value of 0 disables this
4243 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4244 * for UDP-style sockets only.
4245 */
4246 sp->autoclose = 0;
4247
4248 /* User specified fragmentation limit. */
4249 sp->user_frag = 0;
4250
4251 sp->adaptation_ind = 0;
4252
4253 sp->pf = sctp_get_pf_specific(sk->sk_family);
4254
4255 /* Control variables for partial data delivery. */
4256 atomic_set(&sp->pd_mode, 0);
4257 skb_queue_head_init(&sp->pd_lobby);
4258 sp->frag_interleave = 0;
4259
4260 /* Create a per socket endpoint structure. Even if we
4261 * change the data structure relationships, this may still
4262 * be useful for storing pre-connect address information.
4263 */
4264 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4265 if (!sp->ep)
4266 return -ENOMEM;
4267
4268 sp->hmac = NULL;
4269
4270 sk->sk_destruct = sctp_destruct_sock;
4271
4272 SCTP_DBG_OBJCNT_INC(sock);
4273
4274 local_bh_disable();
4275 percpu_counter_inc(&sctp_sockets_allocated);
4276 sock_prot_inuse_add(net, sk->sk_prot, 1);
4277
4278 /* Nothing can fail after this block, otherwise
4279 * sctp_destroy_sock() will be called without addr_wq_lock held
4280 */
4281 if (net->sctp.default_auto_asconf) {
4282 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4283 list_add_tail(&sp->auto_asconf_list,
4284 &net->sctp.auto_asconf_splist);
4285 sp->do_auto_asconf = 1;
4286 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4287 } else {
4288 sp->do_auto_asconf = 0;
4289 }
4290
4291 local_bh_enable();
4292
4293 return 0;
4294 }
4295
4296 /* Cleanup any SCTP per socket resources. Must be called with
4297 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4298 */
4299 static void sctp_destroy_sock(struct sock *sk)
4300 {
4301 struct sctp_sock *sp;
4302
4303 pr_debug("%s: sk:%p\n", __func__, sk);
4304
4305 /* Release our hold on the endpoint. */
4306 sp = sctp_sk(sk);
4307 /* This could happen during socket init, thus we bail out
4308 * early, since the rest of the below is not setup either.
4309 */
4310 if (sp->ep == NULL)
4311 return;
4312
4313 if (sp->do_auto_asconf) {
4314 sp->do_auto_asconf = 0;
4315 list_del(&sp->auto_asconf_list);
4316 }
4317 sctp_endpoint_free(sp->ep);
4318 local_bh_disable();
4319 percpu_counter_dec(&sctp_sockets_allocated);
4320 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4321 local_bh_enable();
4322 }
4323
4324 /* Triggered when there are no references on the socket anymore */
4325 static void sctp_destruct_sock(struct sock *sk)
4326 {
4327 struct sctp_sock *sp = sctp_sk(sk);
4328
4329 /* Free up the HMAC transform. */
4330 crypto_free_shash(sp->hmac);
4331
4332 inet_sock_destruct(sk);
4333 }
4334
4335 /* API 4.1.7 shutdown() - TCP Style Syntax
4336 * int shutdown(int socket, int how);
4337 *
4338 * sd - the socket descriptor of the association to be closed.
4339 * how - Specifies the type of shutdown. The values are
4340 * as follows:
4341 * SHUT_RD
4342 * Disables further receive operations. No SCTP
4343 * protocol action is taken.
4344 * SHUT_WR
4345 * Disables further send operations, and initiates
4346 * the SCTP shutdown sequence.
4347 * SHUT_RDWR
4348 * Disables further send and receive operations
4349 * and initiates the SCTP shutdown sequence.
4350 */
4351 static void sctp_shutdown(struct sock *sk, int how)
4352 {
4353 struct net *net = sock_net(sk);
4354 struct sctp_endpoint *ep;
4355
4356 if (!sctp_style(sk, TCP))
4357 return;
4358
4359 ep = sctp_sk(sk)->ep;
4360 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4361 struct sctp_association *asoc;
4362
4363 sk->sk_state = SCTP_SS_CLOSING;
4364 asoc = list_entry(ep->asocs.next,
4365 struct sctp_association, asocs);
4366 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4367 }
4368 }
4369
4370 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4371 struct sctp_info *info)
4372 {
4373 struct sctp_transport *prim;
4374 struct list_head *pos;
4375 int mask;
4376
4377 memset(info, 0, sizeof(*info));
4378 if (!asoc) {
4379 struct sctp_sock *sp = sctp_sk(sk);
4380
4381 info->sctpi_s_autoclose = sp->autoclose;
4382 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4383 info->sctpi_s_pd_point = sp->pd_point;
4384 info->sctpi_s_nodelay = sp->nodelay;
4385 info->sctpi_s_disable_fragments = sp->disable_fragments;
4386 info->sctpi_s_v4mapped = sp->v4mapped;
4387 info->sctpi_s_frag_interleave = sp->frag_interleave;
4388 info->sctpi_s_type = sp->type;
4389
4390 return 0;
4391 }
4392
4393 info->sctpi_tag = asoc->c.my_vtag;
4394 info->sctpi_state = asoc->state;
4395 info->sctpi_rwnd = asoc->a_rwnd;
4396 info->sctpi_unackdata = asoc->unack_data;
4397 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4398 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4399 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4400 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4401 info->sctpi_inqueue++;
4402 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4403 info->sctpi_outqueue++;
4404 info->sctpi_overall_error = asoc->overall_error_count;
4405 info->sctpi_max_burst = asoc->max_burst;
4406 info->sctpi_maxseg = asoc->frag_point;
4407 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4408 info->sctpi_peer_tag = asoc->c.peer_vtag;
4409
4410 mask = asoc->peer.ecn_capable << 1;
4411 mask = (mask | asoc->peer.ipv4_address) << 1;
4412 mask = (mask | asoc->peer.ipv6_address) << 1;
4413 mask = (mask | asoc->peer.hostname_address) << 1;
4414 mask = (mask | asoc->peer.asconf_capable) << 1;
4415 mask = (mask | asoc->peer.prsctp_capable) << 1;
4416 mask = (mask | asoc->peer.auth_capable);
4417 info->sctpi_peer_capable = mask;
4418 mask = asoc->peer.sack_needed << 1;
4419 mask = (mask | asoc->peer.sack_generation) << 1;
4420 mask = (mask | asoc->peer.zero_window_announced);
4421 info->sctpi_peer_sack = mask;
4422
4423 info->sctpi_isacks = asoc->stats.isacks;
4424 info->sctpi_osacks = asoc->stats.osacks;
4425 info->sctpi_opackets = asoc->stats.opackets;
4426 info->sctpi_ipackets = asoc->stats.ipackets;
4427 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4428 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4429 info->sctpi_idupchunks = asoc->stats.idupchunks;
4430 info->sctpi_gapcnt = asoc->stats.gapcnt;
4431 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4432 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4433 info->sctpi_oodchunks = asoc->stats.oodchunks;
4434 info->sctpi_iodchunks = asoc->stats.iodchunks;
4435 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4436 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4437
4438 prim = asoc->peer.primary_path;
4439 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4440 sizeof(struct sockaddr_storage));
4441 info->sctpi_p_state = prim->state;
4442 info->sctpi_p_cwnd = prim->cwnd;
4443 info->sctpi_p_srtt = prim->srtt;
4444 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4445 info->sctpi_p_hbinterval = prim->hbinterval;
4446 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4447 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4448 info->sctpi_p_ssthresh = prim->ssthresh;
4449 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4450 info->sctpi_p_flight_size = prim->flight_size;
4451 info->sctpi_p_error = prim->error_count;
4452
4453 return 0;
4454 }
4455 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4456
4457 /* use callback to avoid exporting the core structure */
4458 int sctp_transport_walk_start(struct rhashtable_iter *iter)
4459 {
4460 int err;
4461
4462 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4463
4464 err = rhashtable_walk_start(iter);
4465 if (err && err != -EAGAIN) {
4466 rhashtable_walk_stop(iter);
4467 rhashtable_walk_exit(iter);
4468 return err;
4469 }
4470
4471 return 0;
4472 }
4473
4474 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4475 {
4476 rhashtable_walk_stop(iter);
4477 rhashtable_walk_exit(iter);
4478 }
4479
4480 struct sctp_transport *sctp_transport_get_next(struct net *net,
4481 struct rhashtable_iter *iter)
4482 {
4483 struct sctp_transport *t;
4484
4485 t = rhashtable_walk_next(iter);
4486 for (; t; t = rhashtable_walk_next(iter)) {
4487 if (IS_ERR(t)) {
4488 if (PTR_ERR(t) == -EAGAIN)
4489 continue;
4490 break;
4491 }
4492
4493 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4494 t->asoc->peer.primary_path == t)
4495 break;
4496 }
4497
4498 return t;
4499 }
4500
4501 struct sctp_transport *sctp_transport_get_idx(struct net *net,
4502 struct rhashtable_iter *iter,
4503 int pos)
4504 {
4505 void *obj = SEQ_START_TOKEN;
4506
4507 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4508 !IS_ERR(obj))
4509 pos--;
4510
4511 return obj;
4512 }
4513
4514 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4515 void *p) {
4516 int err = 0;
4517 int hash = 0;
4518 struct sctp_ep_common *epb;
4519 struct sctp_hashbucket *head;
4520
4521 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4522 hash++, head++) {
4523 read_lock(&head->lock);
4524 sctp_for_each_hentry(epb, &head->chain) {
4525 err = cb(sctp_ep(epb), p);
4526 if (err)
4527 break;
4528 }
4529 read_unlock(&head->lock);
4530 }
4531
4532 return err;
4533 }
4534 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4535
4536 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4537 struct net *net,
4538 const union sctp_addr *laddr,
4539 const union sctp_addr *paddr, void *p)
4540 {
4541 struct sctp_transport *transport;
4542 int err;
4543
4544 rcu_read_lock();
4545 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4546 rcu_read_unlock();
4547 if (!transport)
4548 return -ENOENT;
4549
4550 err = cb(transport, p);
4551 sctp_transport_put(transport);
4552
4553 return err;
4554 }
4555 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4556
4557 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4558 struct net *net, int pos, void *p) {
4559 struct rhashtable_iter hti;
4560 void *obj;
4561 int err;
4562
4563 err = sctp_transport_walk_start(&hti);
4564 if (err)
4565 return err;
4566
4567 sctp_transport_get_idx(net, &hti, pos);
4568 obj = sctp_transport_get_next(net, &hti);
4569 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4570 struct sctp_transport *transport = obj;
4571
4572 if (!sctp_transport_hold(transport))
4573 continue;
4574 err = cb(transport, p);
4575 sctp_transport_put(transport);
4576 if (err)
4577 break;
4578 }
4579 sctp_transport_walk_stop(&hti);
4580
4581 return err;
4582 }
4583 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4584
4585 /* 7.2.1 Association Status (SCTP_STATUS)
4586
4587 * Applications can retrieve current status information about an
4588 * association, including association state, peer receiver window size,
4589 * number of unacked data chunks, and number of data chunks pending
4590 * receipt. This information is read-only.
4591 */
4592 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4593 char __user *optval,
4594 int __user *optlen)
4595 {
4596 struct sctp_status status;
4597 struct sctp_association *asoc = NULL;
4598 struct sctp_transport *transport;
4599 sctp_assoc_t associd;
4600 int retval = 0;
4601
4602 if (len < sizeof(status)) {
4603 retval = -EINVAL;
4604 goto out;
4605 }
4606
4607 len = sizeof(status);
4608 if (copy_from_user(&status, optval, len)) {
4609 retval = -EFAULT;
4610 goto out;
4611 }
4612
4613 associd = status.sstat_assoc_id;
4614 asoc = sctp_id2assoc(sk, associd);
4615 if (!asoc) {
4616 retval = -EINVAL;
4617 goto out;
4618 }
4619
4620 transport = asoc->peer.primary_path;
4621
4622 status.sstat_assoc_id = sctp_assoc2id(asoc);
4623 status.sstat_state = sctp_assoc_to_state(asoc);
4624 status.sstat_rwnd = asoc->peer.rwnd;
4625 status.sstat_unackdata = asoc->unack_data;
4626
4627 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4628 status.sstat_instrms = asoc->c.sinit_max_instreams;
4629 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4630 status.sstat_fragmentation_point = asoc->frag_point;
4631 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4632 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4633 transport->af_specific->sockaddr_len);
4634 /* Map ipv4 address into v4-mapped-on-v6 address. */
4635 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4636 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4637 status.sstat_primary.spinfo_state = transport->state;
4638 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4639 status.sstat_primary.spinfo_srtt = transport->srtt;
4640 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4641 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4642
4643 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4644 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4645
4646 if (put_user(len, optlen)) {
4647 retval = -EFAULT;
4648 goto out;
4649 }
4650
4651 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4652 __func__, len, status.sstat_state, status.sstat_rwnd,
4653 status.sstat_assoc_id);
4654
4655 if (copy_to_user(optval, &status, len)) {
4656 retval = -EFAULT;
4657 goto out;
4658 }
4659
4660 out:
4661 return retval;
4662 }
4663
4664
4665 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4666 *
4667 * Applications can retrieve information about a specific peer address
4668 * of an association, including its reachability state, congestion
4669 * window, and retransmission timer values. This information is
4670 * read-only.
4671 */
4672 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4673 char __user *optval,
4674 int __user *optlen)
4675 {
4676 struct sctp_paddrinfo pinfo;
4677 struct sctp_transport *transport;
4678 int retval = 0;
4679
4680 if (len < sizeof(pinfo)) {
4681 retval = -EINVAL;
4682 goto out;
4683 }
4684
4685 len = sizeof(pinfo);
4686 if (copy_from_user(&pinfo, optval, len)) {
4687 retval = -EFAULT;
4688 goto out;
4689 }
4690
4691 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4692 pinfo.spinfo_assoc_id);
4693 if (!transport)
4694 return -EINVAL;
4695
4696 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4697 pinfo.spinfo_state = transport->state;
4698 pinfo.spinfo_cwnd = transport->cwnd;
4699 pinfo.spinfo_srtt = transport->srtt;
4700 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4701 pinfo.spinfo_mtu = transport->pathmtu;
4702
4703 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4704 pinfo.spinfo_state = SCTP_ACTIVE;
4705
4706 if (put_user(len, optlen)) {
4707 retval = -EFAULT;
4708 goto out;
4709 }
4710
4711 if (copy_to_user(optval, &pinfo, len)) {
4712 retval = -EFAULT;
4713 goto out;
4714 }
4715
4716 out:
4717 return retval;
4718 }
4719
4720 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4721 *
4722 * This option is a on/off flag. If enabled no SCTP message
4723 * fragmentation will be performed. Instead if a message being sent
4724 * exceeds the current PMTU size, the message will NOT be sent and
4725 * instead a error will be indicated to the user.
4726 */
4727 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4728 char __user *optval, int __user *optlen)
4729 {
4730 int val;
4731
4732 if (len < sizeof(int))
4733 return -EINVAL;
4734
4735 len = sizeof(int);
4736 val = (sctp_sk(sk)->disable_fragments == 1);
4737 if (put_user(len, optlen))
4738 return -EFAULT;
4739 if (copy_to_user(optval, &val, len))
4740 return -EFAULT;
4741 return 0;
4742 }
4743
4744 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4745 *
4746 * This socket option is used to specify various notifications and
4747 * ancillary data the user wishes to receive.
4748 */
4749 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4750 int __user *optlen)
4751 {
4752 if (len == 0)
4753 return -EINVAL;
4754 if (len > sizeof(struct sctp_event_subscribe))
4755 len = sizeof(struct sctp_event_subscribe);
4756 if (put_user(len, optlen))
4757 return -EFAULT;
4758 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4759 return -EFAULT;
4760 return 0;
4761 }
4762
4763 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4764 *
4765 * This socket option is applicable to the UDP-style socket only. When
4766 * set it will cause associations that are idle for more than the
4767 * specified number of seconds to automatically close. An association
4768 * being idle is defined an association that has NOT sent or received
4769 * user data. The special value of '0' indicates that no automatic
4770 * close of any associations should be performed. The option expects an
4771 * integer defining the number of seconds of idle time before an
4772 * association is closed.
4773 */
4774 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4775 {
4776 /* Applicable to UDP-style socket only */
4777 if (sctp_style(sk, TCP))
4778 return -EOPNOTSUPP;
4779 if (len < sizeof(int))
4780 return -EINVAL;
4781 len = sizeof(int);
4782 if (put_user(len, optlen))
4783 return -EFAULT;
4784 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4785 return -EFAULT;
4786 return 0;
4787 }
4788
4789 /* Helper routine to branch off an association to a new socket. */
4790 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4791 {
4792 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4793 struct sctp_sock *sp = sctp_sk(sk);
4794 struct socket *sock;
4795 int err = 0;
4796
4797 if (!asoc)
4798 return -EINVAL;
4799
4800 /* An association cannot be branched off from an already peeled-off
4801 * socket, nor is this supported for tcp style sockets.
4802 */
4803 if (!sctp_style(sk, UDP))
4804 return -EINVAL;
4805
4806 /* Create a new socket. */
4807 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4808 if (err < 0)
4809 return err;
4810
4811 sctp_copy_sock(sock->sk, sk, asoc);
4812
4813 /* Make peeled-off sockets more like 1-1 accepted sockets.
4814 * Set the daddr and initialize id to something more random
4815 */
4816 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4817
4818 /* Populate the fields of the newsk from the oldsk and migrate the
4819 * asoc to the newsk.
4820 */
4821 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4822
4823 *sockp = sock;
4824
4825 return err;
4826 }
4827 EXPORT_SYMBOL(sctp_do_peeloff);
4828
4829 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4830 {
4831 sctp_peeloff_arg_t peeloff;
4832 struct socket *newsock;
4833 struct file *newfile;
4834 int retval = 0;
4835
4836 if (len < sizeof(sctp_peeloff_arg_t))
4837 return -EINVAL;
4838 len = sizeof(sctp_peeloff_arg_t);
4839 if (copy_from_user(&peeloff, optval, len))
4840 return -EFAULT;
4841
4842 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4843 if (retval < 0)
4844 goto out;
4845
4846 /* Map the socket to an unused fd that can be returned to the user. */
4847 retval = get_unused_fd_flags(0);
4848 if (retval < 0) {
4849 sock_release(newsock);
4850 goto out;
4851 }
4852
4853 newfile = sock_alloc_file(newsock, 0, NULL);
4854 if (IS_ERR(newfile)) {
4855 put_unused_fd(retval);
4856 sock_release(newsock);
4857 return PTR_ERR(newfile);
4858 }
4859
4860 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4861 retval);
4862
4863 /* Return the fd mapped to the new socket. */
4864 if (put_user(len, optlen)) {
4865 fput(newfile);
4866 put_unused_fd(retval);
4867 return -EFAULT;
4868 }
4869 peeloff.sd = retval;
4870 if (copy_to_user(optval, &peeloff, len)) {
4871 fput(newfile);
4872 put_unused_fd(retval);
4873 return -EFAULT;
4874 }
4875 fd_install(retval, newfile);
4876 out:
4877 return retval;
4878 }
4879
4880 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4881 *
4882 * Applications can enable or disable heartbeats for any peer address of
4883 * an association, modify an address's heartbeat interval, force a
4884 * heartbeat to be sent immediately, and adjust the address's maximum
4885 * number of retransmissions sent before an address is considered
4886 * unreachable. The following structure is used to access and modify an
4887 * address's parameters:
4888 *
4889 * struct sctp_paddrparams {
4890 * sctp_assoc_t spp_assoc_id;
4891 * struct sockaddr_storage spp_address;
4892 * uint32_t spp_hbinterval;
4893 * uint16_t spp_pathmaxrxt;
4894 * uint32_t spp_pathmtu;
4895 * uint32_t spp_sackdelay;
4896 * uint32_t spp_flags;
4897 * };
4898 *
4899 * spp_assoc_id - (one-to-many style socket) This is filled in the
4900 * application, and identifies the association for
4901 * this query.
4902 * spp_address - This specifies which address is of interest.
4903 * spp_hbinterval - This contains the value of the heartbeat interval,
4904 * in milliseconds. If a value of zero
4905 * is present in this field then no changes are to
4906 * be made to this parameter.
4907 * spp_pathmaxrxt - This contains the maximum number of
4908 * retransmissions before this address shall be
4909 * considered unreachable. If a value of zero
4910 * is present in this field then no changes are to
4911 * be made to this parameter.
4912 * spp_pathmtu - When Path MTU discovery is disabled the value
4913 * specified here will be the "fixed" path mtu.
4914 * Note that if the spp_address field is empty
4915 * then all associations on this address will
4916 * have this fixed path mtu set upon them.
4917 *
4918 * spp_sackdelay - When delayed sack is enabled, this value specifies
4919 * the number of milliseconds that sacks will be delayed
4920 * for. This value will apply to all addresses of an
4921 * association if the spp_address field is empty. Note
4922 * also, that if delayed sack is enabled and this
4923 * value is set to 0, no change is made to the last
4924 * recorded delayed sack timer value.
4925 *
4926 * spp_flags - These flags are used to control various features
4927 * on an association. The flag field may contain
4928 * zero or more of the following options.
4929 *
4930 * SPP_HB_ENABLE - Enable heartbeats on the
4931 * specified address. Note that if the address
4932 * field is empty all addresses for the association
4933 * have heartbeats enabled upon them.
4934 *
4935 * SPP_HB_DISABLE - Disable heartbeats on the
4936 * speicifed address. Note that if the address
4937 * field is empty all addresses for the association
4938 * will have their heartbeats disabled. Note also
4939 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4940 * mutually exclusive, only one of these two should
4941 * be specified. Enabling both fields will have
4942 * undetermined results.
4943 *
4944 * SPP_HB_DEMAND - Request a user initiated heartbeat
4945 * to be made immediately.
4946 *
4947 * SPP_PMTUD_ENABLE - This field will enable PMTU
4948 * discovery upon the specified address. Note that
4949 * if the address feild is empty then all addresses
4950 * on the association are effected.
4951 *
4952 * SPP_PMTUD_DISABLE - This field will disable PMTU
4953 * discovery upon the specified address. Note that
4954 * if the address feild is empty then all addresses
4955 * on the association are effected. Not also that
4956 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4957 * exclusive. Enabling both will have undetermined
4958 * results.
4959 *
4960 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4961 * on delayed sack. The time specified in spp_sackdelay
4962 * is used to specify the sack delay for this address. Note
4963 * that if spp_address is empty then all addresses will
4964 * enable delayed sack and take on the sack delay
4965 * value specified in spp_sackdelay.
4966 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4967 * off delayed sack. If the spp_address field is blank then
4968 * delayed sack is disabled for the entire association. Note
4969 * also that this field is mutually exclusive to
4970 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4971 * results.
4972 */
4973 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4974 char __user *optval, int __user *optlen)
4975 {
4976 struct sctp_paddrparams params;
4977 struct sctp_transport *trans = NULL;
4978 struct sctp_association *asoc = NULL;
4979 struct sctp_sock *sp = sctp_sk(sk);
4980
4981 if (len < sizeof(struct sctp_paddrparams))
4982 return -EINVAL;
4983 len = sizeof(struct sctp_paddrparams);
4984 if (copy_from_user(&params, optval, len))
4985 return -EFAULT;
4986
4987 /* If an address other than INADDR_ANY is specified, and
4988 * no transport is found, then the request is invalid.
4989 */
4990 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4991 trans = sctp_addr_id2transport(sk, &params.spp_address,
4992 params.spp_assoc_id);
4993 if (!trans) {
4994 pr_debug("%s: failed no transport\n", __func__);
4995 return -EINVAL;
4996 }
4997 }
4998
4999 /* Get association, if assoc_id != 0 and the socket is a one
5000 * to many style socket, and an association was not found, then
5001 * the id was invalid.
5002 */
5003 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5004 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5005 pr_debug("%s: failed no association\n", __func__);
5006 return -EINVAL;
5007 }
5008
5009 if (trans) {
5010 /* Fetch transport values. */
5011 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5012 params.spp_pathmtu = trans->pathmtu;
5013 params.spp_pathmaxrxt = trans->pathmaxrxt;
5014 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5015
5016 /*draft-11 doesn't say what to return in spp_flags*/
5017 params.spp_flags = trans->param_flags;
5018 } else if (asoc) {
5019 /* Fetch association values. */
5020 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5021 params.spp_pathmtu = asoc->pathmtu;
5022 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5023 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5024
5025 /*draft-11 doesn't say what to return in spp_flags*/
5026 params.spp_flags = asoc->param_flags;
5027 } else {
5028 /* Fetch socket values. */
5029 params.spp_hbinterval = sp->hbinterval;
5030 params.spp_pathmtu = sp->pathmtu;
5031 params.spp_sackdelay = sp->sackdelay;
5032 params.spp_pathmaxrxt = sp->pathmaxrxt;
5033
5034 /*draft-11 doesn't say what to return in spp_flags*/
5035 params.spp_flags = sp->param_flags;
5036 }
5037
5038 if (copy_to_user(optval, &params, len))
5039 return -EFAULT;
5040
5041 if (put_user(len, optlen))
5042 return -EFAULT;
5043
5044 return 0;
5045 }
5046
5047 /*
5048 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5049 *
5050 * This option will effect the way delayed acks are performed. This
5051 * option allows you to get or set the delayed ack time, in
5052 * milliseconds. It also allows changing the delayed ack frequency.
5053 * Changing the frequency to 1 disables the delayed sack algorithm. If
5054 * the assoc_id is 0, then this sets or gets the endpoints default
5055 * values. If the assoc_id field is non-zero, then the set or get
5056 * effects the specified association for the one to many model (the
5057 * assoc_id field is ignored by the one to one model). Note that if
5058 * sack_delay or sack_freq are 0 when setting this option, then the
5059 * current values will remain unchanged.
5060 *
5061 * struct sctp_sack_info {
5062 * sctp_assoc_t sack_assoc_id;
5063 * uint32_t sack_delay;
5064 * uint32_t sack_freq;
5065 * };
5066 *
5067 * sack_assoc_id - This parameter, indicates which association the user
5068 * is performing an action upon. Note that if this field's value is
5069 * zero then the endpoints default value is changed (effecting future
5070 * associations only).
5071 *
5072 * sack_delay - This parameter contains the number of milliseconds that
5073 * the user is requesting the delayed ACK timer be set to. Note that
5074 * this value is defined in the standard to be between 200 and 500
5075 * milliseconds.
5076 *
5077 * sack_freq - This parameter contains the number of packets that must
5078 * be received before a sack is sent without waiting for the delay
5079 * timer to expire. The default value for this is 2, setting this
5080 * value to 1 will disable the delayed sack algorithm.
5081 */
5082 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5083 char __user *optval,
5084 int __user *optlen)
5085 {
5086 struct sctp_sack_info params;
5087 struct sctp_association *asoc = NULL;
5088 struct sctp_sock *sp = sctp_sk(sk);
5089
5090 if (len >= sizeof(struct sctp_sack_info)) {
5091 len = sizeof(struct sctp_sack_info);
5092
5093 if (copy_from_user(&params, optval, len))
5094 return -EFAULT;
5095 } else if (len == sizeof(struct sctp_assoc_value)) {
5096 pr_warn_ratelimited(DEPRECATED
5097 "%s (pid %d) "
5098 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5099 "Use struct sctp_sack_info instead\n",
5100 current->comm, task_pid_nr(current));
5101 if (copy_from_user(&params, optval, len))
5102 return -EFAULT;
5103 } else
5104 return -EINVAL;
5105
5106 /* Get association, if sack_assoc_id != 0 and the socket is a one
5107 * to many style socket, and an association was not found, then
5108 * the id was invalid.
5109 */
5110 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5111 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5112 return -EINVAL;
5113
5114 if (asoc) {
5115 /* Fetch association values. */
5116 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5117 params.sack_delay = jiffies_to_msecs(
5118 asoc->sackdelay);
5119 params.sack_freq = asoc->sackfreq;
5120
5121 } else {
5122 params.sack_delay = 0;
5123 params.sack_freq = 1;
5124 }
5125 } else {
5126 /* Fetch socket values. */
5127 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5128 params.sack_delay = sp->sackdelay;
5129 params.sack_freq = sp->sackfreq;
5130 } else {
5131 params.sack_delay = 0;
5132 params.sack_freq = 1;
5133 }
5134 }
5135
5136 if (copy_to_user(optval, &params, len))
5137 return -EFAULT;
5138
5139 if (put_user(len, optlen))
5140 return -EFAULT;
5141
5142 return 0;
5143 }
5144
5145 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5146 *
5147 * Applications can specify protocol parameters for the default association
5148 * initialization. The option name argument to setsockopt() and getsockopt()
5149 * is SCTP_INITMSG.
5150 *
5151 * Setting initialization parameters is effective only on an unconnected
5152 * socket (for UDP-style sockets only future associations are effected
5153 * by the change). With TCP-style sockets, this option is inherited by
5154 * sockets derived from a listener socket.
5155 */
5156 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5157 {
5158 if (len < sizeof(struct sctp_initmsg))
5159 return -EINVAL;
5160 len = sizeof(struct sctp_initmsg);
5161 if (put_user(len, optlen))
5162 return -EFAULT;
5163 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5164 return -EFAULT;
5165 return 0;
5166 }
5167
5168
5169 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5170 char __user *optval, int __user *optlen)
5171 {
5172 struct sctp_association *asoc;
5173 int cnt = 0;
5174 struct sctp_getaddrs getaddrs;
5175 struct sctp_transport *from;
5176 void __user *to;
5177 union sctp_addr temp;
5178 struct sctp_sock *sp = sctp_sk(sk);
5179 int addrlen;
5180 size_t space_left;
5181 int bytes_copied;
5182
5183 if (len < sizeof(struct sctp_getaddrs))
5184 return -EINVAL;
5185
5186 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5187 return -EFAULT;
5188
5189 /* For UDP-style sockets, id specifies the association to query. */
5190 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5191 if (!asoc)
5192 return -EINVAL;
5193
5194 to = optval + offsetof(struct sctp_getaddrs, addrs);
5195 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5196
5197 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5198 transports) {
5199 memcpy(&temp, &from->ipaddr, sizeof(temp));
5200 addrlen = sctp_get_pf_specific(sk->sk_family)
5201 ->addr_to_user(sp, &temp);
5202 if (space_left < addrlen)
5203 return -ENOMEM;
5204 if (copy_to_user(to, &temp, addrlen))
5205 return -EFAULT;
5206 to += addrlen;
5207 cnt++;
5208 space_left -= addrlen;
5209 }
5210
5211 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5212 return -EFAULT;
5213 bytes_copied = ((char __user *)to) - optval;
5214 if (put_user(bytes_copied, optlen))
5215 return -EFAULT;
5216
5217 return 0;
5218 }
5219
5220 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5221 size_t space_left, int *bytes_copied)
5222 {
5223 struct sctp_sockaddr_entry *addr;
5224 union sctp_addr temp;
5225 int cnt = 0;
5226 int addrlen;
5227 struct net *net = sock_net(sk);
5228
5229 rcu_read_lock();
5230 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5231 if (!addr->valid)
5232 continue;
5233
5234 if ((PF_INET == sk->sk_family) &&
5235 (AF_INET6 == addr->a.sa.sa_family))
5236 continue;
5237 if ((PF_INET6 == sk->sk_family) &&
5238 inet_v6_ipv6only(sk) &&
5239 (AF_INET == addr->a.sa.sa_family))
5240 continue;
5241 memcpy(&temp, &addr->a, sizeof(temp));
5242 if (!temp.v4.sin_port)
5243 temp.v4.sin_port = htons(port);
5244
5245 addrlen = sctp_get_pf_specific(sk->sk_family)
5246 ->addr_to_user(sctp_sk(sk), &temp);
5247
5248 if (space_left < addrlen) {
5249 cnt = -ENOMEM;
5250 break;
5251 }
5252 memcpy(to, &temp, addrlen);
5253
5254 to += addrlen;
5255 cnt++;
5256 space_left -= addrlen;
5257 *bytes_copied += addrlen;
5258 }
5259 rcu_read_unlock();
5260
5261 return cnt;
5262 }
5263
5264
5265 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5266 char __user *optval, int __user *optlen)
5267 {
5268 struct sctp_bind_addr *bp;
5269 struct sctp_association *asoc;
5270 int cnt = 0;
5271 struct sctp_getaddrs getaddrs;
5272 struct sctp_sockaddr_entry *addr;
5273 void __user *to;
5274 union sctp_addr temp;
5275 struct sctp_sock *sp = sctp_sk(sk);
5276 int addrlen;
5277 int err = 0;
5278 size_t space_left;
5279 int bytes_copied = 0;
5280 void *addrs;
5281 void *buf;
5282
5283 if (len < sizeof(struct sctp_getaddrs))
5284 return -EINVAL;
5285
5286 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5287 return -EFAULT;
5288
5289 /*
5290 * For UDP-style sockets, id specifies the association to query.
5291 * If the id field is set to the value '0' then the locally bound
5292 * addresses are returned without regard to any particular
5293 * association.
5294 */
5295 if (0 == getaddrs.assoc_id) {
5296 bp = &sctp_sk(sk)->ep->base.bind_addr;
5297 } else {
5298 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5299 if (!asoc)
5300 return -EINVAL;
5301 bp = &asoc->base.bind_addr;
5302 }
5303
5304 to = optval + offsetof(struct sctp_getaddrs, addrs);
5305 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5306
5307 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5308 if (!addrs)
5309 return -ENOMEM;
5310
5311 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5312 * addresses from the global local address list.
5313 */
5314 if (sctp_list_single_entry(&bp->address_list)) {
5315 addr = list_entry(bp->address_list.next,
5316 struct sctp_sockaddr_entry, list);
5317 if (sctp_is_any(sk, &addr->a)) {
5318 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5319 space_left, &bytes_copied);
5320 if (cnt < 0) {
5321 err = cnt;
5322 goto out;
5323 }
5324 goto copy_getaddrs;
5325 }
5326 }
5327
5328 buf = addrs;
5329 /* Protection on the bound address list is not needed since
5330 * in the socket option context we hold a socket lock and
5331 * thus the bound address list can't change.
5332 */
5333 list_for_each_entry(addr, &bp->address_list, list) {
5334 memcpy(&temp, &addr->a, sizeof(temp));
5335 addrlen = sctp_get_pf_specific(sk->sk_family)
5336 ->addr_to_user(sp, &temp);
5337 if (space_left < addrlen) {
5338 err = -ENOMEM; /*fixme: right error?*/
5339 goto out;
5340 }
5341 memcpy(buf, &temp, addrlen);
5342 buf += addrlen;
5343 bytes_copied += addrlen;
5344 cnt++;
5345 space_left -= addrlen;
5346 }
5347
5348 copy_getaddrs:
5349 if (copy_to_user(to, addrs, bytes_copied)) {
5350 err = -EFAULT;
5351 goto out;
5352 }
5353 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5354 err = -EFAULT;
5355 goto out;
5356 }
5357 if (put_user(bytes_copied, optlen))
5358 err = -EFAULT;
5359 out:
5360 kfree(addrs);
5361 return err;
5362 }
5363
5364 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5365 *
5366 * Requests that the local SCTP stack use the enclosed peer address as
5367 * the association primary. The enclosed address must be one of the
5368 * association peer's addresses.
5369 */
5370 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5371 char __user *optval, int __user *optlen)
5372 {
5373 struct sctp_prim prim;
5374 struct sctp_association *asoc;
5375 struct sctp_sock *sp = sctp_sk(sk);
5376
5377 if (len < sizeof(struct sctp_prim))
5378 return -EINVAL;
5379
5380 len = sizeof(struct sctp_prim);
5381
5382 if (copy_from_user(&prim, optval, len))
5383 return -EFAULT;
5384
5385 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5386 if (!asoc)
5387 return -EINVAL;
5388
5389 if (!asoc->peer.primary_path)
5390 return -ENOTCONN;
5391
5392 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5393 asoc->peer.primary_path->af_specific->sockaddr_len);
5394
5395 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5396 (union sctp_addr *)&prim.ssp_addr);
5397
5398 if (put_user(len, optlen))
5399 return -EFAULT;
5400 if (copy_to_user(optval, &prim, len))
5401 return -EFAULT;
5402
5403 return 0;
5404 }
5405
5406 /*
5407 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5408 *
5409 * Requests that the local endpoint set the specified Adaptation Layer
5410 * Indication parameter for all future INIT and INIT-ACK exchanges.
5411 */
5412 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5413 char __user *optval, int __user *optlen)
5414 {
5415 struct sctp_setadaptation adaptation;
5416
5417 if (len < sizeof(struct sctp_setadaptation))
5418 return -EINVAL;
5419
5420 len = sizeof(struct sctp_setadaptation);
5421
5422 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5423
5424 if (put_user(len, optlen))
5425 return -EFAULT;
5426 if (copy_to_user(optval, &adaptation, len))
5427 return -EFAULT;
5428
5429 return 0;
5430 }
5431
5432 /*
5433 *
5434 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5435 *
5436 * Applications that wish to use the sendto() system call may wish to
5437 * specify a default set of parameters that would normally be supplied
5438 * through the inclusion of ancillary data. This socket option allows
5439 * such an application to set the default sctp_sndrcvinfo structure.
5440
5441
5442 * The application that wishes to use this socket option simply passes
5443 * in to this call the sctp_sndrcvinfo structure defined in Section
5444 * 5.2.2) The input parameters accepted by this call include
5445 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5446 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5447 * to this call if the caller is using the UDP model.
5448 *
5449 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5450 */
5451 static int sctp_getsockopt_default_send_param(struct sock *sk,
5452 int len, char __user *optval,
5453 int __user *optlen)
5454 {
5455 struct sctp_sock *sp = sctp_sk(sk);
5456 struct sctp_association *asoc;
5457 struct sctp_sndrcvinfo info;
5458
5459 if (len < sizeof(info))
5460 return -EINVAL;
5461
5462 len = sizeof(info);
5463
5464 if (copy_from_user(&info, optval, len))
5465 return -EFAULT;
5466
5467 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5468 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5469 return -EINVAL;
5470 if (asoc) {
5471 info.sinfo_stream = asoc->default_stream;
5472 info.sinfo_flags = asoc->default_flags;
5473 info.sinfo_ppid = asoc->default_ppid;
5474 info.sinfo_context = asoc->default_context;
5475 info.sinfo_timetolive = asoc->default_timetolive;
5476 } else {
5477 info.sinfo_stream = sp->default_stream;
5478 info.sinfo_flags = sp->default_flags;
5479 info.sinfo_ppid = sp->default_ppid;
5480 info.sinfo_context = sp->default_context;
5481 info.sinfo_timetolive = sp->default_timetolive;
5482 }
5483
5484 if (put_user(len, optlen))
5485 return -EFAULT;
5486 if (copy_to_user(optval, &info, len))
5487 return -EFAULT;
5488
5489 return 0;
5490 }
5491
5492 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5493 * (SCTP_DEFAULT_SNDINFO)
5494 */
5495 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5496 char __user *optval,
5497 int __user *optlen)
5498 {
5499 struct sctp_sock *sp = sctp_sk(sk);
5500 struct sctp_association *asoc;
5501 struct sctp_sndinfo info;
5502
5503 if (len < sizeof(info))
5504 return -EINVAL;
5505
5506 len = sizeof(info);
5507
5508 if (copy_from_user(&info, optval, len))
5509 return -EFAULT;
5510
5511 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5512 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5513 return -EINVAL;
5514 if (asoc) {
5515 info.snd_sid = asoc->default_stream;
5516 info.snd_flags = asoc->default_flags;
5517 info.snd_ppid = asoc->default_ppid;
5518 info.snd_context = asoc->default_context;
5519 } else {
5520 info.snd_sid = sp->default_stream;
5521 info.snd_flags = sp->default_flags;
5522 info.snd_ppid = sp->default_ppid;
5523 info.snd_context = sp->default_context;
5524 }
5525
5526 if (put_user(len, optlen))
5527 return -EFAULT;
5528 if (copy_to_user(optval, &info, len))
5529 return -EFAULT;
5530
5531 return 0;
5532 }
5533
5534 /*
5535 *
5536 * 7.1.5 SCTP_NODELAY
5537 *
5538 * Turn on/off any Nagle-like algorithm. This means that packets are
5539 * generally sent as soon as possible and no unnecessary delays are
5540 * introduced, at the cost of more packets in the network. Expects an
5541 * integer boolean flag.
5542 */
5543
5544 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5545 char __user *optval, int __user *optlen)
5546 {
5547 int val;
5548
5549 if (len < sizeof(int))
5550 return -EINVAL;
5551
5552 len = sizeof(int);
5553 val = (sctp_sk(sk)->nodelay == 1);
5554 if (put_user(len, optlen))
5555 return -EFAULT;
5556 if (copy_to_user(optval, &val, len))
5557 return -EFAULT;
5558 return 0;
5559 }
5560
5561 /*
5562 *
5563 * 7.1.1 SCTP_RTOINFO
5564 *
5565 * The protocol parameters used to initialize and bound retransmission
5566 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5567 * and modify these parameters.
5568 * All parameters are time values, in milliseconds. A value of 0, when
5569 * modifying the parameters, indicates that the current value should not
5570 * be changed.
5571 *
5572 */
5573 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5574 char __user *optval,
5575 int __user *optlen) {
5576 struct sctp_rtoinfo rtoinfo;
5577 struct sctp_association *asoc;
5578
5579 if (len < sizeof (struct sctp_rtoinfo))
5580 return -EINVAL;
5581
5582 len = sizeof(struct sctp_rtoinfo);
5583
5584 if (copy_from_user(&rtoinfo, optval, len))
5585 return -EFAULT;
5586
5587 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5588
5589 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5590 return -EINVAL;
5591
5592 /* Values corresponding to the specific association. */
5593 if (asoc) {
5594 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5595 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5596 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5597 } else {
5598 /* Values corresponding to the endpoint. */
5599 struct sctp_sock *sp = sctp_sk(sk);
5600
5601 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5602 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5603 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5604 }
5605
5606 if (put_user(len, optlen))
5607 return -EFAULT;
5608
5609 if (copy_to_user(optval, &rtoinfo, len))
5610 return -EFAULT;
5611
5612 return 0;
5613 }
5614
5615 /*
5616 *
5617 * 7.1.2 SCTP_ASSOCINFO
5618 *
5619 * This option is used to tune the maximum retransmission attempts
5620 * of the association.
5621 * Returns an error if the new association retransmission value is
5622 * greater than the sum of the retransmission value of the peer.
5623 * See [SCTP] for more information.
5624 *
5625 */
5626 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5627 char __user *optval,
5628 int __user *optlen)
5629 {
5630
5631 struct sctp_assocparams assocparams;
5632 struct sctp_association *asoc;
5633 struct list_head *pos;
5634 int cnt = 0;
5635
5636 if (len < sizeof (struct sctp_assocparams))
5637 return -EINVAL;
5638
5639 len = sizeof(struct sctp_assocparams);
5640
5641 if (copy_from_user(&assocparams, optval, len))
5642 return -EFAULT;
5643
5644 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5645
5646 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5647 return -EINVAL;
5648
5649 /* Values correspoinding to the specific association */
5650 if (asoc) {
5651 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5652 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5653 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5654 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5655
5656 list_for_each(pos, &asoc->peer.transport_addr_list) {
5657 cnt++;
5658 }
5659
5660 assocparams.sasoc_number_peer_destinations = cnt;
5661 } else {
5662 /* Values corresponding to the endpoint */
5663 struct sctp_sock *sp = sctp_sk(sk);
5664
5665 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5666 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5667 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5668 assocparams.sasoc_cookie_life =
5669 sp->assocparams.sasoc_cookie_life;
5670 assocparams.sasoc_number_peer_destinations =
5671 sp->assocparams.
5672 sasoc_number_peer_destinations;
5673 }
5674
5675 if (put_user(len, optlen))
5676 return -EFAULT;
5677
5678 if (copy_to_user(optval, &assocparams, len))
5679 return -EFAULT;
5680
5681 return 0;
5682 }
5683
5684 /*
5685 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5686 *
5687 * This socket option is a boolean flag which turns on or off mapped V4
5688 * addresses. If this option is turned on and the socket is type
5689 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5690 * If this option is turned off, then no mapping will be done of V4
5691 * addresses and a user will receive both PF_INET6 and PF_INET type
5692 * addresses on the socket.
5693 */
5694 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5695 char __user *optval, int __user *optlen)
5696 {
5697 int val;
5698 struct sctp_sock *sp = sctp_sk(sk);
5699
5700 if (len < sizeof(int))
5701 return -EINVAL;
5702
5703 len = sizeof(int);
5704 val = sp->v4mapped;
5705 if (put_user(len, optlen))
5706 return -EFAULT;
5707 if (copy_to_user(optval, &val, len))
5708 return -EFAULT;
5709
5710 return 0;
5711 }
5712
5713 /*
5714 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5715 * (chapter and verse is quoted at sctp_setsockopt_context())
5716 */
5717 static int sctp_getsockopt_context(struct sock *sk, int len,
5718 char __user *optval, int __user *optlen)
5719 {
5720 struct sctp_assoc_value params;
5721 struct sctp_sock *sp;
5722 struct sctp_association *asoc;
5723
5724 if (len < sizeof(struct sctp_assoc_value))
5725 return -EINVAL;
5726
5727 len = sizeof(struct sctp_assoc_value);
5728
5729 if (copy_from_user(&params, optval, len))
5730 return -EFAULT;
5731
5732 sp = sctp_sk(sk);
5733
5734 if (params.assoc_id != 0) {
5735 asoc = sctp_id2assoc(sk, params.assoc_id);
5736 if (!asoc)
5737 return -EINVAL;
5738 params.assoc_value = asoc->default_rcv_context;
5739 } else {
5740 params.assoc_value = sp->default_rcv_context;
5741 }
5742
5743 if (put_user(len, optlen))
5744 return -EFAULT;
5745 if (copy_to_user(optval, &params, len))
5746 return -EFAULT;
5747
5748 return 0;
5749 }
5750
5751 /*
5752 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5753 * This option will get or set the maximum size to put in any outgoing
5754 * SCTP DATA chunk. If a message is larger than this size it will be
5755 * fragmented by SCTP into the specified size. Note that the underlying
5756 * SCTP implementation may fragment into smaller sized chunks when the
5757 * PMTU of the underlying association is smaller than the value set by
5758 * the user. The default value for this option is '0' which indicates
5759 * the user is NOT limiting fragmentation and only the PMTU will effect
5760 * SCTP's choice of DATA chunk size. Note also that values set larger
5761 * than the maximum size of an IP datagram will effectively let SCTP
5762 * control fragmentation (i.e. the same as setting this option to 0).
5763 *
5764 * The following structure is used to access and modify this parameter:
5765 *
5766 * struct sctp_assoc_value {
5767 * sctp_assoc_t assoc_id;
5768 * uint32_t assoc_value;
5769 * };
5770 *
5771 * assoc_id: This parameter is ignored for one-to-one style sockets.
5772 * For one-to-many style sockets this parameter indicates which
5773 * association the user is performing an action upon. Note that if
5774 * this field's value is zero then the endpoints default value is
5775 * changed (effecting future associations only).
5776 * assoc_value: This parameter specifies the maximum size in bytes.
5777 */
5778 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5779 char __user *optval, int __user *optlen)
5780 {
5781 struct sctp_assoc_value params;
5782 struct sctp_association *asoc;
5783
5784 if (len == sizeof(int)) {
5785 pr_warn_ratelimited(DEPRECATED
5786 "%s (pid %d) "
5787 "Use of int in maxseg socket option.\n"
5788 "Use struct sctp_assoc_value instead\n",
5789 current->comm, task_pid_nr(current));
5790 params.assoc_id = 0;
5791 } else if (len >= sizeof(struct sctp_assoc_value)) {
5792 len = sizeof(struct sctp_assoc_value);
5793 if (copy_from_user(&params, optval, sizeof(params)))
5794 return -EFAULT;
5795 } else
5796 return -EINVAL;
5797
5798 asoc = sctp_id2assoc(sk, params.assoc_id);
5799 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5800 return -EINVAL;
5801
5802 if (asoc)
5803 params.assoc_value = asoc->frag_point;
5804 else
5805 params.assoc_value = sctp_sk(sk)->user_frag;
5806
5807 if (put_user(len, optlen))
5808 return -EFAULT;
5809 if (len == sizeof(int)) {
5810 if (copy_to_user(optval, &params.assoc_value, len))
5811 return -EFAULT;
5812 } else {
5813 if (copy_to_user(optval, &params, len))
5814 return -EFAULT;
5815 }
5816
5817 return 0;
5818 }
5819
5820 /*
5821 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5822 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5823 */
5824 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5825 char __user *optval, int __user *optlen)
5826 {
5827 int val;
5828
5829 if (len < sizeof(int))
5830 return -EINVAL;
5831
5832 len = sizeof(int);
5833
5834 val = sctp_sk(sk)->frag_interleave;
5835 if (put_user(len, optlen))
5836 return -EFAULT;
5837 if (copy_to_user(optval, &val, len))
5838 return -EFAULT;
5839
5840 return 0;
5841 }
5842
5843 /*
5844 * 7.1.25. Set or Get the sctp partial delivery point
5845 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5846 */
5847 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5848 char __user *optval,
5849 int __user *optlen)
5850 {
5851 u32 val;
5852
5853 if (len < sizeof(u32))
5854 return -EINVAL;
5855
5856 len = sizeof(u32);
5857
5858 val = sctp_sk(sk)->pd_point;
5859 if (put_user(len, optlen))
5860 return -EFAULT;
5861 if (copy_to_user(optval, &val, len))
5862 return -EFAULT;
5863
5864 return 0;
5865 }
5866
5867 /*
5868 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5869 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5870 */
5871 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5872 char __user *optval,
5873 int __user *optlen)
5874 {
5875 struct sctp_assoc_value params;
5876 struct sctp_sock *sp;
5877 struct sctp_association *asoc;
5878
5879 if (len == sizeof(int)) {
5880 pr_warn_ratelimited(DEPRECATED
5881 "%s (pid %d) "
5882 "Use of int in max_burst socket option.\n"
5883 "Use struct sctp_assoc_value instead\n",
5884 current->comm, task_pid_nr(current));
5885 params.assoc_id = 0;
5886 } else if (len >= sizeof(struct sctp_assoc_value)) {
5887 len = sizeof(struct sctp_assoc_value);
5888 if (copy_from_user(&params, optval, len))
5889 return -EFAULT;
5890 } else
5891 return -EINVAL;
5892
5893 sp = sctp_sk(sk);
5894
5895 if (params.assoc_id != 0) {
5896 asoc = sctp_id2assoc(sk, params.assoc_id);
5897 if (!asoc)
5898 return -EINVAL;
5899 params.assoc_value = asoc->max_burst;
5900 } else
5901 params.assoc_value = sp->max_burst;
5902
5903 if (len == sizeof(int)) {
5904 if (copy_to_user(optval, &params.assoc_value, len))
5905 return -EFAULT;
5906 } else {
5907 if (copy_to_user(optval, &params, len))
5908 return -EFAULT;
5909 }
5910
5911 return 0;
5912
5913 }
5914
5915 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5916 char __user *optval, int __user *optlen)
5917 {
5918 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5919 struct sctp_hmacalgo __user *p = (void __user *)optval;
5920 struct sctp_hmac_algo_param *hmacs;
5921 __u16 data_len = 0;
5922 u32 num_idents;
5923 int i;
5924
5925 if (!ep->auth_enable)
5926 return -EACCES;
5927
5928 hmacs = ep->auth_hmacs_list;
5929 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5930
5931 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5932 return -EINVAL;
5933
5934 len = sizeof(struct sctp_hmacalgo) + data_len;
5935 num_idents = data_len / sizeof(u16);
5936
5937 if (put_user(len, optlen))
5938 return -EFAULT;
5939 if (put_user(num_idents, &p->shmac_num_idents))
5940 return -EFAULT;
5941 for (i = 0; i < num_idents; i++) {
5942 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5943
5944 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5945 return -EFAULT;
5946 }
5947 return 0;
5948 }
5949
5950 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5951 char __user *optval, int __user *optlen)
5952 {
5953 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5954 struct sctp_authkeyid val;
5955 struct sctp_association *asoc;
5956
5957 if (!ep->auth_enable)
5958 return -EACCES;
5959
5960 if (len < sizeof(struct sctp_authkeyid))
5961 return -EINVAL;
5962 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5963 return -EFAULT;
5964
5965 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5966 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5967 return -EINVAL;
5968
5969 if (asoc)
5970 val.scact_keynumber = asoc->active_key_id;
5971 else
5972 val.scact_keynumber = ep->active_key_id;
5973
5974 len = sizeof(struct sctp_authkeyid);
5975 if (put_user(len, optlen))
5976 return -EFAULT;
5977 if (copy_to_user(optval, &val, len))
5978 return -EFAULT;
5979
5980 return 0;
5981 }
5982
5983 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5984 char __user *optval, int __user *optlen)
5985 {
5986 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5987 struct sctp_authchunks __user *p = (void __user *)optval;
5988 struct sctp_authchunks val;
5989 struct sctp_association *asoc;
5990 struct sctp_chunks_param *ch;
5991 u32 num_chunks = 0;
5992 char __user *to;
5993
5994 if (!ep->auth_enable)
5995 return -EACCES;
5996
5997 if (len < sizeof(struct sctp_authchunks))
5998 return -EINVAL;
5999
6000 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6001 return -EFAULT;
6002
6003 to = p->gauth_chunks;
6004 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6005 if (!asoc)
6006 return -EINVAL;
6007
6008 ch = asoc->peer.peer_chunks;
6009 if (!ch)
6010 goto num;
6011
6012 /* See if the user provided enough room for all the data */
6013 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6014 if (len < num_chunks)
6015 return -EINVAL;
6016
6017 if (copy_to_user(to, ch->chunks, num_chunks))
6018 return -EFAULT;
6019 num:
6020 len = sizeof(struct sctp_authchunks) + num_chunks;
6021 if (put_user(len, optlen))
6022 return -EFAULT;
6023 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6024 return -EFAULT;
6025 return 0;
6026 }
6027
6028 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6029 char __user *optval, int __user *optlen)
6030 {
6031 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6032 struct sctp_authchunks __user *p = (void __user *)optval;
6033 struct sctp_authchunks val;
6034 struct sctp_association *asoc;
6035 struct sctp_chunks_param *ch;
6036 u32 num_chunks = 0;
6037 char __user *to;
6038
6039 if (!ep->auth_enable)
6040 return -EACCES;
6041
6042 if (len < sizeof(struct sctp_authchunks))
6043 return -EINVAL;
6044
6045 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
6046 return -EFAULT;
6047
6048 to = p->gauth_chunks;
6049 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6050 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6051 return -EINVAL;
6052
6053 if (asoc)
6054 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6055 else
6056 ch = ep->auth_chunk_list;
6057
6058 if (!ch)
6059 goto num;
6060
6061 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6062 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6063 return -EINVAL;
6064
6065 if (copy_to_user(to, ch->chunks, num_chunks))
6066 return -EFAULT;
6067 num:
6068 len = sizeof(struct sctp_authchunks) + num_chunks;
6069 if (put_user(len, optlen))
6070 return -EFAULT;
6071 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6072 return -EFAULT;
6073
6074 return 0;
6075 }
6076
6077 /*
6078 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6079 * This option gets the current number of associations that are attached
6080 * to a one-to-many style socket. The option value is an uint32_t.
6081 */
6082 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6083 char __user *optval, int __user *optlen)
6084 {
6085 struct sctp_sock *sp = sctp_sk(sk);
6086 struct sctp_association *asoc;
6087 u32 val = 0;
6088
6089 if (sctp_style(sk, TCP))
6090 return -EOPNOTSUPP;
6091
6092 if (len < sizeof(u32))
6093 return -EINVAL;
6094
6095 len = sizeof(u32);
6096
6097 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6098 val++;
6099 }
6100
6101 if (put_user(len, optlen))
6102 return -EFAULT;
6103 if (copy_to_user(optval, &val, len))
6104 return -EFAULT;
6105
6106 return 0;
6107 }
6108
6109 /*
6110 * 8.1.23 SCTP_AUTO_ASCONF
6111 * See the corresponding setsockopt entry as description
6112 */
6113 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6114 char __user *optval, int __user *optlen)
6115 {
6116 int val = 0;
6117
6118 if (len < sizeof(int))
6119 return -EINVAL;
6120
6121 len = sizeof(int);
6122 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6123 val = 1;
6124 if (put_user(len, optlen))
6125 return -EFAULT;
6126 if (copy_to_user(optval, &val, len))
6127 return -EFAULT;
6128 return 0;
6129 }
6130
6131 /*
6132 * 8.2.6. Get the Current Identifiers of Associations
6133 * (SCTP_GET_ASSOC_ID_LIST)
6134 *
6135 * This option gets the current list of SCTP association identifiers of
6136 * the SCTP associations handled by a one-to-many style socket.
6137 */
6138 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6139 char __user *optval, int __user *optlen)
6140 {
6141 struct sctp_sock *sp = sctp_sk(sk);
6142 struct sctp_association *asoc;
6143 struct sctp_assoc_ids *ids;
6144 u32 num = 0;
6145
6146 if (sctp_style(sk, TCP))
6147 return -EOPNOTSUPP;
6148
6149 if (len < sizeof(struct sctp_assoc_ids))
6150 return -EINVAL;
6151
6152 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6153 num++;
6154 }
6155
6156 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6157 return -EINVAL;
6158
6159 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6160
6161 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6162 if (unlikely(!ids))
6163 return -ENOMEM;
6164
6165 ids->gaids_number_of_ids = num;
6166 num = 0;
6167 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6168 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6169 }
6170
6171 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6172 kfree(ids);
6173 return -EFAULT;
6174 }
6175
6176 kfree(ids);
6177 return 0;
6178 }
6179
6180 /*
6181 * SCTP_PEER_ADDR_THLDS
6182 *
6183 * This option allows us to fetch the partially failed threshold for one or all
6184 * transports in an association. See Section 6.1 of:
6185 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6186 */
6187 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6188 char __user *optval,
6189 int len,
6190 int __user *optlen)
6191 {
6192 struct sctp_paddrthlds val;
6193 struct sctp_transport *trans;
6194 struct sctp_association *asoc;
6195
6196 if (len < sizeof(struct sctp_paddrthlds))
6197 return -EINVAL;
6198 len = sizeof(struct sctp_paddrthlds);
6199 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6200 return -EFAULT;
6201
6202 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6203 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6204 if (!asoc)
6205 return -ENOENT;
6206
6207 val.spt_pathpfthld = asoc->pf_retrans;
6208 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6209 } else {
6210 trans = sctp_addr_id2transport(sk, &val.spt_address,
6211 val.spt_assoc_id);
6212 if (!trans)
6213 return -ENOENT;
6214
6215 val.spt_pathmaxrxt = trans->pathmaxrxt;
6216 val.spt_pathpfthld = trans->pf_retrans;
6217 }
6218
6219 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6220 return -EFAULT;
6221
6222 return 0;
6223 }
6224
6225 /*
6226 * SCTP_GET_ASSOC_STATS
6227 *
6228 * This option retrieves local per endpoint statistics. It is modeled
6229 * after OpenSolaris' implementation
6230 */
6231 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6232 char __user *optval,
6233 int __user *optlen)
6234 {
6235 struct sctp_assoc_stats sas;
6236 struct sctp_association *asoc = NULL;
6237
6238 /* User must provide at least the assoc id */
6239 if (len < sizeof(sctp_assoc_t))
6240 return -EINVAL;
6241
6242 /* Allow the struct to grow and fill in as much as possible */
6243 len = min_t(size_t, len, sizeof(sas));
6244
6245 if (copy_from_user(&sas, optval, len))
6246 return -EFAULT;
6247
6248 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6249 if (!asoc)
6250 return -EINVAL;
6251
6252 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6253 sas.sas_gapcnt = asoc->stats.gapcnt;
6254 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6255 sas.sas_osacks = asoc->stats.osacks;
6256 sas.sas_isacks = asoc->stats.isacks;
6257 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6258 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6259 sas.sas_oodchunks = asoc->stats.oodchunks;
6260 sas.sas_iodchunks = asoc->stats.iodchunks;
6261 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6262 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6263 sas.sas_idupchunks = asoc->stats.idupchunks;
6264 sas.sas_opackets = asoc->stats.opackets;
6265 sas.sas_ipackets = asoc->stats.ipackets;
6266
6267 /* New high max rto observed, will return 0 if not a single
6268 * RTO update took place. obs_rto_ipaddr will be bogus
6269 * in such a case
6270 */
6271 sas.sas_maxrto = asoc->stats.max_obs_rto;
6272 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6273 sizeof(struct sockaddr_storage));
6274
6275 /* Mark beginning of a new observation period */
6276 asoc->stats.max_obs_rto = asoc->rto_min;
6277
6278 if (put_user(len, optlen))
6279 return -EFAULT;
6280
6281 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6282
6283 if (copy_to_user(optval, &sas, len))
6284 return -EFAULT;
6285
6286 return 0;
6287 }
6288
6289 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6290 char __user *optval,
6291 int __user *optlen)
6292 {
6293 int val = 0;
6294
6295 if (len < sizeof(int))
6296 return -EINVAL;
6297
6298 len = sizeof(int);
6299 if (sctp_sk(sk)->recvrcvinfo)
6300 val = 1;
6301 if (put_user(len, optlen))
6302 return -EFAULT;
6303 if (copy_to_user(optval, &val, len))
6304 return -EFAULT;
6305
6306 return 0;
6307 }
6308
6309 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6310 char __user *optval,
6311 int __user *optlen)
6312 {
6313 int val = 0;
6314
6315 if (len < sizeof(int))
6316 return -EINVAL;
6317
6318 len = sizeof(int);
6319 if (sctp_sk(sk)->recvnxtinfo)
6320 val = 1;
6321 if (put_user(len, optlen))
6322 return -EFAULT;
6323 if (copy_to_user(optval, &val, len))
6324 return -EFAULT;
6325
6326 return 0;
6327 }
6328
6329 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6330 char __user *optval,
6331 int __user *optlen)
6332 {
6333 struct sctp_assoc_value params;
6334 struct sctp_association *asoc;
6335 int retval = -EFAULT;
6336
6337 if (len < sizeof(params)) {
6338 retval = -EINVAL;
6339 goto out;
6340 }
6341
6342 len = sizeof(params);
6343 if (copy_from_user(&params, optval, len))
6344 goto out;
6345
6346 asoc = sctp_id2assoc(sk, params.assoc_id);
6347 if (asoc) {
6348 params.assoc_value = asoc->prsctp_enable;
6349 } else if (!params.assoc_id) {
6350 struct sctp_sock *sp = sctp_sk(sk);
6351
6352 params.assoc_value = sp->ep->prsctp_enable;
6353 } else {
6354 retval = -EINVAL;
6355 goto out;
6356 }
6357
6358 if (put_user(len, optlen))
6359 goto out;
6360
6361 if (copy_to_user(optval, &params, len))
6362 goto out;
6363
6364 retval = 0;
6365
6366 out:
6367 return retval;
6368 }
6369
6370 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6371 char __user *optval,
6372 int __user *optlen)
6373 {
6374 struct sctp_default_prinfo info;
6375 struct sctp_association *asoc;
6376 int retval = -EFAULT;
6377
6378 if (len < sizeof(info)) {
6379 retval = -EINVAL;
6380 goto out;
6381 }
6382
6383 len = sizeof(info);
6384 if (copy_from_user(&info, optval, len))
6385 goto out;
6386
6387 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6388 if (asoc) {
6389 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6390 info.pr_value = asoc->default_timetolive;
6391 } else if (!info.pr_assoc_id) {
6392 struct sctp_sock *sp = sctp_sk(sk);
6393
6394 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6395 info.pr_value = sp->default_timetolive;
6396 } else {
6397 retval = -EINVAL;
6398 goto out;
6399 }
6400
6401 if (put_user(len, optlen))
6402 goto out;
6403
6404 if (copy_to_user(optval, &info, len))
6405 goto out;
6406
6407 retval = 0;
6408
6409 out:
6410 return retval;
6411 }
6412
6413 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6414 char __user *optval,
6415 int __user *optlen)
6416 {
6417 struct sctp_prstatus params;
6418 struct sctp_association *asoc;
6419 int policy;
6420 int retval = -EINVAL;
6421
6422 if (len < sizeof(params))
6423 goto out;
6424
6425 len = sizeof(params);
6426 if (copy_from_user(&params, optval, len)) {
6427 retval = -EFAULT;
6428 goto out;
6429 }
6430
6431 policy = params.sprstat_policy;
6432 if (policy & ~SCTP_PR_SCTP_MASK)
6433 goto out;
6434
6435 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6436 if (!asoc)
6437 goto out;
6438
6439 if (policy == SCTP_PR_SCTP_NONE) {
6440 params.sprstat_abandoned_unsent = 0;
6441 params.sprstat_abandoned_sent = 0;
6442 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6443 params.sprstat_abandoned_unsent +=
6444 asoc->abandoned_unsent[policy];
6445 params.sprstat_abandoned_sent +=
6446 asoc->abandoned_sent[policy];
6447 }
6448 } else {
6449 params.sprstat_abandoned_unsent =
6450 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6451 params.sprstat_abandoned_sent =
6452 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6453 }
6454
6455 if (put_user(len, optlen)) {
6456 retval = -EFAULT;
6457 goto out;
6458 }
6459
6460 if (copy_to_user(optval, &params, len)) {
6461 retval = -EFAULT;
6462 goto out;
6463 }
6464
6465 retval = 0;
6466
6467 out:
6468 return retval;
6469 }
6470
6471 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
6472 char __user *optval,
6473 int __user *optlen)
6474 {
6475 struct sctp_assoc_value params;
6476 struct sctp_association *asoc;
6477 int retval = -EFAULT;
6478
6479 if (len < sizeof(params)) {
6480 retval = -EINVAL;
6481 goto out;
6482 }
6483
6484 len = sizeof(params);
6485 if (copy_from_user(&params, optval, len))
6486 goto out;
6487
6488 asoc = sctp_id2assoc(sk, params.assoc_id);
6489 if (asoc) {
6490 params.assoc_value = asoc->strreset_enable;
6491 } else if (!params.assoc_id) {
6492 struct sctp_sock *sp = sctp_sk(sk);
6493
6494 params.assoc_value = sp->ep->strreset_enable;
6495 } else {
6496 retval = -EINVAL;
6497 goto out;
6498 }
6499
6500 if (put_user(len, optlen))
6501 goto out;
6502
6503 if (copy_to_user(optval, &params, len))
6504 goto out;
6505
6506 retval = 0;
6507
6508 out:
6509 return retval;
6510 }
6511
6512 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6513 char __user *optval, int __user *optlen)
6514 {
6515 int retval = 0;
6516 int len;
6517
6518 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6519
6520 /* I can hardly begin to describe how wrong this is. This is
6521 * so broken as to be worse than useless. The API draft
6522 * REALLY is NOT helpful here... I am not convinced that the
6523 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6524 * are at all well-founded.
6525 */
6526 if (level != SOL_SCTP) {
6527 struct sctp_af *af = sctp_sk(sk)->pf->af;
6528
6529 retval = af->getsockopt(sk, level, optname, optval, optlen);
6530 return retval;
6531 }
6532
6533 if (get_user(len, optlen))
6534 return -EFAULT;
6535
6536 if (len < 0)
6537 return -EINVAL;
6538
6539 lock_sock(sk);
6540
6541 switch (optname) {
6542 case SCTP_STATUS:
6543 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6544 break;
6545 case SCTP_DISABLE_FRAGMENTS:
6546 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6547 optlen);
6548 break;
6549 case SCTP_EVENTS:
6550 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6551 break;
6552 case SCTP_AUTOCLOSE:
6553 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6554 break;
6555 case SCTP_SOCKOPT_PEELOFF:
6556 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6557 break;
6558 case SCTP_PEER_ADDR_PARAMS:
6559 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6560 optlen);
6561 break;
6562 case SCTP_DELAYED_SACK:
6563 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6564 optlen);
6565 break;
6566 case SCTP_INITMSG:
6567 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6568 break;
6569 case SCTP_GET_PEER_ADDRS:
6570 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6571 optlen);
6572 break;
6573 case SCTP_GET_LOCAL_ADDRS:
6574 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6575 optlen);
6576 break;
6577 case SCTP_SOCKOPT_CONNECTX3:
6578 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6579 break;
6580 case SCTP_DEFAULT_SEND_PARAM:
6581 retval = sctp_getsockopt_default_send_param(sk, len,
6582 optval, optlen);
6583 break;
6584 case SCTP_DEFAULT_SNDINFO:
6585 retval = sctp_getsockopt_default_sndinfo(sk, len,
6586 optval, optlen);
6587 break;
6588 case SCTP_PRIMARY_ADDR:
6589 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6590 break;
6591 case SCTP_NODELAY:
6592 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6593 break;
6594 case SCTP_RTOINFO:
6595 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6596 break;
6597 case SCTP_ASSOCINFO:
6598 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6599 break;
6600 case SCTP_I_WANT_MAPPED_V4_ADDR:
6601 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6602 break;
6603 case SCTP_MAXSEG:
6604 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6605 break;
6606 case SCTP_GET_PEER_ADDR_INFO:
6607 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6608 optlen);
6609 break;
6610 case SCTP_ADAPTATION_LAYER:
6611 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6612 optlen);
6613 break;
6614 case SCTP_CONTEXT:
6615 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6616 break;
6617 case SCTP_FRAGMENT_INTERLEAVE:
6618 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6619 optlen);
6620 break;
6621 case SCTP_PARTIAL_DELIVERY_POINT:
6622 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6623 optlen);
6624 break;
6625 case SCTP_MAX_BURST:
6626 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6627 break;
6628 case SCTP_AUTH_KEY:
6629 case SCTP_AUTH_CHUNK:
6630 case SCTP_AUTH_DELETE_KEY:
6631 retval = -EOPNOTSUPP;
6632 break;
6633 case SCTP_HMAC_IDENT:
6634 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6635 break;
6636 case SCTP_AUTH_ACTIVE_KEY:
6637 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6638 break;
6639 case SCTP_PEER_AUTH_CHUNKS:
6640 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6641 optlen);
6642 break;
6643 case SCTP_LOCAL_AUTH_CHUNKS:
6644 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6645 optlen);
6646 break;
6647 case SCTP_GET_ASSOC_NUMBER:
6648 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6649 break;
6650 case SCTP_GET_ASSOC_ID_LIST:
6651 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6652 break;
6653 case SCTP_AUTO_ASCONF:
6654 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6655 break;
6656 case SCTP_PEER_ADDR_THLDS:
6657 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6658 break;
6659 case SCTP_GET_ASSOC_STATS:
6660 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6661 break;
6662 case SCTP_RECVRCVINFO:
6663 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6664 break;
6665 case SCTP_RECVNXTINFO:
6666 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6667 break;
6668 case SCTP_PR_SUPPORTED:
6669 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6670 break;
6671 case SCTP_DEFAULT_PRINFO:
6672 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6673 optlen);
6674 break;
6675 case SCTP_PR_ASSOC_STATUS:
6676 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6677 optlen);
6678 break;
6679 case SCTP_ENABLE_STREAM_RESET:
6680 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
6681 optlen);
6682 break;
6683 default:
6684 retval = -ENOPROTOOPT;
6685 break;
6686 }
6687
6688 release_sock(sk);
6689 return retval;
6690 }
6691
6692 static int sctp_hash(struct sock *sk)
6693 {
6694 /* STUB */
6695 return 0;
6696 }
6697
6698 static void sctp_unhash(struct sock *sk)
6699 {
6700 /* STUB */
6701 }
6702
6703 /* Check if port is acceptable. Possibly find first available port.
6704 *
6705 * The port hash table (contained in the 'global' SCTP protocol storage
6706 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6707 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6708 * list (the list number is the port number hashed out, so as you
6709 * would expect from a hash function, all the ports in a given list have
6710 * such a number that hashes out to the same list number; you were
6711 * expecting that, right?); so each list has a set of ports, with a
6712 * link to the socket (struct sock) that uses it, the port number and
6713 * a fastreuse flag (FIXME: NPI ipg).
6714 */
6715 static struct sctp_bind_bucket *sctp_bucket_create(
6716 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6717
6718 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6719 {
6720 struct sctp_bind_hashbucket *head; /* hash list */
6721 struct sctp_bind_bucket *pp;
6722 unsigned short snum;
6723 int ret;
6724
6725 snum = ntohs(addr->v4.sin_port);
6726
6727 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6728
6729 local_bh_disable();
6730
6731 if (snum == 0) {
6732 /* Search for an available port. */
6733 int low, high, remaining, index;
6734 unsigned int rover;
6735 struct net *net = sock_net(sk);
6736
6737 inet_get_local_port_range(net, &low, &high);
6738 remaining = (high - low) + 1;
6739 rover = prandom_u32() % remaining + low;
6740
6741 do {
6742 rover++;
6743 if ((rover < low) || (rover > high))
6744 rover = low;
6745 if (inet_is_local_reserved_port(net, rover))
6746 continue;
6747 index = sctp_phashfn(sock_net(sk), rover);
6748 head = &sctp_port_hashtable[index];
6749 spin_lock(&head->lock);
6750 sctp_for_each_hentry(pp, &head->chain)
6751 if ((pp->port == rover) &&
6752 net_eq(sock_net(sk), pp->net))
6753 goto next;
6754 break;
6755 next:
6756 spin_unlock(&head->lock);
6757 } while (--remaining > 0);
6758
6759 /* Exhausted local port range during search? */
6760 ret = 1;
6761 if (remaining <= 0)
6762 goto fail;
6763
6764 /* OK, here is the one we will use. HEAD (the port
6765 * hash table list entry) is non-NULL and we hold it's
6766 * mutex.
6767 */
6768 snum = rover;
6769 } else {
6770 /* We are given an specific port number; we verify
6771 * that it is not being used. If it is used, we will
6772 * exahust the search in the hash list corresponding
6773 * to the port number (snum) - we detect that with the
6774 * port iterator, pp being NULL.
6775 */
6776 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6777 spin_lock(&head->lock);
6778 sctp_for_each_hentry(pp, &head->chain) {
6779 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6780 goto pp_found;
6781 }
6782 }
6783 pp = NULL;
6784 goto pp_not_found;
6785 pp_found:
6786 if (!hlist_empty(&pp->owner)) {
6787 /* We had a port hash table hit - there is an
6788 * available port (pp != NULL) and it is being
6789 * used by other socket (pp->owner not empty); that other
6790 * socket is going to be sk2.
6791 */
6792 int reuse = sk->sk_reuse;
6793 struct sock *sk2;
6794
6795 pr_debug("%s: found a possible match\n", __func__);
6796
6797 if (pp->fastreuse && sk->sk_reuse &&
6798 sk->sk_state != SCTP_SS_LISTENING)
6799 goto success;
6800
6801 /* Run through the list of sockets bound to the port
6802 * (pp->port) [via the pointers bind_next and
6803 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6804 * we get the endpoint they describe and run through
6805 * the endpoint's list of IP (v4 or v6) addresses,
6806 * comparing each of the addresses with the address of
6807 * the socket sk. If we find a match, then that means
6808 * that this port/socket (sk) combination are already
6809 * in an endpoint.
6810 */
6811 sk_for_each_bound(sk2, &pp->owner) {
6812 struct sctp_endpoint *ep2;
6813 ep2 = sctp_sk(sk2)->ep;
6814
6815 if (sk == sk2 ||
6816 (reuse && sk2->sk_reuse &&
6817 sk2->sk_state != SCTP_SS_LISTENING))
6818 continue;
6819
6820 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6821 sctp_sk(sk2), sctp_sk(sk))) {
6822 ret = (long)sk2;
6823 goto fail_unlock;
6824 }
6825 }
6826
6827 pr_debug("%s: found a match\n", __func__);
6828 }
6829 pp_not_found:
6830 /* If there was a hash table miss, create a new port. */
6831 ret = 1;
6832 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6833 goto fail_unlock;
6834
6835 /* In either case (hit or miss), make sure fastreuse is 1 only
6836 * if sk->sk_reuse is too (that is, if the caller requested
6837 * SO_REUSEADDR on this socket -sk-).
6838 */
6839 if (hlist_empty(&pp->owner)) {
6840 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6841 pp->fastreuse = 1;
6842 else
6843 pp->fastreuse = 0;
6844 } else if (pp->fastreuse &&
6845 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6846 pp->fastreuse = 0;
6847
6848 /* We are set, so fill up all the data in the hash table
6849 * entry, tie the socket list information with the rest of the
6850 * sockets FIXME: Blurry, NPI (ipg).
6851 */
6852 success:
6853 if (!sctp_sk(sk)->bind_hash) {
6854 inet_sk(sk)->inet_num = snum;
6855 sk_add_bind_node(sk, &pp->owner);
6856 sctp_sk(sk)->bind_hash = pp;
6857 }
6858 ret = 0;
6859
6860 fail_unlock:
6861 spin_unlock(&head->lock);
6862
6863 fail:
6864 local_bh_enable();
6865 return ret;
6866 }
6867
6868 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6869 * port is requested.
6870 */
6871 static int sctp_get_port(struct sock *sk, unsigned short snum)
6872 {
6873 union sctp_addr addr;
6874 struct sctp_af *af = sctp_sk(sk)->pf->af;
6875
6876 /* Set up a dummy address struct from the sk. */
6877 af->from_sk(&addr, sk);
6878 addr.v4.sin_port = htons(snum);
6879
6880 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6881 return !!sctp_get_port_local(sk, &addr);
6882 }
6883
6884 /*
6885 * Move a socket to LISTENING state.
6886 */
6887 static int sctp_listen_start(struct sock *sk, int backlog)
6888 {
6889 struct sctp_sock *sp = sctp_sk(sk);
6890 struct sctp_endpoint *ep = sp->ep;
6891 struct crypto_shash *tfm = NULL;
6892 char alg[32];
6893
6894 /* Allocate HMAC for generating cookie. */
6895 if (!sp->hmac && sp->sctp_hmac_alg) {
6896 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6897 tfm = crypto_alloc_shash(alg, 0, 0);
6898 if (IS_ERR(tfm)) {
6899 net_info_ratelimited("failed to load transform for %s: %ld\n",
6900 sp->sctp_hmac_alg, PTR_ERR(tfm));
6901 return -ENOSYS;
6902 }
6903 sctp_sk(sk)->hmac = tfm;
6904 }
6905
6906 /*
6907 * If a bind() or sctp_bindx() is not called prior to a listen()
6908 * call that allows new associations to be accepted, the system
6909 * picks an ephemeral port and will choose an address set equivalent
6910 * to binding with a wildcard address.
6911 *
6912 * This is not currently spelled out in the SCTP sockets
6913 * extensions draft, but follows the practice as seen in TCP
6914 * sockets.
6915 *
6916 */
6917 sk->sk_state = SCTP_SS_LISTENING;
6918 if (!ep->base.bind_addr.port) {
6919 if (sctp_autobind(sk))
6920 return -EAGAIN;
6921 } else {
6922 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6923 sk->sk_state = SCTP_SS_CLOSED;
6924 return -EADDRINUSE;
6925 }
6926 }
6927
6928 sk->sk_max_ack_backlog = backlog;
6929 sctp_hash_endpoint(ep);
6930 return 0;
6931 }
6932
6933 /*
6934 * 4.1.3 / 5.1.3 listen()
6935 *
6936 * By default, new associations are not accepted for UDP style sockets.
6937 * An application uses listen() to mark a socket as being able to
6938 * accept new associations.
6939 *
6940 * On TCP style sockets, applications use listen() to ready the SCTP
6941 * endpoint for accepting inbound associations.
6942 *
6943 * On both types of endpoints a backlog of '0' disables listening.
6944 *
6945 * Move a socket to LISTENING state.
6946 */
6947 int sctp_inet_listen(struct socket *sock, int backlog)
6948 {
6949 struct sock *sk = sock->sk;
6950 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6951 int err = -EINVAL;
6952
6953 if (unlikely(backlog < 0))
6954 return err;
6955
6956 lock_sock(sk);
6957
6958 /* Peeled-off sockets are not allowed to listen(). */
6959 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6960 goto out;
6961
6962 if (sock->state != SS_UNCONNECTED)
6963 goto out;
6964
6965 /* If backlog is zero, disable listening. */
6966 if (!backlog) {
6967 if (sctp_sstate(sk, CLOSED))
6968 goto out;
6969
6970 err = 0;
6971 sctp_unhash_endpoint(ep);
6972 sk->sk_state = SCTP_SS_CLOSED;
6973 if (sk->sk_reuse)
6974 sctp_sk(sk)->bind_hash->fastreuse = 1;
6975 goto out;
6976 }
6977
6978 /* If we are already listening, just update the backlog */
6979 if (sctp_sstate(sk, LISTENING))
6980 sk->sk_max_ack_backlog = backlog;
6981 else {
6982 err = sctp_listen_start(sk, backlog);
6983 if (err)
6984 goto out;
6985 }
6986
6987 err = 0;
6988 out:
6989 release_sock(sk);
6990 return err;
6991 }
6992
6993 /*
6994 * This function is done by modeling the current datagram_poll() and the
6995 * tcp_poll(). Note that, based on these implementations, we don't
6996 * lock the socket in this function, even though it seems that,
6997 * ideally, locking or some other mechanisms can be used to ensure
6998 * the integrity of the counters (sndbuf and wmem_alloc) used
6999 * in this place. We assume that we don't need locks either until proven
7000 * otherwise.
7001 *
7002 * Another thing to note is that we include the Async I/O support
7003 * here, again, by modeling the current TCP/UDP code. We don't have
7004 * a good way to test with it yet.
7005 */
7006 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7007 {
7008 struct sock *sk = sock->sk;
7009 struct sctp_sock *sp = sctp_sk(sk);
7010 unsigned int mask;
7011
7012 poll_wait(file, sk_sleep(sk), wait);
7013
7014 sock_rps_record_flow(sk);
7015
7016 /* A TCP-style listening socket becomes readable when the accept queue
7017 * is not empty.
7018 */
7019 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7020 return (!list_empty(&sp->ep->asocs)) ?
7021 (POLLIN | POLLRDNORM) : 0;
7022
7023 mask = 0;
7024
7025 /* Is there any exceptional events? */
7026 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7027 mask |= POLLERR |
7028 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
7029 if (sk->sk_shutdown & RCV_SHUTDOWN)
7030 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
7031 if (sk->sk_shutdown == SHUTDOWN_MASK)
7032 mask |= POLLHUP;
7033
7034 /* Is it readable? Reconsider this code with TCP-style support. */
7035 if (!skb_queue_empty(&sk->sk_receive_queue))
7036 mask |= POLLIN | POLLRDNORM;
7037
7038 /* The association is either gone or not ready. */
7039 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7040 return mask;
7041
7042 /* Is it writable? */
7043 if (sctp_writeable(sk)) {
7044 mask |= POLLOUT | POLLWRNORM;
7045 } else {
7046 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7047 /*
7048 * Since the socket is not locked, the buffer
7049 * might be made available after the writeable check and
7050 * before the bit is set. This could cause a lost I/O
7051 * signal. tcp_poll() has a race breaker for this race
7052 * condition. Based on their implementation, we put
7053 * in the following code to cover it as well.
7054 */
7055 if (sctp_writeable(sk))
7056 mask |= POLLOUT | POLLWRNORM;
7057 }
7058 return mask;
7059 }
7060
7061 /********************************************************************
7062 * 2nd Level Abstractions
7063 ********************************************************************/
7064
7065 static struct sctp_bind_bucket *sctp_bucket_create(
7066 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7067 {
7068 struct sctp_bind_bucket *pp;
7069
7070 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7071 if (pp) {
7072 SCTP_DBG_OBJCNT_INC(bind_bucket);
7073 pp->port = snum;
7074 pp->fastreuse = 0;
7075 INIT_HLIST_HEAD(&pp->owner);
7076 pp->net = net;
7077 hlist_add_head(&pp->node, &head->chain);
7078 }
7079 return pp;
7080 }
7081
7082 /* Caller must hold hashbucket lock for this tb with local BH disabled */
7083 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
7084 {
7085 if (pp && hlist_empty(&pp->owner)) {
7086 __hlist_del(&pp->node);
7087 kmem_cache_free(sctp_bucket_cachep, pp);
7088 SCTP_DBG_OBJCNT_DEC(bind_bucket);
7089 }
7090 }
7091
7092 /* Release this socket's reference to a local port. */
7093 static inline void __sctp_put_port(struct sock *sk)
7094 {
7095 struct sctp_bind_hashbucket *head =
7096 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
7097 inet_sk(sk)->inet_num)];
7098 struct sctp_bind_bucket *pp;
7099
7100 spin_lock(&head->lock);
7101 pp = sctp_sk(sk)->bind_hash;
7102 __sk_del_bind_node(sk);
7103 sctp_sk(sk)->bind_hash = NULL;
7104 inet_sk(sk)->inet_num = 0;
7105 sctp_bucket_destroy(pp);
7106 spin_unlock(&head->lock);
7107 }
7108
7109 void sctp_put_port(struct sock *sk)
7110 {
7111 local_bh_disable();
7112 __sctp_put_port(sk);
7113 local_bh_enable();
7114 }
7115
7116 /*
7117 * The system picks an ephemeral port and choose an address set equivalent
7118 * to binding with a wildcard address.
7119 * One of those addresses will be the primary address for the association.
7120 * This automatically enables the multihoming capability of SCTP.
7121 */
7122 static int sctp_autobind(struct sock *sk)
7123 {
7124 union sctp_addr autoaddr;
7125 struct sctp_af *af;
7126 __be16 port;
7127
7128 /* Initialize a local sockaddr structure to INADDR_ANY. */
7129 af = sctp_sk(sk)->pf->af;
7130
7131 port = htons(inet_sk(sk)->inet_num);
7132 af->inaddr_any(&autoaddr, port);
7133
7134 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7135 }
7136
7137 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7138 *
7139 * From RFC 2292
7140 * 4.2 The cmsghdr Structure *
7141 *
7142 * When ancillary data is sent or received, any number of ancillary data
7143 * objects can be specified by the msg_control and msg_controllen members of
7144 * the msghdr structure, because each object is preceded by
7145 * a cmsghdr structure defining the object's length (the cmsg_len member).
7146 * Historically Berkeley-derived implementations have passed only one object
7147 * at a time, but this API allows multiple objects to be
7148 * passed in a single call to sendmsg() or recvmsg(). The following example
7149 * shows two ancillary data objects in a control buffer.
7150 *
7151 * |<--------------------------- msg_controllen -------------------------->|
7152 * | |
7153 *
7154 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7155 *
7156 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7157 * | | |
7158 *
7159 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7160 *
7161 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7162 * | | | | |
7163 *
7164 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7165 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7166 *
7167 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7168 *
7169 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7170 * ^
7171 * |
7172 *
7173 * msg_control
7174 * points here
7175 */
7176 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7177 {
7178 struct cmsghdr *cmsg;
7179 struct msghdr *my_msg = (struct msghdr *)msg;
7180
7181 for_each_cmsghdr(cmsg, my_msg) {
7182 if (!CMSG_OK(my_msg, cmsg))
7183 return -EINVAL;
7184
7185 /* Should we parse this header or ignore? */
7186 if (cmsg->cmsg_level != IPPROTO_SCTP)
7187 continue;
7188
7189 /* Strictly check lengths following example in SCM code. */
7190 switch (cmsg->cmsg_type) {
7191 case SCTP_INIT:
7192 /* SCTP Socket API Extension
7193 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7194 *
7195 * This cmsghdr structure provides information for
7196 * initializing new SCTP associations with sendmsg().
7197 * The SCTP_INITMSG socket option uses this same data
7198 * structure. This structure is not used for
7199 * recvmsg().
7200 *
7201 * cmsg_level cmsg_type cmsg_data[]
7202 * ------------ ------------ ----------------------
7203 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7204 */
7205 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7206 return -EINVAL;
7207
7208 cmsgs->init = CMSG_DATA(cmsg);
7209 break;
7210
7211 case SCTP_SNDRCV:
7212 /* SCTP Socket API Extension
7213 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7214 *
7215 * This cmsghdr structure specifies SCTP options for
7216 * sendmsg() and describes SCTP header information
7217 * about a received message through recvmsg().
7218 *
7219 * cmsg_level cmsg_type cmsg_data[]
7220 * ------------ ------------ ----------------------
7221 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7222 */
7223 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7224 return -EINVAL;
7225
7226 cmsgs->srinfo = CMSG_DATA(cmsg);
7227
7228 if (cmsgs->srinfo->sinfo_flags &
7229 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7230 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7231 SCTP_ABORT | SCTP_EOF))
7232 return -EINVAL;
7233 break;
7234
7235 case SCTP_SNDINFO:
7236 /* SCTP Socket API Extension
7237 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7238 *
7239 * This cmsghdr structure specifies SCTP options for
7240 * sendmsg(). This structure and SCTP_RCVINFO replaces
7241 * SCTP_SNDRCV which has been deprecated.
7242 *
7243 * cmsg_level cmsg_type cmsg_data[]
7244 * ------------ ------------ ---------------------
7245 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7246 */
7247 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7248 return -EINVAL;
7249
7250 cmsgs->sinfo = CMSG_DATA(cmsg);
7251
7252 if (cmsgs->sinfo->snd_flags &
7253 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7254 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7255 SCTP_ABORT | SCTP_EOF))
7256 return -EINVAL;
7257 break;
7258 default:
7259 return -EINVAL;
7260 }
7261 }
7262
7263 return 0;
7264 }
7265
7266 /*
7267 * Wait for a packet..
7268 * Note: This function is the same function as in core/datagram.c
7269 * with a few modifications to make lksctp work.
7270 */
7271 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7272 {
7273 int error;
7274 DEFINE_WAIT(wait);
7275
7276 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7277
7278 /* Socket errors? */
7279 error = sock_error(sk);
7280 if (error)
7281 goto out;
7282
7283 if (!skb_queue_empty(&sk->sk_receive_queue))
7284 goto ready;
7285
7286 /* Socket shut down? */
7287 if (sk->sk_shutdown & RCV_SHUTDOWN)
7288 goto out;
7289
7290 /* Sequenced packets can come disconnected. If so we report the
7291 * problem.
7292 */
7293 error = -ENOTCONN;
7294
7295 /* Is there a good reason to think that we may receive some data? */
7296 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7297 goto out;
7298
7299 /* Handle signals. */
7300 if (signal_pending(current))
7301 goto interrupted;
7302
7303 /* Let another process have a go. Since we are going to sleep
7304 * anyway. Note: This may cause odd behaviors if the message
7305 * does not fit in the user's buffer, but this seems to be the
7306 * only way to honor MSG_DONTWAIT realistically.
7307 */
7308 release_sock(sk);
7309 *timeo_p = schedule_timeout(*timeo_p);
7310 lock_sock(sk);
7311
7312 ready:
7313 finish_wait(sk_sleep(sk), &wait);
7314 return 0;
7315
7316 interrupted:
7317 error = sock_intr_errno(*timeo_p);
7318
7319 out:
7320 finish_wait(sk_sleep(sk), &wait);
7321 *err = error;
7322 return error;
7323 }
7324
7325 /* Receive a datagram.
7326 * Note: This is pretty much the same routine as in core/datagram.c
7327 * with a few changes to make lksctp work.
7328 */
7329 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7330 int noblock, int *err)
7331 {
7332 int error;
7333 struct sk_buff *skb;
7334 long timeo;
7335
7336 timeo = sock_rcvtimeo(sk, noblock);
7337
7338 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7339 MAX_SCHEDULE_TIMEOUT);
7340
7341 do {
7342 /* Again only user level code calls this function,
7343 * so nothing interrupt level
7344 * will suddenly eat the receive_queue.
7345 *
7346 * Look at current nfs client by the way...
7347 * However, this function was correct in any case. 8)
7348 */
7349 if (flags & MSG_PEEK) {
7350 skb = skb_peek(&sk->sk_receive_queue);
7351 if (skb)
7352 atomic_inc(&skb->users);
7353 } else {
7354 skb = __skb_dequeue(&sk->sk_receive_queue);
7355 }
7356
7357 if (skb)
7358 return skb;
7359
7360 /* Caller is allowed not to check sk->sk_err before calling. */
7361 error = sock_error(sk);
7362 if (error)
7363 goto no_packet;
7364
7365 if (sk->sk_shutdown & RCV_SHUTDOWN)
7366 break;
7367
7368 if (sk_can_busy_loop(sk) &&
7369 sk_busy_loop(sk, noblock))
7370 continue;
7371
7372 /* User doesn't want to wait. */
7373 error = -EAGAIN;
7374 if (!timeo)
7375 goto no_packet;
7376 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7377
7378 return NULL;
7379
7380 no_packet:
7381 *err = error;
7382 return NULL;
7383 }
7384
7385 /* If sndbuf has changed, wake up per association sndbuf waiters. */
7386 static void __sctp_write_space(struct sctp_association *asoc)
7387 {
7388 struct sock *sk = asoc->base.sk;
7389
7390 if (sctp_wspace(asoc) <= 0)
7391 return;
7392
7393 if (waitqueue_active(&asoc->wait))
7394 wake_up_interruptible(&asoc->wait);
7395
7396 if (sctp_writeable(sk)) {
7397 struct socket_wq *wq;
7398
7399 rcu_read_lock();
7400 wq = rcu_dereference(sk->sk_wq);
7401 if (wq) {
7402 if (waitqueue_active(&wq->wait))
7403 wake_up_interruptible(&wq->wait);
7404
7405 /* Note that we try to include the Async I/O support
7406 * here by modeling from the current TCP/UDP code.
7407 * We have not tested with it yet.
7408 */
7409 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7410 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7411 }
7412 rcu_read_unlock();
7413 }
7414 }
7415
7416 static void sctp_wake_up_waiters(struct sock *sk,
7417 struct sctp_association *asoc)
7418 {
7419 struct sctp_association *tmp = asoc;
7420
7421 /* We do accounting for the sndbuf space per association,
7422 * so we only need to wake our own association.
7423 */
7424 if (asoc->ep->sndbuf_policy)
7425 return __sctp_write_space(asoc);
7426
7427 /* If association goes down and is just flushing its
7428 * outq, then just normally notify others.
7429 */
7430 if (asoc->base.dead)
7431 return sctp_write_space(sk);
7432
7433 /* Accounting for the sndbuf space is per socket, so we
7434 * need to wake up others, try to be fair and in case of
7435 * other associations, let them have a go first instead
7436 * of just doing a sctp_write_space() call.
7437 *
7438 * Note that we reach sctp_wake_up_waiters() only when
7439 * associations free up queued chunks, thus we are under
7440 * lock and the list of associations on a socket is
7441 * guaranteed not to change.
7442 */
7443 for (tmp = list_next_entry(tmp, asocs); 1;
7444 tmp = list_next_entry(tmp, asocs)) {
7445 /* Manually skip the head element. */
7446 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7447 continue;
7448 /* Wake up association. */
7449 __sctp_write_space(tmp);
7450 /* We've reached the end. */
7451 if (tmp == asoc)
7452 break;
7453 }
7454 }
7455
7456 /* Do accounting for the sndbuf space.
7457 * Decrement the used sndbuf space of the corresponding association by the
7458 * data size which was just transmitted(freed).
7459 */
7460 static void sctp_wfree(struct sk_buff *skb)
7461 {
7462 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7463 struct sctp_association *asoc = chunk->asoc;
7464 struct sock *sk = asoc->base.sk;
7465
7466 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7467 sizeof(struct sk_buff) +
7468 sizeof(struct sctp_chunk);
7469
7470 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7471
7472 /*
7473 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7474 */
7475 sk->sk_wmem_queued -= skb->truesize;
7476 sk_mem_uncharge(sk, skb->truesize);
7477
7478 sock_wfree(skb);
7479 sctp_wake_up_waiters(sk, asoc);
7480
7481 sctp_association_put(asoc);
7482 }
7483
7484 /* Do accounting for the receive space on the socket.
7485 * Accounting for the association is done in ulpevent.c
7486 * We set this as a destructor for the cloned data skbs so that
7487 * accounting is done at the correct time.
7488 */
7489 void sctp_sock_rfree(struct sk_buff *skb)
7490 {
7491 struct sock *sk = skb->sk;
7492 struct sctp_ulpevent *event = sctp_skb2event(skb);
7493
7494 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7495
7496 /*
7497 * Mimic the behavior of sock_rfree
7498 */
7499 sk_mem_uncharge(sk, event->rmem_len);
7500 }
7501
7502
7503 /* Helper function to wait for space in the sndbuf. */
7504 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7505 size_t msg_len)
7506 {
7507 struct sock *sk = asoc->base.sk;
7508 int err = 0;
7509 long current_timeo = *timeo_p;
7510 DEFINE_WAIT(wait);
7511
7512 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7513 *timeo_p, msg_len);
7514
7515 /* Increment the association's refcnt. */
7516 sctp_association_hold(asoc);
7517
7518 /* Wait on the association specific sndbuf space. */
7519 for (;;) {
7520 prepare_to_wait_exclusive(&asoc->wait, &wait,
7521 TASK_INTERRUPTIBLE);
7522 if (!*timeo_p)
7523 goto do_nonblock;
7524 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7525 asoc->base.dead)
7526 goto do_error;
7527 if (signal_pending(current))
7528 goto do_interrupted;
7529 if (msg_len <= sctp_wspace(asoc))
7530 break;
7531
7532 /* Let another process have a go. Since we are going
7533 * to sleep anyway.
7534 */
7535 release_sock(sk);
7536 current_timeo = schedule_timeout(current_timeo);
7537 BUG_ON(sk != asoc->base.sk);
7538 lock_sock(sk);
7539
7540 *timeo_p = current_timeo;
7541 }
7542
7543 out:
7544 finish_wait(&asoc->wait, &wait);
7545
7546 /* Release the association's refcnt. */
7547 sctp_association_put(asoc);
7548
7549 return err;
7550
7551 do_error:
7552 err = -EPIPE;
7553 goto out;
7554
7555 do_interrupted:
7556 err = sock_intr_errno(*timeo_p);
7557 goto out;
7558
7559 do_nonblock:
7560 err = -EAGAIN;
7561 goto out;
7562 }
7563
7564 void sctp_data_ready(struct sock *sk)
7565 {
7566 struct socket_wq *wq;
7567
7568 rcu_read_lock();
7569 wq = rcu_dereference(sk->sk_wq);
7570 if (skwq_has_sleeper(wq))
7571 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7572 POLLRDNORM | POLLRDBAND);
7573 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7574 rcu_read_unlock();
7575 }
7576
7577 /* If socket sndbuf has changed, wake up all per association waiters. */
7578 void sctp_write_space(struct sock *sk)
7579 {
7580 struct sctp_association *asoc;
7581
7582 /* Wake up the tasks in each wait queue. */
7583 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7584 __sctp_write_space(asoc);
7585 }
7586 }
7587
7588 /* Is there any sndbuf space available on the socket?
7589 *
7590 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7591 * associations on the same socket. For a UDP-style socket with
7592 * multiple associations, it is possible for it to be "unwriteable"
7593 * prematurely. I assume that this is acceptable because
7594 * a premature "unwriteable" is better than an accidental "writeable" which
7595 * would cause an unwanted block under certain circumstances. For the 1-1
7596 * UDP-style sockets or TCP-style sockets, this code should work.
7597 * - Daisy
7598 */
7599 static int sctp_writeable(struct sock *sk)
7600 {
7601 int amt = 0;
7602
7603 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7604 if (amt < 0)
7605 amt = 0;
7606 return amt;
7607 }
7608
7609 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7610 * returns immediately with EINPROGRESS.
7611 */
7612 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7613 {
7614 struct sock *sk = asoc->base.sk;
7615 int err = 0;
7616 long current_timeo = *timeo_p;
7617 DEFINE_WAIT(wait);
7618
7619 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7620
7621 /* Increment the association's refcnt. */
7622 sctp_association_hold(asoc);
7623
7624 for (;;) {
7625 prepare_to_wait_exclusive(&asoc->wait, &wait,
7626 TASK_INTERRUPTIBLE);
7627 if (!*timeo_p)
7628 goto do_nonblock;
7629 if (sk->sk_shutdown & RCV_SHUTDOWN)
7630 break;
7631 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7632 asoc->base.dead)
7633 goto do_error;
7634 if (signal_pending(current))
7635 goto do_interrupted;
7636
7637 if (sctp_state(asoc, ESTABLISHED))
7638 break;
7639
7640 /* Let another process have a go. Since we are going
7641 * to sleep anyway.
7642 */
7643 release_sock(sk);
7644 current_timeo = schedule_timeout(current_timeo);
7645 lock_sock(sk);
7646
7647 *timeo_p = current_timeo;
7648 }
7649
7650 out:
7651 finish_wait(&asoc->wait, &wait);
7652
7653 /* Release the association's refcnt. */
7654 sctp_association_put(asoc);
7655
7656 return err;
7657
7658 do_error:
7659 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7660 err = -ETIMEDOUT;
7661 else
7662 err = -ECONNREFUSED;
7663 goto out;
7664
7665 do_interrupted:
7666 err = sock_intr_errno(*timeo_p);
7667 goto out;
7668
7669 do_nonblock:
7670 err = -EINPROGRESS;
7671 goto out;
7672 }
7673
7674 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7675 {
7676 struct sctp_endpoint *ep;
7677 int err = 0;
7678 DEFINE_WAIT(wait);
7679
7680 ep = sctp_sk(sk)->ep;
7681
7682
7683 for (;;) {
7684 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7685 TASK_INTERRUPTIBLE);
7686
7687 if (list_empty(&ep->asocs)) {
7688 release_sock(sk);
7689 timeo = schedule_timeout(timeo);
7690 lock_sock(sk);
7691 }
7692
7693 err = -EINVAL;
7694 if (!sctp_sstate(sk, LISTENING))
7695 break;
7696
7697 err = 0;
7698 if (!list_empty(&ep->asocs))
7699 break;
7700
7701 err = sock_intr_errno(timeo);
7702 if (signal_pending(current))
7703 break;
7704
7705 err = -EAGAIN;
7706 if (!timeo)
7707 break;
7708 }
7709
7710 finish_wait(sk_sleep(sk), &wait);
7711
7712 return err;
7713 }
7714
7715 static void sctp_wait_for_close(struct sock *sk, long timeout)
7716 {
7717 DEFINE_WAIT(wait);
7718
7719 do {
7720 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7721 if (list_empty(&sctp_sk(sk)->ep->asocs))
7722 break;
7723 release_sock(sk);
7724 timeout = schedule_timeout(timeout);
7725 lock_sock(sk);
7726 } while (!signal_pending(current) && timeout);
7727
7728 finish_wait(sk_sleep(sk), &wait);
7729 }
7730
7731 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7732 {
7733 struct sk_buff *frag;
7734
7735 if (!skb->data_len)
7736 goto done;
7737
7738 /* Don't forget the fragments. */
7739 skb_walk_frags(skb, frag)
7740 sctp_skb_set_owner_r_frag(frag, sk);
7741
7742 done:
7743 sctp_skb_set_owner_r(skb, sk);
7744 }
7745
7746 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7747 struct sctp_association *asoc)
7748 {
7749 struct inet_sock *inet = inet_sk(sk);
7750 struct inet_sock *newinet;
7751
7752 newsk->sk_type = sk->sk_type;
7753 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7754 newsk->sk_flags = sk->sk_flags;
7755 newsk->sk_tsflags = sk->sk_tsflags;
7756 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7757 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7758 newsk->sk_reuse = sk->sk_reuse;
7759
7760 newsk->sk_shutdown = sk->sk_shutdown;
7761 newsk->sk_destruct = sctp_destruct_sock;
7762 newsk->sk_family = sk->sk_family;
7763 newsk->sk_protocol = IPPROTO_SCTP;
7764 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7765 newsk->sk_sndbuf = sk->sk_sndbuf;
7766 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7767 newsk->sk_lingertime = sk->sk_lingertime;
7768 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7769 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7770 newsk->sk_rxhash = sk->sk_rxhash;
7771
7772 newinet = inet_sk(newsk);
7773
7774 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7775 * getsockname() and getpeername()
7776 */
7777 newinet->inet_sport = inet->inet_sport;
7778 newinet->inet_saddr = inet->inet_saddr;
7779 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7780 newinet->inet_dport = htons(asoc->peer.port);
7781 newinet->pmtudisc = inet->pmtudisc;
7782 newinet->inet_id = asoc->next_tsn ^ jiffies;
7783
7784 newinet->uc_ttl = inet->uc_ttl;
7785 newinet->mc_loop = 1;
7786 newinet->mc_ttl = 1;
7787 newinet->mc_index = 0;
7788 newinet->mc_list = NULL;
7789
7790 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7791 net_enable_timestamp();
7792
7793 security_sk_clone(sk, newsk);
7794 }
7795
7796 static inline void sctp_copy_descendant(struct sock *sk_to,
7797 const struct sock *sk_from)
7798 {
7799 int ancestor_size = sizeof(struct inet_sock) +
7800 sizeof(struct sctp_sock) -
7801 offsetof(struct sctp_sock, auto_asconf_list);
7802
7803 if (sk_from->sk_family == PF_INET6)
7804 ancestor_size += sizeof(struct ipv6_pinfo);
7805
7806 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7807 }
7808
7809 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7810 * and its messages to the newsk.
7811 */
7812 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7813 struct sctp_association *assoc,
7814 sctp_socket_type_t type)
7815 {
7816 struct sctp_sock *oldsp = sctp_sk(oldsk);
7817 struct sctp_sock *newsp = sctp_sk(newsk);
7818 struct sctp_bind_bucket *pp; /* hash list port iterator */
7819 struct sctp_endpoint *newep = newsp->ep;
7820 struct sk_buff *skb, *tmp;
7821 struct sctp_ulpevent *event;
7822 struct sctp_bind_hashbucket *head;
7823
7824 /* Migrate socket buffer sizes and all the socket level options to the
7825 * new socket.
7826 */
7827 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7828 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7829 /* Brute force copy old sctp opt. */
7830 sctp_copy_descendant(newsk, oldsk);
7831
7832 /* Restore the ep value that was overwritten with the above structure
7833 * copy.
7834 */
7835 newsp->ep = newep;
7836 newsp->hmac = NULL;
7837
7838 /* Hook this new socket in to the bind_hash list. */
7839 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7840 inet_sk(oldsk)->inet_num)];
7841 spin_lock_bh(&head->lock);
7842 pp = sctp_sk(oldsk)->bind_hash;
7843 sk_add_bind_node(newsk, &pp->owner);
7844 sctp_sk(newsk)->bind_hash = pp;
7845 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7846 spin_unlock_bh(&head->lock);
7847
7848 /* Copy the bind_addr list from the original endpoint to the new
7849 * endpoint so that we can handle restarts properly
7850 */
7851 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7852 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7853
7854 /* Move any messages in the old socket's receive queue that are for the
7855 * peeled off association to the new socket's receive queue.
7856 */
7857 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7858 event = sctp_skb2event(skb);
7859 if (event->asoc == assoc) {
7860 __skb_unlink(skb, &oldsk->sk_receive_queue);
7861 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7862 sctp_skb_set_owner_r_frag(skb, newsk);
7863 }
7864 }
7865
7866 /* Clean up any messages pending delivery due to partial
7867 * delivery. Three cases:
7868 * 1) No partial deliver; no work.
7869 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7870 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7871 */
7872 skb_queue_head_init(&newsp->pd_lobby);
7873 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7874
7875 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7876 struct sk_buff_head *queue;
7877
7878 /* Decide which queue to move pd_lobby skbs to. */
7879 if (assoc->ulpq.pd_mode) {
7880 queue = &newsp->pd_lobby;
7881 } else
7882 queue = &newsk->sk_receive_queue;
7883
7884 /* Walk through the pd_lobby, looking for skbs that
7885 * need moved to the new socket.
7886 */
7887 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7888 event = sctp_skb2event(skb);
7889 if (event->asoc == assoc) {
7890 __skb_unlink(skb, &oldsp->pd_lobby);
7891 __skb_queue_tail(queue, skb);
7892 sctp_skb_set_owner_r_frag(skb, newsk);
7893 }
7894 }
7895
7896 /* Clear up any skbs waiting for the partial
7897 * delivery to finish.
7898 */
7899 if (assoc->ulpq.pd_mode)
7900 sctp_clear_pd(oldsk, NULL);
7901
7902 }
7903
7904 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7905 sctp_skb_set_owner_r_frag(skb, newsk);
7906
7907 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7908 sctp_skb_set_owner_r_frag(skb, newsk);
7909
7910 /* Set the type of socket to indicate that it is peeled off from the
7911 * original UDP-style socket or created with the accept() call on a
7912 * TCP-style socket..
7913 */
7914 newsp->type = type;
7915
7916 /* Mark the new socket "in-use" by the user so that any packets
7917 * that may arrive on the association after we've moved it are
7918 * queued to the backlog. This prevents a potential race between
7919 * backlog processing on the old socket and new-packet processing
7920 * on the new socket.
7921 *
7922 * The caller has just allocated newsk so we can guarantee that other
7923 * paths won't try to lock it and then oldsk.
7924 */
7925 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7926 sctp_assoc_migrate(assoc, newsk);
7927
7928 /* If the association on the newsk is already closed before accept()
7929 * is called, set RCV_SHUTDOWN flag.
7930 */
7931 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7932 newsk->sk_state = SCTP_SS_CLOSED;
7933 newsk->sk_shutdown |= RCV_SHUTDOWN;
7934 } else {
7935 newsk->sk_state = SCTP_SS_ESTABLISHED;
7936 }
7937
7938 release_sock(newsk);
7939 }
7940
7941
7942 /* This proto struct describes the ULP interface for SCTP. */
7943 struct proto sctp_prot = {
7944 .name = "SCTP",
7945 .owner = THIS_MODULE,
7946 .close = sctp_close,
7947 .connect = sctp_connect,
7948 .disconnect = sctp_disconnect,
7949 .accept = sctp_accept,
7950 .ioctl = sctp_ioctl,
7951 .init = sctp_init_sock,
7952 .destroy = sctp_destroy_sock,
7953 .shutdown = sctp_shutdown,
7954 .setsockopt = sctp_setsockopt,
7955 .getsockopt = sctp_getsockopt,
7956 .sendmsg = sctp_sendmsg,
7957 .recvmsg = sctp_recvmsg,
7958 .bind = sctp_bind,
7959 .backlog_rcv = sctp_backlog_rcv,
7960 .hash = sctp_hash,
7961 .unhash = sctp_unhash,
7962 .get_port = sctp_get_port,
7963 .obj_size = sizeof(struct sctp_sock),
7964 .sysctl_mem = sysctl_sctp_mem,
7965 .sysctl_rmem = sysctl_sctp_rmem,
7966 .sysctl_wmem = sysctl_sctp_wmem,
7967 .memory_pressure = &sctp_memory_pressure,
7968 .enter_memory_pressure = sctp_enter_memory_pressure,
7969 .memory_allocated = &sctp_memory_allocated,
7970 .sockets_allocated = &sctp_sockets_allocated,
7971 };
7972
7973 #if IS_ENABLED(CONFIG_IPV6)
7974
7975 #include <net/transp_v6.h>
7976 static void sctp_v6_destroy_sock(struct sock *sk)
7977 {
7978 sctp_destroy_sock(sk);
7979 inet6_destroy_sock(sk);
7980 }
7981
7982 struct proto sctpv6_prot = {
7983 .name = "SCTPv6",
7984 .owner = THIS_MODULE,
7985 .close = sctp_close,
7986 .connect = sctp_connect,
7987 .disconnect = sctp_disconnect,
7988 .accept = sctp_accept,
7989 .ioctl = sctp_ioctl,
7990 .init = sctp_init_sock,
7991 .destroy = sctp_v6_destroy_sock,
7992 .shutdown = sctp_shutdown,
7993 .setsockopt = sctp_setsockopt,
7994 .getsockopt = sctp_getsockopt,
7995 .sendmsg = sctp_sendmsg,
7996 .recvmsg = sctp_recvmsg,
7997 .bind = sctp_bind,
7998 .backlog_rcv = sctp_backlog_rcv,
7999 .hash = sctp_hash,
8000 .unhash = sctp_unhash,
8001 .get_port = sctp_get_port,
8002 .obj_size = sizeof(struct sctp6_sock),
8003 .sysctl_mem = sysctl_sctp_mem,
8004 .sysctl_rmem = sysctl_sctp_rmem,
8005 .sysctl_wmem = sysctl_sctp_wmem,
8006 .memory_pressure = &sctp_memory_pressure,
8007 .enter_memory_pressure = sctp_enter_memory_pressure,
8008 .memory_allocated = &sctp_memory_allocated,
8009 .sockets_allocated = &sctp_sockets_allocated,
8010 };
8011 #endif /* IS_ENABLED(CONFIG_IPV6) */