]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sctp/socket.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <net/sock.h>
82 #include <net/sctp/sctp.h>
83 #include <net/sctp/sm.h>
84
85 /* WARNING: Please do not remove the SCTP_STATIC attribute to
86 * any of the functions below as they are used to export functions
87 * used by a project regression testsuite.
88 */
89
90 /* Forward declarations for internal helper functions. */
91 static int sctp_writeable(struct sock *sk);
92 static void sctp_wfree(struct sk_buff *skb);
93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94 size_t msg_len);
95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97 static int sctp_wait_for_accept(struct sock *sk, long timeo);
98 static void sctp_wait_for_close(struct sock *sk, long timeo);
99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100 union sctp_addr *addr, int len);
101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf(struct sctp_association *asoc,
106 struct sctp_chunk *chunk);
107 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108 static int sctp_autobind(struct sock *sk);
109 static void sctp_sock_migrate(struct sock *, struct sock *,
110 struct sctp_association *, sctp_socket_type_t);
111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
112
113 extern struct kmem_cache *sctp_bucket_cachep;
114 extern long sysctl_sctp_mem[3];
115 extern int sysctl_sctp_rmem[3];
116 extern int sysctl_sctp_wmem[3];
117
118 static int sctp_memory_pressure;
119 static atomic_long_t sctp_memory_allocated;
120 struct percpu_counter sctp_sockets_allocated;
121
122 static void sctp_enter_memory_pressure(struct sock *sk)
123 {
124 sctp_memory_pressure = 1;
125 }
126
127
128 /* Get the sndbuf space available at the time on the association. */
129 static inline int sctp_wspace(struct sctp_association *asoc)
130 {
131 int amt;
132
133 if (asoc->ep->sndbuf_policy)
134 amt = asoc->sndbuf_used;
135 else
136 amt = sk_wmem_alloc_get(asoc->base.sk);
137
138 if (amt >= asoc->base.sk->sk_sndbuf) {
139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140 amt = 0;
141 else {
142 amt = sk_stream_wspace(asoc->base.sk);
143 if (amt < 0)
144 amt = 0;
145 }
146 } else {
147 amt = asoc->base.sk->sk_sndbuf - amt;
148 }
149 return amt;
150 }
151
152 /* Increment the used sndbuf space count of the corresponding association by
153 * the size of the outgoing data chunk.
154 * Also, set the skb destructor for sndbuf accounting later.
155 *
156 * Since it is always 1-1 between chunk and skb, and also a new skb is always
157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
158 * destructor in the data chunk skb for the purpose of the sndbuf space
159 * tracking.
160 */
161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
162 {
163 struct sctp_association *asoc = chunk->asoc;
164 struct sock *sk = asoc->base.sk;
165
166 /* The sndbuf space is tracked per association. */
167 sctp_association_hold(asoc);
168
169 skb_set_owner_w(chunk->skb, sk);
170
171 chunk->skb->destructor = sctp_wfree;
172 /* Save the chunk pointer in skb for sctp_wfree to use later. */
173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
174
175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176 sizeof(struct sk_buff) +
177 sizeof(struct sctp_chunk);
178
179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180 sk->sk_wmem_queued += chunk->skb->truesize;
181 sk_mem_charge(sk, chunk->skb->truesize);
182 }
183
184 /* Verify that this is a valid address. */
185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186 int len)
187 {
188 struct sctp_af *af;
189
190 /* Verify basic sockaddr. */
191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192 if (!af)
193 return -EINVAL;
194
195 /* Is this a valid SCTP address? */
196 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197 return -EINVAL;
198
199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200 return -EINVAL;
201
202 return 0;
203 }
204
205 /* Look up the association by its id. If this is not a UDP-style
206 * socket, the ID field is always ignored.
207 */
208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
209 {
210 struct sctp_association *asoc = NULL;
211
212 /* If this is not a UDP-style socket, assoc id should be ignored. */
213 if (!sctp_style(sk, UDP)) {
214 /* Return NULL if the socket state is not ESTABLISHED. It
215 * could be a TCP-style listening socket or a socket which
216 * hasn't yet called connect() to establish an association.
217 */
218 if (!sctp_sstate(sk, ESTABLISHED))
219 return NULL;
220
221 /* Get the first and the only association from the list. */
222 if (!list_empty(&sctp_sk(sk)->ep->asocs))
223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224 struct sctp_association, asocs);
225 return asoc;
226 }
227
228 /* Otherwise this is a UDP-style socket. */
229 if (!id || (id == (sctp_assoc_t)-1))
230 return NULL;
231
232 spin_lock_bh(&sctp_assocs_id_lock);
233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234 spin_unlock_bh(&sctp_assocs_id_lock);
235
236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237 return NULL;
238
239 return asoc;
240 }
241
242 /* Look up the transport from an address and an assoc id. If both address and
243 * id are specified, the associations matching the address and the id should be
244 * the same.
245 */
246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247 struct sockaddr_storage *addr,
248 sctp_assoc_t id)
249 {
250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251 struct sctp_transport *transport;
252 union sctp_addr *laddr = (union sctp_addr *)addr;
253
254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255 laddr,
256 &transport);
257
258 if (!addr_asoc)
259 return NULL;
260
261 id_asoc = sctp_id2assoc(sk, id);
262 if (id_asoc && (id_asoc != addr_asoc))
263 return NULL;
264
265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266 (union sctp_addr *)addr);
267
268 return transport;
269 }
270
271 /* API 3.1.2 bind() - UDP Style Syntax
272 * The syntax of bind() is,
273 *
274 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
275 *
276 * sd - the socket descriptor returned by socket().
277 * addr - the address structure (struct sockaddr_in or struct
278 * sockaddr_in6 [RFC 2553]),
279 * addr_len - the size of the address structure.
280 */
281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
282 {
283 int retval = 0;
284
285 sctp_lock_sock(sk);
286
287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288 sk, addr, addr_len);
289
290 /* Disallow binding twice. */
291 if (!sctp_sk(sk)->ep->base.bind_addr.port)
292 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293 addr_len);
294 else
295 retval = -EINVAL;
296
297 sctp_release_sock(sk);
298
299 return retval;
300 }
301
302 static long sctp_get_port_local(struct sock *, union sctp_addr *);
303
304 /* Verify this is a valid sockaddr. */
305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306 union sctp_addr *addr, int len)
307 {
308 struct sctp_af *af;
309
310 /* Check minimum size. */
311 if (len < sizeof (struct sockaddr))
312 return NULL;
313
314 /* V4 mapped address are really of AF_INET family */
315 if (addr->sa.sa_family == AF_INET6 &&
316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317 if (!opt->pf->af_supported(AF_INET, opt))
318 return NULL;
319 } else {
320 /* Does this PF support this AF? */
321 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322 return NULL;
323 }
324
325 /* If we get this far, af is valid. */
326 af = sctp_get_af_specific(addr->sa.sa_family);
327
328 if (len < af->sockaddr_len)
329 return NULL;
330
331 return af;
332 }
333
334 /* Bind a local address either to an endpoint or to an association. */
335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
336 {
337 struct sctp_sock *sp = sctp_sk(sk);
338 struct sctp_endpoint *ep = sp->ep;
339 struct sctp_bind_addr *bp = &ep->base.bind_addr;
340 struct sctp_af *af;
341 unsigned short snum;
342 int ret = 0;
343
344 /* Common sockaddr verification. */
345 af = sctp_sockaddr_af(sp, addr, len);
346 if (!af) {
347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348 sk, addr, len);
349 return -EINVAL;
350 }
351
352 snum = ntohs(addr->v4.sin_port);
353
354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355 ", port: %d, new port: %d, len: %d)\n",
356 sk,
357 addr,
358 bp->port, snum,
359 len);
360
361 /* PF specific bind() address verification. */
362 if (!sp->pf->bind_verify(sp, addr))
363 return -EADDRNOTAVAIL;
364
365 /* We must either be unbound, or bind to the same port.
366 * It's OK to allow 0 ports if we are already bound.
367 * We'll just inhert an already bound port in this case
368 */
369 if (bp->port) {
370 if (!snum)
371 snum = bp->port;
372 else if (snum != bp->port) {
373 SCTP_DEBUG_PRINTK("sctp_do_bind:"
374 " New port %d does not match existing port "
375 "%d.\n", snum, bp->port);
376 return -EINVAL;
377 }
378 }
379
380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381 return -EACCES;
382
383 /* See if the address matches any of the addresses we may have
384 * already bound before checking against other endpoints.
385 */
386 if (sctp_bind_addr_match(bp, addr, sp))
387 return -EINVAL;
388
389 /* Make sure we are allowed to bind here.
390 * The function sctp_get_port_local() does duplicate address
391 * detection.
392 */
393 addr->v4.sin_port = htons(snum);
394 if ((ret = sctp_get_port_local(sk, addr))) {
395 return -EADDRINUSE;
396 }
397
398 /* Refresh ephemeral port. */
399 if (!bp->port)
400 bp->port = inet_sk(sk)->inet_num;
401
402 /* Add the address to the bind address list.
403 * Use GFP_ATOMIC since BHs will be disabled.
404 */
405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
406
407 /* Copy back into socket for getsockname() use. */
408 if (!ret) {
409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410 af->to_sk_saddr(addr, sk);
411 }
412
413 return ret;
414 }
415
416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
417 *
418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419 * at any one time. If a sender, after sending an ASCONF chunk, decides
420 * it needs to transfer another ASCONF Chunk, it MUST wait until the
421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422 * subsequent ASCONF. Note this restriction binds each side, so at any
423 * time two ASCONF may be in-transit on any given association (one sent
424 * from each endpoint).
425 */
426 static int sctp_send_asconf(struct sctp_association *asoc,
427 struct sctp_chunk *chunk)
428 {
429 int retval = 0;
430
431 /* If there is an outstanding ASCONF chunk, queue it for later
432 * transmission.
433 */
434 if (asoc->addip_last_asconf) {
435 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436 goto out;
437 }
438
439 /* Hold the chunk until an ASCONF_ACK is received. */
440 sctp_chunk_hold(chunk);
441 retval = sctp_primitive_ASCONF(asoc, chunk);
442 if (retval)
443 sctp_chunk_free(chunk);
444 else
445 asoc->addip_last_asconf = chunk;
446
447 out:
448 return retval;
449 }
450
451 /* Add a list of addresses as bind addresses to local endpoint or
452 * association.
453 *
454 * Basically run through each address specified in the addrs/addrcnt
455 * array/length pair, determine if it is IPv6 or IPv4 and call
456 * sctp_do_bind() on it.
457 *
458 * If any of them fails, then the operation will be reversed and the
459 * ones that were added will be removed.
460 *
461 * Only sctp_setsockopt_bindx() is supposed to call this function.
462 */
463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
464 {
465 int cnt;
466 int retval = 0;
467 void *addr_buf;
468 struct sockaddr *sa_addr;
469 struct sctp_af *af;
470
471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472 sk, addrs, addrcnt);
473
474 addr_buf = addrs;
475 for (cnt = 0; cnt < addrcnt; cnt++) {
476 /* The list may contain either IPv4 or IPv6 address;
477 * determine the address length for walking thru the list.
478 */
479 sa_addr = (struct sockaddr *)addr_buf;
480 af = sctp_get_af_specific(sa_addr->sa_family);
481 if (!af) {
482 retval = -EINVAL;
483 goto err_bindx_add;
484 }
485
486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487 af->sockaddr_len);
488
489 addr_buf += af->sockaddr_len;
490
491 err_bindx_add:
492 if (retval < 0) {
493 /* Failed. Cleanup the ones that have been added */
494 if (cnt > 0)
495 sctp_bindx_rem(sk, addrs, cnt);
496 return retval;
497 }
498 }
499
500 return retval;
501 }
502
503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504 * associations that are part of the endpoint indicating that a list of local
505 * addresses are added to the endpoint.
506 *
507 * If any of the addresses is already in the bind address list of the
508 * association, we do not send the chunk for that association. But it will not
509 * affect other associations.
510 *
511 * Only sctp_setsockopt_bindx() is supposed to call this function.
512 */
513 static int sctp_send_asconf_add_ip(struct sock *sk,
514 struct sockaddr *addrs,
515 int addrcnt)
516 {
517 struct sctp_sock *sp;
518 struct sctp_endpoint *ep;
519 struct sctp_association *asoc;
520 struct sctp_bind_addr *bp;
521 struct sctp_chunk *chunk;
522 struct sctp_sockaddr_entry *laddr;
523 union sctp_addr *addr;
524 union sctp_addr saveaddr;
525 void *addr_buf;
526 struct sctp_af *af;
527 struct list_head *p;
528 int i;
529 int retval = 0;
530
531 if (!sctp_addip_enable)
532 return retval;
533
534 sp = sctp_sk(sk);
535 ep = sp->ep;
536
537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538 __func__, sk, addrs, addrcnt);
539
540 list_for_each_entry(asoc, &ep->asocs, asocs) {
541
542 if (!asoc->peer.asconf_capable)
543 continue;
544
545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546 continue;
547
548 if (!sctp_state(asoc, ESTABLISHED))
549 continue;
550
551 /* Check if any address in the packed array of addresses is
552 * in the bind address list of the association. If so,
553 * do not send the asconf chunk to its peer, but continue with
554 * other associations.
555 */
556 addr_buf = addrs;
557 for (i = 0; i < addrcnt; i++) {
558 addr = (union sctp_addr *)addr_buf;
559 af = sctp_get_af_specific(addr->v4.sin_family);
560 if (!af) {
561 retval = -EINVAL;
562 goto out;
563 }
564
565 if (sctp_assoc_lookup_laddr(asoc, addr))
566 break;
567
568 addr_buf += af->sockaddr_len;
569 }
570 if (i < addrcnt)
571 continue;
572
573 /* Use the first valid address in bind addr list of
574 * association as Address Parameter of ASCONF CHUNK.
575 */
576 bp = &asoc->base.bind_addr;
577 p = bp->address_list.next;
578 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580 addrcnt, SCTP_PARAM_ADD_IP);
581 if (!chunk) {
582 retval = -ENOMEM;
583 goto out;
584 }
585
586 /* Add the new addresses to the bind address list with
587 * use_as_src set to 0.
588 */
589 addr_buf = addrs;
590 for (i = 0; i < addrcnt; i++) {
591 addr = (union sctp_addr *)addr_buf;
592 af = sctp_get_af_specific(addr->v4.sin_family);
593 memcpy(&saveaddr, addr, af->sockaddr_len);
594 retval = sctp_add_bind_addr(bp, &saveaddr,
595 SCTP_ADDR_NEW, GFP_ATOMIC);
596 addr_buf += af->sockaddr_len;
597 }
598 if (asoc->src_out_of_asoc_ok) {
599 struct sctp_transport *trans;
600
601 list_for_each_entry(trans,
602 &asoc->peer.transport_addr_list, transports) {
603 /* Clear the source and route cache */
604 dst_release(trans->dst);
605 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
606 2*asoc->pathmtu, 4380));
607 trans->ssthresh = asoc->peer.i.a_rwnd;
608 trans->rto = asoc->rto_initial;
609 trans->rtt = trans->srtt = trans->rttvar = 0;
610 sctp_transport_route(trans, NULL,
611 sctp_sk(asoc->base.sk));
612 }
613 }
614 retval = sctp_send_asconf(asoc, chunk);
615 }
616
617 out:
618 return retval;
619 }
620
621 /* Remove a list of addresses from bind addresses list. Do not remove the
622 * last address.
623 *
624 * Basically run through each address specified in the addrs/addrcnt
625 * array/length pair, determine if it is IPv6 or IPv4 and call
626 * sctp_del_bind() on it.
627 *
628 * If any of them fails, then the operation will be reversed and the
629 * ones that were removed will be added back.
630 *
631 * At least one address has to be left; if only one address is
632 * available, the operation will return -EBUSY.
633 *
634 * Only sctp_setsockopt_bindx() is supposed to call this function.
635 */
636 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
637 {
638 struct sctp_sock *sp = sctp_sk(sk);
639 struct sctp_endpoint *ep = sp->ep;
640 int cnt;
641 struct sctp_bind_addr *bp = &ep->base.bind_addr;
642 int retval = 0;
643 void *addr_buf;
644 union sctp_addr *sa_addr;
645 struct sctp_af *af;
646
647 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
648 sk, addrs, addrcnt);
649
650 addr_buf = addrs;
651 for (cnt = 0; cnt < addrcnt; cnt++) {
652 /* If the bind address list is empty or if there is only one
653 * bind address, there is nothing more to be removed (we need
654 * at least one address here).
655 */
656 if (list_empty(&bp->address_list) ||
657 (sctp_list_single_entry(&bp->address_list))) {
658 retval = -EBUSY;
659 goto err_bindx_rem;
660 }
661
662 sa_addr = (union sctp_addr *)addr_buf;
663 af = sctp_get_af_specific(sa_addr->sa.sa_family);
664 if (!af) {
665 retval = -EINVAL;
666 goto err_bindx_rem;
667 }
668
669 if (!af->addr_valid(sa_addr, sp, NULL)) {
670 retval = -EADDRNOTAVAIL;
671 goto err_bindx_rem;
672 }
673
674 if (sa_addr->v4.sin_port &&
675 sa_addr->v4.sin_port != htons(bp->port)) {
676 retval = -EINVAL;
677 goto err_bindx_rem;
678 }
679
680 if (!sa_addr->v4.sin_port)
681 sa_addr->v4.sin_port = htons(bp->port);
682
683 /* FIXME - There is probably a need to check if sk->sk_saddr and
684 * sk->sk_rcv_addr are currently set to one of the addresses to
685 * be removed. This is something which needs to be looked into
686 * when we are fixing the outstanding issues with multi-homing
687 * socket routing and failover schemes. Refer to comments in
688 * sctp_do_bind(). -daisy
689 */
690 retval = sctp_del_bind_addr(bp, sa_addr);
691
692 addr_buf += af->sockaddr_len;
693 err_bindx_rem:
694 if (retval < 0) {
695 /* Failed. Add the ones that has been removed back */
696 if (cnt > 0)
697 sctp_bindx_add(sk, addrs, cnt);
698 return retval;
699 }
700 }
701
702 return retval;
703 }
704
705 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
706 * the associations that are part of the endpoint indicating that a list of
707 * local addresses are removed from the endpoint.
708 *
709 * If any of the addresses is already in the bind address list of the
710 * association, we do not send the chunk for that association. But it will not
711 * affect other associations.
712 *
713 * Only sctp_setsockopt_bindx() is supposed to call this function.
714 */
715 static int sctp_send_asconf_del_ip(struct sock *sk,
716 struct sockaddr *addrs,
717 int addrcnt)
718 {
719 struct sctp_sock *sp;
720 struct sctp_endpoint *ep;
721 struct sctp_association *asoc;
722 struct sctp_transport *transport;
723 struct sctp_bind_addr *bp;
724 struct sctp_chunk *chunk;
725 union sctp_addr *laddr;
726 void *addr_buf;
727 struct sctp_af *af;
728 struct sctp_sockaddr_entry *saddr;
729 int i;
730 int retval = 0;
731 int stored = 0;
732
733 chunk = NULL;
734 if (!sctp_addip_enable)
735 return retval;
736
737 sp = sctp_sk(sk);
738 ep = sp->ep;
739
740 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
741 __func__, sk, addrs, addrcnt);
742
743 list_for_each_entry(asoc, &ep->asocs, asocs) {
744
745 if (!asoc->peer.asconf_capable)
746 continue;
747
748 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
749 continue;
750
751 if (!sctp_state(asoc, ESTABLISHED))
752 continue;
753
754 /* Check if any address in the packed array of addresses is
755 * not present in the bind address list of the association.
756 * If so, do not send the asconf chunk to its peer, but
757 * continue with other associations.
758 */
759 addr_buf = addrs;
760 for (i = 0; i < addrcnt; i++) {
761 laddr = (union sctp_addr *)addr_buf;
762 af = sctp_get_af_specific(laddr->v4.sin_family);
763 if (!af) {
764 retval = -EINVAL;
765 goto out;
766 }
767
768 if (!sctp_assoc_lookup_laddr(asoc, laddr))
769 break;
770
771 addr_buf += af->sockaddr_len;
772 }
773 if (i < addrcnt)
774 continue;
775
776 /* Find one address in the association's bind address list
777 * that is not in the packed array of addresses. This is to
778 * make sure that we do not delete all the addresses in the
779 * association.
780 */
781 bp = &asoc->base.bind_addr;
782 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
783 addrcnt, sp);
784 if ((laddr == NULL) && (addrcnt == 1)) {
785 if (asoc->asconf_addr_del_pending)
786 continue;
787 asoc->asconf_addr_del_pending =
788 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
789 asoc->asconf_addr_del_pending->sa.sa_family =
790 addrs->sa_family;
791 asoc->asconf_addr_del_pending->v4.sin_port =
792 htons(bp->port);
793 if (addrs->sa_family == AF_INET) {
794 struct sockaddr_in *sin;
795
796 sin = (struct sockaddr_in *)addrs;
797 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
798 } else if (addrs->sa_family == AF_INET6) {
799 struct sockaddr_in6 *sin6;
800
801 sin6 = (struct sockaddr_in6 *)addrs;
802 ipv6_addr_copy(&asoc->asconf_addr_del_pending->v6.sin6_addr, &sin6->sin6_addr);
803 }
804 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
805 " at %p\n", asoc, asoc->asconf_addr_del_pending,
806 asoc->asconf_addr_del_pending);
807 asoc->src_out_of_asoc_ok = 1;
808 stored = 1;
809 goto skip_mkasconf;
810 }
811
812 /* We do not need RCU protection throughout this loop
813 * because this is done under a socket lock from the
814 * setsockopt call.
815 */
816 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
817 SCTP_PARAM_DEL_IP);
818 if (!chunk) {
819 retval = -ENOMEM;
820 goto out;
821 }
822
823 skip_mkasconf:
824 /* Reset use_as_src flag for the addresses in the bind address
825 * list that are to be deleted.
826 */
827 addr_buf = addrs;
828 for (i = 0; i < addrcnt; i++) {
829 laddr = (union sctp_addr *)addr_buf;
830 af = sctp_get_af_specific(laddr->v4.sin_family);
831 list_for_each_entry(saddr, &bp->address_list, list) {
832 if (sctp_cmp_addr_exact(&saddr->a, laddr))
833 saddr->state = SCTP_ADDR_DEL;
834 }
835 addr_buf += af->sockaddr_len;
836 }
837
838 /* Update the route and saddr entries for all the transports
839 * as some of the addresses in the bind address list are
840 * about to be deleted and cannot be used as source addresses.
841 */
842 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
843 transports) {
844 dst_release(transport->dst);
845 sctp_transport_route(transport, NULL,
846 sctp_sk(asoc->base.sk));
847 }
848
849 if (stored)
850 /* We don't need to transmit ASCONF */
851 continue;
852 retval = sctp_send_asconf(asoc, chunk);
853 }
854 out:
855 return retval;
856 }
857
858 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
859 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
860 {
861 struct sock *sk = sctp_opt2sk(sp);
862 union sctp_addr *addr;
863 struct sctp_af *af;
864
865 /* It is safe to write port space in caller. */
866 addr = &addrw->a;
867 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
868 af = sctp_get_af_specific(addr->sa.sa_family);
869 if (!af)
870 return -EINVAL;
871 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
872 return -EINVAL;
873
874 if (addrw->state == SCTP_ADDR_NEW)
875 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
876 else
877 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
878 }
879
880 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
881 *
882 * API 8.1
883 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
884 * int flags);
885 *
886 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
887 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
888 * or IPv6 addresses.
889 *
890 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
891 * Section 3.1.2 for this usage.
892 *
893 * addrs is a pointer to an array of one or more socket addresses. Each
894 * address is contained in its appropriate structure (i.e. struct
895 * sockaddr_in or struct sockaddr_in6) the family of the address type
896 * must be used to distinguish the address length (note that this
897 * representation is termed a "packed array" of addresses). The caller
898 * specifies the number of addresses in the array with addrcnt.
899 *
900 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
901 * -1, and sets errno to the appropriate error code.
902 *
903 * For SCTP, the port given in each socket address must be the same, or
904 * sctp_bindx() will fail, setting errno to EINVAL.
905 *
906 * The flags parameter is formed from the bitwise OR of zero or more of
907 * the following currently defined flags:
908 *
909 * SCTP_BINDX_ADD_ADDR
910 *
911 * SCTP_BINDX_REM_ADDR
912 *
913 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
914 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
915 * addresses from the association. The two flags are mutually exclusive;
916 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
917 * not remove all addresses from an association; sctp_bindx() will
918 * reject such an attempt with EINVAL.
919 *
920 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
921 * additional addresses with an endpoint after calling bind(). Or use
922 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
923 * socket is associated with so that no new association accepted will be
924 * associated with those addresses. If the endpoint supports dynamic
925 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
926 * endpoint to send the appropriate message to the peer to change the
927 * peers address lists.
928 *
929 * Adding and removing addresses from a connected association is
930 * optional functionality. Implementations that do not support this
931 * functionality should return EOPNOTSUPP.
932 *
933 * Basically do nothing but copying the addresses from user to kernel
934 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
935 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
936 * from userspace.
937 *
938 * We don't use copy_from_user() for optimization: we first do the
939 * sanity checks (buffer size -fast- and access check-healthy
940 * pointer); if all of those succeed, then we can alloc the memory
941 * (expensive operation) needed to copy the data to kernel. Then we do
942 * the copying without checking the user space area
943 * (__copy_from_user()).
944 *
945 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
946 * it.
947 *
948 * sk The sk of the socket
949 * addrs The pointer to the addresses in user land
950 * addrssize Size of the addrs buffer
951 * op Operation to perform (add or remove, see the flags of
952 * sctp_bindx)
953 *
954 * Returns 0 if ok, <0 errno code on error.
955 */
956 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
957 struct sockaddr __user *addrs,
958 int addrs_size, int op)
959 {
960 struct sockaddr *kaddrs;
961 int err;
962 int addrcnt = 0;
963 int walk_size = 0;
964 struct sockaddr *sa_addr;
965 void *addr_buf;
966 struct sctp_af *af;
967
968 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
969 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
970
971 if (unlikely(addrs_size <= 0))
972 return -EINVAL;
973
974 /* Check the user passed a healthy pointer. */
975 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
976 return -EFAULT;
977
978 /* Alloc space for the address array in kernel memory. */
979 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
980 if (unlikely(!kaddrs))
981 return -ENOMEM;
982
983 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
984 kfree(kaddrs);
985 return -EFAULT;
986 }
987
988 /* Walk through the addrs buffer and count the number of addresses. */
989 addr_buf = kaddrs;
990 while (walk_size < addrs_size) {
991 if (walk_size + sizeof(sa_family_t) > addrs_size) {
992 kfree(kaddrs);
993 return -EINVAL;
994 }
995
996 sa_addr = (struct sockaddr *)addr_buf;
997 af = sctp_get_af_specific(sa_addr->sa_family);
998
999 /* If the address family is not supported or if this address
1000 * causes the address buffer to overflow return EINVAL.
1001 */
1002 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 kfree(kaddrs);
1004 return -EINVAL;
1005 }
1006 addrcnt++;
1007 addr_buf += af->sockaddr_len;
1008 walk_size += af->sockaddr_len;
1009 }
1010
1011 /* Do the work. */
1012 switch (op) {
1013 case SCTP_BINDX_ADD_ADDR:
1014 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1015 if (err)
1016 goto out;
1017 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1018 break;
1019
1020 case SCTP_BINDX_REM_ADDR:
1021 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1022 if (err)
1023 goto out;
1024 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1025 break;
1026
1027 default:
1028 err = -EINVAL;
1029 break;
1030 }
1031
1032 out:
1033 kfree(kaddrs);
1034
1035 return err;
1036 }
1037
1038 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1039 *
1040 * Common routine for handling connect() and sctp_connectx().
1041 * Connect will come in with just a single address.
1042 */
1043 static int __sctp_connect(struct sock* sk,
1044 struct sockaddr *kaddrs,
1045 int addrs_size,
1046 sctp_assoc_t *assoc_id)
1047 {
1048 struct sctp_sock *sp;
1049 struct sctp_endpoint *ep;
1050 struct sctp_association *asoc = NULL;
1051 struct sctp_association *asoc2;
1052 struct sctp_transport *transport;
1053 union sctp_addr to;
1054 struct sctp_af *af;
1055 sctp_scope_t scope;
1056 long timeo;
1057 int err = 0;
1058 int addrcnt = 0;
1059 int walk_size = 0;
1060 union sctp_addr *sa_addr = NULL;
1061 void *addr_buf;
1062 unsigned short port;
1063 unsigned int f_flags = 0;
1064
1065 sp = sctp_sk(sk);
1066 ep = sp->ep;
1067
1068 /* connect() cannot be done on a socket that is already in ESTABLISHED
1069 * state - UDP-style peeled off socket or a TCP-style socket that
1070 * is already connected.
1071 * It cannot be done even on a TCP-style listening socket.
1072 */
1073 if (sctp_sstate(sk, ESTABLISHED) ||
1074 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1075 err = -EISCONN;
1076 goto out_free;
1077 }
1078
1079 /* Walk through the addrs buffer and count the number of addresses. */
1080 addr_buf = kaddrs;
1081 while (walk_size < addrs_size) {
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = (union sctp_addr *)addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port)
1111 goto out_free;
1112
1113
1114 /* Check if there already is a matching association on the
1115 * endpoint (other than the one created here).
1116 */
1117 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1118 if (asoc2 && asoc2 != asoc) {
1119 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1120 err = -EISCONN;
1121 else
1122 err = -EALREADY;
1123 goto out_free;
1124 }
1125
1126 /* If we could not find a matching association on the endpoint,
1127 * make sure that there is no peeled-off association matching
1128 * the peer address even on another socket.
1129 */
1130 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1131 err = -EADDRNOTAVAIL;
1132 goto out_free;
1133 }
1134
1135 if (!asoc) {
1136 /* If a bind() or sctp_bindx() is not called prior to
1137 * an sctp_connectx() call, the system picks an
1138 * ephemeral port and will choose an address set
1139 * equivalent to binding with a wildcard address.
1140 */
1141 if (!ep->base.bind_addr.port) {
1142 if (sctp_autobind(sk)) {
1143 err = -EAGAIN;
1144 goto out_free;
1145 }
1146 } else {
1147 /*
1148 * If an unprivileged user inherits a 1-many
1149 * style socket with open associations on a
1150 * privileged port, it MAY be permitted to
1151 * accept new associations, but it SHOULD NOT
1152 * be permitted to open new associations.
1153 */
1154 if (ep->base.bind_addr.port < PROT_SOCK &&
1155 !capable(CAP_NET_BIND_SERVICE)) {
1156 err = -EACCES;
1157 goto out_free;
1158 }
1159 }
1160
1161 scope = sctp_scope(&to);
1162 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1163 if (!asoc) {
1164 err = -ENOMEM;
1165 goto out_free;
1166 }
1167
1168 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1169 GFP_KERNEL);
1170 if (err < 0) {
1171 goto out_free;
1172 }
1173
1174 }
1175
1176 /* Prime the peer's transport structures. */
1177 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1178 SCTP_UNKNOWN);
1179 if (!transport) {
1180 err = -ENOMEM;
1181 goto out_free;
1182 }
1183
1184 addrcnt++;
1185 addr_buf += af->sockaddr_len;
1186 walk_size += af->sockaddr_len;
1187 }
1188
1189 /* In case the user of sctp_connectx() wants an association
1190 * id back, assign one now.
1191 */
1192 if (assoc_id) {
1193 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1194 if (err < 0)
1195 goto out_free;
1196 }
1197
1198 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1199 if (err < 0) {
1200 goto out_free;
1201 }
1202
1203 /* Initialize sk's dport and daddr for getpeername() */
1204 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1205 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1206 af->to_sk_daddr(sa_addr, sk);
1207 sk->sk_err = 0;
1208
1209 /* in-kernel sockets don't generally have a file allocated to them
1210 * if all they do is call sock_create_kern().
1211 */
1212 if (sk->sk_socket->file)
1213 f_flags = sk->sk_socket->file->f_flags;
1214
1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1216
1217 err = sctp_wait_for_connect(asoc, &timeo);
1218 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1219 *assoc_id = asoc->assoc_id;
1220
1221 /* Don't free association on exit. */
1222 asoc = NULL;
1223
1224 out_free:
1225
1226 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1227 " kaddrs: %p err: %d\n",
1228 asoc, kaddrs, err);
1229 if (asoc)
1230 sctp_association_free(asoc);
1231 return err;
1232 }
1233
1234 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1235 *
1236 * API 8.9
1237 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1238 * sctp_assoc_t *asoc);
1239 *
1240 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1241 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1242 * or IPv6 addresses.
1243 *
1244 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1245 * Section 3.1.2 for this usage.
1246 *
1247 * addrs is a pointer to an array of one or more socket addresses. Each
1248 * address is contained in its appropriate structure (i.e. struct
1249 * sockaddr_in or struct sockaddr_in6) the family of the address type
1250 * must be used to distengish the address length (note that this
1251 * representation is termed a "packed array" of addresses). The caller
1252 * specifies the number of addresses in the array with addrcnt.
1253 *
1254 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1255 * the association id of the new association. On failure, sctp_connectx()
1256 * returns -1, and sets errno to the appropriate error code. The assoc_id
1257 * is not touched by the kernel.
1258 *
1259 * For SCTP, the port given in each socket address must be the same, or
1260 * sctp_connectx() will fail, setting errno to EINVAL.
1261 *
1262 * An application can use sctp_connectx to initiate an association with
1263 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1264 * allows a caller to specify multiple addresses at which a peer can be
1265 * reached. The way the SCTP stack uses the list of addresses to set up
1266 * the association is implementation dependent. This function only
1267 * specifies that the stack will try to make use of all the addresses in
1268 * the list when needed.
1269 *
1270 * Note that the list of addresses passed in is only used for setting up
1271 * the association. It does not necessarily equal the set of addresses
1272 * the peer uses for the resulting association. If the caller wants to
1273 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1274 * retrieve them after the association has been set up.
1275 *
1276 * Basically do nothing but copying the addresses from user to kernel
1277 * land and invoking either sctp_connectx(). This is used for tunneling
1278 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1279 *
1280 * We don't use copy_from_user() for optimization: we first do the
1281 * sanity checks (buffer size -fast- and access check-healthy
1282 * pointer); if all of those succeed, then we can alloc the memory
1283 * (expensive operation) needed to copy the data to kernel. Then we do
1284 * the copying without checking the user space area
1285 * (__copy_from_user()).
1286 *
1287 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1288 * it.
1289 *
1290 * sk The sk of the socket
1291 * addrs The pointer to the addresses in user land
1292 * addrssize Size of the addrs buffer
1293 *
1294 * Returns >=0 if ok, <0 errno code on error.
1295 */
1296 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1297 struct sockaddr __user *addrs,
1298 int addrs_size,
1299 sctp_assoc_t *assoc_id)
1300 {
1301 int err = 0;
1302 struct sockaddr *kaddrs;
1303
1304 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1305 __func__, sk, addrs, addrs_size);
1306
1307 if (unlikely(addrs_size <= 0))
1308 return -EINVAL;
1309
1310 /* Check the user passed a healthy pointer. */
1311 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1312 return -EFAULT;
1313
1314 /* Alloc space for the address array in kernel memory. */
1315 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1316 if (unlikely(!kaddrs))
1317 return -ENOMEM;
1318
1319 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1320 err = -EFAULT;
1321 } else {
1322 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1323 }
1324
1325 kfree(kaddrs);
1326
1327 return err;
1328 }
1329
1330 /*
1331 * This is an older interface. It's kept for backward compatibility
1332 * to the option that doesn't provide association id.
1333 */
1334 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1335 struct sockaddr __user *addrs,
1336 int addrs_size)
1337 {
1338 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1339 }
1340
1341 /*
1342 * New interface for the API. The since the API is done with a socket
1343 * option, to make it simple we feed back the association id is as a return
1344 * indication to the call. Error is always negative and association id is
1345 * always positive.
1346 */
1347 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1348 struct sockaddr __user *addrs,
1349 int addrs_size)
1350 {
1351 sctp_assoc_t assoc_id = 0;
1352 int err = 0;
1353
1354 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1355
1356 if (err)
1357 return err;
1358 else
1359 return assoc_id;
1360 }
1361
1362 /*
1363 * New (hopefully final) interface for the API.
1364 * We use the sctp_getaddrs_old structure so that use-space library
1365 * can avoid any unnecessary allocations. The only defferent part
1366 * is that we store the actual length of the address buffer into the
1367 * addrs_num structure member. That way we can re-use the existing
1368 * code.
1369 */
1370 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1371 char __user *optval,
1372 int __user *optlen)
1373 {
1374 struct sctp_getaddrs_old param;
1375 sctp_assoc_t assoc_id = 0;
1376 int err = 0;
1377
1378 if (len < sizeof(param))
1379 return -EINVAL;
1380
1381 if (copy_from_user(&param, optval, sizeof(param)))
1382 return -EFAULT;
1383
1384 err = __sctp_setsockopt_connectx(sk,
1385 (struct sockaddr __user *)param.addrs,
1386 param.addr_num, &assoc_id);
1387
1388 if (err == 0 || err == -EINPROGRESS) {
1389 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1390 return -EFAULT;
1391 if (put_user(sizeof(assoc_id), optlen))
1392 return -EFAULT;
1393 }
1394
1395 return err;
1396 }
1397
1398 /* API 3.1.4 close() - UDP Style Syntax
1399 * Applications use close() to perform graceful shutdown (as described in
1400 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1401 * by a UDP-style socket.
1402 *
1403 * The syntax is
1404 *
1405 * ret = close(int sd);
1406 *
1407 * sd - the socket descriptor of the associations to be closed.
1408 *
1409 * To gracefully shutdown a specific association represented by the
1410 * UDP-style socket, an application should use the sendmsg() call,
1411 * passing no user data, but including the appropriate flag in the
1412 * ancillary data (see Section xxxx).
1413 *
1414 * If sd in the close() call is a branched-off socket representing only
1415 * one association, the shutdown is performed on that association only.
1416 *
1417 * 4.1.6 close() - TCP Style Syntax
1418 *
1419 * Applications use close() to gracefully close down an association.
1420 *
1421 * The syntax is:
1422 *
1423 * int close(int sd);
1424 *
1425 * sd - the socket descriptor of the association to be closed.
1426 *
1427 * After an application calls close() on a socket descriptor, no further
1428 * socket operations will succeed on that descriptor.
1429 *
1430 * API 7.1.4 SO_LINGER
1431 *
1432 * An application using the TCP-style socket can use this option to
1433 * perform the SCTP ABORT primitive. The linger option structure is:
1434 *
1435 * struct linger {
1436 * int l_onoff; // option on/off
1437 * int l_linger; // linger time
1438 * };
1439 *
1440 * To enable the option, set l_onoff to 1. If the l_linger value is set
1441 * to 0, calling close() is the same as the ABORT primitive. If the
1442 * value is set to a negative value, the setsockopt() call will return
1443 * an error. If the value is set to a positive value linger_time, the
1444 * close() can be blocked for at most linger_time ms. If the graceful
1445 * shutdown phase does not finish during this period, close() will
1446 * return but the graceful shutdown phase continues in the system.
1447 */
1448 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1449 {
1450 struct sctp_endpoint *ep;
1451 struct sctp_association *asoc;
1452 struct list_head *pos, *temp;
1453
1454 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1455
1456 sctp_lock_sock(sk);
1457 sk->sk_shutdown = SHUTDOWN_MASK;
1458 sk->sk_state = SCTP_SS_CLOSING;
1459
1460 ep = sctp_sk(sk)->ep;
1461
1462 /* Walk all associations on an endpoint. */
1463 list_for_each_safe(pos, temp, &ep->asocs) {
1464 asoc = list_entry(pos, struct sctp_association, asocs);
1465
1466 if (sctp_style(sk, TCP)) {
1467 /* A closed association can still be in the list if
1468 * it belongs to a TCP-style listening socket that is
1469 * not yet accepted. If so, free it. If not, send an
1470 * ABORT or SHUTDOWN based on the linger options.
1471 */
1472 if (sctp_state(asoc, CLOSED)) {
1473 sctp_unhash_established(asoc);
1474 sctp_association_free(asoc);
1475 continue;
1476 }
1477 }
1478
1479 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1480 struct sctp_chunk *chunk;
1481
1482 chunk = sctp_make_abort_user(asoc, NULL, 0);
1483 if (chunk)
1484 sctp_primitive_ABORT(asoc, chunk);
1485 } else
1486 sctp_primitive_SHUTDOWN(asoc, NULL);
1487 }
1488
1489 /* Clean up any skbs sitting on the receive queue. */
1490 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1491 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1492
1493 /* On a TCP-style socket, block for at most linger_time if set. */
1494 if (sctp_style(sk, TCP) && timeout)
1495 sctp_wait_for_close(sk, timeout);
1496
1497 /* This will run the backlog queue. */
1498 sctp_release_sock(sk);
1499
1500 /* Supposedly, no process has access to the socket, but
1501 * the net layers still may.
1502 */
1503 sctp_local_bh_disable();
1504 sctp_bh_lock_sock(sk);
1505
1506 /* Hold the sock, since sk_common_release() will put sock_put()
1507 * and we have just a little more cleanup.
1508 */
1509 sock_hold(sk);
1510 sk_common_release(sk);
1511
1512 sctp_bh_unlock_sock(sk);
1513 sctp_local_bh_enable();
1514
1515 sock_put(sk);
1516
1517 SCTP_DBG_OBJCNT_DEC(sock);
1518 }
1519
1520 /* Handle EPIPE error. */
1521 static int sctp_error(struct sock *sk, int flags, int err)
1522 {
1523 if (err == -EPIPE)
1524 err = sock_error(sk) ? : -EPIPE;
1525 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1526 send_sig(SIGPIPE, current, 0);
1527 return err;
1528 }
1529
1530 /* API 3.1.3 sendmsg() - UDP Style Syntax
1531 *
1532 * An application uses sendmsg() and recvmsg() calls to transmit data to
1533 * and receive data from its peer.
1534 *
1535 * ssize_t sendmsg(int socket, const struct msghdr *message,
1536 * int flags);
1537 *
1538 * socket - the socket descriptor of the endpoint.
1539 * message - pointer to the msghdr structure which contains a single
1540 * user message and possibly some ancillary data.
1541 *
1542 * See Section 5 for complete description of the data
1543 * structures.
1544 *
1545 * flags - flags sent or received with the user message, see Section
1546 * 5 for complete description of the flags.
1547 *
1548 * Note: This function could use a rewrite especially when explicit
1549 * connect support comes in.
1550 */
1551 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1552
1553 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1554
1555 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1556 struct msghdr *msg, size_t msg_len)
1557 {
1558 struct sctp_sock *sp;
1559 struct sctp_endpoint *ep;
1560 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1561 struct sctp_transport *transport, *chunk_tp;
1562 struct sctp_chunk *chunk;
1563 union sctp_addr to;
1564 struct sockaddr *msg_name = NULL;
1565 struct sctp_sndrcvinfo default_sinfo;
1566 struct sctp_sndrcvinfo *sinfo;
1567 struct sctp_initmsg *sinit;
1568 sctp_assoc_t associd = 0;
1569 sctp_cmsgs_t cmsgs = { NULL };
1570 int err;
1571 sctp_scope_t scope;
1572 long timeo;
1573 __u16 sinfo_flags = 0;
1574 struct sctp_datamsg *datamsg;
1575 int msg_flags = msg->msg_flags;
1576
1577 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1578 sk, msg, msg_len);
1579
1580 err = 0;
1581 sp = sctp_sk(sk);
1582 ep = sp->ep;
1583
1584 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1585
1586 /* We cannot send a message over a TCP-style listening socket. */
1587 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1588 err = -EPIPE;
1589 goto out_nounlock;
1590 }
1591
1592 /* Parse out the SCTP CMSGs. */
1593 err = sctp_msghdr_parse(msg, &cmsgs);
1594
1595 if (err) {
1596 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1597 goto out_nounlock;
1598 }
1599
1600 /* Fetch the destination address for this packet. This
1601 * address only selects the association--it is not necessarily
1602 * the address we will send to.
1603 * For a peeled-off socket, msg_name is ignored.
1604 */
1605 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1606 int msg_namelen = msg->msg_namelen;
1607
1608 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1609 msg_namelen);
1610 if (err)
1611 return err;
1612
1613 if (msg_namelen > sizeof(to))
1614 msg_namelen = sizeof(to);
1615 memcpy(&to, msg->msg_name, msg_namelen);
1616 msg_name = msg->msg_name;
1617 }
1618
1619 sinfo = cmsgs.info;
1620 sinit = cmsgs.init;
1621
1622 /* Did the user specify SNDRCVINFO? */
1623 if (sinfo) {
1624 sinfo_flags = sinfo->sinfo_flags;
1625 associd = sinfo->sinfo_assoc_id;
1626 }
1627
1628 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1629 msg_len, sinfo_flags);
1630
1631 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1632 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1633 err = -EINVAL;
1634 goto out_nounlock;
1635 }
1636
1637 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1638 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1639 * If SCTP_ABORT is set, the message length could be non zero with
1640 * the msg_iov set to the user abort reason.
1641 */
1642 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1643 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1644 err = -EINVAL;
1645 goto out_nounlock;
1646 }
1647
1648 /* If SCTP_ADDR_OVER is set, there must be an address
1649 * specified in msg_name.
1650 */
1651 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1652 err = -EINVAL;
1653 goto out_nounlock;
1654 }
1655
1656 transport = NULL;
1657
1658 SCTP_DEBUG_PRINTK("About to look up association.\n");
1659
1660 sctp_lock_sock(sk);
1661
1662 /* If a msg_name has been specified, assume this is to be used. */
1663 if (msg_name) {
1664 /* Look for a matching association on the endpoint. */
1665 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1666 if (!asoc) {
1667 /* If we could not find a matching association on the
1668 * endpoint, make sure that it is not a TCP-style
1669 * socket that already has an association or there is
1670 * no peeled-off association on another socket.
1671 */
1672 if ((sctp_style(sk, TCP) &&
1673 sctp_sstate(sk, ESTABLISHED)) ||
1674 sctp_endpoint_is_peeled_off(ep, &to)) {
1675 err = -EADDRNOTAVAIL;
1676 goto out_unlock;
1677 }
1678 }
1679 } else {
1680 asoc = sctp_id2assoc(sk, associd);
1681 if (!asoc) {
1682 err = -EPIPE;
1683 goto out_unlock;
1684 }
1685 }
1686
1687 if (asoc) {
1688 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1689
1690 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1691 * socket that has an association in CLOSED state. This can
1692 * happen when an accepted socket has an association that is
1693 * already CLOSED.
1694 */
1695 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1696 err = -EPIPE;
1697 goto out_unlock;
1698 }
1699
1700 if (sinfo_flags & SCTP_EOF) {
1701 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1702 asoc);
1703 sctp_primitive_SHUTDOWN(asoc, NULL);
1704 err = 0;
1705 goto out_unlock;
1706 }
1707 if (sinfo_flags & SCTP_ABORT) {
1708
1709 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1710 if (!chunk) {
1711 err = -ENOMEM;
1712 goto out_unlock;
1713 }
1714
1715 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1716 sctp_primitive_ABORT(asoc, chunk);
1717 err = 0;
1718 goto out_unlock;
1719 }
1720 }
1721
1722 /* Do we need to create the association? */
1723 if (!asoc) {
1724 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1725
1726 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1727 err = -EINVAL;
1728 goto out_unlock;
1729 }
1730
1731 /* Check for invalid stream against the stream counts,
1732 * either the default or the user specified stream counts.
1733 */
1734 if (sinfo) {
1735 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1736 /* Check against the defaults. */
1737 if (sinfo->sinfo_stream >=
1738 sp->initmsg.sinit_num_ostreams) {
1739 err = -EINVAL;
1740 goto out_unlock;
1741 }
1742 } else {
1743 /* Check against the requested. */
1744 if (sinfo->sinfo_stream >=
1745 sinit->sinit_num_ostreams) {
1746 err = -EINVAL;
1747 goto out_unlock;
1748 }
1749 }
1750 }
1751
1752 /*
1753 * API 3.1.2 bind() - UDP Style Syntax
1754 * If a bind() or sctp_bindx() is not called prior to a
1755 * sendmsg() call that initiates a new association, the
1756 * system picks an ephemeral port and will choose an address
1757 * set equivalent to binding with a wildcard address.
1758 */
1759 if (!ep->base.bind_addr.port) {
1760 if (sctp_autobind(sk)) {
1761 err = -EAGAIN;
1762 goto out_unlock;
1763 }
1764 } else {
1765 /*
1766 * If an unprivileged user inherits a one-to-many
1767 * style socket with open associations on a privileged
1768 * port, it MAY be permitted to accept new associations,
1769 * but it SHOULD NOT be permitted to open new
1770 * associations.
1771 */
1772 if (ep->base.bind_addr.port < PROT_SOCK &&
1773 !capable(CAP_NET_BIND_SERVICE)) {
1774 err = -EACCES;
1775 goto out_unlock;
1776 }
1777 }
1778
1779 scope = sctp_scope(&to);
1780 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1781 if (!new_asoc) {
1782 err = -ENOMEM;
1783 goto out_unlock;
1784 }
1785 asoc = new_asoc;
1786 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1787 if (err < 0) {
1788 err = -ENOMEM;
1789 goto out_free;
1790 }
1791
1792 /* If the SCTP_INIT ancillary data is specified, set all
1793 * the association init values accordingly.
1794 */
1795 if (sinit) {
1796 if (sinit->sinit_num_ostreams) {
1797 asoc->c.sinit_num_ostreams =
1798 sinit->sinit_num_ostreams;
1799 }
1800 if (sinit->sinit_max_instreams) {
1801 asoc->c.sinit_max_instreams =
1802 sinit->sinit_max_instreams;
1803 }
1804 if (sinit->sinit_max_attempts) {
1805 asoc->max_init_attempts
1806 = sinit->sinit_max_attempts;
1807 }
1808 if (sinit->sinit_max_init_timeo) {
1809 asoc->max_init_timeo =
1810 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1811 }
1812 }
1813
1814 /* Prime the peer's transport structures. */
1815 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1816 if (!transport) {
1817 err = -ENOMEM;
1818 goto out_free;
1819 }
1820 }
1821
1822 /* ASSERT: we have a valid association at this point. */
1823 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1824
1825 if (!sinfo) {
1826 /* If the user didn't specify SNDRCVINFO, make up one with
1827 * some defaults.
1828 */
1829 memset(&default_sinfo, 0, sizeof(default_sinfo));
1830 default_sinfo.sinfo_stream = asoc->default_stream;
1831 default_sinfo.sinfo_flags = asoc->default_flags;
1832 default_sinfo.sinfo_ppid = asoc->default_ppid;
1833 default_sinfo.sinfo_context = asoc->default_context;
1834 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1835 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1836 sinfo = &default_sinfo;
1837 }
1838
1839 /* API 7.1.7, the sndbuf size per association bounds the
1840 * maximum size of data that can be sent in a single send call.
1841 */
1842 if (msg_len > sk->sk_sndbuf) {
1843 err = -EMSGSIZE;
1844 goto out_free;
1845 }
1846
1847 if (asoc->pmtu_pending)
1848 sctp_assoc_pending_pmtu(asoc);
1849
1850 /* If fragmentation is disabled and the message length exceeds the
1851 * association fragmentation point, return EMSGSIZE. The I-D
1852 * does not specify what this error is, but this looks like
1853 * a great fit.
1854 */
1855 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1856 err = -EMSGSIZE;
1857 goto out_free;
1858 }
1859
1860 /* Check for invalid stream. */
1861 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1862 err = -EINVAL;
1863 goto out_free;
1864 }
1865
1866 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1867 if (!sctp_wspace(asoc)) {
1868 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1869 if (err)
1870 goto out_free;
1871 }
1872
1873 /* If an address is passed with the sendto/sendmsg call, it is used
1874 * to override the primary destination address in the TCP model, or
1875 * when SCTP_ADDR_OVER flag is set in the UDP model.
1876 */
1877 if ((sctp_style(sk, TCP) && msg_name) ||
1878 (sinfo_flags & SCTP_ADDR_OVER)) {
1879 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1880 if (!chunk_tp) {
1881 err = -EINVAL;
1882 goto out_free;
1883 }
1884 } else
1885 chunk_tp = NULL;
1886
1887 /* Auto-connect, if we aren't connected already. */
1888 if (sctp_state(asoc, CLOSED)) {
1889 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1890 if (err < 0)
1891 goto out_free;
1892 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1893 }
1894
1895 /* Break the message into multiple chunks of maximum size. */
1896 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1897 if (!datamsg) {
1898 err = -ENOMEM;
1899 goto out_free;
1900 }
1901
1902 /* Now send the (possibly) fragmented message. */
1903 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1904 sctp_chunk_hold(chunk);
1905
1906 /* Do accounting for the write space. */
1907 sctp_set_owner_w(chunk);
1908
1909 chunk->transport = chunk_tp;
1910 }
1911
1912 /* Send it to the lower layers. Note: all chunks
1913 * must either fail or succeed. The lower layer
1914 * works that way today. Keep it that way or this
1915 * breaks.
1916 */
1917 err = sctp_primitive_SEND(asoc, datamsg);
1918 /* Did the lower layer accept the chunk? */
1919 if (err)
1920 sctp_datamsg_free(datamsg);
1921 else
1922 sctp_datamsg_put(datamsg);
1923
1924 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1925
1926 if (err)
1927 goto out_free;
1928 else
1929 err = msg_len;
1930
1931 /* If we are already past ASSOCIATE, the lower
1932 * layers are responsible for association cleanup.
1933 */
1934 goto out_unlock;
1935
1936 out_free:
1937 if (new_asoc)
1938 sctp_association_free(asoc);
1939 out_unlock:
1940 sctp_release_sock(sk);
1941
1942 out_nounlock:
1943 return sctp_error(sk, msg_flags, err);
1944
1945 #if 0
1946 do_sock_err:
1947 if (msg_len)
1948 err = msg_len;
1949 else
1950 err = sock_error(sk);
1951 goto out;
1952
1953 do_interrupted:
1954 if (msg_len)
1955 err = msg_len;
1956 goto out;
1957 #endif /* 0 */
1958 }
1959
1960 /* This is an extended version of skb_pull() that removes the data from the
1961 * start of a skb even when data is spread across the list of skb's in the
1962 * frag_list. len specifies the total amount of data that needs to be removed.
1963 * when 'len' bytes could be removed from the skb, it returns 0.
1964 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1965 * could not be removed.
1966 */
1967 static int sctp_skb_pull(struct sk_buff *skb, int len)
1968 {
1969 struct sk_buff *list;
1970 int skb_len = skb_headlen(skb);
1971 int rlen;
1972
1973 if (len <= skb_len) {
1974 __skb_pull(skb, len);
1975 return 0;
1976 }
1977 len -= skb_len;
1978 __skb_pull(skb, skb_len);
1979
1980 skb_walk_frags(skb, list) {
1981 rlen = sctp_skb_pull(list, len);
1982 skb->len -= (len-rlen);
1983 skb->data_len -= (len-rlen);
1984
1985 if (!rlen)
1986 return 0;
1987
1988 len = rlen;
1989 }
1990
1991 return len;
1992 }
1993
1994 /* API 3.1.3 recvmsg() - UDP Style Syntax
1995 *
1996 * ssize_t recvmsg(int socket, struct msghdr *message,
1997 * int flags);
1998 *
1999 * socket - the socket descriptor of the endpoint.
2000 * message - pointer to the msghdr structure which contains a single
2001 * user message and possibly some ancillary data.
2002 *
2003 * See Section 5 for complete description of the data
2004 * structures.
2005 *
2006 * flags - flags sent or received with the user message, see Section
2007 * 5 for complete description of the flags.
2008 */
2009 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2010
2011 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2012 struct msghdr *msg, size_t len, int noblock,
2013 int flags, int *addr_len)
2014 {
2015 struct sctp_ulpevent *event = NULL;
2016 struct sctp_sock *sp = sctp_sk(sk);
2017 struct sk_buff *skb;
2018 int copied;
2019 int err = 0;
2020 int skb_len;
2021
2022 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2023 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2024 "len", len, "knoblauch", noblock,
2025 "flags", flags, "addr_len", addr_len);
2026
2027 sctp_lock_sock(sk);
2028
2029 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2030 err = -ENOTCONN;
2031 goto out;
2032 }
2033
2034 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2035 if (!skb)
2036 goto out;
2037
2038 /* Get the total length of the skb including any skb's in the
2039 * frag_list.
2040 */
2041 skb_len = skb->len;
2042
2043 copied = skb_len;
2044 if (copied > len)
2045 copied = len;
2046
2047 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2048
2049 event = sctp_skb2event(skb);
2050
2051 if (err)
2052 goto out_free;
2053
2054 sock_recv_ts_and_drops(msg, sk, skb);
2055 if (sctp_ulpevent_is_notification(event)) {
2056 msg->msg_flags |= MSG_NOTIFICATION;
2057 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2058 } else {
2059 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2060 }
2061
2062 /* Check if we allow SCTP_SNDRCVINFO. */
2063 if (sp->subscribe.sctp_data_io_event)
2064 sctp_ulpevent_read_sndrcvinfo(event, msg);
2065 #if 0
2066 /* FIXME: we should be calling IP/IPv6 layers. */
2067 if (sk->sk_protinfo.af_inet.cmsg_flags)
2068 ip_cmsg_recv(msg, skb);
2069 #endif
2070
2071 err = copied;
2072
2073 /* If skb's length exceeds the user's buffer, update the skb and
2074 * push it back to the receive_queue so that the next call to
2075 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2076 */
2077 if (skb_len > copied) {
2078 msg->msg_flags &= ~MSG_EOR;
2079 if (flags & MSG_PEEK)
2080 goto out_free;
2081 sctp_skb_pull(skb, copied);
2082 skb_queue_head(&sk->sk_receive_queue, skb);
2083
2084 /* When only partial message is copied to the user, increase
2085 * rwnd by that amount. If all the data in the skb is read,
2086 * rwnd is updated when the event is freed.
2087 */
2088 if (!sctp_ulpevent_is_notification(event))
2089 sctp_assoc_rwnd_increase(event->asoc, copied);
2090 goto out;
2091 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2092 (event->msg_flags & MSG_EOR))
2093 msg->msg_flags |= MSG_EOR;
2094 else
2095 msg->msg_flags &= ~MSG_EOR;
2096
2097 out_free:
2098 if (flags & MSG_PEEK) {
2099 /* Release the skb reference acquired after peeking the skb in
2100 * sctp_skb_recv_datagram().
2101 */
2102 kfree_skb(skb);
2103 } else {
2104 /* Free the event which includes releasing the reference to
2105 * the owner of the skb, freeing the skb and updating the
2106 * rwnd.
2107 */
2108 sctp_ulpevent_free(event);
2109 }
2110 out:
2111 sctp_release_sock(sk);
2112 return err;
2113 }
2114
2115 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2116 *
2117 * This option is a on/off flag. If enabled no SCTP message
2118 * fragmentation will be performed. Instead if a message being sent
2119 * exceeds the current PMTU size, the message will NOT be sent and
2120 * instead a error will be indicated to the user.
2121 */
2122 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2123 char __user *optval,
2124 unsigned int optlen)
2125 {
2126 int val;
2127
2128 if (optlen < sizeof(int))
2129 return -EINVAL;
2130
2131 if (get_user(val, (int __user *)optval))
2132 return -EFAULT;
2133
2134 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2135
2136 return 0;
2137 }
2138
2139 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2140 unsigned int optlen)
2141 {
2142 if (optlen > sizeof(struct sctp_event_subscribe))
2143 return -EINVAL;
2144 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2145 return -EFAULT;
2146 return 0;
2147 }
2148
2149 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2150 *
2151 * This socket option is applicable to the UDP-style socket only. When
2152 * set it will cause associations that are idle for more than the
2153 * specified number of seconds to automatically close. An association
2154 * being idle is defined an association that has NOT sent or received
2155 * user data. The special value of '0' indicates that no automatic
2156 * close of any associations should be performed. The option expects an
2157 * integer defining the number of seconds of idle time before an
2158 * association is closed.
2159 */
2160 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2161 unsigned int optlen)
2162 {
2163 struct sctp_sock *sp = sctp_sk(sk);
2164
2165 /* Applicable to UDP-style socket only */
2166 if (sctp_style(sk, TCP))
2167 return -EOPNOTSUPP;
2168 if (optlen != sizeof(int))
2169 return -EINVAL;
2170 if (copy_from_user(&sp->autoclose, optval, optlen))
2171 return -EFAULT;
2172 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2173 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2174
2175 return 0;
2176 }
2177
2178 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2179 *
2180 * Applications can enable or disable heartbeats for any peer address of
2181 * an association, modify an address's heartbeat interval, force a
2182 * heartbeat to be sent immediately, and adjust the address's maximum
2183 * number of retransmissions sent before an address is considered
2184 * unreachable. The following structure is used to access and modify an
2185 * address's parameters:
2186 *
2187 * struct sctp_paddrparams {
2188 * sctp_assoc_t spp_assoc_id;
2189 * struct sockaddr_storage spp_address;
2190 * uint32_t spp_hbinterval;
2191 * uint16_t spp_pathmaxrxt;
2192 * uint32_t spp_pathmtu;
2193 * uint32_t spp_sackdelay;
2194 * uint32_t spp_flags;
2195 * };
2196 *
2197 * spp_assoc_id - (one-to-many style socket) This is filled in the
2198 * application, and identifies the association for
2199 * this query.
2200 * spp_address - This specifies which address is of interest.
2201 * spp_hbinterval - This contains the value of the heartbeat interval,
2202 * in milliseconds. If a value of zero
2203 * is present in this field then no changes are to
2204 * be made to this parameter.
2205 * spp_pathmaxrxt - This contains the maximum number of
2206 * retransmissions before this address shall be
2207 * considered unreachable. If a value of zero
2208 * is present in this field then no changes are to
2209 * be made to this parameter.
2210 * spp_pathmtu - When Path MTU discovery is disabled the value
2211 * specified here will be the "fixed" path mtu.
2212 * Note that if the spp_address field is empty
2213 * then all associations on this address will
2214 * have this fixed path mtu set upon them.
2215 *
2216 * spp_sackdelay - When delayed sack is enabled, this value specifies
2217 * the number of milliseconds that sacks will be delayed
2218 * for. This value will apply to all addresses of an
2219 * association if the spp_address field is empty. Note
2220 * also, that if delayed sack is enabled and this
2221 * value is set to 0, no change is made to the last
2222 * recorded delayed sack timer value.
2223 *
2224 * spp_flags - These flags are used to control various features
2225 * on an association. The flag field may contain
2226 * zero or more of the following options.
2227 *
2228 * SPP_HB_ENABLE - Enable heartbeats on the
2229 * specified address. Note that if the address
2230 * field is empty all addresses for the association
2231 * have heartbeats enabled upon them.
2232 *
2233 * SPP_HB_DISABLE - Disable heartbeats on the
2234 * speicifed address. Note that if the address
2235 * field is empty all addresses for the association
2236 * will have their heartbeats disabled. Note also
2237 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2238 * mutually exclusive, only one of these two should
2239 * be specified. Enabling both fields will have
2240 * undetermined results.
2241 *
2242 * SPP_HB_DEMAND - Request a user initiated heartbeat
2243 * to be made immediately.
2244 *
2245 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2246 * heartbeat delayis to be set to the value of 0
2247 * milliseconds.
2248 *
2249 * SPP_PMTUD_ENABLE - This field will enable PMTU
2250 * discovery upon the specified address. Note that
2251 * if the address feild is empty then all addresses
2252 * on the association are effected.
2253 *
2254 * SPP_PMTUD_DISABLE - This field will disable PMTU
2255 * discovery upon the specified address. Note that
2256 * if the address feild is empty then all addresses
2257 * on the association are effected. Not also that
2258 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2259 * exclusive. Enabling both will have undetermined
2260 * results.
2261 *
2262 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2263 * on delayed sack. The time specified in spp_sackdelay
2264 * is used to specify the sack delay for this address. Note
2265 * that if spp_address is empty then all addresses will
2266 * enable delayed sack and take on the sack delay
2267 * value specified in spp_sackdelay.
2268 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2269 * off delayed sack. If the spp_address field is blank then
2270 * delayed sack is disabled for the entire association. Note
2271 * also that this field is mutually exclusive to
2272 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2273 * results.
2274 */
2275 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2276 struct sctp_transport *trans,
2277 struct sctp_association *asoc,
2278 struct sctp_sock *sp,
2279 int hb_change,
2280 int pmtud_change,
2281 int sackdelay_change)
2282 {
2283 int error;
2284
2285 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2286 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2287 if (error)
2288 return error;
2289 }
2290
2291 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2292 * this field is ignored. Note also that a value of zero indicates
2293 * the current setting should be left unchanged.
2294 */
2295 if (params->spp_flags & SPP_HB_ENABLE) {
2296
2297 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2298 * set. This lets us use 0 value when this flag
2299 * is set.
2300 */
2301 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2302 params->spp_hbinterval = 0;
2303
2304 if (params->spp_hbinterval ||
2305 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2306 if (trans) {
2307 trans->hbinterval =
2308 msecs_to_jiffies(params->spp_hbinterval);
2309 } else if (asoc) {
2310 asoc->hbinterval =
2311 msecs_to_jiffies(params->spp_hbinterval);
2312 } else {
2313 sp->hbinterval = params->spp_hbinterval;
2314 }
2315 }
2316 }
2317
2318 if (hb_change) {
2319 if (trans) {
2320 trans->param_flags =
2321 (trans->param_flags & ~SPP_HB) | hb_change;
2322 } else if (asoc) {
2323 asoc->param_flags =
2324 (asoc->param_flags & ~SPP_HB) | hb_change;
2325 } else {
2326 sp->param_flags =
2327 (sp->param_flags & ~SPP_HB) | hb_change;
2328 }
2329 }
2330
2331 /* When Path MTU discovery is disabled the value specified here will
2332 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2333 * include the flag SPP_PMTUD_DISABLE for this field to have any
2334 * effect).
2335 */
2336 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2337 if (trans) {
2338 trans->pathmtu = params->spp_pathmtu;
2339 sctp_assoc_sync_pmtu(asoc);
2340 } else if (asoc) {
2341 asoc->pathmtu = params->spp_pathmtu;
2342 sctp_frag_point(asoc, params->spp_pathmtu);
2343 } else {
2344 sp->pathmtu = params->spp_pathmtu;
2345 }
2346 }
2347
2348 if (pmtud_change) {
2349 if (trans) {
2350 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2351 (params->spp_flags & SPP_PMTUD_ENABLE);
2352 trans->param_flags =
2353 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2354 if (update) {
2355 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2356 sctp_assoc_sync_pmtu(asoc);
2357 }
2358 } else if (asoc) {
2359 asoc->param_flags =
2360 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2361 } else {
2362 sp->param_flags =
2363 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2364 }
2365 }
2366
2367 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2368 * value of this field is ignored. Note also that a value of zero
2369 * indicates the current setting should be left unchanged.
2370 */
2371 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2372 if (trans) {
2373 trans->sackdelay =
2374 msecs_to_jiffies(params->spp_sackdelay);
2375 } else if (asoc) {
2376 asoc->sackdelay =
2377 msecs_to_jiffies(params->spp_sackdelay);
2378 } else {
2379 sp->sackdelay = params->spp_sackdelay;
2380 }
2381 }
2382
2383 if (sackdelay_change) {
2384 if (trans) {
2385 trans->param_flags =
2386 (trans->param_flags & ~SPP_SACKDELAY) |
2387 sackdelay_change;
2388 } else if (asoc) {
2389 asoc->param_flags =
2390 (asoc->param_flags & ~SPP_SACKDELAY) |
2391 sackdelay_change;
2392 } else {
2393 sp->param_flags =
2394 (sp->param_flags & ~SPP_SACKDELAY) |
2395 sackdelay_change;
2396 }
2397 }
2398
2399 /* Note that a value of zero indicates the current setting should be
2400 left unchanged.
2401 */
2402 if (params->spp_pathmaxrxt) {
2403 if (trans) {
2404 trans->pathmaxrxt = params->spp_pathmaxrxt;
2405 } else if (asoc) {
2406 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2407 } else {
2408 sp->pathmaxrxt = params->spp_pathmaxrxt;
2409 }
2410 }
2411
2412 return 0;
2413 }
2414
2415 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2416 char __user *optval,
2417 unsigned int optlen)
2418 {
2419 struct sctp_paddrparams params;
2420 struct sctp_transport *trans = NULL;
2421 struct sctp_association *asoc = NULL;
2422 struct sctp_sock *sp = sctp_sk(sk);
2423 int error;
2424 int hb_change, pmtud_change, sackdelay_change;
2425
2426 if (optlen != sizeof(struct sctp_paddrparams))
2427 return - EINVAL;
2428
2429 if (copy_from_user(&params, optval, optlen))
2430 return -EFAULT;
2431
2432 /* Validate flags and value parameters. */
2433 hb_change = params.spp_flags & SPP_HB;
2434 pmtud_change = params.spp_flags & SPP_PMTUD;
2435 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2436
2437 if (hb_change == SPP_HB ||
2438 pmtud_change == SPP_PMTUD ||
2439 sackdelay_change == SPP_SACKDELAY ||
2440 params.spp_sackdelay > 500 ||
2441 (params.spp_pathmtu &&
2442 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2443 return -EINVAL;
2444
2445 /* If an address other than INADDR_ANY is specified, and
2446 * no transport is found, then the request is invalid.
2447 */
2448 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2449 trans = sctp_addr_id2transport(sk, &params.spp_address,
2450 params.spp_assoc_id);
2451 if (!trans)
2452 return -EINVAL;
2453 }
2454
2455 /* Get association, if assoc_id != 0 and the socket is a one
2456 * to many style socket, and an association was not found, then
2457 * the id was invalid.
2458 */
2459 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2460 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2461 return -EINVAL;
2462
2463 /* Heartbeat demand can only be sent on a transport or
2464 * association, but not a socket.
2465 */
2466 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2467 return -EINVAL;
2468
2469 /* Process parameters. */
2470 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2471 hb_change, pmtud_change,
2472 sackdelay_change);
2473
2474 if (error)
2475 return error;
2476
2477 /* If changes are for association, also apply parameters to each
2478 * transport.
2479 */
2480 if (!trans && asoc) {
2481 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2482 transports) {
2483 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2484 hb_change, pmtud_change,
2485 sackdelay_change);
2486 }
2487 }
2488
2489 return 0;
2490 }
2491
2492 /*
2493 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2494 *
2495 * This option will effect the way delayed acks are performed. This
2496 * option allows you to get or set the delayed ack time, in
2497 * milliseconds. It also allows changing the delayed ack frequency.
2498 * Changing the frequency to 1 disables the delayed sack algorithm. If
2499 * the assoc_id is 0, then this sets or gets the endpoints default
2500 * values. If the assoc_id field is non-zero, then the set or get
2501 * effects the specified association for the one to many model (the
2502 * assoc_id field is ignored by the one to one model). Note that if
2503 * sack_delay or sack_freq are 0 when setting this option, then the
2504 * current values will remain unchanged.
2505 *
2506 * struct sctp_sack_info {
2507 * sctp_assoc_t sack_assoc_id;
2508 * uint32_t sack_delay;
2509 * uint32_t sack_freq;
2510 * };
2511 *
2512 * sack_assoc_id - This parameter, indicates which association the user
2513 * is performing an action upon. Note that if this field's value is
2514 * zero then the endpoints default value is changed (effecting future
2515 * associations only).
2516 *
2517 * sack_delay - This parameter contains the number of milliseconds that
2518 * the user is requesting the delayed ACK timer be set to. Note that
2519 * this value is defined in the standard to be between 200 and 500
2520 * milliseconds.
2521 *
2522 * sack_freq - This parameter contains the number of packets that must
2523 * be received before a sack is sent without waiting for the delay
2524 * timer to expire. The default value for this is 2, setting this
2525 * value to 1 will disable the delayed sack algorithm.
2526 */
2527
2528 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2529 char __user *optval, unsigned int optlen)
2530 {
2531 struct sctp_sack_info params;
2532 struct sctp_transport *trans = NULL;
2533 struct sctp_association *asoc = NULL;
2534 struct sctp_sock *sp = sctp_sk(sk);
2535
2536 if (optlen == sizeof(struct sctp_sack_info)) {
2537 if (copy_from_user(&params, optval, optlen))
2538 return -EFAULT;
2539
2540 if (params.sack_delay == 0 && params.sack_freq == 0)
2541 return 0;
2542 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2543 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2544 pr_warn("Use struct sctp_sack_info instead\n");
2545 if (copy_from_user(&params, optval, optlen))
2546 return -EFAULT;
2547
2548 if (params.sack_delay == 0)
2549 params.sack_freq = 1;
2550 else
2551 params.sack_freq = 0;
2552 } else
2553 return - EINVAL;
2554
2555 /* Validate value parameter. */
2556 if (params.sack_delay > 500)
2557 return -EINVAL;
2558
2559 /* Get association, if sack_assoc_id != 0 and the socket is a one
2560 * to many style socket, and an association was not found, then
2561 * the id was invalid.
2562 */
2563 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2564 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2565 return -EINVAL;
2566
2567 if (params.sack_delay) {
2568 if (asoc) {
2569 asoc->sackdelay =
2570 msecs_to_jiffies(params.sack_delay);
2571 asoc->param_flags =
2572 (asoc->param_flags & ~SPP_SACKDELAY) |
2573 SPP_SACKDELAY_ENABLE;
2574 } else {
2575 sp->sackdelay = params.sack_delay;
2576 sp->param_flags =
2577 (sp->param_flags & ~SPP_SACKDELAY) |
2578 SPP_SACKDELAY_ENABLE;
2579 }
2580 }
2581
2582 if (params.sack_freq == 1) {
2583 if (asoc) {
2584 asoc->param_flags =
2585 (asoc->param_flags & ~SPP_SACKDELAY) |
2586 SPP_SACKDELAY_DISABLE;
2587 } else {
2588 sp->param_flags =
2589 (sp->param_flags & ~SPP_SACKDELAY) |
2590 SPP_SACKDELAY_DISABLE;
2591 }
2592 } else if (params.sack_freq > 1) {
2593 if (asoc) {
2594 asoc->sackfreq = params.sack_freq;
2595 asoc->param_flags =
2596 (asoc->param_flags & ~SPP_SACKDELAY) |
2597 SPP_SACKDELAY_ENABLE;
2598 } else {
2599 sp->sackfreq = params.sack_freq;
2600 sp->param_flags =
2601 (sp->param_flags & ~SPP_SACKDELAY) |
2602 SPP_SACKDELAY_ENABLE;
2603 }
2604 }
2605
2606 /* If change is for association, also apply to each transport. */
2607 if (asoc) {
2608 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2609 transports) {
2610 if (params.sack_delay) {
2611 trans->sackdelay =
2612 msecs_to_jiffies(params.sack_delay);
2613 trans->param_flags =
2614 (trans->param_flags & ~SPP_SACKDELAY) |
2615 SPP_SACKDELAY_ENABLE;
2616 }
2617 if (params.sack_freq == 1) {
2618 trans->param_flags =
2619 (trans->param_flags & ~SPP_SACKDELAY) |
2620 SPP_SACKDELAY_DISABLE;
2621 } else if (params.sack_freq > 1) {
2622 trans->sackfreq = params.sack_freq;
2623 trans->param_flags =
2624 (trans->param_flags & ~SPP_SACKDELAY) |
2625 SPP_SACKDELAY_ENABLE;
2626 }
2627 }
2628 }
2629
2630 return 0;
2631 }
2632
2633 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2634 *
2635 * Applications can specify protocol parameters for the default association
2636 * initialization. The option name argument to setsockopt() and getsockopt()
2637 * is SCTP_INITMSG.
2638 *
2639 * Setting initialization parameters is effective only on an unconnected
2640 * socket (for UDP-style sockets only future associations are effected
2641 * by the change). With TCP-style sockets, this option is inherited by
2642 * sockets derived from a listener socket.
2643 */
2644 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2645 {
2646 struct sctp_initmsg sinit;
2647 struct sctp_sock *sp = sctp_sk(sk);
2648
2649 if (optlen != sizeof(struct sctp_initmsg))
2650 return -EINVAL;
2651 if (copy_from_user(&sinit, optval, optlen))
2652 return -EFAULT;
2653
2654 if (sinit.sinit_num_ostreams)
2655 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2656 if (sinit.sinit_max_instreams)
2657 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2658 if (sinit.sinit_max_attempts)
2659 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2660 if (sinit.sinit_max_init_timeo)
2661 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2662
2663 return 0;
2664 }
2665
2666 /*
2667 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2668 *
2669 * Applications that wish to use the sendto() system call may wish to
2670 * specify a default set of parameters that would normally be supplied
2671 * through the inclusion of ancillary data. This socket option allows
2672 * such an application to set the default sctp_sndrcvinfo structure.
2673 * The application that wishes to use this socket option simply passes
2674 * in to this call the sctp_sndrcvinfo structure defined in Section
2675 * 5.2.2) The input parameters accepted by this call include
2676 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2677 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2678 * to this call if the caller is using the UDP model.
2679 */
2680 static int sctp_setsockopt_default_send_param(struct sock *sk,
2681 char __user *optval,
2682 unsigned int optlen)
2683 {
2684 struct sctp_sndrcvinfo info;
2685 struct sctp_association *asoc;
2686 struct sctp_sock *sp = sctp_sk(sk);
2687
2688 if (optlen != sizeof(struct sctp_sndrcvinfo))
2689 return -EINVAL;
2690 if (copy_from_user(&info, optval, optlen))
2691 return -EFAULT;
2692
2693 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2694 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2695 return -EINVAL;
2696
2697 if (asoc) {
2698 asoc->default_stream = info.sinfo_stream;
2699 asoc->default_flags = info.sinfo_flags;
2700 asoc->default_ppid = info.sinfo_ppid;
2701 asoc->default_context = info.sinfo_context;
2702 asoc->default_timetolive = info.sinfo_timetolive;
2703 } else {
2704 sp->default_stream = info.sinfo_stream;
2705 sp->default_flags = info.sinfo_flags;
2706 sp->default_ppid = info.sinfo_ppid;
2707 sp->default_context = info.sinfo_context;
2708 sp->default_timetolive = info.sinfo_timetolive;
2709 }
2710
2711 return 0;
2712 }
2713
2714 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2715 *
2716 * Requests that the local SCTP stack use the enclosed peer address as
2717 * the association primary. The enclosed address must be one of the
2718 * association peer's addresses.
2719 */
2720 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2721 unsigned int optlen)
2722 {
2723 struct sctp_prim prim;
2724 struct sctp_transport *trans;
2725
2726 if (optlen != sizeof(struct sctp_prim))
2727 return -EINVAL;
2728
2729 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2730 return -EFAULT;
2731
2732 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2733 if (!trans)
2734 return -EINVAL;
2735
2736 sctp_assoc_set_primary(trans->asoc, trans);
2737
2738 return 0;
2739 }
2740
2741 /*
2742 * 7.1.5 SCTP_NODELAY
2743 *
2744 * Turn on/off any Nagle-like algorithm. This means that packets are
2745 * generally sent as soon as possible and no unnecessary delays are
2746 * introduced, at the cost of more packets in the network. Expects an
2747 * integer boolean flag.
2748 */
2749 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2750 unsigned int optlen)
2751 {
2752 int val;
2753
2754 if (optlen < sizeof(int))
2755 return -EINVAL;
2756 if (get_user(val, (int __user *)optval))
2757 return -EFAULT;
2758
2759 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2760 return 0;
2761 }
2762
2763 /*
2764 *
2765 * 7.1.1 SCTP_RTOINFO
2766 *
2767 * The protocol parameters used to initialize and bound retransmission
2768 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2769 * and modify these parameters.
2770 * All parameters are time values, in milliseconds. A value of 0, when
2771 * modifying the parameters, indicates that the current value should not
2772 * be changed.
2773 *
2774 */
2775 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2776 {
2777 struct sctp_rtoinfo rtoinfo;
2778 struct sctp_association *asoc;
2779
2780 if (optlen != sizeof (struct sctp_rtoinfo))
2781 return -EINVAL;
2782
2783 if (copy_from_user(&rtoinfo, optval, optlen))
2784 return -EFAULT;
2785
2786 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2787
2788 /* Set the values to the specific association */
2789 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2790 return -EINVAL;
2791
2792 if (asoc) {
2793 if (rtoinfo.srto_initial != 0)
2794 asoc->rto_initial =
2795 msecs_to_jiffies(rtoinfo.srto_initial);
2796 if (rtoinfo.srto_max != 0)
2797 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2798 if (rtoinfo.srto_min != 0)
2799 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2800 } else {
2801 /* If there is no association or the association-id = 0
2802 * set the values to the endpoint.
2803 */
2804 struct sctp_sock *sp = sctp_sk(sk);
2805
2806 if (rtoinfo.srto_initial != 0)
2807 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2808 if (rtoinfo.srto_max != 0)
2809 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2810 if (rtoinfo.srto_min != 0)
2811 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2812 }
2813
2814 return 0;
2815 }
2816
2817 /*
2818 *
2819 * 7.1.2 SCTP_ASSOCINFO
2820 *
2821 * This option is used to tune the maximum retransmission attempts
2822 * of the association.
2823 * Returns an error if the new association retransmission value is
2824 * greater than the sum of the retransmission value of the peer.
2825 * See [SCTP] for more information.
2826 *
2827 */
2828 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2829 {
2830
2831 struct sctp_assocparams assocparams;
2832 struct sctp_association *asoc;
2833
2834 if (optlen != sizeof(struct sctp_assocparams))
2835 return -EINVAL;
2836 if (copy_from_user(&assocparams, optval, optlen))
2837 return -EFAULT;
2838
2839 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2840
2841 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2842 return -EINVAL;
2843
2844 /* Set the values to the specific association */
2845 if (asoc) {
2846 if (assocparams.sasoc_asocmaxrxt != 0) {
2847 __u32 path_sum = 0;
2848 int paths = 0;
2849 struct sctp_transport *peer_addr;
2850
2851 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2852 transports) {
2853 path_sum += peer_addr->pathmaxrxt;
2854 paths++;
2855 }
2856
2857 /* Only validate asocmaxrxt if we have more than
2858 * one path/transport. We do this because path
2859 * retransmissions are only counted when we have more
2860 * then one path.
2861 */
2862 if (paths > 1 &&
2863 assocparams.sasoc_asocmaxrxt > path_sum)
2864 return -EINVAL;
2865
2866 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2867 }
2868
2869 if (assocparams.sasoc_cookie_life != 0) {
2870 asoc->cookie_life.tv_sec =
2871 assocparams.sasoc_cookie_life / 1000;
2872 asoc->cookie_life.tv_usec =
2873 (assocparams.sasoc_cookie_life % 1000)
2874 * 1000;
2875 }
2876 } else {
2877 /* Set the values to the endpoint */
2878 struct sctp_sock *sp = sctp_sk(sk);
2879
2880 if (assocparams.sasoc_asocmaxrxt != 0)
2881 sp->assocparams.sasoc_asocmaxrxt =
2882 assocparams.sasoc_asocmaxrxt;
2883 if (assocparams.sasoc_cookie_life != 0)
2884 sp->assocparams.sasoc_cookie_life =
2885 assocparams.sasoc_cookie_life;
2886 }
2887 return 0;
2888 }
2889
2890 /*
2891 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2892 *
2893 * This socket option is a boolean flag which turns on or off mapped V4
2894 * addresses. If this option is turned on and the socket is type
2895 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2896 * If this option is turned off, then no mapping will be done of V4
2897 * addresses and a user will receive both PF_INET6 and PF_INET type
2898 * addresses on the socket.
2899 */
2900 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2901 {
2902 int val;
2903 struct sctp_sock *sp = sctp_sk(sk);
2904
2905 if (optlen < sizeof(int))
2906 return -EINVAL;
2907 if (get_user(val, (int __user *)optval))
2908 return -EFAULT;
2909 if (val)
2910 sp->v4mapped = 1;
2911 else
2912 sp->v4mapped = 0;
2913
2914 return 0;
2915 }
2916
2917 /*
2918 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2919 * This option will get or set the maximum size to put in any outgoing
2920 * SCTP DATA chunk. If a message is larger than this size it will be
2921 * fragmented by SCTP into the specified size. Note that the underlying
2922 * SCTP implementation may fragment into smaller sized chunks when the
2923 * PMTU of the underlying association is smaller than the value set by
2924 * the user. The default value for this option is '0' which indicates
2925 * the user is NOT limiting fragmentation and only the PMTU will effect
2926 * SCTP's choice of DATA chunk size. Note also that values set larger
2927 * than the maximum size of an IP datagram will effectively let SCTP
2928 * control fragmentation (i.e. the same as setting this option to 0).
2929 *
2930 * The following structure is used to access and modify this parameter:
2931 *
2932 * struct sctp_assoc_value {
2933 * sctp_assoc_t assoc_id;
2934 * uint32_t assoc_value;
2935 * };
2936 *
2937 * assoc_id: This parameter is ignored for one-to-one style sockets.
2938 * For one-to-many style sockets this parameter indicates which
2939 * association the user is performing an action upon. Note that if
2940 * this field's value is zero then the endpoints default value is
2941 * changed (effecting future associations only).
2942 * assoc_value: This parameter specifies the maximum size in bytes.
2943 */
2944 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2945 {
2946 struct sctp_assoc_value params;
2947 struct sctp_association *asoc;
2948 struct sctp_sock *sp = sctp_sk(sk);
2949 int val;
2950
2951 if (optlen == sizeof(int)) {
2952 pr_warn("Use of int in maxseg socket option deprecated\n");
2953 pr_warn("Use struct sctp_assoc_value instead\n");
2954 if (copy_from_user(&val, optval, optlen))
2955 return -EFAULT;
2956 params.assoc_id = 0;
2957 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2958 if (copy_from_user(&params, optval, optlen))
2959 return -EFAULT;
2960 val = params.assoc_value;
2961 } else
2962 return -EINVAL;
2963
2964 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2965 return -EINVAL;
2966
2967 asoc = sctp_id2assoc(sk, params.assoc_id);
2968 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2969 return -EINVAL;
2970
2971 if (asoc) {
2972 if (val == 0) {
2973 val = asoc->pathmtu;
2974 val -= sp->pf->af->net_header_len;
2975 val -= sizeof(struct sctphdr) +
2976 sizeof(struct sctp_data_chunk);
2977 }
2978 asoc->user_frag = val;
2979 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2980 } else {
2981 sp->user_frag = val;
2982 }
2983
2984 return 0;
2985 }
2986
2987
2988 /*
2989 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2990 *
2991 * Requests that the peer mark the enclosed address as the association
2992 * primary. The enclosed address must be one of the association's
2993 * locally bound addresses. The following structure is used to make a
2994 * set primary request:
2995 */
2996 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2997 unsigned int optlen)
2998 {
2999 struct sctp_sock *sp;
3000 struct sctp_association *asoc = NULL;
3001 struct sctp_setpeerprim prim;
3002 struct sctp_chunk *chunk;
3003 struct sctp_af *af;
3004 int err;
3005
3006 sp = sctp_sk(sk);
3007
3008 if (!sctp_addip_enable)
3009 return -EPERM;
3010
3011 if (optlen != sizeof(struct sctp_setpeerprim))
3012 return -EINVAL;
3013
3014 if (copy_from_user(&prim, optval, optlen))
3015 return -EFAULT;
3016
3017 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3018 if (!asoc)
3019 return -EINVAL;
3020
3021 if (!asoc->peer.asconf_capable)
3022 return -EPERM;
3023
3024 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3025 return -EPERM;
3026
3027 if (!sctp_state(asoc, ESTABLISHED))
3028 return -ENOTCONN;
3029
3030 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3031 if (!af)
3032 return -EINVAL;
3033
3034 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3035 return -EADDRNOTAVAIL;
3036
3037 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3038 return -EADDRNOTAVAIL;
3039
3040 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3041 chunk = sctp_make_asconf_set_prim(asoc,
3042 (union sctp_addr *)&prim.sspp_addr);
3043 if (!chunk)
3044 return -ENOMEM;
3045
3046 err = sctp_send_asconf(asoc, chunk);
3047
3048 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3049
3050 return err;
3051 }
3052
3053 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3054 unsigned int optlen)
3055 {
3056 struct sctp_setadaptation adaptation;
3057
3058 if (optlen != sizeof(struct sctp_setadaptation))
3059 return -EINVAL;
3060 if (copy_from_user(&adaptation, optval, optlen))
3061 return -EFAULT;
3062
3063 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3064
3065 return 0;
3066 }
3067
3068 /*
3069 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3070 *
3071 * The context field in the sctp_sndrcvinfo structure is normally only
3072 * used when a failed message is retrieved holding the value that was
3073 * sent down on the actual send call. This option allows the setting of
3074 * a default context on an association basis that will be received on
3075 * reading messages from the peer. This is especially helpful in the
3076 * one-2-many model for an application to keep some reference to an
3077 * internal state machine that is processing messages on the
3078 * association. Note that the setting of this value only effects
3079 * received messages from the peer and does not effect the value that is
3080 * saved with outbound messages.
3081 */
3082 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3083 unsigned int optlen)
3084 {
3085 struct sctp_assoc_value params;
3086 struct sctp_sock *sp;
3087 struct sctp_association *asoc;
3088
3089 if (optlen != sizeof(struct sctp_assoc_value))
3090 return -EINVAL;
3091 if (copy_from_user(&params, optval, optlen))
3092 return -EFAULT;
3093
3094 sp = sctp_sk(sk);
3095
3096 if (params.assoc_id != 0) {
3097 asoc = sctp_id2assoc(sk, params.assoc_id);
3098 if (!asoc)
3099 return -EINVAL;
3100 asoc->default_rcv_context = params.assoc_value;
3101 } else {
3102 sp->default_rcv_context = params.assoc_value;
3103 }
3104
3105 return 0;
3106 }
3107
3108 /*
3109 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3110 *
3111 * This options will at a minimum specify if the implementation is doing
3112 * fragmented interleave. Fragmented interleave, for a one to many
3113 * socket, is when subsequent calls to receive a message may return
3114 * parts of messages from different associations. Some implementations
3115 * may allow you to turn this value on or off. If so, when turned off,
3116 * no fragment interleave will occur (which will cause a head of line
3117 * blocking amongst multiple associations sharing the same one to many
3118 * socket). When this option is turned on, then each receive call may
3119 * come from a different association (thus the user must receive data
3120 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3121 * association each receive belongs to.
3122 *
3123 * This option takes a boolean value. A non-zero value indicates that
3124 * fragmented interleave is on. A value of zero indicates that
3125 * fragmented interleave is off.
3126 *
3127 * Note that it is important that an implementation that allows this
3128 * option to be turned on, have it off by default. Otherwise an unaware
3129 * application using the one to many model may become confused and act
3130 * incorrectly.
3131 */
3132 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3133 char __user *optval,
3134 unsigned int optlen)
3135 {
3136 int val;
3137
3138 if (optlen != sizeof(int))
3139 return -EINVAL;
3140 if (get_user(val, (int __user *)optval))
3141 return -EFAULT;
3142
3143 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3144
3145 return 0;
3146 }
3147
3148 /*
3149 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3150 * (SCTP_PARTIAL_DELIVERY_POINT)
3151 *
3152 * This option will set or get the SCTP partial delivery point. This
3153 * point is the size of a message where the partial delivery API will be
3154 * invoked to help free up rwnd space for the peer. Setting this to a
3155 * lower value will cause partial deliveries to happen more often. The
3156 * calls argument is an integer that sets or gets the partial delivery
3157 * point. Note also that the call will fail if the user attempts to set
3158 * this value larger than the socket receive buffer size.
3159 *
3160 * Note that any single message having a length smaller than or equal to
3161 * the SCTP partial delivery point will be delivered in one single read
3162 * call as long as the user provided buffer is large enough to hold the
3163 * message.
3164 */
3165 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3166 char __user *optval,
3167 unsigned int optlen)
3168 {
3169 u32 val;
3170
3171 if (optlen != sizeof(u32))
3172 return -EINVAL;
3173 if (get_user(val, (int __user *)optval))
3174 return -EFAULT;
3175
3176 /* Note: We double the receive buffer from what the user sets
3177 * it to be, also initial rwnd is based on rcvbuf/2.
3178 */
3179 if (val > (sk->sk_rcvbuf >> 1))
3180 return -EINVAL;
3181
3182 sctp_sk(sk)->pd_point = val;
3183
3184 return 0; /* is this the right error code? */
3185 }
3186
3187 /*
3188 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3189 *
3190 * This option will allow a user to change the maximum burst of packets
3191 * that can be emitted by this association. Note that the default value
3192 * is 4, and some implementations may restrict this setting so that it
3193 * can only be lowered.
3194 *
3195 * NOTE: This text doesn't seem right. Do this on a socket basis with
3196 * future associations inheriting the socket value.
3197 */
3198 static int sctp_setsockopt_maxburst(struct sock *sk,
3199 char __user *optval,
3200 unsigned int optlen)
3201 {
3202 struct sctp_assoc_value params;
3203 struct sctp_sock *sp;
3204 struct sctp_association *asoc;
3205 int val;
3206 int assoc_id = 0;
3207
3208 if (optlen == sizeof(int)) {
3209 pr_warn("Use of int in max_burst socket option deprecated\n");
3210 pr_warn("Use struct sctp_assoc_value instead\n");
3211 if (copy_from_user(&val, optval, optlen))
3212 return -EFAULT;
3213 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3214 if (copy_from_user(&params, optval, optlen))
3215 return -EFAULT;
3216 val = params.assoc_value;
3217 assoc_id = params.assoc_id;
3218 } else
3219 return -EINVAL;
3220
3221 sp = sctp_sk(sk);
3222
3223 if (assoc_id != 0) {
3224 asoc = sctp_id2assoc(sk, assoc_id);
3225 if (!asoc)
3226 return -EINVAL;
3227 asoc->max_burst = val;
3228 } else
3229 sp->max_burst = val;
3230
3231 return 0;
3232 }
3233
3234 /*
3235 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3236 *
3237 * This set option adds a chunk type that the user is requesting to be
3238 * received only in an authenticated way. Changes to the list of chunks
3239 * will only effect future associations on the socket.
3240 */
3241 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3242 char __user *optval,
3243 unsigned int optlen)
3244 {
3245 struct sctp_authchunk val;
3246
3247 if (!sctp_auth_enable)
3248 return -EACCES;
3249
3250 if (optlen != sizeof(struct sctp_authchunk))
3251 return -EINVAL;
3252 if (copy_from_user(&val, optval, optlen))
3253 return -EFAULT;
3254
3255 switch (val.sauth_chunk) {
3256 case SCTP_CID_INIT:
3257 case SCTP_CID_INIT_ACK:
3258 case SCTP_CID_SHUTDOWN_COMPLETE:
3259 case SCTP_CID_AUTH:
3260 return -EINVAL;
3261 }
3262
3263 /* add this chunk id to the endpoint */
3264 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3265 }
3266
3267 /*
3268 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3269 *
3270 * This option gets or sets the list of HMAC algorithms that the local
3271 * endpoint requires the peer to use.
3272 */
3273 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3274 char __user *optval,
3275 unsigned int optlen)
3276 {
3277 struct sctp_hmacalgo *hmacs;
3278 u32 idents;
3279 int err;
3280
3281 if (!sctp_auth_enable)
3282 return -EACCES;
3283
3284 if (optlen < sizeof(struct sctp_hmacalgo))
3285 return -EINVAL;
3286
3287 hmacs= memdup_user(optval, optlen);
3288 if (IS_ERR(hmacs))
3289 return PTR_ERR(hmacs);
3290
3291 idents = hmacs->shmac_num_idents;
3292 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3293 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3294 err = -EINVAL;
3295 goto out;
3296 }
3297
3298 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3299 out:
3300 kfree(hmacs);
3301 return err;
3302 }
3303
3304 /*
3305 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3306 *
3307 * This option will set a shared secret key which is used to build an
3308 * association shared key.
3309 */
3310 static int sctp_setsockopt_auth_key(struct sock *sk,
3311 char __user *optval,
3312 unsigned int optlen)
3313 {
3314 struct sctp_authkey *authkey;
3315 struct sctp_association *asoc;
3316 int ret;
3317
3318 if (!sctp_auth_enable)
3319 return -EACCES;
3320
3321 if (optlen <= sizeof(struct sctp_authkey))
3322 return -EINVAL;
3323
3324 authkey= memdup_user(optval, optlen);
3325 if (IS_ERR(authkey))
3326 return PTR_ERR(authkey);
3327
3328 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3329 ret = -EINVAL;
3330 goto out;
3331 }
3332
3333 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3334 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3335 ret = -EINVAL;
3336 goto out;
3337 }
3338
3339 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3340 out:
3341 kfree(authkey);
3342 return ret;
3343 }
3344
3345 /*
3346 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3347 *
3348 * This option will get or set the active shared key to be used to build
3349 * the association shared key.
3350 */
3351 static int sctp_setsockopt_active_key(struct sock *sk,
3352 char __user *optval,
3353 unsigned int optlen)
3354 {
3355 struct sctp_authkeyid val;
3356 struct sctp_association *asoc;
3357
3358 if (!sctp_auth_enable)
3359 return -EACCES;
3360
3361 if (optlen != sizeof(struct sctp_authkeyid))
3362 return -EINVAL;
3363 if (copy_from_user(&val, optval, optlen))
3364 return -EFAULT;
3365
3366 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3367 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3368 return -EINVAL;
3369
3370 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3371 val.scact_keynumber);
3372 }
3373
3374 /*
3375 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3376 *
3377 * This set option will delete a shared secret key from use.
3378 */
3379 static int sctp_setsockopt_del_key(struct sock *sk,
3380 char __user *optval,
3381 unsigned int optlen)
3382 {
3383 struct sctp_authkeyid val;
3384 struct sctp_association *asoc;
3385
3386 if (!sctp_auth_enable)
3387 return -EACCES;
3388
3389 if (optlen != sizeof(struct sctp_authkeyid))
3390 return -EINVAL;
3391 if (copy_from_user(&val, optval, optlen))
3392 return -EFAULT;
3393
3394 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3395 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3396 return -EINVAL;
3397
3398 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3399 val.scact_keynumber);
3400
3401 }
3402
3403 /*
3404 * 8.1.23 SCTP_AUTO_ASCONF
3405 *
3406 * This option will enable or disable the use of the automatic generation of
3407 * ASCONF chunks to add and delete addresses to an existing association. Note
3408 * that this option has two caveats namely: a) it only affects sockets that
3409 * are bound to all addresses available to the SCTP stack, and b) the system
3410 * administrator may have an overriding control that turns the ASCONF feature
3411 * off no matter what setting the socket option may have.
3412 * This option expects an integer boolean flag, where a non-zero value turns on
3413 * the option, and a zero value turns off the option.
3414 * Note. In this implementation, socket operation overrides default parameter
3415 * being set by sysctl as well as FreeBSD implementation
3416 */
3417 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3418 unsigned int optlen)
3419 {
3420 int val;
3421 struct sctp_sock *sp = sctp_sk(sk);
3422
3423 if (optlen < sizeof(int))
3424 return -EINVAL;
3425 if (get_user(val, (int __user *)optval))
3426 return -EFAULT;
3427 if (!sctp_is_ep_boundall(sk) && val)
3428 return -EINVAL;
3429 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3430 return 0;
3431
3432 if (val == 0 && sp->do_auto_asconf) {
3433 list_del(&sp->auto_asconf_list);
3434 sp->do_auto_asconf = 0;
3435 } else if (val && !sp->do_auto_asconf) {
3436 list_add_tail(&sp->auto_asconf_list,
3437 &sctp_auto_asconf_splist);
3438 sp->do_auto_asconf = 1;
3439 }
3440 return 0;
3441 }
3442
3443
3444 /* API 6.2 setsockopt(), getsockopt()
3445 *
3446 * Applications use setsockopt() and getsockopt() to set or retrieve
3447 * socket options. Socket options are used to change the default
3448 * behavior of sockets calls. They are described in Section 7.
3449 *
3450 * The syntax is:
3451 *
3452 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3453 * int __user *optlen);
3454 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3455 * int optlen);
3456 *
3457 * sd - the socket descript.
3458 * level - set to IPPROTO_SCTP for all SCTP options.
3459 * optname - the option name.
3460 * optval - the buffer to store the value of the option.
3461 * optlen - the size of the buffer.
3462 */
3463 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3464 char __user *optval, unsigned int optlen)
3465 {
3466 int retval = 0;
3467
3468 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3469 sk, optname);
3470
3471 /* I can hardly begin to describe how wrong this is. This is
3472 * so broken as to be worse than useless. The API draft
3473 * REALLY is NOT helpful here... I am not convinced that the
3474 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3475 * are at all well-founded.
3476 */
3477 if (level != SOL_SCTP) {
3478 struct sctp_af *af = sctp_sk(sk)->pf->af;
3479 retval = af->setsockopt(sk, level, optname, optval, optlen);
3480 goto out_nounlock;
3481 }
3482
3483 sctp_lock_sock(sk);
3484
3485 switch (optname) {
3486 case SCTP_SOCKOPT_BINDX_ADD:
3487 /* 'optlen' is the size of the addresses buffer. */
3488 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3489 optlen, SCTP_BINDX_ADD_ADDR);
3490 break;
3491
3492 case SCTP_SOCKOPT_BINDX_REM:
3493 /* 'optlen' is the size of the addresses buffer. */
3494 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3495 optlen, SCTP_BINDX_REM_ADDR);
3496 break;
3497
3498 case SCTP_SOCKOPT_CONNECTX_OLD:
3499 /* 'optlen' is the size of the addresses buffer. */
3500 retval = sctp_setsockopt_connectx_old(sk,
3501 (struct sockaddr __user *)optval,
3502 optlen);
3503 break;
3504
3505 case SCTP_SOCKOPT_CONNECTX:
3506 /* 'optlen' is the size of the addresses buffer. */
3507 retval = sctp_setsockopt_connectx(sk,
3508 (struct sockaddr __user *)optval,
3509 optlen);
3510 break;
3511
3512 case SCTP_DISABLE_FRAGMENTS:
3513 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3514 break;
3515
3516 case SCTP_EVENTS:
3517 retval = sctp_setsockopt_events(sk, optval, optlen);
3518 break;
3519
3520 case SCTP_AUTOCLOSE:
3521 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3522 break;
3523
3524 case SCTP_PEER_ADDR_PARAMS:
3525 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3526 break;
3527
3528 case SCTP_DELAYED_SACK:
3529 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3530 break;
3531 case SCTP_PARTIAL_DELIVERY_POINT:
3532 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3533 break;
3534
3535 case SCTP_INITMSG:
3536 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3537 break;
3538 case SCTP_DEFAULT_SEND_PARAM:
3539 retval = sctp_setsockopt_default_send_param(sk, optval,
3540 optlen);
3541 break;
3542 case SCTP_PRIMARY_ADDR:
3543 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3544 break;
3545 case SCTP_SET_PEER_PRIMARY_ADDR:
3546 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3547 break;
3548 case SCTP_NODELAY:
3549 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3550 break;
3551 case SCTP_RTOINFO:
3552 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3553 break;
3554 case SCTP_ASSOCINFO:
3555 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3556 break;
3557 case SCTP_I_WANT_MAPPED_V4_ADDR:
3558 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3559 break;
3560 case SCTP_MAXSEG:
3561 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3562 break;
3563 case SCTP_ADAPTATION_LAYER:
3564 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3565 break;
3566 case SCTP_CONTEXT:
3567 retval = sctp_setsockopt_context(sk, optval, optlen);
3568 break;
3569 case SCTP_FRAGMENT_INTERLEAVE:
3570 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3571 break;
3572 case SCTP_MAX_BURST:
3573 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3574 break;
3575 case SCTP_AUTH_CHUNK:
3576 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3577 break;
3578 case SCTP_HMAC_IDENT:
3579 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3580 break;
3581 case SCTP_AUTH_KEY:
3582 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3583 break;
3584 case SCTP_AUTH_ACTIVE_KEY:
3585 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3586 break;
3587 case SCTP_AUTH_DELETE_KEY:
3588 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3589 break;
3590 case SCTP_AUTO_ASCONF:
3591 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3592 break;
3593 default:
3594 retval = -ENOPROTOOPT;
3595 break;
3596 }
3597
3598 sctp_release_sock(sk);
3599
3600 out_nounlock:
3601 return retval;
3602 }
3603
3604 /* API 3.1.6 connect() - UDP Style Syntax
3605 *
3606 * An application may use the connect() call in the UDP model to initiate an
3607 * association without sending data.
3608 *
3609 * The syntax is:
3610 *
3611 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3612 *
3613 * sd: the socket descriptor to have a new association added to.
3614 *
3615 * nam: the address structure (either struct sockaddr_in or struct
3616 * sockaddr_in6 defined in RFC2553 [7]).
3617 *
3618 * len: the size of the address.
3619 */
3620 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3621 int addr_len)
3622 {
3623 int err = 0;
3624 struct sctp_af *af;
3625
3626 sctp_lock_sock(sk);
3627
3628 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3629 __func__, sk, addr, addr_len);
3630
3631 /* Validate addr_len before calling common connect/connectx routine. */
3632 af = sctp_get_af_specific(addr->sa_family);
3633 if (!af || addr_len < af->sockaddr_len) {
3634 err = -EINVAL;
3635 } else {
3636 /* Pass correct addr len to common routine (so it knows there
3637 * is only one address being passed.
3638 */
3639 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3640 }
3641
3642 sctp_release_sock(sk);
3643 return err;
3644 }
3645
3646 /* FIXME: Write comments. */
3647 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3648 {
3649 return -EOPNOTSUPP; /* STUB */
3650 }
3651
3652 /* 4.1.4 accept() - TCP Style Syntax
3653 *
3654 * Applications use accept() call to remove an established SCTP
3655 * association from the accept queue of the endpoint. A new socket
3656 * descriptor will be returned from accept() to represent the newly
3657 * formed association.
3658 */
3659 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3660 {
3661 struct sctp_sock *sp;
3662 struct sctp_endpoint *ep;
3663 struct sock *newsk = NULL;
3664 struct sctp_association *asoc;
3665 long timeo;
3666 int error = 0;
3667
3668 sctp_lock_sock(sk);
3669
3670 sp = sctp_sk(sk);
3671 ep = sp->ep;
3672
3673 if (!sctp_style(sk, TCP)) {
3674 error = -EOPNOTSUPP;
3675 goto out;
3676 }
3677
3678 if (!sctp_sstate(sk, LISTENING)) {
3679 error = -EINVAL;
3680 goto out;
3681 }
3682
3683 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3684
3685 error = sctp_wait_for_accept(sk, timeo);
3686 if (error)
3687 goto out;
3688
3689 /* We treat the list of associations on the endpoint as the accept
3690 * queue and pick the first association on the list.
3691 */
3692 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3693
3694 newsk = sp->pf->create_accept_sk(sk, asoc);
3695 if (!newsk) {
3696 error = -ENOMEM;
3697 goto out;
3698 }
3699
3700 /* Populate the fields of the newsk from the oldsk and migrate the
3701 * asoc to the newsk.
3702 */
3703 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3704
3705 out:
3706 sctp_release_sock(sk);
3707 *err = error;
3708 return newsk;
3709 }
3710
3711 /* The SCTP ioctl handler. */
3712 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3713 {
3714 int rc = -ENOTCONN;
3715
3716 sctp_lock_sock(sk);
3717
3718 /*
3719 * SEQPACKET-style sockets in LISTENING state are valid, for
3720 * SCTP, so only discard TCP-style sockets in LISTENING state.
3721 */
3722 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3723 goto out;
3724
3725 switch (cmd) {
3726 case SIOCINQ: {
3727 struct sk_buff *skb;
3728 unsigned int amount = 0;
3729
3730 skb = skb_peek(&sk->sk_receive_queue);
3731 if (skb != NULL) {
3732 /*
3733 * We will only return the amount of this packet since
3734 * that is all that will be read.
3735 */
3736 amount = skb->len;
3737 }
3738 rc = put_user(amount, (int __user *)arg);
3739 break;
3740 }
3741 default:
3742 rc = -ENOIOCTLCMD;
3743 break;
3744 }
3745 out:
3746 sctp_release_sock(sk);
3747 return rc;
3748 }
3749
3750 /* This is the function which gets called during socket creation to
3751 * initialized the SCTP-specific portion of the sock.
3752 * The sock structure should already be zero-filled memory.
3753 */
3754 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3755 {
3756 struct sctp_endpoint *ep;
3757 struct sctp_sock *sp;
3758
3759 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3760
3761 sp = sctp_sk(sk);
3762
3763 /* Initialize the SCTP per socket area. */
3764 switch (sk->sk_type) {
3765 case SOCK_SEQPACKET:
3766 sp->type = SCTP_SOCKET_UDP;
3767 break;
3768 case SOCK_STREAM:
3769 sp->type = SCTP_SOCKET_TCP;
3770 break;
3771 default:
3772 return -ESOCKTNOSUPPORT;
3773 }
3774
3775 /* Initialize default send parameters. These parameters can be
3776 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3777 */
3778 sp->default_stream = 0;
3779 sp->default_ppid = 0;
3780 sp->default_flags = 0;
3781 sp->default_context = 0;
3782 sp->default_timetolive = 0;
3783
3784 sp->default_rcv_context = 0;
3785 sp->max_burst = sctp_max_burst;
3786
3787 /* Initialize default setup parameters. These parameters
3788 * can be modified with the SCTP_INITMSG socket option or
3789 * overridden by the SCTP_INIT CMSG.
3790 */
3791 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3792 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3793 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3794 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3795
3796 /* Initialize default RTO related parameters. These parameters can
3797 * be modified for with the SCTP_RTOINFO socket option.
3798 */
3799 sp->rtoinfo.srto_initial = sctp_rto_initial;
3800 sp->rtoinfo.srto_max = sctp_rto_max;
3801 sp->rtoinfo.srto_min = sctp_rto_min;
3802
3803 /* Initialize default association related parameters. These parameters
3804 * can be modified with the SCTP_ASSOCINFO socket option.
3805 */
3806 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3807 sp->assocparams.sasoc_number_peer_destinations = 0;
3808 sp->assocparams.sasoc_peer_rwnd = 0;
3809 sp->assocparams.sasoc_local_rwnd = 0;
3810 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3811
3812 /* Initialize default event subscriptions. By default, all the
3813 * options are off.
3814 */
3815 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3816
3817 /* Default Peer Address Parameters. These defaults can
3818 * be modified via SCTP_PEER_ADDR_PARAMS
3819 */
3820 sp->hbinterval = sctp_hb_interval;
3821 sp->pathmaxrxt = sctp_max_retrans_path;
3822 sp->pathmtu = 0; // allow default discovery
3823 sp->sackdelay = sctp_sack_timeout;
3824 sp->sackfreq = 2;
3825 sp->param_flags = SPP_HB_ENABLE |
3826 SPP_PMTUD_ENABLE |
3827 SPP_SACKDELAY_ENABLE;
3828
3829 /* If enabled no SCTP message fragmentation will be performed.
3830 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3831 */
3832 sp->disable_fragments = 0;
3833
3834 /* Enable Nagle algorithm by default. */
3835 sp->nodelay = 0;
3836
3837 /* Enable by default. */
3838 sp->v4mapped = 1;
3839
3840 /* Auto-close idle associations after the configured
3841 * number of seconds. A value of 0 disables this
3842 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3843 * for UDP-style sockets only.
3844 */
3845 sp->autoclose = 0;
3846
3847 /* User specified fragmentation limit. */
3848 sp->user_frag = 0;
3849
3850 sp->adaptation_ind = 0;
3851
3852 sp->pf = sctp_get_pf_specific(sk->sk_family);
3853
3854 /* Control variables for partial data delivery. */
3855 atomic_set(&sp->pd_mode, 0);
3856 skb_queue_head_init(&sp->pd_lobby);
3857 sp->frag_interleave = 0;
3858
3859 /* Create a per socket endpoint structure. Even if we
3860 * change the data structure relationships, this may still
3861 * be useful for storing pre-connect address information.
3862 */
3863 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3864 if (!ep)
3865 return -ENOMEM;
3866
3867 sp->ep = ep;
3868 sp->hmac = NULL;
3869
3870 SCTP_DBG_OBJCNT_INC(sock);
3871
3872 local_bh_disable();
3873 percpu_counter_inc(&sctp_sockets_allocated);
3874 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3875 if (sctp_default_auto_asconf) {
3876 list_add_tail(&sp->auto_asconf_list,
3877 &sctp_auto_asconf_splist);
3878 sp->do_auto_asconf = 1;
3879 } else
3880 sp->do_auto_asconf = 0;
3881 local_bh_enable();
3882
3883 return 0;
3884 }
3885
3886 /* Cleanup any SCTP per socket resources. */
3887 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3888 {
3889 struct sctp_sock *sp;
3890
3891 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3892
3893 /* Release our hold on the endpoint. */
3894 sp = sctp_sk(sk);
3895 if (sp->do_auto_asconf) {
3896 sp->do_auto_asconf = 0;
3897 list_del(&sp->auto_asconf_list);
3898 }
3899 sctp_endpoint_free(sp->ep);
3900 local_bh_disable();
3901 percpu_counter_dec(&sctp_sockets_allocated);
3902 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3903 local_bh_enable();
3904 }
3905
3906 /* API 4.1.7 shutdown() - TCP Style Syntax
3907 * int shutdown(int socket, int how);
3908 *
3909 * sd - the socket descriptor of the association to be closed.
3910 * how - Specifies the type of shutdown. The values are
3911 * as follows:
3912 * SHUT_RD
3913 * Disables further receive operations. No SCTP
3914 * protocol action is taken.
3915 * SHUT_WR
3916 * Disables further send operations, and initiates
3917 * the SCTP shutdown sequence.
3918 * SHUT_RDWR
3919 * Disables further send and receive operations
3920 * and initiates the SCTP shutdown sequence.
3921 */
3922 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3923 {
3924 struct sctp_endpoint *ep;
3925 struct sctp_association *asoc;
3926
3927 if (!sctp_style(sk, TCP))
3928 return;
3929
3930 if (how & SEND_SHUTDOWN) {
3931 ep = sctp_sk(sk)->ep;
3932 if (!list_empty(&ep->asocs)) {
3933 asoc = list_entry(ep->asocs.next,
3934 struct sctp_association, asocs);
3935 sctp_primitive_SHUTDOWN(asoc, NULL);
3936 }
3937 }
3938 }
3939
3940 /* 7.2.1 Association Status (SCTP_STATUS)
3941
3942 * Applications can retrieve current status information about an
3943 * association, including association state, peer receiver window size,
3944 * number of unacked data chunks, and number of data chunks pending
3945 * receipt. This information is read-only.
3946 */
3947 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3948 char __user *optval,
3949 int __user *optlen)
3950 {
3951 struct sctp_status status;
3952 struct sctp_association *asoc = NULL;
3953 struct sctp_transport *transport;
3954 sctp_assoc_t associd;
3955 int retval = 0;
3956
3957 if (len < sizeof(status)) {
3958 retval = -EINVAL;
3959 goto out;
3960 }
3961
3962 len = sizeof(status);
3963 if (copy_from_user(&status, optval, len)) {
3964 retval = -EFAULT;
3965 goto out;
3966 }
3967
3968 associd = status.sstat_assoc_id;
3969 asoc = sctp_id2assoc(sk, associd);
3970 if (!asoc) {
3971 retval = -EINVAL;
3972 goto out;
3973 }
3974
3975 transport = asoc->peer.primary_path;
3976
3977 status.sstat_assoc_id = sctp_assoc2id(asoc);
3978 status.sstat_state = asoc->state;
3979 status.sstat_rwnd = asoc->peer.rwnd;
3980 status.sstat_unackdata = asoc->unack_data;
3981
3982 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3983 status.sstat_instrms = asoc->c.sinit_max_instreams;
3984 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3985 status.sstat_fragmentation_point = asoc->frag_point;
3986 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3987 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3988 transport->af_specific->sockaddr_len);
3989 /* Map ipv4 address into v4-mapped-on-v6 address. */
3990 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3991 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3992 status.sstat_primary.spinfo_state = transport->state;
3993 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3994 status.sstat_primary.spinfo_srtt = transport->srtt;
3995 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3996 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3997
3998 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3999 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4000
4001 if (put_user(len, optlen)) {
4002 retval = -EFAULT;
4003 goto out;
4004 }
4005
4006 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4007 len, status.sstat_state, status.sstat_rwnd,
4008 status.sstat_assoc_id);
4009
4010 if (copy_to_user(optval, &status, len)) {
4011 retval = -EFAULT;
4012 goto out;
4013 }
4014
4015 out:
4016 return retval;
4017 }
4018
4019
4020 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4021 *
4022 * Applications can retrieve information about a specific peer address
4023 * of an association, including its reachability state, congestion
4024 * window, and retransmission timer values. This information is
4025 * read-only.
4026 */
4027 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4028 char __user *optval,
4029 int __user *optlen)
4030 {
4031 struct sctp_paddrinfo pinfo;
4032 struct sctp_transport *transport;
4033 int retval = 0;
4034
4035 if (len < sizeof(pinfo)) {
4036 retval = -EINVAL;
4037 goto out;
4038 }
4039
4040 len = sizeof(pinfo);
4041 if (copy_from_user(&pinfo, optval, len)) {
4042 retval = -EFAULT;
4043 goto out;
4044 }
4045
4046 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4047 pinfo.spinfo_assoc_id);
4048 if (!transport)
4049 return -EINVAL;
4050
4051 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4052 pinfo.spinfo_state = transport->state;
4053 pinfo.spinfo_cwnd = transport->cwnd;
4054 pinfo.spinfo_srtt = transport->srtt;
4055 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4056 pinfo.spinfo_mtu = transport->pathmtu;
4057
4058 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4059 pinfo.spinfo_state = SCTP_ACTIVE;
4060
4061 if (put_user(len, optlen)) {
4062 retval = -EFAULT;
4063 goto out;
4064 }
4065
4066 if (copy_to_user(optval, &pinfo, len)) {
4067 retval = -EFAULT;
4068 goto out;
4069 }
4070
4071 out:
4072 return retval;
4073 }
4074
4075 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4076 *
4077 * This option is a on/off flag. If enabled no SCTP message
4078 * fragmentation will be performed. Instead if a message being sent
4079 * exceeds the current PMTU size, the message will NOT be sent and
4080 * instead a error will be indicated to the user.
4081 */
4082 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4083 char __user *optval, int __user *optlen)
4084 {
4085 int val;
4086
4087 if (len < sizeof(int))
4088 return -EINVAL;
4089
4090 len = sizeof(int);
4091 val = (sctp_sk(sk)->disable_fragments == 1);
4092 if (put_user(len, optlen))
4093 return -EFAULT;
4094 if (copy_to_user(optval, &val, len))
4095 return -EFAULT;
4096 return 0;
4097 }
4098
4099 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4100 *
4101 * This socket option is used to specify various notifications and
4102 * ancillary data the user wishes to receive.
4103 */
4104 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4105 int __user *optlen)
4106 {
4107 if (len < sizeof(struct sctp_event_subscribe))
4108 return -EINVAL;
4109 len = sizeof(struct sctp_event_subscribe);
4110 if (put_user(len, optlen))
4111 return -EFAULT;
4112 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4113 return -EFAULT;
4114 return 0;
4115 }
4116
4117 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4118 *
4119 * This socket option is applicable to the UDP-style socket only. When
4120 * set it will cause associations that are idle for more than the
4121 * specified number of seconds to automatically close. An association
4122 * being idle is defined an association that has NOT sent or received
4123 * user data. The special value of '0' indicates that no automatic
4124 * close of any associations should be performed. The option expects an
4125 * integer defining the number of seconds of idle time before an
4126 * association is closed.
4127 */
4128 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4129 {
4130 /* Applicable to UDP-style socket only */
4131 if (sctp_style(sk, TCP))
4132 return -EOPNOTSUPP;
4133 if (len < sizeof(int))
4134 return -EINVAL;
4135 len = sizeof(int);
4136 if (put_user(len, optlen))
4137 return -EFAULT;
4138 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4139 return -EFAULT;
4140 return 0;
4141 }
4142
4143 /* Helper routine to branch off an association to a new socket. */
4144 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4145 struct socket **sockp)
4146 {
4147 struct sock *sk = asoc->base.sk;
4148 struct socket *sock;
4149 struct sctp_af *af;
4150 int err = 0;
4151
4152 /* An association cannot be branched off from an already peeled-off
4153 * socket, nor is this supported for tcp style sockets.
4154 */
4155 if (!sctp_style(sk, UDP))
4156 return -EINVAL;
4157
4158 /* Create a new socket. */
4159 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4160 if (err < 0)
4161 return err;
4162
4163 sctp_copy_sock(sock->sk, sk, asoc);
4164
4165 /* Make peeled-off sockets more like 1-1 accepted sockets.
4166 * Set the daddr and initialize id to something more random
4167 */
4168 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4169 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4170
4171 /* Populate the fields of the newsk from the oldsk and migrate the
4172 * asoc to the newsk.
4173 */
4174 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4175
4176 *sockp = sock;
4177
4178 return err;
4179 }
4180
4181 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4182 {
4183 sctp_peeloff_arg_t peeloff;
4184 struct socket *newsock;
4185 int retval = 0;
4186 struct sctp_association *asoc;
4187
4188 if (len < sizeof(sctp_peeloff_arg_t))
4189 return -EINVAL;
4190 len = sizeof(sctp_peeloff_arg_t);
4191 if (copy_from_user(&peeloff, optval, len))
4192 return -EFAULT;
4193
4194 asoc = sctp_id2assoc(sk, peeloff.associd);
4195 if (!asoc) {
4196 retval = -EINVAL;
4197 goto out;
4198 }
4199
4200 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4201
4202 retval = sctp_do_peeloff(asoc, &newsock);
4203 if (retval < 0)
4204 goto out;
4205
4206 /* Map the socket to an unused fd that can be returned to the user. */
4207 retval = sock_map_fd(newsock, 0);
4208 if (retval < 0) {
4209 sock_release(newsock);
4210 goto out;
4211 }
4212
4213 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4214 __func__, sk, asoc, newsock->sk, retval);
4215
4216 /* Return the fd mapped to the new socket. */
4217 peeloff.sd = retval;
4218 if (put_user(len, optlen))
4219 return -EFAULT;
4220 if (copy_to_user(optval, &peeloff, len))
4221 retval = -EFAULT;
4222
4223 out:
4224 return retval;
4225 }
4226
4227 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4228 *
4229 * Applications can enable or disable heartbeats for any peer address of
4230 * an association, modify an address's heartbeat interval, force a
4231 * heartbeat to be sent immediately, and adjust the address's maximum
4232 * number of retransmissions sent before an address is considered
4233 * unreachable. The following structure is used to access and modify an
4234 * address's parameters:
4235 *
4236 * struct sctp_paddrparams {
4237 * sctp_assoc_t spp_assoc_id;
4238 * struct sockaddr_storage spp_address;
4239 * uint32_t spp_hbinterval;
4240 * uint16_t spp_pathmaxrxt;
4241 * uint32_t spp_pathmtu;
4242 * uint32_t spp_sackdelay;
4243 * uint32_t spp_flags;
4244 * };
4245 *
4246 * spp_assoc_id - (one-to-many style socket) This is filled in the
4247 * application, and identifies the association for
4248 * this query.
4249 * spp_address - This specifies which address is of interest.
4250 * spp_hbinterval - This contains the value of the heartbeat interval,
4251 * in milliseconds. If a value of zero
4252 * is present in this field then no changes are to
4253 * be made to this parameter.
4254 * spp_pathmaxrxt - This contains the maximum number of
4255 * retransmissions before this address shall be
4256 * considered unreachable. If a value of zero
4257 * is present in this field then no changes are to
4258 * be made to this parameter.
4259 * spp_pathmtu - When Path MTU discovery is disabled the value
4260 * specified here will be the "fixed" path mtu.
4261 * Note that if the spp_address field is empty
4262 * then all associations on this address will
4263 * have this fixed path mtu set upon them.
4264 *
4265 * spp_sackdelay - When delayed sack is enabled, this value specifies
4266 * the number of milliseconds that sacks will be delayed
4267 * for. This value will apply to all addresses of an
4268 * association if the spp_address field is empty. Note
4269 * also, that if delayed sack is enabled and this
4270 * value is set to 0, no change is made to the last
4271 * recorded delayed sack timer value.
4272 *
4273 * spp_flags - These flags are used to control various features
4274 * on an association. The flag field may contain
4275 * zero or more of the following options.
4276 *
4277 * SPP_HB_ENABLE - Enable heartbeats on the
4278 * specified address. Note that if the address
4279 * field is empty all addresses for the association
4280 * have heartbeats enabled upon them.
4281 *
4282 * SPP_HB_DISABLE - Disable heartbeats on the
4283 * speicifed address. Note that if the address
4284 * field is empty all addresses for the association
4285 * will have their heartbeats disabled. Note also
4286 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4287 * mutually exclusive, only one of these two should
4288 * be specified. Enabling both fields will have
4289 * undetermined results.
4290 *
4291 * SPP_HB_DEMAND - Request a user initiated heartbeat
4292 * to be made immediately.
4293 *
4294 * SPP_PMTUD_ENABLE - This field will enable PMTU
4295 * discovery upon the specified address. Note that
4296 * if the address feild is empty then all addresses
4297 * on the association are effected.
4298 *
4299 * SPP_PMTUD_DISABLE - This field will disable PMTU
4300 * discovery upon the specified address. Note that
4301 * if the address feild is empty then all addresses
4302 * on the association are effected. Not also that
4303 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4304 * exclusive. Enabling both will have undetermined
4305 * results.
4306 *
4307 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4308 * on delayed sack. The time specified in spp_sackdelay
4309 * is used to specify the sack delay for this address. Note
4310 * that if spp_address is empty then all addresses will
4311 * enable delayed sack and take on the sack delay
4312 * value specified in spp_sackdelay.
4313 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4314 * off delayed sack. If the spp_address field is blank then
4315 * delayed sack is disabled for the entire association. Note
4316 * also that this field is mutually exclusive to
4317 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4318 * results.
4319 */
4320 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4321 char __user *optval, int __user *optlen)
4322 {
4323 struct sctp_paddrparams params;
4324 struct sctp_transport *trans = NULL;
4325 struct sctp_association *asoc = NULL;
4326 struct sctp_sock *sp = sctp_sk(sk);
4327
4328 if (len < sizeof(struct sctp_paddrparams))
4329 return -EINVAL;
4330 len = sizeof(struct sctp_paddrparams);
4331 if (copy_from_user(&params, optval, len))
4332 return -EFAULT;
4333
4334 /* If an address other than INADDR_ANY is specified, and
4335 * no transport is found, then the request is invalid.
4336 */
4337 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4338 trans = sctp_addr_id2transport(sk, &params.spp_address,
4339 params.spp_assoc_id);
4340 if (!trans) {
4341 SCTP_DEBUG_PRINTK("Failed no transport\n");
4342 return -EINVAL;
4343 }
4344 }
4345
4346 /* Get association, if assoc_id != 0 and the socket is a one
4347 * to many style socket, and an association was not found, then
4348 * the id was invalid.
4349 */
4350 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4351 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4352 SCTP_DEBUG_PRINTK("Failed no association\n");
4353 return -EINVAL;
4354 }
4355
4356 if (trans) {
4357 /* Fetch transport values. */
4358 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4359 params.spp_pathmtu = trans->pathmtu;
4360 params.spp_pathmaxrxt = trans->pathmaxrxt;
4361 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4362
4363 /*draft-11 doesn't say what to return in spp_flags*/
4364 params.spp_flags = trans->param_flags;
4365 } else if (asoc) {
4366 /* Fetch association values. */
4367 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4368 params.spp_pathmtu = asoc->pathmtu;
4369 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4370 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4371
4372 /*draft-11 doesn't say what to return in spp_flags*/
4373 params.spp_flags = asoc->param_flags;
4374 } else {
4375 /* Fetch socket values. */
4376 params.spp_hbinterval = sp->hbinterval;
4377 params.spp_pathmtu = sp->pathmtu;
4378 params.spp_sackdelay = sp->sackdelay;
4379 params.spp_pathmaxrxt = sp->pathmaxrxt;
4380
4381 /*draft-11 doesn't say what to return in spp_flags*/
4382 params.spp_flags = sp->param_flags;
4383 }
4384
4385 if (copy_to_user(optval, &params, len))
4386 return -EFAULT;
4387
4388 if (put_user(len, optlen))
4389 return -EFAULT;
4390
4391 return 0;
4392 }
4393
4394 /*
4395 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4396 *
4397 * This option will effect the way delayed acks are performed. This
4398 * option allows you to get or set the delayed ack time, in
4399 * milliseconds. It also allows changing the delayed ack frequency.
4400 * Changing the frequency to 1 disables the delayed sack algorithm. If
4401 * the assoc_id is 0, then this sets or gets the endpoints default
4402 * values. If the assoc_id field is non-zero, then the set or get
4403 * effects the specified association for the one to many model (the
4404 * assoc_id field is ignored by the one to one model). Note that if
4405 * sack_delay or sack_freq are 0 when setting this option, then the
4406 * current values will remain unchanged.
4407 *
4408 * struct sctp_sack_info {
4409 * sctp_assoc_t sack_assoc_id;
4410 * uint32_t sack_delay;
4411 * uint32_t sack_freq;
4412 * };
4413 *
4414 * sack_assoc_id - This parameter, indicates which association the user
4415 * is performing an action upon. Note that if this field's value is
4416 * zero then the endpoints default value is changed (effecting future
4417 * associations only).
4418 *
4419 * sack_delay - This parameter contains the number of milliseconds that
4420 * the user is requesting the delayed ACK timer be set to. Note that
4421 * this value is defined in the standard to be between 200 and 500
4422 * milliseconds.
4423 *
4424 * sack_freq - This parameter contains the number of packets that must
4425 * be received before a sack is sent without waiting for the delay
4426 * timer to expire. The default value for this is 2, setting this
4427 * value to 1 will disable the delayed sack algorithm.
4428 */
4429 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4430 char __user *optval,
4431 int __user *optlen)
4432 {
4433 struct sctp_sack_info params;
4434 struct sctp_association *asoc = NULL;
4435 struct sctp_sock *sp = sctp_sk(sk);
4436
4437 if (len >= sizeof(struct sctp_sack_info)) {
4438 len = sizeof(struct sctp_sack_info);
4439
4440 if (copy_from_user(&params, optval, len))
4441 return -EFAULT;
4442 } else if (len == sizeof(struct sctp_assoc_value)) {
4443 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4444 pr_warn("Use struct sctp_sack_info instead\n");
4445 if (copy_from_user(&params, optval, len))
4446 return -EFAULT;
4447 } else
4448 return - EINVAL;
4449
4450 /* Get association, if sack_assoc_id != 0 and the socket is a one
4451 * to many style socket, and an association was not found, then
4452 * the id was invalid.
4453 */
4454 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4455 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4456 return -EINVAL;
4457
4458 if (asoc) {
4459 /* Fetch association values. */
4460 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4461 params.sack_delay = jiffies_to_msecs(
4462 asoc->sackdelay);
4463 params.sack_freq = asoc->sackfreq;
4464
4465 } else {
4466 params.sack_delay = 0;
4467 params.sack_freq = 1;
4468 }
4469 } else {
4470 /* Fetch socket values. */
4471 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4472 params.sack_delay = sp->sackdelay;
4473 params.sack_freq = sp->sackfreq;
4474 } else {
4475 params.sack_delay = 0;
4476 params.sack_freq = 1;
4477 }
4478 }
4479
4480 if (copy_to_user(optval, &params, len))
4481 return -EFAULT;
4482
4483 if (put_user(len, optlen))
4484 return -EFAULT;
4485
4486 return 0;
4487 }
4488
4489 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4490 *
4491 * Applications can specify protocol parameters for the default association
4492 * initialization. The option name argument to setsockopt() and getsockopt()
4493 * is SCTP_INITMSG.
4494 *
4495 * Setting initialization parameters is effective only on an unconnected
4496 * socket (for UDP-style sockets only future associations are effected
4497 * by the change). With TCP-style sockets, this option is inherited by
4498 * sockets derived from a listener socket.
4499 */
4500 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4501 {
4502 if (len < sizeof(struct sctp_initmsg))
4503 return -EINVAL;
4504 len = sizeof(struct sctp_initmsg);
4505 if (put_user(len, optlen))
4506 return -EFAULT;
4507 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4508 return -EFAULT;
4509 return 0;
4510 }
4511
4512
4513 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4514 char __user *optval, int __user *optlen)
4515 {
4516 struct sctp_association *asoc;
4517 int cnt = 0;
4518 struct sctp_getaddrs getaddrs;
4519 struct sctp_transport *from;
4520 void __user *to;
4521 union sctp_addr temp;
4522 struct sctp_sock *sp = sctp_sk(sk);
4523 int addrlen;
4524 size_t space_left;
4525 int bytes_copied;
4526
4527 if (len < sizeof(struct sctp_getaddrs))
4528 return -EINVAL;
4529
4530 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4531 return -EFAULT;
4532
4533 /* For UDP-style sockets, id specifies the association to query. */
4534 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4535 if (!asoc)
4536 return -EINVAL;
4537
4538 to = optval + offsetof(struct sctp_getaddrs,addrs);
4539 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4540
4541 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4542 transports) {
4543 memcpy(&temp, &from->ipaddr, sizeof(temp));
4544 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4545 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4546 if (space_left < addrlen)
4547 return -ENOMEM;
4548 if (copy_to_user(to, &temp, addrlen))
4549 return -EFAULT;
4550 to += addrlen;
4551 cnt++;
4552 space_left -= addrlen;
4553 }
4554
4555 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4556 return -EFAULT;
4557 bytes_copied = ((char __user *)to) - optval;
4558 if (put_user(bytes_copied, optlen))
4559 return -EFAULT;
4560
4561 return 0;
4562 }
4563
4564 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4565 size_t space_left, int *bytes_copied)
4566 {
4567 struct sctp_sockaddr_entry *addr;
4568 union sctp_addr temp;
4569 int cnt = 0;
4570 int addrlen;
4571
4572 rcu_read_lock();
4573 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4574 if (!addr->valid)
4575 continue;
4576
4577 if ((PF_INET == sk->sk_family) &&
4578 (AF_INET6 == addr->a.sa.sa_family))
4579 continue;
4580 if ((PF_INET6 == sk->sk_family) &&
4581 inet_v6_ipv6only(sk) &&
4582 (AF_INET == addr->a.sa.sa_family))
4583 continue;
4584 memcpy(&temp, &addr->a, sizeof(temp));
4585 if (!temp.v4.sin_port)
4586 temp.v4.sin_port = htons(port);
4587
4588 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4589 &temp);
4590 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4591 if (space_left < addrlen) {
4592 cnt = -ENOMEM;
4593 break;
4594 }
4595 memcpy(to, &temp, addrlen);
4596
4597 to += addrlen;
4598 cnt ++;
4599 space_left -= addrlen;
4600 *bytes_copied += addrlen;
4601 }
4602 rcu_read_unlock();
4603
4604 return cnt;
4605 }
4606
4607
4608 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4609 char __user *optval, int __user *optlen)
4610 {
4611 struct sctp_bind_addr *bp;
4612 struct sctp_association *asoc;
4613 int cnt = 0;
4614 struct sctp_getaddrs getaddrs;
4615 struct sctp_sockaddr_entry *addr;
4616 void __user *to;
4617 union sctp_addr temp;
4618 struct sctp_sock *sp = sctp_sk(sk);
4619 int addrlen;
4620 int err = 0;
4621 size_t space_left;
4622 int bytes_copied = 0;
4623 void *addrs;
4624 void *buf;
4625
4626 if (len < sizeof(struct sctp_getaddrs))
4627 return -EINVAL;
4628
4629 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4630 return -EFAULT;
4631
4632 /*
4633 * For UDP-style sockets, id specifies the association to query.
4634 * If the id field is set to the value '0' then the locally bound
4635 * addresses are returned without regard to any particular
4636 * association.
4637 */
4638 if (0 == getaddrs.assoc_id) {
4639 bp = &sctp_sk(sk)->ep->base.bind_addr;
4640 } else {
4641 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4642 if (!asoc)
4643 return -EINVAL;
4644 bp = &asoc->base.bind_addr;
4645 }
4646
4647 to = optval + offsetof(struct sctp_getaddrs,addrs);
4648 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4649
4650 addrs = kmalloc(space_left, GFP_KERNEL);
4651 if (!addrs)
4652 return -ENOMEM;
4653
4654 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4655 * addresses from the global local address list.
4656 */
4657 if (sctp_list_single_entry(&bp->address_list)) {
4658 addr = list_entry(bp->address_list.next,
4659 struct sctp_sockaddr_entry, list);
4660 if (sctp_is_any(sk, &addr->a)) {
4661 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4662 space_left, &bytes_copied);
4663 if (cnt < 0) {
4664 err = cnt;
4665 goto out;
4666 }
4667 goto copy_getaddrs;
4668 }
4669 }
4670
4671 buf = addrs;
4672 /* Protection on the bound address list is not needed since
4673 * in the socket option context we hold a socket lock and
4674 * thus the bound address list can't change.
4675 */
4676 list_for_each_entry(addr, &bp->address_list, list) {
4677 memcpy(&temp, &addr->a, sizeof(temp));
4678 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4679 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4680 if (space_left < addrlen) {
4681 err = -ENOMEM; /*fixme: right error?*/
4682 goto out;
4683 }
4684 memcpy(buf, &temp, addrlen);
4685 buf += addrlen;
4686 bytes_copied += addrlen;
4687 cnt ++;
4688 space_left -= addrlen;
4689 }
4690
4691 copy_getaddrs:
4692 if (copy_to_user(to, addrs, bytes_copied)) {
4693 err = -EFAULT;
4694 goto out;
4695 }
4696 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4697 err = -EFAULT;
4698 goto out;
4699 }
4700 if (put_user(bytes_copied, optlen))
4701 err = -EFAULT;
4702 out:
4703 kfree(addrs);
4704 return err;
4705 }
4706
4707 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4708 *
4709 * Requests that the local SCTP stack use the enclosed peer address as
4710 * the association primary. The enclosed address must be one of the
4711 * association peer's addresses.
4712 */
4713 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4714 char __user *optval, int __user *optlen)
4715 {
4716 struct sctp_prim prim;
4717 struct sctp_association *asoc;
4718 struct sctp_sock *sp = sctp_sk(sk);
4719
4720 if (len < sizeof(struct sctp_prim))
4721 return -EINVAL;
4722
4723 len = sizeof(struct sctp_prim);
4724
4725 if (copy_from_user(&prim, optval, len))
4726 return -EFAULT;
4727
4728 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4729 if (!asoc)
4730 return -EINVAL;
4731
4732 if (!asoc->peer.primary_path)
4733 return -ENOTCONN;
4734
4735 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4736 asoc->peer.primary_path->af_specific->sockaddr_len);
4737
4738 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4739 (union sctp_addr *)&prim.ssp_addr);
4740
4741 if (put_user(len, optlen))
4742 return -EFAULT;
4743 if (copy_to_user(optval, &prim, len))
4744 return -EFAULT;
4745
4746 return 0;
4747 }
4748
4749 /*
4750 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4751 *
4752 * Requests that the local endpoint set the specified Adaptation Layer
4753 * Indication parameter for all future INIT and INIT-ACK exchanges.
4754 */
4755 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4756 char __user *optval, int __user *optlen)
4757 {
4758 struct sctp_setadaptation adaptation;
4759
4760 if (len < sizeof(struct sctp_setadaptation))
4761 return -EINVAL;
4762
4763 len = sizeof(struct sctp_setadaptation);
4764
4765 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4766
4767 if (put_user(len, optlen))
4768 return -EFAULT;
4769 if (copy_to_user(optval, &adaptation, len))
4770 return -EFAULT;
4771
4772 return 0;
4773 }
4774
4775 /*
4776 *
4777 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4778 *
4779 * Applications that wish to use the sendto() system call may wish to
4780 * specify a default set of parameters that would normally be supplied
4781 * through the inclusion of ancillary data. This socket option allows
4782 * such an application to set the default sctp_sndrcvinfo structure.
4783
4784
4785 * The application that wishes to use this socket option simply passes
4786 * in to this call the sctp_sndrcvinfo structure defined in Section
4787 * 5.2.2) The input parameters accepted by this call include
4788 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4789 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4790 * to this call if the caller is using the UDP model.
4791 *
4792 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4793 */
4794 static int sctp_getsockopt_default_send_param(struct sock *sk,
4795 int len, char __user *optval,
4796 int __user *optlen)
4797 {
4798 struct sctp_sndrcvinfo info;
4799 struct sctp_association *asoc;
4800 struct sctp_sock *sp = sctp_sk(sk);
4801
4802 if (len < sizeof(struct sctp_sndrcvinfo))
4803 return -EINVAL;
4804
4805 len = sizeof(struct sctp_sndrcvinfo);
4806
4807 if (copy_from_user(&info, optval, len))
4808 return -EFAULT;
4809
4810 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4811 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4812 return -EINVAL;
4813
4814 if (asoc) {
4815 info.sinfo_stream = asoc->default_stream;
4816 info.sinfo_flags = asoc->default_flags;
4817 info.sinfo_ppid = asoc->default_ppid;
4818 info.sinfo_context = asoc->default_context;
4819 info.sinfo_timetolive = asoc->default_timetolive;
4820 } else {
4821 info.sinfo_stream = sp->default_stream;
4822 info.sinfo_flags = sp->default_flags;
4823 info.sinfo_ppid = sp->default_ppid;
4824 info.sinfo_context = sp->default_context;
4825 info.sinfo_timetolive = sp->default_timetolive;
4826 }
4827
4828 if (put_user(len, optlen))
4829 return -EFAULT;
4830 if (copy_to_user(optval, &info, len))
4831 return -EFAULT;
4832
4833 return 0;
4834 }
4835
4836 /*
4837 *
4838 * 7.1.5 SCTP_NODELAY
4839 *
4840 * Turn on/off any Nagle-like algorithm. This means that packets are
4841 * generally sent as soon as possible and no unnecessary delays are
4842 * introduced, at the cost of more packets in the network. Expects an
4843 * integer boolean flag.
4844 */
4845
4846 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4847 char __user *optval, int __user *optlen)
4848 {
4849 int val;
4850
4851 if (len < sizeof(int))
4852 return -EINVAL;
4853
4854 len = sizeof(int);
4855 val = (sctp_sk(sk)->nodelay == 1);
4856 if (put_user(len, optlen))
4857 return -EFAULT;
4858 if (copy_to_user(optval, &val, len))
4859 return -EFAULT;
4860 return 0;
4861 }
4862
4863 /*
4864 *
4865 * 7.1.1 SCTP_RTOINFO
4866 *
4867 * The protocol parameters used to initialize and bound retransmission
4868 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4869 * and modify these parameters.
4870 * All parameters are time values, in milliseconds. A value of 0, when
4871 * modifying the parameters, indicates that the current value should not
4872 * be changed.
4873 *
4874 */
4875 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4876 char __user *optval,
4877 int __user *optlen) {
4878 struct sctp_rtoinfo rtoinfo;
4879 struct sctp_association *asoc;
4880
4881 if (len < sizeof (struct sctp_rtoinfo))
4882 return -EINVAL;
4883
4884 len = sizeof(struct sctp_rtoinfo);
4885
4886 if (copy_from_user(&rtoinfo, optval, len))
4887 return -EFAULT;
4888
4889 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4890
4891 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4892 return -EINVAL;
4893
4894 /* Values corresponding to the specific association. */
4895 if (asoc) {
4896 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4897 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4898 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4899 } else {
4900 /* Values corresponding to the endpoint. */
4901 struct sctp_sock *sp = sctp_sk(sk);
4902
4903 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4904 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4905 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4906 }
4907
4908 if (put_user(len, optlen))
4909 return -EFAULT;
4910
4911 if (copy_to_user(optval, &rtoinfo, len))
4912 return -EFAULT;
4913
4914 return 0;
4915 }
4916
4917 /*
4918 *
4919 * 7.1.2 SCTP_ASSOCINFO
4920 *
4921 * This option is used to tune the maximum retransmission attempts
4922 * of the association.
4923 * Returns an error if the new association retransmission value is
4924 * greater than the sum of the retransmission value of the peer.
4925 * See [SCTP] for more information.
4926 *
4927 */
4928 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4929 char __user *optval,
4930 int __user *optlen)
4931 {
4932
4933 struct sctp_assocparams assocparams;
4934 struct sctp_association *asoc;
4935 struct list_head *pos;
4936 int cnt = 0;
4937
4938 if (len < sizeof (struct sctp_assocparams))
4939 return -EINVAL;
4940
4941 len = sizeof(struct sctp_assocparams);
4942
4943 if (copy_from_user(&assocparams, optval, len))
4944 return -EFAULT;
4945
4946 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4947
4948 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4949 return -EINVAL;
4950
4951 /* Values correspoinding to the specific association */
4952 if (asoc) {
4953 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4954 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4955 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4956 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4957 * 1000) +
4958 (asoc->cookie_life.tv_usec
4959 / 1000);
4960
4961 list_for_each(pos, &asoc->peer.transport_addr_list) {
4962 cnt ++;
4963 }
4964
4965 assocparams.sasoc_number_peer_destinations = cnt;
4966 } else {
4967 /* Values corresponding to the endpoint */
4968 struct sctp_sock *sp = sctp_sk(sk);
4969
4970 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4971 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4972 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4973 assocparams.sasoc_cookie_life =
4974 sp->assocparams.sasoc_cookie_life;
4975 assocparams.sasoc_number_peer_destinations =
4976 sp->assocparams.
4977 sasoc_number_peer_destinations;
4978 }
4979
4980 if (put_user(len, optlen))
4981 return -EFAULT;
4982
4983 if (copy_to_user(optval, &assocparams, len))
4984 return -EFAULT;
4985
4986 return 0;
4987 }
4988
4989 /*
4990 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4991 *
4992 * This socket option is a boolean flag which turns on or off mapped V4
4993 * addresses. If this option is turned on and the socket is type
4994 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4995 * If this option is turned off, then no mapping will be done of V4
4996 * addresses and a user will receive both PF_INET6 and PF_INET type
4997 * addresses on the socket.
4998 */
4999 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5000 char __user *optval, int __user *optlen)
5001 {
5002 int val;
5003 struct sctp_sock *sp = sctp_sk(sk);
5004
5005 if (len < sizeof(int))
5006 return -EINVAL;
5007
5008 len = sizeof(int);
5009 val = sp->v4mapped;
5010 if (put_user(len, optlen))
5011 return -EFAULT;
5012 if (copy_to_user(optval, &val, len))
5013 return -EFAULT;
5014
5015 return 0;
5016 }
5017
5018 /*
5019 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5020 * (chapter and verse is quoted at sctp_setsockopt_context())
5021 */
5022 static int sctp_getsockopt_context(struct sock *sk, int len,
5023 char __user *optval, int __user *optlen)
5024 {
5025 struct sctp_assoc_value params;
5026 struct sctp_sock *sp;
5027 struct sctp_association *asoc;
5028
5029 if (len < sizeof(struct sctp_assoc_value))
5030 return -EINVAL;
5031
5032 len = sizeof(struct sctp_assoc_value);
5033
5034 if (copy_from_user(&params, optval, len))
5035 return -EFAULT;
5036
5037 sp = sctp_sk(sk);
5038
5039 if (params.assoc_id != 0) {
5040 asoc = sctp_id2assoc(sk, params.assoc_id);
5041 if (!asoc)
5042 return -EINVAL;
5043 params.assoc_value = asoc->default_rcv_context;
5044 } else {
5045 params.assoc_value = sp->default_rcv_context;
5046 }
5047
5048 if (put_user(len, optlen))
5049 return -EFAULT;
5050 if (copy_to_user(optval, &params, len))
5051 return -EFAULT;
5052
5053 return 0;
5054 }
5055
5056 /*
5057 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5058 * This option will get or set the maximum size to put in any outgoing
5059 * SCTP DATA chunk. If a message is larger than this size it will be
5060 * fragmented by SCTP into the specified size. Note that the underlying
5061 * SCTP implementation may fragment into smaller sized chunks when the
5062 * PMTU of the underlying association is smaller than the value set by
5063 * the user. The default value for this option is '0' which indicates
5064 * the user is NOT limiting fragmentation and only the PMTU will effect
5065 * SCTP's choice of DATA chunk size. Note also that values set larger
5066 * than the maximum size of an IP datagram will effectively let SCTP
5067 * control fragmentation (i.e. the same as setting this option to 0).
5068 *
5069 * The following structure is used to access and modify this parameter:
5070 *
5071 * struct sctp_assoc_value {
5072 * sctp_assoc_t assoc_id;
5073 * uint32_t assoc_value;
5074 * };
5075 *
5076 * assoc_id: This parameter is ignored for one-to-one style sockets.
5077 * For one-to-many style sockets this parameter indicates which
5078 * association the user is performing an action upon. Note that if
5079 * this field's value is zero then the endpoints default value is
5080 * changed (effecting future associations only).
5081 * assoc_value: This parameter specifies the maximum size in bytes.
5082 */
5083 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5084 char __user *optval, int __user *optlen)
5085 {
5086 struct sctp_assoc_value params;
5087 struct sctp_association *asoc;
5088
5089 if (len == sizeof(int)) {
5090 pr_warn("Use of int in maxseg socket option deprecated\n");
5091 pr_warn("Use struct sctp_assoc_value instead\n");
5092 params.assoc_id = 0;
5093 } else if (len >= sizeof(struct sctp_assoc_value)) {
5094 len = sizeof(struct sctp_assoc_value);
5095 if (copy_from_user(&params, optval, sizeof(params)))
5096 return -EFAULT;
5097 } else
5098 return -EINVAL;
5099
5100 asoc = sctp_id2assoc(sk, params.assoc_id);
5101 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5102 return -EINVAL;
5103
5104 if (asoc)
5105 params.assoc_value = asoc->frag_point;
5106 else
5107 params.assoc_value = sctp_sk(sk)->user_frag;
5108
5109 if (put_user(len, optlen))
5110 return -EFAULT;
5111 if (len == sizeof(int)) {
5112 if (copy_to_user(optval, &params.assoc_value, len))
5113 return -EFAULT;
5114 } else {
5115 if (copy_to_user(optval, &params, len))
5116 return -EFAULT;
5117 }
5118
5119 return 0;
5120 }
5121
5122 /*
5123 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5124 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5125 */
5126 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5127 char __user *optval, int __user *optlen)
5128 {
5129 int val;
5130
5131 if (len < sizeof(int))
5132 return -EINVAL;
5133
5134 len = sizeof(int);
5135
5136 val = sctp_sk(sk)->frag_interleave;
5137 if (put_user(len, optlen))
5138 return -EFAULT;
5139 if (copy_to_user(optval, &val, len))
5140 return -EFAULT;
5141
5142 return 0;
5143 }
5144
5145 /*
5146 * 7.1.25. Set or Get the sctp partial delivery point
5147 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5148 */
5149 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5150 char __user *optval,
5151 int __user *optlen)
5152 {
5153 u32 val;
5154
5155 if (len < sizeof(u32))
5156 return -EINVAL;
5157
5158 len = sizeof(u32);
5159
5160 val = sctp_sk(sk)->pd_point;
5161 if (put_user(len, optlen))
5162 return -EFAULT;
5163 if (copy_to_user(optval, &val, len))
5164 return -EFAULT;
5165
5166 return 0;
5167 }
5168
5169 /*
5170 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5171 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5172 */
5173 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5174 char __user *optval,
5175 int __user *optlen)
5176 {
5177 struct sctp_assoc_value params;
5178 struct sctp_sock *sp;
5179 struct sctp_association *asoc;
5180
5181 if (len == sizeof(int)) {
5182 pr_warn("Use of int in max_burst socket option deprecated\n");
5183 pr_warn("Use struct sctp_assoc_value instead\n");
5184 params.assoc_id = 0;
5185 } else if (len >= sizeof(struct sctp_assoc_value)) {
5186 len = sizeof(struct sctp_assoc_value);
5187 if (copy_from_user(&params, optval, len))
5188 return -EFAULT;
5189 } else
5190 return -EINVAL;
5191
5192 sp = sctp_sk(sk);
5193
5194 if (params.assoc_id != 0) {
5195 asoc = sctp_id2assoc(sk, params.assoc_id);
5196 if (!asoc)
5197 return -EINVAL;
5198 params.assoc_value = asoc->max_burst;
5199 } else
5200 params.assoc_value = sp->max_burst;
5201
5202 if (len == sizeof(int)) {
5203 if (copy_to_user(optval, &params.assoc_value, len))
5204 return -EFAULT;
5205 } else {
5206 if (copy_to_user(optval, &params, len))
5207 return -EFAULT;
5208 }
5209
5210 return 0;
5211
5212 }
5213
5214 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5215 char __user *optval, int __user *optlen)
5216 {
5217 struct sctp_hmacalgo __user *p = (void __user *)optval;
5218 struct sctp_hmac_algo_param *hmacs;
5219 __u16 data_len = 0;
5220 u32 num_idents;
5221
5222 if (!sctp_auth_enable)
5223 return -EACCES;
5224
5225 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5226 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5227
5228 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5229 return -EINVAL;
5230
5231 len = sizeof(struct sctp_hmacalgo) + data_len;
5232 num_idents = data_len / sizeof(u16);
5233
5234 if (put_user(len, optlen))
5235 return -EFAULT;
5236 if (put_user(num_idents, &p->shmac_num_idents))
5237 return -EFAULT;
5238 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5239 return -EFAULT;
5240 return 0;
5241 }
5242
5243 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5244 char __user *optval, int __user *optlen)
5245 {
5246 struct sctp_authkeyid val;
5247 struct sctp_association *asoc;
5248
5249 if (!sctp_auth_enable)
5250 return -EACCES;
5251
5252 if (len < sizeof(struct sctp_authkeyid))
5253 return -EINVAL;
5254 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5255 return -EFAULT;
5256
5257 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5258 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5259 return -EINVAL;
5260
5261 if (asoc)
5262 val.scact_keynumber = asoc->active_key_id;
5263 else
5264 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5265
5266 len = sizeof(struct sctp_authkeyid);
5267 if (put_user(len, optlen))
5268 return -EFAULT;
5269 if (copy_to_user(optval, &val, len))
5270 return -EFAULT;
5271
5272 return 0;
5273 }
5274
5275 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5276 char __user *optval, int __user *optlen)
5277 {
5278 struct sctp_authchunks __user *p = (void __user *)optval;
5279 struct sctp_authchunks val;
5280 struct sctp_association *asoc;
5281 struct sctp_chunks_param *ch;
5282 u32 num_chunks = 0;
5283 char __user *to;
5284
5285 if (!sctp_auth_enable)
5286 return -EACCES;
5287
5288 if (len < sizeof(struct sctp_authchunks))
5289 return -EINVAL;
5290
5291 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5292 return -EFAULT;
5293
5294 to = p->gauth_chunks;
5295 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5296 if (!asoc)
5297 return -EINVAL;
5298
5299 ch = asoc->peer.peer_chunks;
5300 if (!ch)
5301 goto num;
5302
5303 /* See if the user provided enough room for all the data */
5304 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5305 if (len < num_chunks)
5306 return -EINVAL;
5307
5308 if (copy_to_user(to, ch->chunks, num_chunks))
5309 return -EFAULT;
5310 num:
5311 len = sizeof(struct sctp_authchunks) + num_chunks;
5312 if (put_user(len, optlen)) return -EFAULT;
5313 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5314 return -EFAULT;
5315 return 0;
5316 }
5317
5318 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5319 char __user *optval, int __user *optlen)
5320 {
5321 struct sctp_authchunks __user *p = (void __user *)optval;
5322 struct sctp_authchunks val;
5323 struct sctp_association *asoc;
5324 struct sctp_chunks_param *ch;
5325 u32 num_chunks = 0;
5326 char __user *to;
5327
5328 if (!sctp_auth_enable)
5329 return -EACCES;
5330
5331 if (len < sizeof(struct sctp_authchunks))
5332 return -EINVAL;
5333
5334 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5335 return -EFAULT;
5336
5337 to = p->gauth_chunks;
5338 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5339 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5340 return -EINVAL;
5341
5342 if (asoc)
5343 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5344 else
5345 ch = sctp_sk(sk)->ep->auth_chunk_list;
5346
5347 if (!ch)
5348 goto num;
5349
5350 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5351 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5352 return -EINVAL;
5353
5354 if (copy_to_user(to, ch->chunks, num_chunks))
5355 return -EFAULT;
5356 num:
5357 len = sizeof(struct sctp_authchunks) + num_chunks;
5358 if (put_user(len, optlen))
5359 return -EFAULT;
5360 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5361 return -EFAULT;
5362
5363 return 0;
5364 }
5365
5366 /*
5367 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5368 * This option gets the current number of associations that are attached
5369 * to a one-to-many style socket. The option value is an uint32_t.
5370 */
5371 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5372 char __user *optval, int __user *optlen)
5373 {
5374 struct sctp_sock *sp = sctp_sk(sk);
5375 struct sctp_association *asoc;
5376 u32 val = 0;
5377
5378 if (sctp_style(sk, TCP))
5379 return -EOPNOTSUPP;
5380
5381 if (len < sizeof(u32))
5382 return -EINVAL;
5383
5384 len = sizeof(u32);
5385
5386 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5387 val++;
5388 }
5389
5390 if (put_user(len, optlen))
5391 return -EFAULT;
5392 if (copy_to_user(optval, &val, len))
5393 return -EFAULT;
5394
5395 return 0;
5396 }
5397
5398 /*
5399 * 8.1.23 SCTP_AUTO_ASCONF
5400 * See the corresponding setsockopt entry as description
5401 */
5402 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5403 char __user *optval, int __user *optlen)
5404 {
5405 int val = 0;
5406
5407 if (len < sizeof(int))
5408 return -EINVAL;
5409
5410 len = sizeof(int);
5411 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5412 val = 1;
5413 if (put_user(len, optlen))
5414 return -EFAULT;
5415 if (copy_to_user(optval, &val, len))
5416 return -EFAULT;
5417 return 0;
5418 }
5419
5420 /*
5421 * 8.2.6. Get the Current Identifiers of Associations
5422 * (SCTP_GET_ASSOC_ID_LIST)
5423 *
5424 * This option gets the current list of SCTP association identifiers of
5425 * the SCTP associations handled by a one-to-many style socket.
5426 */
5427 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5428 char __user *optval, int __user *optlen)
5429 {
5430 struct sctp_sock *sp = sctp_sk(sk);
5431 struct sctp_association *asoc;
5432 struct sctp_assoc_ids *ids;
5433 u32 num = 0;
5434
5435 if (sctp_style(sk, TCP))
5436 return -EOPNOTSUPP;
5437
5438 if (len < sizeof(struct sctp_assoc_ids))
5439 return -EINVAL;
5440
5441 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5442 num++;
5443 }
5444
5445 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5446 return -EINVAL;
5447
5448 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5449
5450 ids = kmalloc(len, GFP_KERNEL);
5451 if (unlikely(!ids))
5452 return -ENOMEM;
5453
5454 ids->gaids_number_of_ids = num;
5455 num = 0;
5456 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5457 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5458 }
5459
5460 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5461 kfree(ids);
5462 return -EFAULT;
5463 }
5464
5465 kfree(ids);
5466 return 0;
5467 }
5468
5469 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5470 char __user *optval, int __user *optlen)
5471 {
5472 int retval = 0;
5473 int len;
5474
5475 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5476 sk, optname);
5477
5478 /* I can hardly begin to describe how wrong this is. This is
5479 * so broken as to be worse than useless. The API draft
5480 * REALLY is NOT helpful here... I am not convinced that the
5481 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5482 * are at all well-founded.
5483 */
5484 if (level != SOL_SCTP) {
5485 struct sctp_af *af = sctp_sk(sk)->pf->af;
5486
5487 retval = af->getsockopt(sk, level, optname, optval, optlen);
5488 return retval;
5489 }
5490
5491 if (get_user(len, optlen))
5492 return -EFAULT;
5493
5494 sctp_lock_sock(sk);
5495
5496 switch (optname) {
5497 case SCTP_STATUS:
5498 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5499 break;
5500 case SCTP_DISABLE_FRAGMENTS:
5501 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5502 optlen);
5503 break;
5504 case SCTP_EVENTS:
5505 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5506 break;
5507 case SCTP_AUTOCLOSE:
5508 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5509 break;
5510 case SCTP_SOCKOPT_PEELOFF:
5511 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5512 break;
5513 case SCTP_PEER_ADDR_PARAMS:
5514 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5515 optlen);
5516 break;
5517 case SCTP_DELAYED_SACK:
5518 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5519 optlen);
5520 break;
5521 case SCTP_INITMSG:
5522 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5523 break;
5524 case SCTP_GET_PEER_ADDRS:
5525 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5526 optlen);
5527 break;
5528 case SCTP_GET_LOCAL_ADDRS:
5529 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5530 optlen);
5531 break;
5532 case SCTP_SOCKOPT_CONNECTX3:
5533 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5534 break;
5535 case SCTP_DEFAULT_SEND_PARAM:
5536 retval = sctp_getsockopt_default_send_param(sk, len,
5537 optval, optlen);
5538 break;
5539 case SCTP_PRIMARY_ADDR:
5540 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5541 break;
5542 case SCTP_NODELAY:
5543 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5544 break;
5545 case SCTP_RTOINFO:
5546 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5547 break;
5548 case SCTP_ASSOCINFO:
5549 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5550 break;
5551 case SCTP_I_WANT_MAPPED_V4_ADDR:
5552 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5553 break;
5554 case SCTP_MAXSEG:
5555 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5556 break;
5557 case SCTP_GET_PEER_ADDR_INFO:
5558 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5559 optlen);
5560 break;
5561 case SCTP_ADAPTATION_LAYER:
5562 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5563 optlen);
5564 break;
5565 case SCTP_CONTEXT:
5566 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5567 break;
5568 case SCTP_FRAGMENT_INTERLEAVE:
5569 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5570 optlen);
5571 break;
5572 case SCTP_PARTIAL_DELIVERY_POINT:
5573 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5574 optlen);
5575 break;
5576 case SCTP_MAX_BURST:
5577 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5578 break;
5579 case SCTP_AUTH_KEY:
5580 case SCTP_AUTH_CHUNK:
5581 case SCTP_AUTH_DELETE_KEY:
5582 retval = -EOPNOTSUPP;
5583 break;
5584 case SCTP_HMAC_IDENT:
5585 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5586 break;
5587 case SCTP_AUTH_ACTIVE_KEY:
5588 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5589 break;
5590 case SCTP_PEER_AUTH_CHUNKS:
5591 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5592 optlen);
5593 break;
5594 case SCTP_LOCAL_AUTH_CHUNKS:
5595 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5596 optlen);
5597 break;
5598 case SCTP_GET_ASSOC_NUMBER:
5599 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5600 break;
5601 case SCTP_GET_ASSOC_ID_LIST:
5602 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5603 break;
5604 case SCTP_AUTO_ASCONF:
5605 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5606 break;
5607 default:
5608 retval = -ENOPROTOOPT;
5609 break;
5610 }
5611
5612 sctp_release_sock(sk);
5613 return retval;
5614 }
5615
5616 static void sctp_hash(struct sock *sk)
5617 {
5618 /* STUB */
5619 }
5620
5621 static void sctp_unhash(struct sock *sk)
5622 {
5623 /* STUB */
5624 }
5625
5626 /* Check if port is acceptable. Possibly find first available port.
5627 *
5628 * The port hash table (contained in the 'global' SCTP protocol storage
5629 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5630 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5631 * list (the list number is the port number hashed out, so as you
5632 * would expect from a hash function, all the ports in a given list have
5633 * such a number that hashes out to the same list number; you were
5634 * expecting that, right?); so each list has a set of ports, with a
5635 * link to the socket (struct sock) that uses it, the port number and
5636 * a fastreuse flag (FIXME: NPI ipg).
5637 */
5638 static struct sctp_bind_bucket *sctp_bucket_create(
5639 struct sctp_bind_hashbucket *head, unsigned short snum);
5640
5641 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5642 {
5643 struct sctp_bind_hashbucket *head; /* hash list */
5644 struct sctp_bind_bucket *pp; /* hash list port iterator */
5645 struct hlist_node *node;
5646 unsigned short snum;
5647 int ret;
5648
5649 snum = ntohs(addr->v4.sin_port);
5650
5651 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5652 sctp_local_bh_disable();
5653
5654 if (snum == 0) {
5655 /* Search for an available port. */
5656 int low, high, remaining, index;
5657 unsigned int rover;
5658
5659 inet_get_local_port_range(&low, &high);
5660 remaining = (high - low) + 1;
5661 rover = net_random() % remaining + low;
5662
5663 do {
5664 rover++;
5665 if ((rover < low) || (rover > high))
5666 rover = low;
5667 if (inet_is_reserved_local_port(rover))
5668 continue;
5669 index = sctp_phashfn(rover);
5670 head = &sctp_port_hashtable[index];
5671 sctp_spin_lock(&head->lock);
5672 sctp_for_each_hentry(pp, node, &head->chain)
5673 if (pp->port == rover)
5674 goto next;
5675 break;
5676 next:
5677 sctp_spin_unlock(&head->lock);
5678 } while (--remaining > 0);
5679
5680 /* Exhausted local port range during search? */
5681 ret = 1;
5682 if (remaining <= 0)
5683 goto fail;
5684
5685 /* OK, here is the one we will use. HEAD (the port
5686 * hash table list entry) is non-NULL and we hold it's
5687 * mutex.
5688 */
5689 snum = rover;
5690 } else {
5691 /* We are given an specific port number; we verify
5692 * that it is not being used. If it is used, we will
5693 * exahust the search in the hash list corresponding
5694 * to the port number (snum) - we detect that with the
5695 * port iterator, pp being NULL.
5696 */
5697 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5698 sctp_spin_lock(&head->lock);
5699 sctp_for_each_hentry(pp, node, &head->chain) {
5700 if (pp->port == snum)
5701 goto pp_found;
5702 }
5703 }
5704 pp = NULL;
5705 goto pp_not_found;
5706 pp_found:
5707 if (!hlist_empty(&pp->owner)) {
5708 /* We had a port hash table hit - there is an
5709 * available port (pp != NULL) and it is being
5710 * used by other socket (pp->owner not empty); that other
5711 * socket is going to be sk2.
5712 */
5713 int reuse = sk->sk_reuse;
5714 struct sock *sk2;
5715
5716 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5717 if (pp->fastreuse && sk->sk_reuse &&
5718 sk->sk_state != SCTP_SS_LISTENING)
5719 goto success;
5720
5721 /* Run through the list of sockets bound to the port
5722 * (pp->port) [via the pointers bind_next and
5723 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5724 * we get the endpoint they describe and run through
5725 * the endpoint's list of IP (v4 or v6) addresses,
5726 * comparing each of the addresses with the address of
5727 * the socket sk. If we find a match, then that means
5728 * that this port/socket (sk) combination are already
5729 * in an endpoint.
5730 */
5731 sk_for_each_bound(sk2, node, &pp->owner) {
5732 struct sctp_endpoint *ep2;
5733 ep2 = sctp_sk(sk2)->ep;
5734
5735 if (sk == sk2 ||
5736 (reuse && sk2->sk_reuse &&
5737 sk2->sk_state != SCTP_SS_LISTENING))
5738 continue;
5739
5740 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5741 sctp_sk(sk2), sctp_sk(sk))) {
5742 ret = (long)sk2;
5743 goto fail_unlock;
5744 }
5745 }
5746 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5747 }
5748 pp_not_found:
5749 /* If there was a hash table miss, create a new port. */
5750 ret = 1;
5751 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5752 goto fail_unlock;
5753
5754 /* In either case (hit or miss), make sure fastreuse is 1 only
5755 * if sk->sk_reuse is too (that is, if the caller requested
5756 * SO_REUSEADDR on this socket -sk-).
5757 */
5758 if (hlist_empty(&pp->owner)) {
5759 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5760 pp->fastreuse = 1;
5761 else
5762 pp->fastreuse = 0;
5763 } else if (pp->fastreuse &&
5764 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5765 pp->fastreuse = 0;
5766
5767 /* We are set, so fill up all the data in the hash table
5768 * entry, tie the socket list information with the rest of the
5769 * sockets FIXME: Blurry, NPI (ipg).
5770 */
5771 success:
5772 if (!sctp_sk(sk)->bind_hash) {
5773 inet_sk(sk)->inet_num = snum;
5774 sk_add_bind_node(sk, &pp->owner);
5775 sctp_sk(sk)->bind_hash = pp;
5776 }
5777 ret = 0;
5778
5779 fail_unlock:
5780 sctp_spin_unlock(&head->lock);
5781
5782 fail:
5783 sctp_local_bh_enable();
5784 return ret;
5785 }
5786
5787 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5788 * port is requested.
5789 */
5790 static int sctp_get_port(struct sock *sk, unsigned short snum)
5791 {
5792 long ret;
5793 union sctp_addr addr;
5794 struct sctp_af *af = sctp_sk(sk)->pf->af;
5795
5796 /* Set up a dummy address struct from the sk. */
5797 af->from_sk(&addr, sk);
5798 addr.v4.sin_port = htons(snum);
5799
5800 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5801 ret = sctp_get_port_local(sk, &addr);
5802
5803 return ret ? 1 : 0;
5804 }
5805
5806 /*
5807 * Move a socket to LISTENING state.
5808 */
5809 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5810 {
5811 struct sctp_sock *sp = sctp_sk(sk);
5812 struct sctp_endpoint *ep = sp->ep;
5813 struct crypto_hash *tfm = NULL;
5814
5815 /* Allocate HMAC for generating cookie. */
5816 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5817 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5818 if (IS_ERR(tfm)) {
5819 if (net_ratelimit()) {
5820 pr_info("failed to load transform for %s: %ld\n",
5821 sctp_hmac_alg, PTR_ERR(tfm));
5822 }
5823 return -ENOSYS;
5824 }
5825 sctp_sk(sk)->hmac = tfm;
5826 }
5827
5828 /*
5829 * If a bind() or sctp_bindx() is not called prior to a listen()
5830 * call that allows new associations to be accepted, the system
5831 * picks an ephemeral port and will choose an address set equivalent
5832 * to binding with a wildcard address.
5833 *
5834 * This is not currently spelled out in the SCTP sockets
5835 * extensions draft, but follows the practice as seen in TCP
5836 * sockets.
5837 *
5838 */
5839 sk->sk_state = SCTP_SS_LISTENING;
5840 if (!ep->base.bind_addr.port) {
5841 if (sctp_autobind(sk))
5842 return -EAGAIN;
5843 } else {
5844 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5845 sk->sk_state = SCTP_SS_CLOSED;
5846 return -EADDRINUSE;
5847 }
5848 }
5849
5850 sk->sk_max_ack_backlog = backlog;
5851 sctp_hash_endpoint(ep);
5852 return 0;
5853 }
5854
5855 /*
5856 * 4.1.3 / 5.1.3 listen()
5857 *
5858 * By default, new associations are not accepted for UDP style sockets.
5859 * An application uses listen() to mark a socket as being able to
5860 * accept new associations.
5861 *
5862 * On TCP style sockets, applications use listen() to ready the SCTP
5863 * endpoint for accepting inbound associations.
5864 *
5865 * On both types of endpoints a backlog of '0' disables listening.
5866 *
5867 * Move a socket to LISTENING state.
5868 */
5869 int sctp_inet_listen(struct socket *sock, int backlog)
5870 {
5871 struct sock *sk = sock->sk;
5872 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5873 int err = -EINVAL;
5874
5875 if (unlikely(backlog < 0))
5876 return err;
5877
5878 sctp_lock_sock(sk);
5879
5880 /* Peeled-off sockets are not allowed to listen(). */
5881 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5882 goto out;
5883
5884 if (sock->state != SS_UNCONNECTED)
5885 goto out;
5886
5887 /* If backlog is zero, disable listening. */
5888 if (!backlog) {
5889 if (sctp_sstate(sk, CLOSED))
5890 goto out;
5891
5892 err = 0;
5893 sctp_unhash_endpoint(ep);
5894 sk->sk_state = SCTP_SS_CLOSED;
5895 if (sk->sk_reuse)
5896 sctp_sk(sk)->bind_hash->fastreuse = 1;
5897 goto out;
5898 }
5899
5900 /* If we are already listening, just update the backlog */
5901 if (sctp_sstate(sk, LISTENING))
5902 sk->sk_max_ack_backlog = backlog;
5903 else {
5904 err = sctp_listen_start(sk, backlog);
5905 if (err)
5906 goto out;
5907 }
5908
5909 err = 0;
5910 out:
5911 sctp_release_sock(sk);
5912 return err;
5913 }
5914
5915 /*
5916 * This function is done by modeling the current datagram_poll() and the
5917 * tcp_poll(). Note that, based on these implementations, we don't
5918 * lock the socket in this function, even though it seems that,
5919 * ideally, locking or some other mechanisms can be used to ensure
5920 * the integrity of the counters (sndbuf and wmem_alloc) used
5921 * in this place. We assume that we don't need locks either until proven
5922 * otherwise.
5923 *
5924 * Another thing to note is that we include the Async I/O support
5925 * here, again, by modeling the current TCP/UDP code. We don't have
5926 * a good way to test with it yet.
5927 */
5928 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5929 {
5930 struct sock *sk = sock->sk;
5931 struct sctp_sock *sp = sctp_sk(sk);
5932 unsigned int mask;
5933
5934 poll_wait(file, sk_sleep(sk), wait);
5935
5936 /* A TCP-style listening socket becomes readable when the accept queue
5937 * is not empty.
5938 */
5939 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5940 return (!list_empty(&sp->ep->asocs)) ?
5941 (POLLIN | POLLRDNORM) : 0;
5942
5943 mask = 0;
5944
5945 /* Is there any exceptional events? */
5946 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5947 mask |= POLLERR;
5948 if (sk->sk_shutdown & RCV_SHUTDOWN)
5949 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5950 if (sk->sk_shutdown == SHUTDOWN_MASK)
5951 mask |= POLLHUP;
5952
5953 /* Is it readable? Reconsider this code with TCP-style support. */
5954 if (!skb_queue_empty(&sk->sk_receive_queue))
5955 mask |= POLLIN | POLLRDNORM;
5956
5957 /* The association is either gone or not ready. */
5958 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5959 return mask;
5960
5961 /* Is it writable? */
5962 if (sctp_writeable(sk)) {
5963 mask |= POLLOUT | POLLWRNORM;
5964 } else {
5965 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5966 /*
5967 * Since the socket is not locked, the buffer
5968 * might be made available after the writeable check and
5969 * before the bit is set. This could cause a lost I/O
5970 * signal. tcp_poll() has a race breaker for this race
5971 * condition. Based on their implementation, we put
5972 * in the following code to cover it as well.
5973 */
5974 if (sctp_writeable(sk))
5975 mask |= POLLOUT | POLLWRNORM;
5976 }
5977 return mask;
5978 }
5979
5980 /********************************************************************
5981 * 2nd Level Abstractions
5982 ********************************************************************/
5983
5984 static struct sctp_bind_bucket *sctp_bucket_create(
5985 struct sctp_bind_hashbucket *head, unsigned short snum)
5986 {
5987 struct sctp_bind_bucket *pp;
5988
5989 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5990 if (pp) {
5991 SCTP_DBG_OBJCNT_INC(bind_bucket);
5992 pp->port = snum;
5993 pp->fastreuse = 0;
5994 INIT_HLIST_HEAD(&pp->owner);
5995 hlist_add_head(&pp->node, &head->chain);
5996 }
5997 return pp;
5998 }
5999
6000 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6001 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6002 {
6003 if (pp && hlist_empty(&pp->owner)) {
6004 __hlist_del(&pp->node);
6005 kmem_cache_free(sctp_bucket_cachep, pp);
6006 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6007 }
6008 }
6009
6010 /* Release this socket's reference to a local port. */
6011 static inline void __sctp_put_port(struct sock *sk)
6012 {
6013 struct sctp_bind_hashbucket *head =
6014 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6015 struct sctp_bind_bucket *pp;
6016
6017 sctp_spin_lock(&head->lock);
6018 pp = sctp_sk(sk)->bind_hash;
6019 __sk_del_bind_node(sk);
6020 sctp_sk(sk)->bind_hash = NULL;
6021 inet_sk(sk)->inet_num = 0;
6022 sctp_bucket_destroy(pp);
6023 sctp_spin_unlock(&head->lock);
6024 }
6025
6026 void sctp_put_port(struct sock *sk)
6027 {
6028 sctp_local_bh_disable();
6029 __sctp_put_port(sk);
6030 sctp_local_bh_enable();
6031 }
6032
6033 /*
6034 * The system picks an ephemeral port and choose an address set equivalent
6035 * to binding with a wildcard address.
6036 * One of those addresses will be the primary address for the association.
6037 * This automatically enables the multihoming capability of SCTP.
6038 */
6039 static int sctp_autobind(struct sock *sk)
6040 {
6041 union sctp_addr autoaddr;
6042 struct sctp_af *af;
6043 __be16 port;
6044
6045 /* Initialize a local sockaddr structure to INADDR_ANY. */
6046 af = sctp_sk(sk)->pf->af;
6047
6048 port = htons(inet_sk(sk)->inet_num);
6049 af->inaddr_any(&autoaddr, port);
6050
6051 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6052 }
6053
6054 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6055 *
6056 * From RFC 2292
6057 * 4.2 The cmsghdr Structure *
6058 *
6059 * When ancillary data is sent or received, any number of ancillary data
6060 * objects can be specified by the msg_control and msg_controllen members of
6061 * the msghdr structure, because each object is preceded by
6062 * a cmsghdr structure defining the object's length (the cmsg_len member).
6063 * Historically Berkeley-derived implementations have passed only one object
6064 * at a time, but this API allows multiple objects to be
6065 * passed in a single call to sendmsg() or recvmsg(). The following example
6066 * shows two ancillary data objects in a control buffer.
6067 *
6068 * |<--------------------------- msg_controllen -------------------------->|
6069 * | |
6070 *
6071 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6072 *
6073 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6074 * | | |
6075 *
6076 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6077 *
6078 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6079 * | | | | |
6080 *
6081 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6082 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6083 *
6084 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6085 *
6086 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6087 * ^
6088 * |
6089 *
6090 * msg_control
6091 * points here
6092 */
6093 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6094 sctp_cmsgs_t *cmsgs)
6095 {
6096 struct cmsghdr *cmsg;
6097 struct msghdr *my_msg = (struct msghdr *)msg;
6098
6099 for (cmsg = CMSG_FIRSTHDR(msg);
6100 cmsg != NULL;
6101 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6102 if (!CMSG_OK(my_msg, cmsg))
6103 return -EINVAL;
6104
6105 /* Should we parse this header or ignore? */
6106 if (cmsg->cmsg_level != IPPROTO_SCTP)
6107 continue;
6108
6109 /* Strictly check lengths following example in SCM code. */
6110 switch (cmsg->cmsg_type) {
6111 case SCTP_INIT:
6112 /* SCTP Socket API Extension
6113 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6114 *
6115 * This cmsghdr structure provides information for
6116 * initializing new SCTP associations with sendmsg().
6117 * The SCTP_INITMSG socket option uses this same data
6118 * structure. This structure is not used for
6119 * recvmsg().
6120 *
6121 * cmsg_level cmsg_type cmsg_data[]
6122 * ------------ ------------ ----------------------
6123 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6124 */
6125 if (cmsg->cmsg_len !=
6126 CMSG_LEN(sizeof(struct sctp_initmsg)))
6127 return -EINVAL;
6128 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6129 break;
6130
6131 case SCTP_SNDRCV:
6132 /* SCTP Socket API Extension
6133 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6134 *
6135 * This cmsghdr structure specifies SCTP options for
6136 * sendmsg() and describes SCTP header information
6137 * about a received message through recvmsg().
6138 *
6139 * cmsg_level cmsg_type cmsg_data[]
6140 * ------------ ------------ ----------------------
6141 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6142 */
6143 if (cmsg->cmsg_len !=
6144 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6145 return -EINVAL;
6146
6147 cmsgs->info =
6148 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6149
6150 /* Minimally, validate the sinfo_flags. */
6151 if (cmsgs->info->sinfo_flags &
6152 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6153 SCTP_ABORT | SCTP_EOF))
6154 return -EINVAL;
6155 break;
6156
6157 default:
6158 return -EINVAL;
6159 }
6160 }
6161 return 0;
6162 }
6163
6164 /*
6165 * Wait for a packet..
6166 * Note: This function is the same function as in core/datagram.c
6167 * with a few modifications to make lksctp work.
6168 */
6169 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6170 {
6171 int error;
6172 DEFINE_WAIT(wait);
6173
6174 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6175
6176 /* Socket errors? */
6177 error = sock_error(sk);
6178 if (error)
6179 goto out;
6180
6181 if (!skb_queue_empty(&sk->sk_receive_queue))
6182 goto ready;
6183
6184 /* Socket shut down? */
6185 if (sk->sk_shutdown & RCV_SHUTDOWN)
6186 goto out;
6187
6188 /* Sequenced packets can come disconnected. If so we report the
6189 * problem.
6190 */
6191 error = -ENOTCONN;
6192
6193 /* Is there a good reason to think that we may receive some data? */
6194 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6195 goto out;
6196
6197 /* Handle signals. */
6198 if (signal_pending(current))
6199 goto interrupted;
6200
6201 /* Let another process have a go. Since we are going to sleep
6202 * anyway. Note: This may cause odd behaviors if the message
6203 * does not fit in the user's buffer, but this seems to be the
6204 * only way to honor MSG_DONTWAIT realistically.
6205 */
6206 sctp_release_sock(sk);
6207 *timeo_p = schedule_timeout(*timeo_p);
6208 sctp_lock_sock(sk);
6209
6210 ready:
6211 finish_wait(sk_sleep(sk), &wait);
6212 return 0;
6213
6214 interrupted:
6215 error = sock_intr_errno(*timeo_p);
6216
6217 out:
6218 finish_wait(sk_sleep(sk), &wait);
6219 *err = error;
6220 return error;
6221 }
6222
6223 /* Receive a datagram.
6224 * Note: This is pretty much the same routine as in core/datagram.c
6225 * with a few changes to make lksctp work.
6226 */
6227 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6228 int noblock, int *err)
6229 {
6230 int error;
6231 struct sk_buff *skb;
6232 long timeo;
6233
6234 timeo = sock_rcvtimeo(sk, noblock);
6235
6236 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6237 timeo, MAX_SCHEDULE_TIMEOUT);
6238
6239 do {
6240 /* Again only user level code calls this function,
6241 * so nothing interrupt level
6242 * will suddenly eat the receive_queue.
6243 *
6244 * Look at current nfs client by the way...
6245 * However, this function was correct in any case. 8)
6246 */
6247 if (flags & MSG_PEEK) {
6248 spin_lock_bh(&sk->sk_receive_queue.lock);
6249 skb = skb_peek(&sk->sk_receive_queue);
6250 if (skb)
6251 atomic_inc(&skb->users);
6252 spin_unlock_bh(&sk->sk_receive_queue.lock);
6253 } else {
6254 skb = skb_dequeue(&sk->sk_receive_queue);
6255 }
6256
6257 if (skb)
6258 return skb;
6259
6260 /* Caller is allowed not to check sk->sk_err before calling. */
6261 error = sock_error(sk);
6262 if (error)
6263 goto no_packet;
6264
6265 if (sk->sk_shutdown & RCV_SHUTDOWN)
6266 break;
6267
6268 /* User doesn't want to wait. */
6269 error = -EAGAIN;
6270 if (!timeo)
6271 goto no_packet;
6272 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6273
6274 return NULL;
6275
6276 no_packet:
6277 *err = error;
6278 return NULL;
6279 }
6280
6281 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6282 static void __sctp_write_space(struct sctp_association *asoc)
6283 {
6284 struct sock *sk = asoc->base.sk;
6285 struct socket *sock = sk->sk_socket;
6286
6287 if ((sctp_wspace(asoc) > 0) && sock) {
6288 if (waitqueue_active(&asoc->wait))
6289 wake_up_interruptible(&asoc->wait);
6290
6291 if (sctp_writeable(sk)) {
6292 wait_queue_head_t *wq = sk_sleep(sk);
6293
6294 if (wq && waitqueue_active(wq))
6295 wake_up_interruptible(wq);
6296
6297 /* Note that we try to include the Async I/O support
6298 * here by modeling from the current TCP/UDP code.
6299 * We have not tested with it yet.
6300 */
6301 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6302 sock_wake_async(sock,
6303 SOCK_WAKE_SPACE, POLL_OUT);
6304 }
6305 }
6306 }
6307
6308 /* Do accounting for the sndbuf space.
6309 * Decrement the used sndbuf space of the corresponding association by the
6310 * data size which was just transmitted(freed).
6311 */
6312 static void sctp_wfree(struct sk_buff *skb)
6313 {
6314 struct sctp_association *asoc;
6315 struct sctp_chunk *chunk;
6316 struct sock *sk;
6317
6318 /* Get the saved chunk pointer. */
6319 chunk = *((struct sctp_chunk **)(skb->cb));
6320 asoc = chunk->asoc;
6321 sk = asoc->base.sk;
6322 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6323 sizeof(struct sk_buff) +
6324 sizeof(struct sctp_chunk);
6325
6326 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6327
6328 /*
6329 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6330 */
6331 sk->sk_wmem_queued -= skb->truesize;
6332 sk_mem_uncharge(sk, skb->truesize);
6333
6334 sock_wfree(skb);
6335 __sctp_write_space(asoc);
6336
6337 sctp_association_put(asoc);
6338 }
6339
6340 /* Do accounting for the receive space on the socket.
6341 * Accounting for the association is done in ulpevent.c
6342 * We set this as a destructor for the cloned data skbs so that
6343 * accounting is done at the correct time.
6344 */
6345 void sctp_sock_rfree(struct sk_buff *skb)
6346 {
6347 struct sock *sk = skb->sk;
6348 struct sctp_ulpevent *event = sctp_skb2event(skb);
6349
6350 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6351
6352 /*
6353 * Mimic the behavior of sock_rfree
6354 */
6355 sk_mem_uncharge(sk, event->rmem_len);
6356 }
6357
6358
6359 /* Helper function to wait for space in the sndbuf. */
6360 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6361 size_t msg_len)
6362 {
6363 struct sock *sk = asoc->base.sk;
6364 int err = 0;
6365 long current_timeo = *timeo_p;
6366 DEFINE_WAIT(wait);
6367
6368 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6369 asoc, (long)(*timeo_p), msg_len);
6370
6371 /* Increment the association's refcnt. */
6372 sctp_association_hold(asoc);
6373
6374 /* Wait on the association specific sndbuf space. */
6375 for (;;) {
6376 prepare_to_wait_exclusive(&asoc->wait, &wait,
6377 TASK_INTERRUPTIBLE);
6378 if (!*timeo_p)
6379 goto do_nonblock;
6380 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6381 asoc->base.dead)
6382 goto do_error;
6383 if (signal_pending(current))
6384 goto do_interrupted;
6385 if (msg_len <= sctp_wspace(asoc))
6386 break;
6387
6388 /* Let another process have a go. Since we are going
6389 * to sleep anyway.
6390 */
6391 sctp_release_sock(sk);
6392 current_timeo = schedule_timeout(current_timeo);
6393 BUG_ON(sk != asoc->base.sk);
6394 sctp_lock_sock(sk);
6395
6396 *timeo_p = current_timeo;
6397 }
6398
6399 out:
6400 finish_wait(&asoc->wait, &wait);
6401
6402 /* Release the association's refcnt. */
6403 sctp_association_put(asoc);
6404
6405 return err;
6406
6407 do_error:
6408 err = -EPIPE;
6409 goto out;
6410
6411 do_interrupted:
6412 err = sock_intr_errno(*timeo_p);
6413 goto out;
6414
6415 do_nonblock:
6416 err = -EAGAIN;
6417 goto out;
6418 }
6419
6420 void sctp_data_ready(struct sock *sk, int len)
6421 {
6422 struct socket_wq *wq;
6423
6424 rcu_read_lock();
6425 wq = rcu_dereference(sk->sk_wq);
6426 if (wq_has_sleeper(wq))
6427 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6428 POLLRDNORM | POLLRDBAND);
6429 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6430 rcu_read_unlock();
6431 }
6432
6433 /* If socket sndbuf has changed, wake up all per association waiters. */
6434 void sctp_write_space(struct sock *sk)
6435 {
6436 struct sctp_association *asoc;
6437
6438 /* Wake up the tasks in each wait queue. */
6439 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6440 __sctp_write_space(asoc);
6441 }
6442 }
6443
6444 /* Is there any sndbuf space available on the socket?
6445 *
6446 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6447 * associations on the same socket. For a UDP-style socket with
6448 * multiple associations, it is possible for it to be "unwriteable"
6449 * prematurely. I assume that this is acceptable because
6450 * a premature "unwriteable" is better than an accidental "writeable" which
6451 * would cause an unwanted block under certain circumstances. For the 1-1
6452 * UDP-style sockets or TCP-style sockets, this code should work.
6453 * - Daisy
6454 */
6455 static int sctp_writeable(struct sock *sk)
6456 {
6457 int amt = 0;
6458
6459 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6460 if (amt < 0)
6461 amt = 0;
6462 return amt;
6463 }
6464
6465 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6466 * returns immediately with EINPROGRESS.
6467 */
6468 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6469 {
6470 struct sock *sk = asoc->base.sk;
6471 int err = 0;
6472 long current_timeo = *timeo_p;
6473 DEFINE_WAIT(wait);
6474
6475 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6476 (long)(*timeo_p));
6477
6478 /* Increment the association's refcnt. */
6479 sctp_association_hold(asoc);
6480
6481 for (;;) {
6482 prepare_to_wait_exclusive(&asoc->wait, &wait,
6483 TASK_INTERRUPTIBLE);
6484 if (!*timeo_p)
6485 goto do_nonblock;
6486 if (sk->sk_shutdown & RCV_SHUTDOWN)
6487 break;
6488 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6489 asoc->base.dead)
6490 goto do_error;
6491 if (signal_pending(current))
6492 goto do_interrupted;
6493
6494 if (sctp_state(asoc, ESTABLISHED))
6495 break;
6496
6497 /* Let another process have a go. Since we are going
6498 * to sleep anyway.
6499 */
6500 sctp_release_sock(sk);
6501 current_timeo = schedule_timeout(current_timeo);
6502 sctp_lock_sock(sk);
6503
6504 *timeo_p = current_timeo;
6505 }
6506
6507 out:
6508 finish_wait(&asoc->wait, &wait);
6509
6510 /* Release the association's refcnt. */
6511 sctp_association_put(asoc);
6512
6513 return err;
6514
6515 do_error:
6516 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6517 err = -ETIMEDOUT;
6518 else
6519 err = -ECONNREFUSED;
6520 goto out;
6521
6522 do_interrupted:
6523 err = sock_intr_errno(*timeo_p);
6524 goto out;
6525
6526 do_nonblock:
6527 err = -EINPROGRESS;
6528 goto out;
6529 }
6530
6531 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6532 {
6533 struct sctp_endpoint *ep;
6534 int err = 0;
6535 DEFINE_WAIT(wait);
6536
6537 ep = sctp_sk(sk)->ep;
6538
6539
6540 for (;;) {
6541 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6542 TASK_INTERRUPTIBLE);
6543
6544 if (list_empty(&ep->asocs)) {
6545 sctp_release_sock(sk);
6546 timeo = schedule_timeout(timeo);
6547 sctp_lock_sock(sk);
6548 }
6549
6550 err = -EINVAL;
6551 if (!sctp_sstate(sk, LISTENING))
6552 break;
6553
6554 err = 0;
6555 if (!list_empty(&ep->asocs))
6556 break;
6557
6558 err = sock_intr_errno(timeo);
6559 if (signal_pending(current))
6560 break;
6561
6562 err = -EAGAIN;
6563 if (!timeo)
6564 break;
6565 }
6566
6567 finish_wait(sk_sleep(sk), &wait);
6568
6569 return err;
6570 }
6571
6572 static void sctp_wait_for_close(struct sock *sk, long timeout)
6573 {
6574 DEFINE_WAIT(wait);
6575
6576 do {
6577 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6578 if (list_empty(&sctp_sk(sk)->ep->asocs))
6579 break;
6580 sctp_release_sock(sk);
6581 timeout = schedule_timeout(timeout);
6582 sctp_lock_sock(sk);
6583 } while (!signal_pending(current) && timeout);
6584
6585 finish_wait(sk_sleep(sk), &wait);
6586 }
6587
6588 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6589 {
6590 struct sk_buff *frag;
6591
6592 if (!skb->data_len)
6593 goto done;
6594
6595 /* Don't forget the fragments. */
6596 skb_walk_frags(skb, frag)
6597 sctp_skb_set_owner_r_frag(frag, sk);
6598
6599 done:
6600 sctp_skb_set_owner_r(skb, sk);
6601 }
6602
6603 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6604 struct sctp_association *asoc)
6605 {
6606 struct inet_sock *inet = inet_sk(sk);
6607 struct inet_sock *newinet;
6608
6609 newsk->sk_type = sk->sk_type;
6610 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6611 newsk->sk_flags = sk->sk_flags;
6612 newsk->sk_no_check = sk->sk_no_check;
6613 newsk->sk_reuse = sk->sk_reuse;
6614
6615 newsk->sk_shutdown = sk->sk_shutdown;
6616 newsk->sk_destruct = inet_sock_destruct;
6617 newsk->sk_family = sk->sk_family;
6618 newsk->sk_protocol = IPPROTO_SCTP;
6619 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6620 newsk->sk_sndbuf = sk->sk_sndbuf;
6621 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6622 newsk->sk_lingertime = sk->sk_lingertime;
6623 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6624 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6625
6626 newinet = inet_sk(newsk);
6627
6628 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6629 * getsockname() and getpeername()
6630 */
6631 newinet->inet_sport = inet->inet_sport;
6632 newinet->inet_saddr = inet->inet_saddr;
6633 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6634 newinet->inet_dport = htons(asoc->peer.port);
6635 newinet->pmtudisc = inet->pmtudisc;
6636 newinet->inet_id = asoc->next_tsn ^ jiffies;
6637
6638 newinet->uc_ttl = inet->uc_ttl;
6639 newinet->mc_loop = 1;
6640 newinet->mc_ttl = 1;
6641 newinet->mc_index = 0;
6642 newinet->mc_list = NULL;
6643 }
6644
6645 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6646 * and its messages to the newsk.
6647 */
6648 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6649 struct sctp_association *assoc,
6650 sctp_socket_type_t type)
6651 {
6652 struct sctp_sock *oldsp = sctp_sk(oldsk);
6653 struct sctp_sock *newsp = sctp_sk(newsk);
6654 struct sctp_bind_bucket *pp; /* hash list port iterator */
6655 struct sctp_endpoint *newep = newsp->ep;
6656 struct sk_buff *skb, *tmp;
6657 struct sctp_ulpevent *event;
6658 struct sctp_bind_hashbucket *head;
6659 struct list_head tmplist;
6660
6661 /* Migrate socket buffer sizes and all the socket level options to the
6662 * new socket.
6663 */
6664 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6665 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6666 /* Brute force copy old sctp opt. */
6667 if (oldsp->do_auto_asconf) {
6668 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6669 inet_sk_copy_descendant(newsk, oldsk);
6670 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6671 } else
6672 inet_sk_copy_descendant(newsk, oldsk);
6673
6674 /* Restore the ep value that was overwritten with the above structure
6675 * copy.
6676 */
6677 newsp->ep = newep;
6678 newsp->hmac = NULL;
6679
6680 /* Hook this new socket in to the bind_hash list. */
6681 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6682 sctp_local_bh_disable();
6683 sctp_spin_lock(&head->lock);
6684 pp = sctp_sk(oldsk)->bind_hash;
6685 sk_add_bind_node(newsk, &pp->owner);
6686 sctp_sk(newsk)->bind_hash = pp;
6687 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6688 sctp_spin_unlock(&head->lock);
6689 sctp_local_bh_enable();
6690
6691 /* Copy the bind_addr list from the original endpoint to the new
6692 * endpoint so that we can handle restarts properly
6693 */
6694 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6695 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6696
6697 /* Move any messages in the old socket's receive queue that are for the
6698 * peeled off association to the new socket's receive queue.
6699 */
6700 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6701 event = sctp_skb2event(skb);
6702 if (event->asoc == assoc) {
6703 __skb_unlink(skb, &oldsk->sk_receive_queue);
6704 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6705 sctp_skb_set_owner_r_frag(skb, newsk);
6706 }
6707 }
6708
6709 /* Clean up any messages pending delivery due to partial
6710 * delivery. Three cases:
6711 * 1) No partial deliver; no work.
6712 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6713 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6714 */
6715 skb_queue_head_init(&newsp->pd_lobby);
6716 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6717
6718 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6719 struct sk_buff_head *queue;
6720
6721 /* Decide which queue to move pd_lobby skbs to. */
6722 if (assoc->ulpq.pd_mode) {
6723 queue = &newsp->pd_lobby;
6724 } else
6725 queue = &newsk->sk_receive_queue;
6726
6727 /* Walk through the pd_lobby, looking for skbs that
6728 * need moved to the new socket.
6729 */
6730 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6731 event = sctp_skb2event(skb);
6732 if (event->asoc == assoc) {
6733 __skb_unlink(skb, &oldsp->pd_lobby);
6734 __skb_queue_tail(queue, skb);
6735 sctp_skb_set_owner_r_frag(skb, newsk);
6736 }
6737 }
6738
6739 /* Clear up any skbs waiting for the partial
6740 * delivery to finish.
6741 */
6742 if (assoc->ulpq.pd_mode)
6743 sctp_clear_pd(oldsk, NULL);
6744
6745 }
6746
6747 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6748 sctp_skb_set_owner_r_frag(skb, newsk);
6749
6750 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6751 sctp_skb_set_owner_r_frag(skb, newsk);
6752
6753 /* Set the type of socket to indicate that it is peeled off from the
6754 * original UDP-style socket or created with the accept() call on a
6755 * TCP-style socket..
6756 */
6757 newsp->type = type;
6758
6759 /* Mark the new socket "in-use" by the user so that any packets
6760 * that may arrive on the association after we've moved it are
6761 * queued to the backlog. This prevents a potential race between
6762 * backlog processing on the old socket and new-packet processing
6763 * on the new socket.
6764 *
6765 * The caller has just allocated newsk so we can guarantee that other
6766 * paths won't try to lock it and then oldsk.
6767 */
6768 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6769 sctp_assoc_migrate(assoc, newsk);
6770
6771 /* If the association on the newsk is already closed before accept()
6772 * is called, set RCV_SHUTDOWN flag.
6773 */
6774 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6775 newsk->sk_shutdown |= RCV_SHUTDOWN;
6776
6777 newsk->sk_state = SCTP_SS_ESTABLISHED;
6778 sctp_release_sock(newsk);
6779 }
6780
6781
6782 /* This proto struct describes the ULP interface for SCTP. */
6783 struct proto sctp_prot = {
6784 .name = "SCTP",
6785 .owner = THIS_MODULE,
6786 .close = sctp_close,
6787 .connect = sctp_connect,
6788 .disconnect = sctp_disconnect,
6789 .accept = sctp_accept,
6790 .ioctl = sctp_ioctl,
6791 .init = sctp_init_sock,
6792 .destroy = sctp_destroy_sock,
6793 .shutdown = sctp_shutdown,
6794 .setsockopt = sctp_setsockopt,
6795 .getsockopt = sctp_getsockopt,
6796 .sendmsg = sctp_sendmsg,
6797 .recvmsg = sctp_recvmsg,
6798 .bind = sctp_bind,
6799 .backlog_rcv = sctp_backlog_rcv,
6800 .hash = sctp_hash,
6801 .unhash = sctp_unhash,
6802 .get_port = sctp_get_port,
6803 .obj_size = sizeof(struct sctp_sock),
6804 .sysctl_mem = sysctl_sctp_mem,
6805 .sysctl_rmem = sysctl_sctp_rmem,
6806 .sysctl_wmem = sysctl_sctp_wmem,
6807 .memory_pressure = &sctp_memory_pressure,
6808 .enter_memory_pressure = sctp_enter_memory_pressure,
6809 .memory_allocated = &sctp_memory_allocated,
6810 .sockets_allocated = &sctp_sockets_allocated,
6811 };
6812
6813 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6814
6815 struct proto sctpv6_prot = {
6816 .name = "SCTPv6",
6817 .owner = THIS_MODULE,
6818 .close = sctp_close,
6819 .connect = sctp_connect,
6820 .disconnect = sctp_disconnect,
6821 .accept = sctp_accept,
6822 .ioctl = sctp_ioctl,
6823 .init = sctp_init_sock,
6824 .destroy = sctp_destroy_sock,
6825 .shutdown = sctp_shutdown,
6826 .setsockopt = sctp_setsockopt,
6827 .getsockopt = sctp_getsockopt,
6828 .sendmsg = sctp_sendmsg,
6829 .recvmsg = sctp_recvmsg,
6830 .bind = sctp_bind,
6831 .backlog_rcv = sctp_backlog_rcv,
6832 .hash = sctp_hash,
6833 .unhash = sctp_unhash,
6834 .get_port = sctp_get_port,
6835 .obj_size = sizeof(struct sctp6_sock),
6836 .sysctl_mem = sysctl_sctp_mem,
6837 .sysctl_rmem = sysctl_sctp_rmem,
6838 .sysctl_wmem = sysctl_sctp_wmem,
6839 .memory_pressure = &sctp_memory_pressure,
6840 .enter_memory_pressure = sctp_enter_memory_pressure,
6841 .memory_allocated = &sctp_memory_allocated,
6842 .sockets_allocated = &sctp_sockets_allocated,
6843 };
6844 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */