]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/socket.c
Merge tag 'net-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-kernels.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
90
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
93
94 #include <net/compat.h>
95 #include <net/wext.h>
96 #include <net/cls_cgroup.h>
97
98 #include <net/sock.h>
99 #include <linux/netfilter.h>
100
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 #ifdef CONFIG_COMPAT
124 static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
126 #endif
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
132 unsigned int flags);
133
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 {
137 struct socket *sock = f->private_data;
138
139 if (sock->ops->show_fdinfo)
140 sock->ops->show_fdinfo(m, sock);
141 }
142 #else
143 #define sock_show_fdinfo NULL
144 #endif
145
146 /*
147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148 * in the operation structures but are done directly via the socketcall() multiplexor.
149 */
150
151 static const struct file_operations socket_file_ops = {
152 .owner = THIS_MODULE,
153 .llseek = no_llseek,
154 .read_iter = sock_read_iter,
155 .write_iter = sock_write_iter,
156 .poll = sock_poll,
157 .unlocked_ioctl = sock_ioctl,
158 #ifdef CONFIG_COMPAT
159 .compat_ioctl = compat_sock_ioctl,
160 #endif
161 .mmap = sock_mmap,
162 .release = sock_close,
163 .fasync = sock_fasync,
164 .sendpage = sock_sendpage,
165 .splice_write = generic_splice_sendpage,
166 .splice_read = sock_splice_read,
167 .show_fdinfo = sock_show_fdinfo,
168 };
169
170 static const char * const pf_family_names[] = {
171 [PF_UNSPEC] = "PF_UNSPEC",
172 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
173 [PF_INET] = "PF_INET",
174 [PF_AX25] = "PF_AX25",
175 [PF_IPX] = "PF_IPX",
176 [PF_APPLETALK] = "PF_APPLETALK",
177 [PF_NETROM] = "PF_NETROM",
178 [PF_BRIDGE] = "PF_BRIDGE",
179 [PF_ATMPVC] = "PF_ATMPVC",
180 [PF_X25] = "PF_X25",
181 [PF_INET6] = "PF_INET6",
182 [PF_ROSE] = "PF_ROSE",
183 [PF_DECnet] = "PF_DECnet",
184 [PF_NETBEUI] = "PF_NETBEUI",
185 [PF_SECURITY] = "PF_SECURITY",
186 [PF_KEY] = "PF_KEY",
187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
188 [PF_PACKET] = "PF_PACKET",
189 [PF_ASH] = "PF_ASH",
190 [PF_ECONET] = "PF_ECONET",
191 [PF_ATMSVC] = "PF_ATMSVC",
192 [PF_RDS] = "PF_RDS",
193 [PF_SNA] = "PF_SNA",
194 [PF_IRDA] = "PF_IRDA",
195 [PF_PPPOX] = "PF_PPPOX",
196 [PF_WANPIPE] = "PF_WANPIPE",
197 [PF_LLC] = "PF_LLC",
198 [PF_IB] = "PF_IB",
199 [PF_MPLS] = "PF_MPLS",
200 [PF_CAN] = "PF_CAN",
201 [PF_TIPC] = "PF_TIPC",
202 [PF_BLUETOOTH] = "PF_BLUETOOTH",
203 [PF_IUCV] = "PF_IUCV",
204 [PF_RXRPC] = "PF_RXRPC",
205 [PF_ISDN] = "PF_ISDN",
206 [PF_PHONET] = "PF_PHONET",
207 [PF_IEEE802154] = "PF_IEEE802154",
208 [PF_CAIF] = "PF_CAIF",
209 [PF_ALG] = "PF_ALG",
210 [PF_NFC] = "PF_NFC",
211 [PF_VSOCK] = "PF_VSOCK",
212 [PF_KCM] = "PF_KCM",
213 [PF_QIPCRTR] = "PF_QIPCRTR",
214 [PF_SMC] = "PF_SMC",
215 [PF_XDP] = "PF_XDP",
216 [PF_MCTP] = "PF_MCTP",
217 };
218
219 /*
220 * The protocol list. Each protocol is registered in here.
221 */
222
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
225
226 /*
227 * Support routines.
228 * Move socket addresses back and forth across the kernel/user
229 * divide and look after the messy bits.
230 */
231
232 /**
233 * move_addr_to_kernel - copy a socket address into kernel space
234 * @uaddr: Address in user space
235 * @kaddr: Address in kernel space
236 * @ulen: Length in user space
237 *
238 * The address is copied into kernel space. If the provided address is
239 * too long an error code of -EINVAL is returned. If the copy gives
240 * invalid addresses -EFAULT is returned. On a success 0 is returned.
241 */
242
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 {
245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
246 return -EINVAL;
247 if (ulen == 0)
248 return 0;
249 if (copy_from_user(kaddr, uaddr, ulen))
250 return -EFAULT;
251 return audit_sockaddr(ulen, kaddr);
252 }
253
254 /**
255 * move_addr_to_user - copy an address to user space
256 * @kaddr: kernel space address
257 * @klen: length of address in kernel
258 * @uaddr: user space address
259 * @ulen: pointer to user length field
260 *
261 * The value pointed to by ulen on entry is the buffer length available.
262 * This is overwritten with the buffer space used. -EINVAL is returned
263 * if an overlong buffer is specified or a negative buffer size. -EFAULT
264 * is returned if either the buffer or the length field are not
265 * accessible.
266 * After copying the data up to the limit the user specifies, the true
267 * length of the data is written over the length limit the user
268 * specified. Zero is returned for a success.
269 */
270
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 void __user *uaddr, int __user *ulen)
273 {
274 int err;
275 int len;
276
277 BUG_ON(klen > sizeof(struct sockaddr_storage));
278 err = get_user(len, ulen);
279 if (err)
280 return err;
281 if (len > klen)
282 len = klen;
283 if (len < 0)
284 return -EINVAL;
285 if (len) {
286 if (audit_sockaddr(klen, kaddr))
287 return -ENOMEM;
288 if (copy_to_user(uaddr, kaddr, len))
289 return -EFAULT;
290 }
291 /*
292 * "fromlen shall refer to the value before truncation.."
293 * 1003.1g
294 */
295 return __put_user(klen, ulen);
296 }
297
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299
300 static struct inode *sock_alloc_inode(struct super_block *sb)
301 {
302 struct socket_alloc *ei;
303
304 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
305 if (!ei)
306 return NULL;
307 init_waitqueue_head(&ei->socket.wq.wait);
308 ei->socket.wq.fasync_list = NULL;
309 ei->socket.wq.flags = 0;
310
311 ei->socket.state = SS_UNCONNECTED;
312 ei->socket.flags = 0;
313 ei->socket.ops = NULL;
314 ei->socket.sk = NULL;
315 ei->socket.file = NULL;
316
317 return &ei->vfs_inode;
318 }
319
320 static void sock_free_inode(struct inode *inode)
321 {
322 struct socket_alloc *ei;
323
324 ei = container_of(inode, struct socket_alloc, vfs_inode);
325 kmem_cache_free(sock_inode_cachep, ei);
326 }
327
328 static void init_once(void *foo)
329 {
330 struct socket_alloc *ei = (struct socket_alloc *)foo;
331
332 inode_init_once(&ei->vfs_inode);
333 }
334
335 static void init_inodecache(void)
336 {
337 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 sizeof(struct socket_alloc),
339 0,
340 (SLAB_HWCACHE_ALIGN |
341 SLAB_RECLAIM_ACCOUNT |
342 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 init_once);
344 BUG_ON(sock_inode_cachep == NULL);
345 }
346
347 static const struct super_operations sockfs_ops = {
348 .alloc_inode = sock_alloc_inode,
349 .free_inode = sock_free_inode,
350 .statfs = simple_statfs,
351 };
352
353 /*
354 * sockfs_dname() is called from d_path().
355 */
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 {
358 return dynamic_dname(buffer, buflen, "socket:[%lu]",
359 d_inode(dentry)->i_ino);
360 }
361
362 static const struct dentry_operations sockfs_dentry_operations = {
363 .d_dname = sockfs_dname,
364 };
365
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 struct dentry *dentry, struct inode *inode,
368 const char *suffix, void *value, size_t size)
369 {
370 if (value) {
371 if (dentry->d_name.len + 1 > size)
372 return -ERANGE;
373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 }
375 return dentry->d_name.len + 1;
376 }
377
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381
382 static const struct xattr_handler sockfs_xattr_handler = {
383 .name = XATTR_NAME_SOCKPROTONAME,
384 .get = sockfs_xattr_get,
385 };
386
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 struct user_namespace *mnt_userns,
389 struct dentry *dentry, struct inode *inode,
390 const char *suffix, const void *value,
391 size_t size, int flags)
392 {
393 /* Handled by LSM. */
394 return -EAGAIN;
395 }
396
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 .prefix = XATTR_SECURITY_PREFIX,
399 .set = sockfs_security_xattr_set,
400 };
401
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 &sockfs_xattr_handler,
404 &sockfs_security_xattr_handler,
405 NULL
406 };
407
408 static int sockfs_init_fs_context(struct fs_context *fc)
409 {
410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
411 if (!ctx)
412 return -ENOMEM;
413 ctx->ops = &sockfs_ops;
414 ctx->dops = &sockfs_dentry_operations;
415 ctx->xattr = sockfs_xattr_handlers;
416 return 0;
417 }
418
419 static struct vfsmount *sock_mnt __read_mostly;
420
421 static struct file_system_type sock_fs_type = {
422 .name = "sockfs",
423 .init_fs_context = sockfs_init_fs_context,
424 .kill_sb = kill_anon_super,
425 };
426
427 /*
428 * Obtains the first available file descriptor and sets it up for use.
429 *
430 * These functions create file structures and maps them to fd space
431 * of the current process. On success it returns file descriptor
432 * and file struct implicitly stored in sock->file.
433 * Note that another thread may close file descriptor before we return
434 * from this function. We use the fact that now we do not refer
435 * to socket after mapping. If one day we will need it, this
436 * function will increment ref. count on file by 1.
437 *
438 * In any case returned fd MAY BE not valid!
439 * This race condition is unavoidable
440 * with shared fd spaces, we cannot solve it inside kernel,
441 * but we take care of internal coherence yet.
442 */
443
444 /**
445 * sock_alloc_file - Bind a &socket to a &file
446 * @sock: socket
447 * @flags: file status flags
448 * @dname: protocol name
449 *
450 * Returns the &file bound with @sock, implicitly storing it
451 * in sock->file. If dname is %NULL, sets to "".
452 * On failure the return is a ERR pointer (see linux/err.h).
453 * This function uses GFP_KERNEL internally.
454 */
455
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
457 {
458 struct file *file;
459
460 if (!dname)
461 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462
463 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 O_RDWR | (flags & O_NONBLOCK),
465 &socket_file_ops);
466 if (IS_ERR(file)) {
467 sock_release(sock);
468 return file;
469 }
470
471 sock->file = file;
472 file->private_data = sock;
473 stream_open(SOCK_INODE(sock), file);
474 return file;
475 }
476 EXPORT_SYMBOL(sock_alloc_file);
477
478 static int sock_map_fd(struct socket *sock, int flags)
479 {
480 struct file *newfile;
481 int fd = get_unused_fd_flags(flags);
482 if (unlikely(fd < 0)) {
483 sock_release(sock);
484 return fd;
485 }
486
487 newfile = sock_alloc_file(sock, flags, NULL);
488 if (!IS_ERR(newfile)) {
489 fd_install(fd, newfile);
490 return fd;
491 }
492
493 put_unused_fd(fd);
494 return PTR_ERR(newfile);
495 }
496
497 /**
498 * sock_from_file - Return the &socket bounded to @file.
499 * @file: file
500 *
501 * On failure returns %NULL.
502 */
503
504 struct socket *sock_from_file(struct file *file)
505 {
506 if (file->f_op == &socket_file_ops)
507 return file->private_data; /* set in sock_alloc_file */
508
509 return NULL;
510 }
511 EXPORT_SYMBOL(sock_from_file);
512
513 /**
514 * sockfd_lookup - Go from a file number to its socket slot
515 * @fd: file handle
516 * @err: pointer to an error code return
517 *
518 * The file handle passed in is locked and the socket it is bound
519 * to is returned. If an error occurs the err pointer is overwritten
520 * with a negative errno code and NULL is returned. The function checks
521 * for both invalid handles and passing a handle which is not a socket.
522 *
523 * On a success the socket object pointer is returned.
524 */
525
526 struct socket *sockfd_lookup(int fd, int *err)
527 {
528 struct file *file;
529 struct socket *sock;
530
531 file = fget(fd);
532 if (!file) {
533 *err = -EBADF;
534 return NULL;
535 }
536
537 sock = sock_from_file(file);
538 if (!sock) {
539 *err = -ENOTSOCK;
540 fput(file);
541 }
542 return sock;
543 }
544 EXPORT_SYMBOL(sockfd_lookup);
545
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 {
548 struct fd f = fdget(fd);
549 struct socket *sock;
550
551 *err = -EBADF;
552 if (f.file) {
553 sock = sock_from_file(f.file);
554 if (likely(sock)) {
555 *fput_needed = f.flags & FDPUT_FPUT;
556 return sock;
557 }
558 *err = -ENOTSOCK;
559 fdput(f);
560 }
561 return NULL;
562 }
563
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
565 size_t size)
566 {
567 ssize_t len;
568 ssize_t used = 0;
569
570 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
571 if (len < 0)
572 return len;
573 used += len;
574 if (buffer) {
575 if (size < used)
576 return -ERANGE;
577 buffer += len;
578 }
579
580 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
581 used += len;
582 if (buffer) {
583 if (size < used)
584 return -ERANGE;
585 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
586 buffer += len;
587 }
588
589 return used;
590 }
591
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593 struct dentry *dentry, struct iattr *iattr)
594 {
595 int err = simple_setattr(&init_user_ns, dentry, iattr);
596
597 if (!err && (iattr->ia_valid & ATTR_UID)) {
598 struct socket *sock = SOCKET_I(d_inode(dentry));
599
600 if (sock->sk)
601 sock->sk->sk_uid = iattr->ia_uid;
602 else
603 err = -ENOENT;
604 }
605
606 return err;
607 }
608
609 static const struct inode_operations sockfs_inode_ops = {
610 .listxattr = sockfs_listxattr,
611 .setattr = sockfs_setattr,
612 };
613
614 /**
615 * sock_alloc - allocate a socket
616 *
617 * Allocate a new inode and socket object. The two are bound together
618 * and initialised. The socket is then returned. If we are out of inodes
619 * NULL is returned. This functions uses GFP_KERNEL internally.
620 */
621
622 struct socket *sock_alloc(void)
623 {
624 struct inode *inode;
625 struct socket *sock;
626
627 inode = new_inode_pseudo(sock_mnt->mnt_sb);
628 if (!inode)
629 return NULL;
630
631 sock = SOCKET_I(inode);
632
633 inode->i_ino = get_next_ino();
634 inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 inode->i_uid = current_fsuid();
636 inode->i_gid = current_fsgid();
637 inode->i_op = &sockfs_inode_ops;
638
639 return sock;
640 }
641 EXPORT_SYMBOL(sock_alloc);
642
643 static void __sock_release(struct socket *sock, struct inode *inode)
644 {
645 if (sock->ops) {
646 struct module *owner = sock->ops->owner;
647
648 if (inode)
649 inode_lock(inode);
650 sock->ops->release(sock);
651 sock->sk = NULL;
652 if (inode)
653 inode_unlock(inode);
654 sock->ops = NULL;
655 module_put(owner);
656 }
657
658 if (sock->wq.fasync_list)
659 pr_err("%s: fasync list not empty!\n", __func__);
660
661 if (!sock->file) {
662 iput(SOCK_INODE(sock));
663 return;
664 }
665 sock->file = NULL;
666 }
667
668 /**
669 * sock_release - close a socket
670 * @sock: socket to close
671 *
672 * The socket is released from the protocol stack if it has a release
673 * callback, and the inode is then released if the socket is bound to
674 * an inode not a file.
675 */
676 void sock_release(struct socket *sock)
677 {
678 __sock_release(sock, NULL);
679 }
680 EXPORT_SYMBOL(sock_release);
681
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 {
684 u8 flags = *tx_flags;
685
686 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
687 flags |= SKBTX_HW_TSTAMP;
688
689 /* PTP hardware clocks can provide a free running cycle counter
690 * as a time base for virtual clocks. Tell driver to use the
691 * free running cycle counter for timestamp if socket is bound
692 * to virtual clock.
693 */
694 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
695 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
696 }
697
698 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
699 flags |= SKBTX_SW_TSTAMP;
700
701 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
702 flags |= SKBTX_SCHED_TSTAMP;
703
704 *tx_flags = flags;
705 }
706 EXPORT_SYMBOL(__sock_tx_timestamp);
707
708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
709 size_t));
710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
711 size_t));
712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
713 {
714 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
715 inet_sendmsg, sock, msg,
716 msg_data_left(msg));
717 BUG_ON(ret == -EIOCBQUEUED);
718 return ret;
719 }
720
721 /**
722 * sock_sendmsg - send a message through @sock
723 * @sock: socket
724 * @msg: message to send
725 *
726 * Sends @msg through @sock, passing through LSM.
727 * Returns the number of bytes sent, or an error code.
728 */
729 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
730 {
731 int err = security_socket_sendmsg(sock, msg,
732 msg_data_left(msg));
733
734 return err ?: sock_sendmsg_nosec(sock, msg);
735 }
736 EXPORT_SYMBOL(sock_sendmsg);
737
738 /**
739 * kernel_sendmsg - send a message through @sock (kernel-space)
740 * @sock: socket
741 * @msg: message header
742 * @vec: kernel vec
743 * @num: vec array length
744 * @size: total message data size
745 *
746 * Builds the message data with @vec and sends it through @sock.
747 * Returns the number of bytes sent, or an error code.
748 */
749
750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
751 struct kvec *vec, size_t num, size_t size)
752 {
753 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
754 return sock_sendmsg(sock, msg);
755 }
756 EXPORT_SYMBOL(kernel_sendmsg);
757
758 /**
759 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
760 * @sk: sock
761 * @msg: message header
762 * @vec: output s/g array
763 * @num: output s/g array length
764 * @size: total message data size
765 *
766 * Builds the message data with @vec and sends it through @sock.
767 * Returns the number of bytes sent, or an error code.
768 * Caller must hold @sk.
769 */
770
771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
772 struct kvec *vec, size_t num, size_t size)
773 {
774 struct socket *sock = sk->sk_socket;
775
776 if (!sock->ops->sendmsg_locked)
777 return sock_no_sendmsg_locked(sk, msg, size);
778
779 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
780
781 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
782 }
783 EXPORT_SYMBOL(kernel_sendmsg_locked);
784
785 static bool skb_is_err_queue(const struct sk_buff *skb)
786 {
787 /* pkt_type of skbs enqueued on the error queue are set to
788 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
789 * in recvmsg, since skbs received on a local socket will never
790 * have a pkt_type of PACKET_OUTGOING.
791 */
792 return skb->pkt_type == PACKET_OUTGOING;
793 }
794
795 /* On transmit, software and hardware timestamps are returned independently.
796 * As the two skb clones share the hardware timestamp, which may be updated
797 * before the software timestamp is received, a hardware TX timestamp may be
798 * returned only if there is no software TX timestamp. Ignore false software
799 * timestamps, which may be made in the __sock_recv_timestamp() call when the
800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
801 * hardware timestamp.
802 */
803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
804 {
805 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
806 }
807
808 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
809 {
810 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
811 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
812 struct net_device *orig_dev;
813 ktime_t hwtstamp;
814
815 rcu_read_lock();
816 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
817 if (orig_dev) {
818 *if_index = orig_dev->ifindex;
819 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
820 } else {
821 hwtstamp = shhwtstamps->hwtstamp;
822 }
823 rcu_read_unlock();
824
825 return hwtstamp;
826 }
827
828 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
829 int if_index)
830 {
831 struct scm_ts_pktinfo ts_pktinfo;
832 struct net_device *orig_dev;
833
834 if (!skb_mac_header_was_set(skb))
835 return;
836
837 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
838
839 if (!if_index) {
840 rcu_read_lock();
841 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
842 if (orig_dev)
843 if_index = orig_dev->ifindex;
844 rcu_read_unlock();
845 }
846 ts_pktinfo.if_index = if_index;
847
848 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
849 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
850 sizeof(ts_pktinfo), &ts_pktinfo);
851 }
852
853 /*
854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
855 */
856 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
857 struct sk_buff *skb)
858 {
859 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
861 struct scm_timestamping_internal tss;
862
863 int empty = 1, false_tstamp = 0;
864 struct skb_shared_hwtstamps *shhwtstamps =
865 skb_hwtstamps(skb);
866 int if_index;
867 ktime_t hwtstamp;
868
869 /* Race occurred between timestamp enabling and packet
870 receiving. Fill in the current time for now. */
871 if (need_software_tstamp && skb->tstamp == 0) {
872 __net_timestamp(skb);
873 false_tstamp = 1;
874 }
875
876 if (need_software_tstamp) {
877 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
878 if (new_tstamp) {
879 struct __kernel_sock_timeval tv;
880
881 skb_get_new_timestamp(skb, &tv);
882 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
883 sizeof(tv), &tv);
884 } else {
885 struct __kernel_old_timeval tv;
886
887 skb_get_timestamp(skb, &tv);
888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
889 sizeof(tv), &tv);
890 }
891 } else {
892 if (new_tstamp) {
893 struct __kernel_timespec ts;
894
895 skb_get_new_timestampns(skb, &ts);
896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
897 sizeof(ts), &ts);
898 } else {
899 struct __kernel_old_timespec ts;
900
901 skb_get_timestampns(skb, &ts);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
903 sizeof(ts), &ts);
904 }
905 }
906 }
907
908 memset(&tss, 0, sizeof(tss));
909 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
910 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
911 empty = 0;
912 if (shhwtstamps &&
913 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
914 !skb_is_swtx_tstamp(skb, false_tstamp)) {
915 if_index = 0;
916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917 hwtstamp = get_timestamp(sk, skb, &if_index);
918 else
919 hwtstamp = shhwtstamps->hwtstamp;
920
921 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
922 hwtstamp = ptp_convert_timestamp(&hwtstamp,
923 sk->sk_bind_phc);
924
925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
926 empty = 0;
927
928 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929 !skb_is_err_queue(skb))
930 put_ts_pktinfo(msg, skb, if_index);
931 }
932 }
933 if (!empty) {
934 if (sock_flag(sk, SOCK_TSTAMP_NEW))
935 put_cmsg_scm_timestamping64(msg, &tss);
936 else
937 put_cmsg_scm_timestamping(msg, &tss);
938
939 if (skb_is_err_queue(skb) && skb->len &&
940 SKB_EXT_ERR(skb)->opt_stats)
941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942 skb->len, skb->data);
943 }
944 }
945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
946
947 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
948 struct sk_buff *skb)
949 {
950 int ack;
951
952 if (!sock_flag(sk, SOCK_WIFI_STATUS))
953 return;
954 if (!skb->wifi_acked_valid)
955 return;
956
957 ack = skb->wifi_acked;
958
959 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
960 }
961 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
962
963 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
964 struct sk_buff *skb)
965 {
966 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
967 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
968 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
969 }
970
971 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
972 struct sk_buff *skb)
973 {
974 if (sock_flag(sk, SOCK_RCVMARK) && skb)
975 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32),
976 &skb->mark);
977 }
978
979 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
980 struct sk_buff *skb)
981 {
982 sock_recv_timestamp(msg, sk, skb);
983 sock_recv_drops(msg, sk, skb);
984 sock_recv_mark(msg, sk, skb);
985 }
986 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
987
988 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
989 size_t, int));
990 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
991 size_t, int));
992 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
993 int flags)
994 {
995 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
996 inet_recvmsg, sock, msg, msg_data_left(msg),
997 flags);
998 }
999
1000 /**
1001 * sock_recvmsg - receive a message from @sock
1002 * @sock: socket
1003 * @msg: message to receive
1004 * @flags: message flags
1005 *
1006 * Receives @msg from @sock, passing through LSM. Returns the total number
1007 * of bytes received, or an error.
1008 */
1009 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1010 {
1011 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1012
1013 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1014 }
1015 EXPORT_SYMBOL(sock_recvmsg);
1016
1017 /**
1018 * kernel_recvmsg - Receive a message from a socket (kernel space)
1019 * @sock: The socket to receive the message from
1020 * @msg: Received message
1021 * @vec: Input s/g array for message data
1022 * @num: Size of input s/g array
1023 * @size: Number of bytes to read
1024 * @flags: Message flags (MSG_DONTWAIT, etc...)
1025 *
1026 * On return the msg structure contains the scatter/gather array passed in the
1027 * vec argument. The array is modified so that it consists of the unfilled
1028 * portion of the original array.
1029 *
1030 * The returned value is the total number of bytes received, or an error.
1031 */
1032
1033 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1034 struct kvec *vec, size_t num, size_t size, int flags)
1035 {
1036 msg->msg_control_is_user = false;
1037 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
1038 return sock_recvmsg(sock, msg, flags);
1039 }
1040 EXPORT_SYMBOL(kernel_recvmsg);
1041
1042 static ssize_t sock_sendpage(struct file *file, struct page *page,
1043 int offset, size_t size, loff_t *ppos, int more)
1044 {
1045 struct socket *sock;
1046 int flags;
1047
1048 sock = file->private_data;
1049
1050 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1051 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1052 flags |= more;
1053
1054 return kernel_sendpage(sock, page, offset, size, flags);
1055 }
1056
1057 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1058 struct pipe_inode_info *pipe, size_t len,
1059 unsigned int flags)
1060 {
1061 struct socket *sock = file->private_data;
1062
1063 if (unlikely(!sock->ops->splice_read))
1064 return generic_file_splice_read(file, ppos, pipe, len, flags);
1065
1066 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1067 }
1068
1069 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1070 {
1071 struct file *file = iocb->ki_filp;
1072 struct socket *sock = file->private_data;
1073 struct msghdr msg = {.msg_iter = *to,
1074 .msg_iocb = iocb};
1075 ssize_t res;
1076
1077 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1078 msg.msg_flags = MSG_DONTWAIT;
1079
1080 if (iocb->ki_pos != 0)
1081 return -ESPIPE;
1082
1083 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1084 return 0;
1085
1086 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1087 *to = msg.msg_iter;
1088 return res;
1089 }
1090
1091 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1092 {
1093 struct file *file = iocb->ki_filp;
1094 struct socket *sock = file->private_data;
1095 struct msghdr msg = {.msg_iter = *from,
1096 .msg_iocb = iocb};
1097 ssize_t res;
1098
1099 if (iocb->ki_pos != 0)
1100 return -ESPIPE;
1101
1102 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1103 msg.msg_flags = MSG_DONTWAIT;
1104
1105 if (sock->type == SOCK_SEQPACKET)
1106 msg.msg_flags |= MSG_EOR;
1107
1108 res = sock_sendmsg(sock, &msg);
1109 *from = msg.msg_iter;
1110 return res;
1111 }
1112
1113 /*
1114 * Atomic setting of ioctl hooks to avoid race
1115 * with module unload.
1116 */
1117
1118 static DEFINE_MUTEX(br_ioctl_mutex);
1119 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1120 unsigned int cmd, struct ifreq *ifr,
1121 void __user *uarg);
1122
1123 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1124 unsigned int cmd, struct ifreq *ifr,
1125 void __user *uarg))
1126 {
1127 mutex_lock(&br_ioctl_mutex);
1128 br_ioctl_hook = hook;
1129 mutex_unlock(&br_ioctl_mutex);
1130 }
1131 EXPORT_SYMBOL(brioctl_set);
1132
1133 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1134 struct ifreq *ifr, void __user *uarg)
1135 {
1136 int err = -ENOPKG;
1137
1138 if (!br_ioctl_hook)
1139 request_module("bridge");
1140
1141 mutex_lock(&br_ioctl_mutex);
1142 if (br_ioctl_hook)
1143 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1144 mutex_unlock(&br_ioctl_mutex);
1145
1146 return err;
1147 }
1148
1149 static DEFINE_MUTEX(vlan_ioctl_mutex);
1150 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1151
1152 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1153 {
1154 mutex_lock(&vlan_ioctl_mutex);
1155 vlan_ioctl_hook = hook;
1156 mutex_unlock(&vlan_ioctl_mutex);
1157 }
1158 EXPORT_SYMBOL(vlan_ioctl_set);
1159
1160 static long sock_do_ioctl(struct net *net, struct socket *sock,
1161 unsigned int cmd, unsigned long arg)
1162 {
1163 struct ifreq ifr;
1164 bool need_copyout;
1165 int err;
1166 void __user *argp = (void __user *)arg;
1167 void __user *data;
1168
1169 err = sock->ops->ioctl(sock, cmd, arg);
1170
1171 /*
1172 * If this ioctl is unknown try to hand it down
1173 * to the NIC driver.
1174 */
1175 if (err != -ENOIOCTLCMD)
1176 return err;
1177
1178 if (!is_socket_ioctl_cmd(cmd))
1179 return -ENOTTY;
1180
1181 if (get_user_ifreq(&ifr, &data, argp))
1182 return -EFAULT;
1183 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1184 if (!err && need_copyout)
1185 if (put_user_ifreq(&ifr, argp))
1186 return -EFAULT;
1187
1188 return err;
1189 }
1190
1191 /*
1192 * With an ioctl, arg may well be a user mode pointer, but we don't know
1193 * what to do with it - that's up to the protocol still.
1194 */
1195
1196 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1197 {
1198 struct socket *sock;
1199 struct sock *sk;
1200 void __user *argp = (void __user *)arg;
1201 int pid, err;
1202 struct net *net;
1203
1204 sock = file->private_data;
1205 sk = sock->sk;
1206 net = sock_net(sk);
1207 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1208 struct ifreq ifr;
1209 void __user *data;
1210 bool need_copyout;
1211 if (get_user_ifreq(&ifr, &data, argp))
1212 return -EFAULT;
1213 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214 if (!err && need_copyout)
1215 if (put_user_ifreq(&ifr, argp))
1216 return -EFAULT;
1217 } else
1218 #ifdef CONFIG_WEXT_CORE
1219 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1220 err = wext_handle_ioctl(net, cmd, argp);
1221 } else
1222 #endif
1223 switch (cmd) {
1224 case FIOSETOWN:
1225 case SIOCSPGRP:
1226 err = -EFAULT;
1227 if (get_user(pid, (int __user *)argp))
1228 break;
1229 err = f_setown(sock->file, pid, 1);
1230 break;
1231 case FIOGETOWN:
1232 case SIOCGPGRP:
1233 err = put_user(f_getown(sock->file),
1234 (int __user *)argp);
1235 break;
1236 case SIOCGIFBR:
1237 case SIOCSIFBR:
1238 case SIOCBRADDBR:
1239 case SIOCBRDELBR:
1240 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1241 break;
1242 case SIOCGIFVLAN:
1243 case SIOCSIFVLAN:
1244 err = -ENOPKG;
1245 if (!vlan_ioctl_hook)
1246 request_module("8021q");
1247
1248 mutex_lock(&vlan_ioctl_mutex);
1249 if (vlan_ioctl_hook)
1250 err = vlan_ioctl_hook(net, argp);
1251 mutex_unlock(&vlan_ioctl_mutex);
1252 break;
1253 case SIOCGSKNS:
1254 err = -EPERM;
1255 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1256 break;
1257
1258 err = open_related_ns(&net->ns, get_net_ns);
1259 break;
1260 case SIOCGSTAMP_OLD:
1261 case SIOCGSTAMPNS_OLD:
1262 if (!sock->ops->gettstamp) {
1263 err = -ENOIOCTLCMD;
1264 break;
1265 }
1266 err = sock->ops->gettstamp(sock, argp,
1267 cmd == SIOCGSTAMP_OLD,
1268 !IS_ENABLED(CONFIG_64BIT));
1269 break;
1270 case SIOCGSTAMP_NEW:
1271 case SIOCGSTAMPNS_NEW:
1272 if (!sock->ops->gettstamp) {
1273 err = -ENOIOCTLCMD;
1274 break;
1275 }
1276 err = sock->ops->gettstamp(sock, argp,
1277 cmd == SIOCGSTAMP_NEW,
1278 false);
1279 break;
1280
1281 case SIOCGIFCONF:
1282 err = dev_ifconf(net, argp);
1283 break;
1284
1285 default:
1286 err = sock_do_ioctl(net, sock, cmd, arg);
1287 break;
1288 }
1289 return err;
1290 }
1291
1292 /**
1293 * sock_create_lite - creates a socket
1294 * @family: protocol family (AF_INET, ...)
1295 * @type: communication type (SOCK_STREAM, ...)
1296 * @protocol: protocol (0, ...)
1297 * @res: new socket
1298 *
1299 * Creates a new socket and assigns it to @res, passing through LSM.
1300 * The new socket initialization is not complete, see kernel_accept().
1301 * Returns 0 or an error. On failure @res is set to %NULL.
1302 * This function internally uses GFP_KERNEL.
1303 */
1304
1305 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1306 {
1307 int err;
1308 struct socket *sock = NULL;
1309
1310 err = security_socket_create(family, type, protocol, 1);
1311 if (err)
1312 goto out;
1313
1314 sock = sock_alloc();
1315 if (!sock) {
1316 err = -ENOMEM;
1317 goto out;
1318 }
1319
1320 sock->type = type;
1321 err = security_socket_post_create(sock, family, type, protocol, 1);
1322 if (err)
1323 goto out_release;
1324
1325 out:
1326 *res = sock;
1327 return err;
1328 out_release:
1329 sock_release(sock);
1330 sock = NULL;
1331 goto out;
1332 }
1333 EXPORT_SYMBOL(sock_create_lite);
1334
1335 /* No kernel lock held - perfect */
1336 static __poll_t sock_poll(struct file *file, poll_table *wait)
1337 {
1338 struct socket *sock = file->private_data;
1339 __poll_t events = poll_requested_events(wait), flag = 0;
1340
1341 if (!sock->ops->poll)
1342 return 0;
1343
1344 if (sk_can_busy_loop(sock->sk)) {
1345 /* poll once if requested by the syscall */
1346 if (events & POLL_BUSY_LOOP)
1347 sk_busy_loop(sock->sk, 1);
1348
1349 /* if this socket can poll_ll, tell the system call */
1350 flag = POLL_BUSY_LOOP;
1351 }
1352
1353 return sock->ops->poll(file, sock, wait) | flag;
1354 }
1355
1356 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1357 {
1358 struct socket *sock = file->private_data;
1359
1360 return sock->ops->mmap(file, sock, vma);
1361 }
1362
1363 static int sock_close(struct inode *inode, struct file *filp)
1364 {
1365 __sock_release(SOCKET_I(inode), inode);
1366 return 0;
1367 }
1368
1369 /*
1370 * Update the socket async list
1371 *
1372 * Fasync_list locking strategy.
1373 *
1374 * 1. fasync_list is modified only under process context socket lock
1375 * i.e. under semaphore.
1376 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1377 * or under socket lock
1378 */
1379
1380 static int sock_fasync(int fd, struct file *filp, int on)
1381 {
1382 struct socket *sock = filp->private_data;
1383 struct sock *sk = sock->sk;
1384 struct socket_wq *wq = &sock->wq;
1385
1386 if (sk == NULL)
1387 return -EINVAL;
1388
1389 lock_sock(sk);
1390 fasync_helper(fd, filp, on, &wq->fasync_list);
1391
1392 if (!wq->fasync_list)
1393 sock_reset_flag(sk, SOCK_FASYNC);
1394 else
1395 sock_set_flag(sk, SOCK_FASYNC);
1396
1397 release_sock(sk);
1398 return 0;
1399 }
1400
1401 /* This function may be called only under rcu_lock */
1402
1403 int sock_wake_async(struct socket_wq *wq, int how, int band)
1404 {
1405 if (!wq || !wq->fasync_list)
1406 return -1;
1407
1408 switch (how) {
1409 case SOCK_WAKE_WAITD:
1410 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1411 break;
1412 goto call_kill;
1413 case SOCK_WAKE_SPACE:
1414 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1415 break;
1416 fallthrough;
1417 case SOCK_WAKE_IO:
1418 call_kill:
1419 kill_fasync(&wq->fasync_list, SIGIO, band);
1420 break;
1421 case SOCK_WAKE_URG:
1422 kill_fasync(&wq->fasync_list, SIGURG, band);
1423 }
1424
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(sock_wake_async);
1428
1429 /**
1430 * __sock_create - creates a socket
1431 * @net: net namespace
1432 * @family: protocol family (AF_INET, ...)
1433 * @type: communication type (SOCK_STREAM, ...)
1434 * @protocol: protocol (0, ...)
1435 * @res: new socket
1436 * @kern: boolean for kernel space sockets
1437 *
1438 * Creates a new socket and assigns it to @res, passing through LSM.
1439 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1440 * be set to true if the socket resides in kernel space.
1441 * This function internally uses GFP_KERNEL.
1442 */
1443
1444 int __sock_create(struct net *net, int family, int type, int protocol,
1445 struct socket **res, int kern)
1446 {
1447 int err;
1448 struct socket *sock;
1449 const struct net_proto_family *pf;
1450
1451 /*
1452 * Check protocol is in range
1453 */
1454 if (family < 0 || family >= NPROTO)
1455 return -EAFNOSUPPORT;
1456 if (type < 0 || type >= SOCK_MAX)
1457 return -EINVAL;
1458
1459 /* Compatibility.
1460
1461 This uglymoron is moved from INET layer to here to avoid
1462 deadlock in module load.
1463 */
1464 if (family == PF_INET && type == SOCK_PACKET) {
1465 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1466 current->comm);
1467 family = PF_PACKET;
1468 }
1469
1470 err = security_socket_create(family, type, protocol, kern);
1471 if (err)
1472 return err;
1473
1474 /*
1475 * Allocate the socket and allow the family to set things up. if
1476 * the protocol is 0, the family is instructed to select an appropriate
1477 * default.
1478 */
1479 sock = sock_alloc();
1480 if (!sock) {
1481 net_warn_ratelimited("socket: no more sockets\n");
1482 return -ENFILE; /* Not exactly a match, but its the
1483 closest posix thing */
1484 }
1485
1486 sock->type = type;
1487
1488 #ifdef CONFIG_MODULES
1489 /* Attempt to load a protocol module if the find failed.
1490 *
1491 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1492 * requested real, full-featured networking support upon configuration.
1493 * Otherwise module support will break!
1494 */
1495 if (rcu_access_pointer(net_families[family]) == NULL)
1496 request_module("net-pf-%d", family);
1497 #endif
1498
1499 rcu_read_lock();
1500 pf = rcu_dereference(net_families[family]);
1501 err = -EAFNOSUPPORT;
1502 if (!pf)
1503 goto out_release;
1504
1505 /*
1506 * We will call the ->create function, that possibly is in a loadable
1507 * module, so we have to bump that loadable module refcnt first.
1508 */
1509 if (!try_module_get(pf->owner))
1510 goto out_release;
1511
1512 /* Now protected by module ref count */
1513 rcu_read_unlock();
1514
1515 err = pf->create(net, sock, protocol, kern);
1516 if (err < 0)
1517 goto out_module_put;
1518
1519 /*
1520 * Now to bump the refcnt of the [loadable] module that owns this
1521 * socket at sock_release time we decrement its refcnt.
1522 */
1523 if (!try_module_get(sock->ops->owner))
1524 goto out_module_busy;
1525
1526 /*
1527 * Now that we're done with the ->create function, the [loadable]
1528 * module can have its refcnt decremented
1529 */
1530 module_put(pf->owner);
1531 err = security_socket_post_create(sock, family, type, protocol, kern);
1532 if (err)
1533 goto out_sock_release;
1534 *res = sock;
1535
1536 return 0;
1537
1538 out_module_busy:
1539 err = -EAFNOSUPPORT;
1540 out_module_put:
1541 sock->ops = NULL;
1542 module_put(pf->owner);
1543 out_sock_release:
1544 sock_release(sock);
1545 return err;
1546
1547 out_release:
1548 rcu_read_unlock();
1549 goto out_sock_release;
1550 }
1551 EXPORT_SYMBOL(__sock_create);
1552
1553 /**
1554 * sock_create - creates a socket
1555 * @family: protocol family (AF_INET, ...)
1556 * @type: communication type (SOCK_STREAM, ...)
1557 * @protocol: protocol (0, ...)
1558 * @res: new socket
1559 *
1560 * A wrapper around __sock_create().
1561 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1562 */
1563
1564 int sock_create(int family, int type, int protocol, struct socket **res)
1565 {
1566 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1567 }
1568 EXPORT_SYMBOL(sock_create);
1569
1570 /**
1571 * sock_create_kern - creates a socket (kernel space)
1572 * @net: net namespace
1573 * @family: protocol family (AF_INET, ...)
1574 * @type: communication type (SOCK_STREAM, ...)
1575 * @protocol: protocol (0, ...)
1576 * @res: new socket
1577 *
1578 * A wrapper around __sock_create().
1579 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1580 */
1581
1582 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1583 {
1584 return __sock_create(net, family, type, protocol, res, 1);
1585 }
1586 EXPORT_SYMBOL(sock_create_kern);
1587
1588 static struct socket *__sys_socket_create(int family, int type, int protocol)
1589 {
1590 struct socket *sock;
1591 int retval;
1592
1593 /* Check the SOCK_* constants for consistency. */
1594 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1595 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1596 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1597 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1598
1599 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600 return ERR_PTR(-EINVAL);
1601 type &= SOCK_TYPE_MASK;
1602
1603 retval = sock_create(family, type, protocol, &sock);
1604 if (retval < 0)
1605 return ERR_PTR(retval);
1606
1607 return sock;
1608 }
1609
1610 struct file *__sys_socket_file(int family, int type, int protocol)
1611 {
1612 struct socket *sock;
1613 struct file *file;
1614 int flags;
1615
1616 sock = __sys_socket_create(family, type, protocol);
1617 if (IS_ERR(sock))
1618 return ERR_CAST(sock);
1619
1620 flags = type & ~SOCK_TYPE_MASK;
1621 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1622 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1623
1624 file = sock_alloc_file(sock, flags, NULL);
1625 if (IS_ERR(file))
1626 sock_release(sock);
1627
1628 return file;
1629 }
1630
1631 int __sys_socket(int family, int type, int protocol)
1632 {
1633 struct socket *sock;
1634 int flags;
1635
1636 sock = __sys_socket_create(family, type, protocol);
1637 if (IS_ERR(sock))
1638 return PTR_ERR(sock);
1639
1640 flags = type & ~SOCK_TYPE_MASK;
1641 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1642 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1643
1644 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1645 }
1646
1647 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1648 {
1649 return __sys_socket(family, type, protocol);
1650 }
1651
1652 /*
1653 * Create a pair of connected sockets.
1654 */
1655
1656 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1657 {
1658 struct socket *sock1, *sock2;
1659 int fd1, fd2, err;
1660 struct file *newfile1, *newfile2;
1661 int flags;
1662
1663 flags = type & ~SOCK_TYPE_MASK;
1664 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1665 return -EINVAL;
1666 type &= SOCK_TYPE_MASK;
1667
1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1670
1671 /*
1672 * reserve descriptors and make sure we won't fail
1673 * to return them to userland.
1674 */
1675 fd1 = get_unused_fd_flags(flags);
1676 if (unlikely(fd1 < 0))
1677 return fd1;
1678
1679 fd2 = get_unused_fd_flags(flags);
1680 if (unlikely(fd2 < 0)) {
1681 put_unused_fd(fd1);
1682 return fd2;
1683 }
1684
1685 err = put_user(fd1, &usockvec[0]);
1686 if (err)
1687 goto out;
1688
1689 err = put_user(fd2, &usockvec[1]);
1690 if (err)
1691 goto out;
1692
1693 /*
1694 * Obtain the first socket and check if the underlying protocol
1695 * supports the socketpair call.
1696 */
1697
1698 err = sock_create(family, type, protocol, &sock1);
1699 if (unlikely(err < 0))
1700 goto out;
1701
1702 err = sock_create(family, type, protocol, &sock2);
1703 if (unlikely(err < 0)) {
1704 sock_release(sock1);
1705 goto out;
1706 }
1707
1708 err = security_socket_socketpair(sock1, sock2);
1709 if (unlikely(err)) {
1710 sock_release(sock2);
1711 sock_release(sock1);
1712 goto out;
1713 }
1714
1715 err = sock1->ops->socketpair(sock1, sock2);
1716 if (unlikely(err < 0)) {
1717 sock_release(sock2);
1718 sock_release(sock1);
1719 goto out;
1720 }
1721
1722 newfile1 = sock_alloc_file(sock1, flags, NULL);
1723 if (IS_ERR(newfile1)) {
1724 err = PTR_ERR(newfile1);
1725 sock_release(sock2);
1726 goto out;
1727 }
1728
1729 newfile2 = sock_alloc_file(sock2, flags, NULL);
1730 if (IS_ERR(newfile2)) {
1731 err = PTR_ERR(newfile2);
1732 fput(newfile1);
1733 goto out;
1734 }
1735
1736 audit_fd_pair(fd1, fd2);
1737
1738 fd_install(fd1, newfile1);
1739 fd_install(fd2, newfile2);
1740 return 0;
1741
1742 out:
1743 put_unused_fd(fd2);
1744 put_unused_fd(fd1);
1745 return err;
1746 }
1747
1748 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1749 int __user *, usockvec)
1750 {
1751 return __sys_socketpair(family, type, protocol, usockvec);
1752 }
1753
1754 /*
1755 * Bind a name to a socket. Nothing much to do here since it's
1756 * the protocol's responsibility to handle the local address.
1757 *
1758 * We move the socket address to kernel space before we call
1759 * the protocol layer (having also checked the address is ok).
1760 */
1761
1762 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1763 {
1764 struct socket *sock;
1765 struct sockaddr_storage address;
1766 int err, fput_needed;
1767
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1769 if (sock) {
1770 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1771 if (!err) {
1772 err = security_socket_bind(sock,
1773 (struct sockaddr *)&address,
1774 addrlen);
1775 if (!err)
1776 err = sock->ops->bind(sock,
1777 (struct sockaddr *)
1778 &address, addrlen);
1779 }
1780 fput_light(sock->file, fput_needed);
1781 }
1782 return err;
1783 }
1784
1785 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1786 {
1787 return __sys_bind(fd, umyaddr, addrlen);
1788 }
1789
1790 /*
1791 * Perform a listen. Basically, we allow the protocol to do anything
1792 * necessary for a listen, and if that works, we mark the socket as
1793 * ready for listening.
1794 */
1795
1796 int __sys_listen(int fd, int backlog)
1797 {
1798 struct socket *sock;
1799 int err, fput_needed;
1800 int somaxconn;
1801
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 if (sock) {
1804 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1805 if ((unsigned int)backlog > somaxconn)
1806 backlog = somaxconn;
1807
1808 err = security_socket_listen(sock, backlog);
1809 if (!err)
1810 err = sock->ops->listen(sock, backlog);
1811
1812 fput_light(sock->file, fput_needed);
1813 }
1814 return err;
1815 }
1816
1817 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1818 {
1819 return __sys_listen(fd, backlog);
1820 }
1821
1822 struct file *do_accept(struct file *file, unsigned file_flags,
1823 struct sockaddr __user *upeer_sockaddr,
1824 int __user *upeer_addrlen, int flags)
1825 {
1826 struct socket *sock, *newsock;
1827 struct file *newfile;
1828 int err, len;
1829 struct sockaddr_storage address;
1830
1831 sock = sock_from_file(file);
1832 if (!sock)
1833 return ERR_PTR(-ENOTSOCK);
1834
1835 newsock = sock_alloc();
1836 if (!newsock)
1837 return ERR_PTR(-ENFILE);
1838
1839 newsock->type = sock->type;
1840 newsock->ops = sock->ops;
1841
1842 /*
1843 * We don't need try_module_get here, as the listening socket (sock)
1844 * has the protocol module (sock->ops->owner) held.
1845 */
1846 __module_get(newsock->ops->owner);
1847
1848 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1849 if (IS_ERR(newfile))
1850 return newfile;
1851
1852 err = security_socket_accept(sock, newsock);
1853 if (err)
1854 goto out_fd;
1855
1856 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1857 false);
1858 if (err < 0)
1859 goto out_fd;
1860
1861 if (upeer_sockaddr) {
1862 len = newsock->ops->getname(newsock,
1863 (struct sockaddr *)&address, 2);
1864 if (len < 0) {
1865 err = -ECONNABORTED;
1866 goto out_fd;
1867 }
1868 err = move_addr_to_user(&address,
1869 len, upeer_sockaddr, upeer_addrlen);
1870 if (err < 0)
1871 goto out_fd;
1872 }
1873
1874 /* File flags are not inherited via accept() unlike another OSes. */
1875 return newfile;
1876 out_fd:
1877 fput(newfile);
1878 return ERR_PTR(err);
1879 }
1880
1881 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1882 int __user *upeer_addrlen, int flags)
1883 {
1884 struct file *newfile;
1885 int newfd;
1886
1887 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1888 return -EINVAL;
1889
1890 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1891 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1892
1893 newfd = get_unused_fd_flags(flags);
1894 if (unlikely(newfd < 0))
1895 return newfd;
1896
1897 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1898 flags);
1899 if (IS_ERR(newfile)) {
1900 put_unused_fd(newfd);
1901 return PTR_ERR(newfile);
1902 }
1903 fd_install(newfd, newfile);
1904 return newfd;
1905 }
1906
1907 /*
1908 * For accept, we attempt to create a new socket, set up the link
1909 * with the client, wake up the client, then return the new
1910 * connected fd. We collect the address of the connector in kernel
1911 * space and move it to user at the very end. This is unclean because
1912 * we open the socket then return an error.
1913 *
1914 * 1003.1g adds the ability to recvmsg() to query connection pending
1915 * status to recvmsg. We need to add that support in a way thats
1916 * clean when we restructure accept also.
1917 */
1918
1919 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1920 int __user *upeer_addrlen, int flags)
1921 {
1922 int ret = -EBADF;
1923 struct fd f;
1924
1925 f = fdget(fd);
1926 if (f.file) {
1927 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1928 upeer_addrlen, flags);
1929 fdput(f);
1930 }
1931
1932 return ret;
1933 }
1934
1935 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1936 int __user *, upeer_addrlen, int, flags)
1937 {
1938 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1939 }
1940
1941 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1942 int __user *, upeer_addrlen)
1943 {
1944 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1945 }
1946
1947 /*
1948 * Attempt to connect to a socket with the server address. The address
1949 * is in user space so we verify it is OK and move it to kernel space.
1950 *
1951 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1952 * break bindings
1953 *
1954 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1955 * other SEQPACKET protocols that take time to connect() as it doesn't
1956 * include the -EINPROGRESS status for such sockets.
1957 */
1958
1959 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1960 int addrlen, int file_flags)
1961 {
1962 struct socket *sock;
1963 int err;
1964
1965 sock = sock_from_file(file);
1966 if (!sock) {
1967 err = -ENOTSOCK;
1968 goto out;
1969 }
1970
1971 err =
1972 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1973 if (err)
1974 goto out;
1975
1976 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1977 sock->file->f_flags | file_flags);
1978 out:
1979 return err;
1980 }
1981
1982 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1983 {
1984 int ret = -EBADF;
1985 struct fd f;
1986
1987 f = fdget(fd);
1988 if (f.file) {
1989 struct sockaddr_storage address;
1990
1991 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1992 if (!ret)
1993 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1994 fdput(f);
1995 }
1996
1997 return ret;
1998 }
1999
2000 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2001 int, addrlen)
2002 {
2003 return __sys_connect(fd, uservaddr, addrlen);
2004 }
2005
2006 /*
2007 * Get the local address ('name') of a socket object. Move the obtained
2008 * name to user space.
2009 */
2010
2011 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2012 int __user *usockaddr_len)
2013 {
2014 struct socket *sock;
2015 struct sockaddr_storage address;
2016 int err, fput_needed;
2017
2018 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2019 if (!sock)
2020 goto out;
2021
2022 err = security_socket_getsockname(sock);
2023 if (err)
2024 goto out_put;
2025
2026 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2027 if (err < 0)
2028 goto out_put;
2029 /* "err" is actually length in this case */
2030 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2031
2032 out_put:
2033 fput_light(sock->file, fput_needed);
2034 out:
2035 return err;
2036 }
2037
2038 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2039 int __user *, usockaddr_len)
2040 {
2041 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2042 }
2043
2044 /*
2045 * Get the remote address ('name') of a socket object. Move the obtained
2046 * name to user space.
2047 */
2048
2049 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2050 int __user *usockaddr_len)
2051 {
2052 struct socket *sock;
2053 struct sockaddr_storage address;
2054 int err, fput_needed;
2055
2056 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057 if (sock != NULL) {
2058 err = security_socket_getpeername(sock);
2059 if (err) {
2060 fput_light(sock->file, fput_needed);
2061 return err;
2062 }
2063
2064 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2065 if (err >= 0)
2066 /* "err" is actually length in this case */
2067 err = move_addr_to_user(&address, err, usockaddr,
2068 usockaddr_len);
2069 fput_light(sock->file, fput_needed);
2070 }
2071 return err;
2072 }
2073
2074 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2075 int __user *, usockaddr_len)
2076 {
2077 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2078 }
2079
2080 /*
2081 * Send a datagram to a given address. We move the address into kernel
2082 * space and check the user space data area is readable before invoking
2083 * the protocol.
2084 */
2085 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2086 struct sockaddr __user *addr, int addr_len)
2087 {
2088 struct socket *sock;
2089 struct sockaddr_storage address;
2090 int err;
2091 struct msghdr msg;
2092 struct iovec iov;
2093 int fput_needed;
2094
2095 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2096 if (unlikely(err))
2097 return err;
2098 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2099 if (!sock)
2100 goto out;
2101
2102 msg.msg_name = NULL;
2103 msg.msg_control = NULL;
2104 msg.msg_controllen = 0;
2105 msg.msg_namelen = 0;
2106 msg.msg_ubuf = NULL;
2107 if (addr) {
2108 err = move_addr_to_kernel(addr, addr_len, &address);
2109 if (err < 0)
2110 goto out_put;
2111 msg.msg_name = (struct sockaddr *)&address;
2112 msg.msg_namelen = addr_len;
2113 }
2114 if (sock->file->f_flags & O_NONBLOCK)
2115 flags |= MSG_DONTWAIT;
2116 msg.msg_flags = flags;
2117 err = sock_sendmsg(sock, &msg);
2118
2119 out_put:
2120 fput_light(sock->file, fput_needed);
2121 out:
2122 return err;
2123 }
2124
2125 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2126 unsigned int, flags, struct sockaddr __user *, addr,
2127 int, addr_len)
2128 {
2129 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2130 }
2131
2132 /*
2133 * Send a datagram down a socket.
2134 */
2135
2136 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2137 unsigned int, flags)
2138 {
2139 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2140 }
2141
2142 /*
2143 * Receive a frame from the socket and optionally record the address of the
2144 * sender. We verify the buffers are writable and if needed move the
2145 * sender address from kernel to user space.
2146 */
2147 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2148 struct sockaddr __user *addr, int __user *addr_len)
2149 {
2150 struct sockaddr_storage address;
2151 struct msghdr msg = {
2152 /* Save some cycles and don't copy the address if not needed */
2153 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2154 };
2155 struct socket *sock;
2156 struct iovec iov;
2157 int err, err2;
2158 int fput_needed;
2159
2160 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2161 if (unlikely(err))
2162 return err;
2163 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2164 if (!sock)
2165 goto out;
2166
2167 if (sock->file->f_flags & O_NONBLOCK)
2168 flags |= MSG_DONTWAIT;
2169 err = sock_recvmsg(sock, &msg, flags);
2170
2171 if (err >= 0 && addr != NULL) {
2172 err2 = move_addr_to_user(&address,
2173 msg.msg_namelen, addr, addr_len);
2174 if (err2 < 0)
2175 err = err2;
2176 }
2177
2178 fput_light(sock->file, fput_needed);
2179 out:
2180 return err;
2181 }
2182
2183 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2184 unsigned int, flags, struct sockaddr __user *, addr,
2185 int __user *, addr_len)
2186 {
2187 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2188 }
2189
2190 /*
2191 * Receive a datagram from a socket.
2192 */
2193
2194 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2195 unsigned int, flags)
2196 {
2197 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2198 }
2199
2200 static bool sock_use_custom_sol_socket(const struct socket *sock)
2201 {
2202 const struct sock *sk = sock->sk;
2203
2204 /* Use sock->ops->setsockopt() for MPTCP */
2205 return IS_ENABLED(CONFIG_MPTCP) &&
2206 sk->sk_protocol == IPPROTO_MPTCP &&
2207 sk->sk_type == SOCK_STREAM &&
2208 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2209 }
2210
2211 /*
2212 * Set a socket option. Because we don't know the option lengths we have
2213 * to pass the user mode parameter for the protocols to sort out.
2214 */
2215 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2216 int optlen)
2217 {
2218 sockptr_t optval = USER_SOCKPTR(user_optval);
2219 char *kernel_optval = NULL;
2220 int err, fput_needed;
2221 struct socket *sock;
2222
2223 if (optlen < 0)
2224 return -EINVAL;
2225
2226 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2227 if (!sock)
2228 return err;
2229
2230 err = security_socket_setsockopt(sock, level, optname);
2231 if (err)
2232 goto out_put;
2233
2234 if (!in_compat_syscall())
2235 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2236 user_optval, &optlen,
2237 &kernel_optval);
2238 if (err < 0)
2239 goto out_put;
2240 if (err > 0) {
2241 err = 0;
2242 goto out_put;
2243 }
2244
2245 if (kernel_optval)
2246 optval = KERNEL_SOCKPTR(kernel_optval);
2247 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2248 err = sock_setsockopt(sock, level, optname, optval, optlen);
2249 else if (unlikely(!sock->ops->setsockopt))
2250 err = -EOPNOTSUPP;
2251 else
2252 err = sock->ops->setsockopt(sock, level, optname, optval,
2253 optlen);
2254 kfree(kernel_optval);
2255 out_put:
2256 fput_light(sock->file, fput_needed);
2257 return err;
2258 }
2259
2260 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2261 char __user *, optval, int, optlen)
2262 {
2263 return __sys_setsockopt(fd, level, optname, optval, optlen);
2264 }
2265
2266 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2267 int optname));
2268
2269 /*
2270 * Get a socket option. Because we don't know the option lengths we have
2271 * to pass a user mode parameter for the protocols to sort out.
2272 */
2273 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2274 int __user *optlen)
2275 {
2276 int err, fput_needed;
2277 struct socket *sock;
2278 int max_optlen;
2279
2280 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2281 if (!sock)
2282 return err;
2283
2284 err = security_socket_getsockopt(sock, level, optname);
2285 if (err)
2286 goto out_put;
2287
2288 if (!in_compat_syscall())
2289 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2290
2291 if (level == SOL_SOCKET)
2292 err = sock_getsockopt(sock, level, optname, optval, optlen);
2293 else if (unlikely(!sock->ops->getsockopt))
2294 err = -EOPNOTSUPP;
2295 else
2296 err = sock->ops->getsockopt(sock, level, optname, optval,
2297 optlen);
2298
2299 if (!in_compat_syscall())
2300 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2301 optval, optlen, max_optlen,
2302 err);
2303 out_put:
2304 fput_light(sock->file, fput_needed);
2305 return err;
2306 }
2307
2308 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2309 char __user *, optval, int __user *, optlen)
2310 {
2311 return __sys_getsockopt(fd, level, optname, optval, optlen);
2312 }
2313
2314 /*
2315 * Shutdown a socket.
2316 */
2317
2318 int __sys_shutdown_sock(struct socket *sock, int how)
2319 {
2320 int err;
2321
2322 err = security_socket_shutdown(sock, how);
2323 if (!err)
2324 err = sock->ops->shutdown(sock, how);
2325
2326 return err;
2327 }
2328
2329 int __sys_shutdown(int fd, int how)
2330 {
2331 int err, fput_needed;
2332 struct socket *sock;
2333
2334 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2335 if (sock != NULL) {
2336 err = __sys_shutdown_sock(sock, how);
2337 fput_light(sock->file, fput_needed);
2338 }
2339 return err;
2340 }
2341
2342 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2343 {
2344 return __sys_shutdown(fd, how);
2345 }
2346
2347 /* A couple of helpful macros for getting the address of the 32/64 bit
2348 * fields which are the same type (int / unsigned) on our platforms.
2349 */
2350 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2351 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2352 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2353
2354 struct used_address {
2355 struct sockaddr_storage name;
2356 unsigned int name_len;
2357 };
2358
2359 int __copy_msghdr(struct msghdr *kmsg,
2360 struct user_msghdr *msg,
2361 struct sockaddr __user **save_addr)
2362 {
2363 ssize_t err;
2364
2365 kmsg->msg_control_is_user = true;
2366 kmsg->msg_get_inq = 0;
2367 kmsg->msg_control_user = msg->msg_control;
2368 kmsg->msg_controllen = msg->msg_controllen;
2369 kmsg->msg_flags = msg->msg_flags;
2370
2371 kmsg->msg_namelen = msg->msg_namelen;
2372 if (!msg->msg_name)
2373 kmsg->msg_namelen = 0;
2374
2375 if (kmsg->msg_namelen < 0)
2376 return -EINVAL;
2377
2378 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2379 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2380
2381 if (save_addr)
2382 *save_addr = msg->msg_name;
2383
2384 if (msg->msg_name && kmsg->msg_namelen) {
2385 if (!save_addr) {
2386 err = move_addr_to_kernel(msg->msg_name,
2387 kmsg->msg_namelen,
2388 kmsg->msg_name);
2389 if (err < 0)
2390 return err;
2391 }
2392 } else {
2393 kmsg->msg_name = NULL;
2394 kmsg->msg_namelen = 0;
2395 }
2396
2397 if (msg->msg_iovlen > UIO_MAXIOV)
2398 return -EMSGSIZE;
2399
2400 kmsg->msg_iocb = NULL;
2401 kmsg->msg_ubuf = NULL;
2402 return 0;
2403 }
2404
2405 static int copy_msghdr_from_user(struct msghdr *kmsg,
2406 struct user_msghdr __user *umsg,
2407 struct sockaddr __user **save_addr,
2408 struct iovec **iov)
2409 {
2410 struct user_msghdr msg;
2411 ssize_t err;
2412
2413 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2414 return -EFAULT;
2415
2416 err = __copy_msghdr(kmsg, &msg, save_addr);
2417 if (err)
2418 return err;
2419
2420 err = import_iovec(save_addr ? READ : WRITE,
2421 msg.msg_iov, msg.msg_iovlen,
2422 UIO_FASTIOV, iov, &kmsg->msg_iter);
2423 return err < 0 ? err : 0;
2424 }
2425
2426 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2427 unsigned int flags, struct used_address *used_address,
2428 unsigned int allowed_msghdr_flags)
2429 {
2430 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2431 __aligned(sizeof(__kernel_size_t));
2432 /* 20 is size of ipv6_pktinfo */
2433 unsigned char *ctl_buf = ctl;
2434 int ctl_len;
2435 ssize_t err;
2436
2437 err = -ENOBUFS;
2438
2439 if (msg_sys->msg_controllen > INT_MAX)
2440 goto out;
2441 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2442 ctl_len = msg_sys->msg_controllen;
2443 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2444 err =
2445 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2446 sizeof(ctl));
2447 if (err)
2448 goto out;
2449 ctl_buf = msg_sys->msg_control;
2450 ctl_len = msg_sys->msg_controllen;
2451 } else if (ctl_len) {
2452 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2453 CMSG_ALIGN(sizeof(struct cmsghdr)));
2454 if (ctl_len > sizeof(ctl)) {
2455 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2456 if (ctl_buf == NULL)
2457 goto out;
2458 }
2459 err = -EFAULT;
2460 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2461 goto out_freectl;
2462 msg_sys->msg_control = ctl_buf;
2463 msg_sys->msg_control_is_user = false;
2464 }
2465 msg_sys->msg_flags = flags;
2466
2467 if (sock->file->f_flags & O_NONBLOCK)
2468 msg_sys->msg_flags |= MSG_DONTWAIT;
2469 /*
2470 * If this is sendmmsg() and current destination address is same as
2471 * previously succeeded address, omit asking LSM's decision.
2472 * used_address->name_len is initialized to UINT_MAX so that the first
2473 * destination address never matches.
2474 */
2475 if (used_address && msg_sys->msg_name &&
2476 used_address->name_len == msg_sys->msg_namelen &&
2477 !memcmp(&used_address->name, msg_sys->msg_name,
2478 used_address->name_len)) {
2479 err = sock_sendmsg_nosec(sock, msg_sys);
2480 goto out_freectl;
2481 }
2482 err = sock_sendmsg(sock, msg_sys);
2483 /*
2484 * If this is sendmmsg() and sending to current destination address was
2485 * successful, remember it.
2486 */
2487 if (used_address && err >= 0) {
2488 used_address->name_len = msg_sys->msg_namelen;
2489 if (msg_sys->msg_name)
2490 memcpy(&used_address->name, msg_sys->msg_name,
2491 used_address->name_len);
2492 }
2493
2494 out_freectl:
2495 if (ctl_buf != ctl)
2496 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2497 out:
2498 return err;
2499 }
2500
2501 int sendmsg_copy_msghdr(struct msghdr *msg,
2502 struct user_msghdr __user *umsg, unsigned flags,
2503 struct iovec **iov)
2504 {
2505 int err;
2506
2507 if (flags & MSG_CMSG_COMPAT) {
2508 struct compat_msghdr __user *msg_compat;
2509
2510 msg_compat = (struct compat_msghdr __user *) umsg;
2511 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2512 } else {
2513 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2514 }
2515 if (err < 0)
2516 return err;
2517
2518 return 0;
2519 }
2520
2521 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2522 struct msghdr *msg_sys, unsigned int flags,
2523 struct used_address *used_address,
2524 unsigned int allowed_msghdr_flags)
2525 {
2526 struct sockaddr_storage address;
2527 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2528 ssize_t err;
2529
2530 msg_sys->msg_name = &address;
2531
2532 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2533 if (err < 0)
2534 return err;
2535
2536 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2537 allowed_msghdr_flags);
2538 kfree(iov);
2539 return err;
2540 }
2541
2542 /*
2543 * BSD sendmsg interface
2544 */
2545 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2546 unsigned int flags)
2547 {
2548 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2549 }
2550
2551 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2552 bool forbid_cmsg_compat)
2553 {
2554 int fput_needed, err;
2555 struct msghdr msg_sys;
2556 struct socket *sock;
2557
2558 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2559 return -EINVAL;
2560
2561 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2562 if (!sock)
2563 goto out;
2564
2565 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2566
2567 fput_light(sock->file, fput_needed);
2568 out:
2569 return err;
2570 }
2571
2572 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2573 {
2574 return __sys_sendmsg(fd, msg, flags, true);
2575 }
2576
2577 /*
2578 * Linux sendmmsg interface
2579 */
2580
2581 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2582 unsigned int flags, bool forbid_cmsg_compat)
2583 {
2584 int fput_needed, err, datagrams;
2585 struct socket *sock;
2586 struct mmsghdr __user *entry;
2587 struct compat_mmsghdr __user *compat_entry;
2588 struct msghdr msg_sys;
2589 struct used_address used_address;
2590 unsigned int oflags = flags;
2591
2592 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2593 return -EINVAL;
2594
2595 if (vlen > UIO_MAXIOV)
2596 vlen = UIO_MAXIOV;
2597
2598 datagrams = 0;
2599
2600 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2601 if (!sock)
2602 return err;
2603
2604 used_address.name_len = UINT_MAX;
2605 entry = mmsg;
2606 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2607 err = 0;
2608 flags |= MSG_BATCH;
2609
2610 while (datagrams < vlen) {
2611 if (datagrams == vlen - 1)
2612 flags = oflags;
2613
2614 if (MSG_CMSG_COMPAT & flags) {
2615 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2616 &msg_sys, flags, &used_address, MSG_EOR);
2617 if (err < 0)
2618 break;
2619 err = __put_user(err, &compat_entry->msg_len);
2620 ++compat_entry;
2621 } else {
2622 err = ___sys_sendmsg(sock,
2623 (struct user_msghdr __user *)entry,
2624 &msg_sys, flags, &used_address, MSG_EOR);
2625 if (err < 0)
2626 break;
2627 err = put_user(err, &entry->msg_len);
2628 ++entry;
2629 }
2630
2631 if (err)
2632 break;
2633 ++datagrams;
2634 if (msg_data_left(&msg_sys))
2635 break;
2636 cond_resched();
2637 }
2638
2639 fput_light(sock->file, fput_needed);
2640
2641 /* We only return an error if no datagrams were able to be sent */
2642 if (datagrams != 0)
2643 return datagrams;
2644
2645 return err;
2646 }
2647
2648 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2649 unsigned int, vlen, unsigned int, flags)
2650 {
2651 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2652 }
2653
2654 int recvmsg_copy_msghdr(struct msghdr *msg,
2655 struct user_msghdr __user *umsg, unsigned flags,
2656 struct sockaddr __user **uaddr,
2657 struct iovec **iov)
2658 {
2659 ssize_t err;
2660
2661 if (MSG_CMSG_COMPAT & flags) {
2662 struct compat_msghdr __user *msg_compat;
2663
2664 msg_compat = (struct compat_msghdr __user *) umsg;
2665 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2666 } else {
2667 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2668 }
2669 if (err < 0)
2670 return err;
2671
2672 return 0;
2673 }
2674
2675 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2676 struct user_msghdr __user *msg,
2677 struct sockaddr __user *uaddr,
2678 unsigned int flags, int nosec)
2679 {
2680 struct compat_msghdr __user *msg_compat =
2681 (struct compat_msghdr __user *) msg;
2682 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2683 struct sockaddr_storage addr;
2684 unsigned long cmsg_ptr;
2685 int len;
2686 ssize_t err;
2687
2688 msg_sys->msg_name = &addr;
2689 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2690 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2691
2692 /* We assume all kernel code knows the size of sockaddr_storage */
2693 msg_sys->msg_namelen = 0;
2694
2695 if (sock->file->f_flags & O_NONBLOCK)
2696 flags |= MSG_DONTWAIT;
2697
2698 if (unlikely(nosec))
2699 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2700 else
2701 err = sock_recvmsg(sock, msg_sys, flags);
2702
2703 if (err < 0)
2704 goto out;
2705 len = err;
2706
2707 if (uaddr != NULL) {
2708 err = move_addr_to_user(&addr,
2709 msg_sys->msg_namelen, uaddr,
2710 uaddr_len);
2711 if (err < 0)
2712 goto out;
2713 }
2714 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2715 COMPAT_FLAGS(msg));
2716 if (err)
2717 goto out;
2718 if (MSG_CMSG_COMPAT & flags)
2719 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2720 &msg_compat->msg_controllen);
2721 else
2722 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2723 &msg->msg_controllen);
2724 if (err)
2725 goto out;
2726 err = len;
2727 out:
2728 return err;
2729 }
2730
2731 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2732 struct msghdr *msg_sys, unsigned int flags, int nosec)
2733 {
2734 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2735 /* user mode address pointers */
2736 struct sockaddr __user *uaddr;
2737 ssize_t err;
2738
2739 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2740 if (err < 0)
2741 return err;
2742
2743 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2744 kfree(iov);
2745 return err;
2746 }
2747
2748 /*
2749 * BSD recvmsg interface
2750 */
2751
2752 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2753 struct user_msghdr __user *umsg,
2754 struct sockaddr __user *uaddr, unsigned int flags)
2755 {
2756 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2757 }
2758
2759 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2760 bool forbid_cmsg_compat)
2761 {
2762 int fput_needed, err;
2763 struct msghdr msg_sys;
2764 struct socket *sock;
2765
2766 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2767 return -EINVAL;
2768
2769 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2770 if (!sock)
2771 goto out;
2772
2773 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2774
2775 fput_light(sock->file, fput_needed);
2776 out:
2777 return err;
2778 }
2779
2780 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2781 unsigned int, flags)
2782 {
2783 return __sys_recvmsg(fd, msg, flags, true);
2784 }
2785
2786 /*
2787 * Linux recvmmsg interface
2788 */
2789
2790 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2791 unsigned int vlen, unsigned int flags,
2792 struct timespec64 *timeout)
2793 {
2794 int fput_needed, err, datagrams;
2795 struct socket *sock;
2796 struct mmsghdr __user *entry;
2797 struct compat_mmsghdr __user *compat_entry;
2798 struct msghdr msg_sys;
2799 struct timespec64 end_time;
2800 struct timespec64 timeout64;
2801
2802 if (timeout &&
2803 poll_select_set_timeout(&end_time, timeout->tv_sec,
2804 timeout->tv_nsec))
2805 return -EINVAL;
2806
2807 datagrams = 0;
2808
2809 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2810 if (!sock)
2811 return err;
2812
2813 if (likely(!(flags & MSG_ERRQUEUE))) {
2814 err = sock_error(sock->sk);
2815 if (err) {
2816 datagrams = err;
2817 goto out_put;
2818 }
2819 }
2820
2821 entry = mmsg;
2822 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2823
2824 while (datagrams < vlen) {
2825 /*
2826 * No need to ask LSM for more than the first datagram.
2827 */
2828 if (MSG_CMSG_COMPAT & flags) {
2829 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2830 &msg_sys, flags & ~MSG_WAITFORONE,
2831 datagrams);
2832 if (err < 0)
2833 break;
2834 err = __put_user(err, &compat_entry->msg_len);
2835 ++compat_entry;
2836 } else {
2837 err = ___sys_recvmsg(sock,
2838 (struct user_msghdr __user *)entry,
2839 &msg_sys, flags & ~MSG_WAITFORONE,
2840 datagrams);
2841 if (err < 0)
2842 break;
2843 err = put_user(err, &entry->msg_len);
2844 ++entry;
2845 }
2846
2847 if (err)
2848 break;
2849 ++datagrams;
2850
2851 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2852 if (flags & MSG_WAITFORONE)
2853 flags |= MSG_DONTWAIT;
2854
2855 if (timeout) {
2856 ktime_get_ts64(&timeout64);
2857 *timeout = timespec64_sub(end_time, timeout64);
2858 if (timeout->tv_sec < 0) {
2859 timeout->tv_sec = timeout->tv_nsec = 0;
2860 break;
2861 }
2862
2863 /* Timeout, return less than vlen datagrams */
2864 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2865 break;
2866 }
2867
2868 /* Out of band data, return right away */
2869 if (msg_sys.msg_flags & MSG_OOB)
2870 break;
2871 cond_resched();
2872 }
2873
2874 if (err == 0)
2875 goto out_put;
2876
2877 if (datagrams == 0) {
2878 datagrams = err;
2879 goto out_put;
2880 }
2881
2882 /*
2883 * We may return less entries than requested (vlen) if the
2884 * sock is non block and there aren't enough datagrams...
2885 */
2886 if (err != -EAGAIN) {
2887 /*
2888 * ... or if recvmsg returns an error after we
2889 * received some datagrams, where we record the
2890 * error to return on the next call or if the
2891 * app asks about it using getsockopt(SO_ERROR).
2892 */
2893 sock->sk->sk_err = -err;
2894 }
2895 out_put:
2896 fput_light(sock->file, fput_needed);
2897
2898 return datagrams;
2899 }
2900
2901 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2902 unsigned int vlen, unsigned int flags,
2903 struct __kernel_timespec __user *timeout,
2904 struct old_timespec32 __user *timeout32)
2905 {
2906 int datagrams;
2907 struct timespec64 timeout_sys;
2908
2909 if (timeout && get_timespec64(&timeout_sys, timeout))
2910 return -EFAULT;
2911
2912 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2913 return -EFAULT;
2914
2915 if (!timeout && !timeout32)
2916 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2917
2918 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2919
2920 if (datagrams <= 0)
2921 return datagrams;
2922
2923 if (timeout && put_timespec64(&timeout_sys, timeout))
2924 datagrams = -EFAULT;
2925
2926 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2927 datagrams = -EFAULT;
2928
2929 return datagrams;
2930 }
2931
2932 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2933 unsigned int, vlen, unsigned int, flags,
2934 struct __kernel_timespec __user *, timeout)
2935 {
2936 if (flags & MSG_CMSG_COMPAT)
2937 return -EINVAL;
2938
2939 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2940 }
2941
2942 #ifdef CONFIG_COMPAT_32BIT_TIME
2943 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2944 unsigned int, vlen, unsigned int, flags,
2945 struct old_timespec32 __user *, timeout)
2946 {
2947 if (flags & MSG_CMSG_COMPAT)
2948 return -EINVAL;
2949
2950 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2951 }
2952 #endif
2953
2954 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2955 /* Argument list sizes for sys_socketcall */
2956 #define AL(x) ((x) * sizeof(unsigned long))
2957 static const unsigned char nargs[21] = {
2958 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2959 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2960 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2961 AL(4), AL(5), AL(4)
2962 };
2963
2964 #undef AL
2965
2966 /*
2967 * System call vectors.
2968 *
2969 * Argument checking cleaned up. Saved 20% in size.
2970 * This function doesn't need to set the kernel lock because
2971 * it is set by the callees.
2972 */
2973
2974 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2975 {
2976 unsigned long a[AUDITSC_ARGS];
2977 unsigned long a0, a1;
2978 int err;
2979 unsigned int len;
2980
2981 if (call < 1 || call > SYS_SENDMMSG)
2982 return -EINVAL;
2983 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2984
2985 len = nargs[call];
2986 if (len > sizeof(a))
2987 return -EINVAL;
2988
2989 /* copy_from_user should be SMP safe. */
2990 if (copy_from_user(a, args, len))
2991 return -EFAULT;
2992
2993 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2994 if (err)
2995 return err;
2996
2997 a0 = a[0];
2998 a1 = a[1];
2999
3000 switch (call) {
3001 case SYS_SOCKET:
3002 err = __sys_socket(a0, a1, a[2]);
3003 break;
3004 case SYS_BIND:
3005 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3006 break;
3007 case SYS_CONNECT:
3008 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3009 break;
3010 case SYS_LISTEN:
3011 err = __sys_listen(a0, a1);
3012 break;
3013 case SYS_ACCEPT:
3014 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3015 (int __user *)a[2], 0);
3016 break;
3017 case SYS_GETSOCKNAME:
3018 err =
3019 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3020 (int __user *)a[2]);
3021 break;
3022 case SYS_GETPEERNAME:
3023 err =
3024 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3025 (int __user *)a[2]);
3026 break;
3027 case SYS_SOCKETPAIR:
3028 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3029 break;
3030 case SYS_SEND:
3031 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3032 NULL, 0);
3033 break;
3034 case SYS_SENDTO:
3035 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3036 (struct sockaddr __user *)a[4], a[5]);
3037 break;
3038 case SYS_RECV:
3039 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3040 NULL, NULL);
3041 break;
3042 case SYS_RECVFROM:
3043 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3044 (struct sockaddr __user *)a[4],
3045 (int __user *)a[5]);
3046 break;
3047 case SYS_SHUTDOWN:
3048 err = __sys_shutdown(a0, a1);
3049 break;
3050 case SYS_SETSOCKOPT:
3051 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3052 a[4]);
3053 break;
3054 case SYS_GETSOCKOPT:
3055 err =
3056 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3057 (int __user *)a[4]);
3058 break;
3059 case SYS_SENDMSG:
3060 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3061 a[2], true);
3062 break;
3063 case SYS_SENDMMSG:
3064 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3065 a[3], true);
3066 break;
3067 case SYS_RECVMSG:
3068 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3069 a[2], true);
3070 break;
3071 case SYS_RECVMMSG:
3072 if (IS_ENABLED(CONFIG_64BIT))
3073 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3074 a[2], a[3],
3075 (struct __kernel_timespec __user *)a[4],
3076 NULL);
3077 else
3078 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3079 a[2], a[3], NULL,
3080 (struct old_timespec32 __user *)a[4]);
3081 break;
3082 case SYS_ACCEPT4:
3083 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3084 (int __user *)a[2], a[3]);
3085 break;
3086 default:
3087 err = -EINVAL;
3088 break;
3089 }
3090 return err;
3091 }
3092
3093 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3094
3095 /**
3096 * sock_register - add a socket protocol handler
3097 * @ops: description of protocol
3098 *
3099 * This function is called by a protocol handler that wants to
3100 * advertise its address family, and have it linked into the
3101 * socket interface. The value ops->family corresponds to the
3102 * socket system call protocol family.
3103 */
3104 int sock_register(const struct net_proto_family *ops)
3105 {
3106 int err;
3107
3108 if (ops->family >= NPROTO) {
3109 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3110 return -ENOBUFS;
3111 }
3112
3113 spin_lock(&net_family_lock);
3114 if (rcu_dereference_protected(net_families[ops->family],
3115 lockdep_is_held(&net_family_lock)))
3116 err = -EEXIST;
3117 else {
3118 rcu_assign_pointer(net_families[ops->family], ops);
3119 err = 0;
3120 }
3121 spin_unlock(&net_family_lock);
3122
3123 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3124 return err;
3125 }
3126 EXPORT_SYMBOL(sock_register);
3127
3128 /**
3129 * sock_unregister - remove a protocol handler
3130 * @family: protocol family to remove
3131 *
3132 * This function is called by a protocol handler that wants to
3133 * remove its address family, and have it unlinked from the
3134 * new socket creation.
3135 *
3136 * If protocol handler is a module, then it can use module reference
3137 * counts to protect against new references. If protocol handler is not
3138 * a module then it needs to provide its own protection in
3139 * the ops->create routine.
3140 */
3141 void sock_unregister(int family)
3142 {
3143 BUG_ON(family < 0 || family >= NPROTO);
3144
3145 spin_lock(&net_family_lock);
3146 RCU_INIT_POINTER(net_families[family], NULL);
3147 spin_unlock(&net_family_lock);
3148
3149 synchronize_rcu();
3150
3151 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3152 }
3153 EXPORT_SYMBOL(sock_unregister);
3154
3155 bool sock_is_registered(int family)
3156 {
3157 return family < NPROTO && rcu_access_pointer(net_families[family]);
3158 }
3159
3160 static int __init sock_init(void)
3161 {
3162 int err;
3163 /*
3164 * Initialize the network sysctl infrastructure.
3165 */
3166 err = net_sysctl_init();
3167 if (err)
3168 goto out;
3169
3170 /*
3171 * Initialize skbuff SLAB cache
3172 */
3173 skb_init();
3174
3175 /*
3176 * Initialize the protocols module.
3177 */
3178
3179 init_inodecache();
3180
3181 err = register_filesystem(&sock_fs_type);
3182 if (err)
3183 goto out;
3184 sock_mnt = kern_mount(&sock_fs_type);
3185 if (IS_ERR(sock_mnt)) {
3186 err = PTR_ERR(sock_mnt);
3187 goto out_mount;
3188 }
3189
3190 /* The real protocol initialization is performed in later initcalls.
3191 */
3192
3193 #ifdef CONFIG_NETFILTER
3194 err = netfilter_init();
3195 if (err)
3196 goto out;
3197 #endif
3198
3199 ptp_classifier_init();
3200
3201 out:
3202 return err;
3203
3204 out_mount:
3205 unregister_filesystem(&sock_fs_type);
3206 goto out;
3207 }
3208
3209 core_initcall(sock_init); /* early initcall */
3210
3211 #ifdef CONFIG_PROC_FS
3212 void socket_seq_show(struct seq_file *seq)
3213 {
3214 seq_printf(seq, "sockets: used %d\n",
3215 sock_inuse_get(seq->private));
3216 }
3217 #endif /* CONFIG_PROC_FS */
3218
3219 /* Handle the fact that while struct ifreq has the same *layout* on
3220 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3221 * which are handled elsewhere, it still has different *size* due to
3222 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3223 * resulting in struct ifreq being 32 and 40 bytes respectively).
3224 * As a result, if the struct happens to be at the end of a page and
3225 * the next page isn't readable/writable, we get a fault. To prevent
3226 * that, copy back and forth to the full size.
3227 */
3228 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3229 {
3230 if (in_compat_syscall()) {
3231 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3232
3233 memset(ifr, 0, sizeof(*ifr));
3234 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3235 return -EFAULT;
3236
3237 if (ifrdata)
3238 *ifrdata = compat_ptr(ifr32->ifr_data);
3239
3240 return 0;
3241 }
3242
3243 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3244 return -EFAULT;
3245
3246 if (ifrdata)
3247 *ifrdata = ifr->ifr_data;
3248
3249 return 0;
3250 }
3251 EXPORT_SYMBOL(get_user_ifreq);
3252
3253 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3254 {
3255 size_t size = sizeof(*ifr);
3256
3257 if (in_compat_syscall())
3258 size = sizeof(struct compat_ifreq);
3259
3260 if (copy_to_user(arg, ifr, size))
3261 return -EFAULT;
3262
3263 return 0;
3264 }
3265 EXPORT_SYMBOL(put_user_ifreq);
3266
3267 #ifdef CONFIG_COMPAT
3268 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3269 {
3270 compat_uptr_t uptr32;
3271 struct ifreq ifr;
3272 void __user *saved;
3273 int err;
3274
3275 if (get_user_ifreq(&ifr, NULL, uifr32))
3276 return -EFAULT;
3277
3278 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3279 return -EFAULT;
3280
3281 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3282 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3283
3284 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3285 if (!err) {
3286 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3287 if (put_user_ifreq(&ifr, uifr32))
3288 err = -EFAULT;
3289 }
3290 return err;
3291 }
3292
3293 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3294 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3295 struct compat_ifreq __user *u_ifreq32)
3296 {
3297 struct ifreq ifreq;
3298 void __user *data;
3299
3300 if (!is_socket_ioctl_cmd(cmd))
3301 return -ENOTTY;
3302 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3303 return -EFAULT;
3304 ifreq.ifr_data = data;
3305
3306 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3307 }
3308
3309 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3310 unsigned int cmd, unsigned long arg)
3311 {
3312 void __user *argp = compat_ptr(arg);
3313 struct sock *sk = sock->sk;
3314 struct net *net = sock_net(sk);
3315
3316 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3317 return sock_ioctl(file, cmd, (unsigned long)argp);
3318
3319 switch (cmd) {
3320 case SIOCWANDEV:
3321 return compat_siocwandev(net, argp);
3322 case SIOCGSTAMP_OLD:
3323 case SIOCGSTAMPNS_OLD:
3324 if (!sock->ops->gettstamp)
3325 return -ENOIOCTLCMD;
3326 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3327 !COMPAT_USE_64BIT_TIME);
3328
3329 case SIOCETHTOOL:
3330 case SIOCBONDSLAVEINFOQUERY:
3331 case SIOCBONDINFOQUERY:
3332 case SIOCSHWTSTAMP:
3333 case SIOCGHWTSTAMP:
3334 return compat_ifr_data_ioctl(net, cmd, argp);
3335
3336 case FIOSETOWN:
3337 case SIOCSPGRP:
3338 case FIOGETOWN:
3339 case SIOCGPGRP:
3340 case SIOCBRADDBR:
3341 case SIOCBRDELBR:
3342 case SIOCGIFVLAN:
3343 case SIOCSIFVLAN:
3344 case SIOCGSKNS:
3345 case SIOCGSTAMP_NEW:
3346 case SIOCGSTAMPNS_NEW:
3347 case SIOCGIFCONF:
3348 case SIOCSIFBR:
3349 case SIOCGIFBR:
3350 return sock_ioctl(file, cmd, arg);
3351
3352 case SIOCGIFFLAGS:
3353 case SIOCSIFFLAGS:
3354 case SIOCGIFMAP:
3355 case SIOCSIFMAP:
3356 case SIOCGIFMETRIC:
3357 case SIOCSIFMETRIC:
3358 case SIOCGIFMTU:
3359 case SIOCSIFMTU:
3360 case SIOCGIFMEM:
3361 case SIOCSIFMEM:
3362 case SIOCGIFHWADDR:
3363 case SIOCSIFHWADDR:
3364 case SIOCADDMULTI:
3365 case SIOCDELMULTI:
3366 case SIOCGIFINDEX:
3367 case SIOCGIFADDR:
3368 case SIOCSIFADDR:
3369 case SIOCSIFHWBROADCAST:
3370 case SIOCDIFADDR:
3371 case SIOCGIFBRDADDR:
3372 case SIOCSIFBRDADDR:
3373 case SIOCGIFDSTADDR:
3374 case SIOCSIFDSTADDR:
3375 case SIOCGIFNETMASK:
3376 case SIOCSIFNETMASK:
3377 case SIOCSIFPFLAGS:
3378 case SIOCGIFPFLAGS:
3379 case SIOCGIFTXQLEN:
3380 case SIOCSIFTXQLEN:
3381 case SIOCBRADDIF:
3382 case SIOCBRDELIF:
3383 case SIOCGIFNAME:
3384 case SIOCSIFNAME:
3385 case SIOCGMIIPHY:
3386 case SIOCGMIIREG:
3387 case SIOCSMIIREG:
3388 case SIOCBONDENSLAVE:
3389 case SIOCBONDRELEASE:
3390 case SIOCBONDSETHWADDR:
3391 case SIOCBONDCHANGEACTIVE:
3392 case SIOCSARP:
3393 case SIOCGARP:
3394 case SIOCDARP:
3395 case SIOCOUTQ:
3396 case SIOCOUTQNSD:
3397 case SIOCATMARK:
3398 return sock_do_ioctl(net, sock, cmd, arg);
3399 }
3400
3401 return -ENOIOCTLCMD;
3402 }
3403
3404 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3405 unsigned long arg)
3406 {
3407 struct socket *sock = file->private_data;
3408 int ret = -ENOIOCTLCMD;
3409 struct sock *sk;
3410 struct net *net;
3411
3412 sk = sock->sk;
3413 net = sock_net(sk);
3414
3415 if (sock->ops->compat_ioctl)
3416 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3417
3418 if (ret == -ENOIOCTLCMD &&
3419 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3420 ret = compat_wext_handle_ioctl(net, cmd, arg);
3421
3422 if (ret == -ENOIOCTLCMD)
3423 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3424
3425 return ret;
3426 }
3427 #endif
3428
3429 /**
3430 * kernel_bind - bind an address to a socket (kernel space)
3431 * @sock: socket
3432 * @addr: address
3433 * @addrlen: length of address
3434 *
3435 * Returns 0 or an error.
3436 */
3437
3438 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3439 {
3440 return sock->ops->bind(sock, addr, addrlen);
3441 }
3442 EXPORT_SYMBOL(kernel_bind);
3443
3444 /**
3445 * kernel_listen - move socket to listening state (kernel space)
3446 * @sock: socket
3447 * @backlog: pending connections queue size
3448 *
3449 * Returns 0 or an error.
3450 */
3451
3452 int kernel_listen(struct socket *sock, int backlog)
3453 {
3454 return sock->ops->listen(sock, backlog);
3455 }
3456 EXPORT_SYMBOL(kernel_listen);
3457
3458 /**
3459 * kernel_accept - accept a connection (kernel space)
3460 * @sock: listening socket
3461 * @newsock: new connected socket
3462 * @flags: flags
3463 *
3464 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3465 * If it fails, @newsock is guaranteed to be %NULL.
3466 * Returns 0 or an error.
3467 */
3468
3469 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3470 {
3471 struct sock *sk = sock->sk;
3472 int err;
3473
3474 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3475 newsock);
3476 if (err < 0)
3477 goto done;
3478
3479 err = sock->ops->accept(sock, *newsock, flags, true);
3480 if (err < 0) {
3481 sock_release(*newsock);
3482 *newsock = NULL;
3483 goto done;
3484 }
3485
3486 (*newsock)->ops = sock->ops;
3487 __module_get((*newsock)->ops->owner);
3488
3489 done:
3490 return err;
3491 }
3492 EXPORT_SYMBOL(kernel_accept);
3493
3494 /**
3495 * kernel_connect - connect a socket (kernel space)
3496 * @sock: socket
3497 * @addr: address
3498 * @addrlen: address length
3499 * @flags: flags (O_NONBLOCK, ...)
3500 *
3501 * For datagram sockets, @addr is the address to which datagrams are sent
3502 * by default, and the only address from which datagrams are received.
3503 * For stream sockets, attempts to connect to @addr.
3504 * Returns 0 or an error code.
3505 */
3506
3507 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3508 int flags)
3509 {
3510 return sock->ops->connect(sock, addr, addrlen, flags);
3511 }
3512 EXPORT_SYMBOL(kernel_connect);
3513
3514 /**
3515 * kernel_getsockname - get the address which the socket is bound (kernel space)
3516 * @sock: socket
3517 * @addr: address holder
3518 *
3519 * Fills the @addr pointer with the address which the socket is bound.
3520 * Returns the length of the address in bytes or an error code.
3521 */
3522
3523 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3524 {
3525 return sock->ops->getname(sock, addr, 0);
3526 }
3527 EXPORT_SYMBOL(kernel_getsockname);
3528
3529 /**
3530 * kernel_getpeername - get the address which the socket is connected (kernel space)
3531 * @sock: socket
3532 * @addr: address holder
3533 *
3534 * Fills the @addr pointer with the address which the socket is connected.
3535 * Returns the length of the address in bytes or an error code.
3536 */
3537
3538 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3539 {
3540 return sock->ops->getname(sock, addr, 1);
3541 }
3542 EXPORT_SYMBOL(kernel_getpeername);
3543
3544 /**
3545 * kernel_sendpage - send a &page through a socket (kernel space)
3546 * @sock: socket
3547 * @page: page
3548 * @offset: page offset
3549 * @size: total size in bytes
3550 * @flags: flags (MSG_DONTWAIT, ...)
3551 *
3552 * Returns the total amount sent in bytes or an error.
3553 */
3554
3555 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3556 size_t size, int flags)
3557 {
3558 if (sock->ops->sendpage) {
3559 /* Warn in case the improper page to zero-copy send */
3560 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3561 return sock->ops->sendpage(sock, page, offset, size, flags);
3562 }
3563 return sock_no_sendpage(sock, page, offset, size, flags);
3564 }
3565 EXPORT_SYMBOL(kernel_sendpage);
3566
3567 /**
3568 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3569 * @sk: sock
3570 * @page: page
3571 * @offset: page offset
3572 * @size: total size in bytes
3573 * @flags: flags (MSG_DONTWAIT, ...)
3574 *
3575 * Returns the total amount sent in bytes or an error.
3576 * Caller must hold @sk.
3577 */
3578
3579 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3580 size_t size, int flags)
3581 {
3582 struct socket *sock = sk->sk_socket;
3583
3584 if (sock->ops->sendpage_locked)
3585 return sock->ops->sendpage_locked(sk, page, offset, size,
3586 flags);
3587
3588 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3589 }
3590 EXPORT_SYMBOL(kernel_sendpage_locked);
3591
3592 /**
3593 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3594 * @sock: socket
3595 * @how: connection part
3596 *
3597 * Returns 0 or an error.
3598 */
3599
3600 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3601 {
3602 return sock->ops->shutdown(sock, how);
3603 }
3604 EXPORT_SYMBOL(kernel_sock_shutdown);
3605
3606 /**
3607 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3608 * @sk: socket
3609 *
3610 * This routine returns the IP overhead imposed by a socket i.e.
3611 * the length of the underlying IP header, depending on whether
3612 * this is an IPv4 or IPv6 socket and the length from IP options turned
3613 * on at the socket. Assumes that the caller has a lock on the socket.
3614 */
3615
3616 u32 kernel_sock_ip_overhead(struct sock *sk)
3617 {
3618 struct inet_sock *inet;
3619 struct ip_options_rcu *opt;
3620 u32 overhead = 0;
3621 #if IS_ENABLED(CONFIG_IPV6)
3622 struct ipv6_pinfo *np;
3623 struct ipv6_txoptions *optv6 = NULL;
3624 #endif /* IS_ENABLED(CONFIG_IPV6) */
3625
3626 if (!sk)
3627 return overhead;
3628
3629 switch (sk->sk_family) {
3630 case AF_INET:
3631 inet = inet_sk(sk);
3632 overhead += sizeof(struct iphdr);
3633 opt = rcu_dereference_protected(inet->inet_opt,
3634 sock_owned_by_user(sk));
3635 if (opt)
3636 overhead += opt->opt.optlen;
3637 return overhead;
3638 #if IS_ENABLED(CONFIG_IPV6)
3639 case AF_INET6:
3640 np = inet6_sk(sk);
3641 overhead += sizeof(struct ipv6hdr);
3642 if (np)
3643 optv6 = rcu_dereference_protected(np->opt,
3644 sock_owned_by_user(sk));
3645 if (optv6)
3646 overhead += (optv6->opt_flen + optv6->opt_nflen);
3647 return overhead;
3648 #endif /* IS_ENABLED(CONFIG_IPV6) */
3649 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3650 return overhead;
3651 }
3652 }
3653 EXPORT_SYMBOL(kernel_sock_ip_overhead);