]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1082.87
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308 };
309
310 /*
311 * sockfs_dname() is called from d_path().
312 */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321 };
322
323 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
324 int flags, const char *dev_name, void *data)
325 {
326 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
327 &sockfs_dentry_operations, SOCKFS_MAGIC);
328 }
329
330 static struct vfsmount *sock_mnt __read_mostly;
331
332 static struct file_system_type sock_fs_type = {
333 .name = "sockfs",
334 .mount = sockfs_mount,
335 .kill_sb = kill_anon_super,
336 };
337
338 /*
339 * Obtains the first available file descriptor and sets it up for use.
340 *
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
348 *
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
353 */
354
355 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
356 {
357 struct qstr name = { .name = "" };
358 struct path path;
359 struct file *file;
360
361 if (dname) {
362 name.name = dname;
363 name.len = strlen(name.name);
364 } else if (sock->sk) {
365 name.name = sock->sk->sk_prot_creator->name;
366 name.len = strlen(name.name);
367 }
368 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
369 if (unlikely(!path.dentry))
370 return ERR_PTR(-ENOMEM);
371 path.mnt = mntget(sock_mnt);
372
373 d_instantiate(path.dentry, SOCK_INODE(sock));
374
375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
376 &socket_file_ops);
377 if (IS_ERR(file)) {
378 /* drop dentry, keep inode */
379 ihold(d_inode(path.dentry));
380 path_put(&path);
381 return file;
382 }
383
384 sock->file = file;
385 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
386 file->private_data = sock;
387 return file;
388 }
389 EXPORT_SYMBOL(sock_alloc_file);
390
391 static int sock_map_fd(struct socket *sock, int flags)
392 {
393 struct file *newfile;
394 int fd = get_unused_fd_flags(flags);
395 if (unlikely(fd < 0))
396 return fd;
397
398 newfile = sock_alloc_file(sock, flags, NULL);
399 if (likely(!IS_ERR(newfile))) {
400 fd_install(fd, newfile);
401 return fd;
402 }
403
404 put_unused_fd(fd);
405 return PTR_ERR(newfile);
406 }
407
408 struct socket *sock_from_file(struct file *file, int *err)
409 {
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
412
413 *err = -ENOTSOCK;
414 return NULL;
415 }
416 EXPORT_SYMBOL(sock_from_file);
417
418 /**
419 * sockfd_lookup - Go from a file number to its socket slot
420 * @fd: file handle
421 * @err: pointer to an error code return
422 *
423 * The file handle passed in is locked and the socket it is bound
424 * too is returned. If an error occurs the err pointer is overwritten
425 * with a negative errno code and NULL is returned. The function checks
426 * for both invalid handles and passing a handle which is not a socket.
427 *
428 * On a success the socket object pointer is returned.
429 */
430
431 struct socket *sockfd_lookup(int fd, int *err)
432 {
433 struct file *file;
434 struct socket *sock;
435
436 file = fget(fd);
437 if (!file) {
438 *err = -EBADF;
439 return NULL;
440 }
441
442 sock = sock_from_file(file, err);
443 if (!sock)
444 fput(file);
445 return sock;
446 }
447 EXPORT_SYMBOL(sockfd_lookup);
448
449 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
450 {
451 struct fd f = fdget(fd);
452 struct socket *sock;
453
454 *err = -EBADF;
455 if (f.file) {
456 sock = sock_from_file(f.file, err);
457 if (likely(sock)) {
458 *fput_needed = f.flags;
459 return sock;
460 }
461 fdput(f);
462 }
463 return NULL;
464 }
465
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t sockfs_getxattr(struct dentry *dentry,
470 const char *name, void *value, size_t size)
471 {
472 const char *proto_name;
473 size_t proto_size;
474 int error;
475
476 error = -ENODATA;
477 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
478 proto_name = dentry->d_name.name;
479 proto_size = strlen(proto_name);
480
481 if (value) {
482 error = -ERANGE;
483 if (proto_size + 1 > size)
484 goto out;
485
486 strncpy(value, proto_name, proto_size + 1);
487 }
488 error = proto_size + 1;
489 }
490
491 out:
492 return error;
493 }
494
495 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 size_t size)
497 {
498 ssize_t len;
499 ssize_t used = 0;
500
501 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
502 if (len < 0)
503 return len;
504 used += len;
505 if (buffer) {
506 if (size < used)
507 return -ERANGE;
508 buffer += len;
509 }
510
511 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
512 used += len;
513 if (buffer) {
514 if (size < used)
515 return -ERANGE;
516 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
517 buffer += len;
518 }
519
520 return used;
521 }
522
523 static const struct inode_operations sockfs_inode_ops = {
524 .getxattr = sockfs_getxattr,
525 .listxattr = sockfs_listxattr,
526 };
527
528 /**
529 * sock_alloc - allocate a socket
530 *
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
533 * NULL is returned.
534 */
535
536 static struct socket *sock_alloc(void)
537 {
538 struct inode *inode;
539 struct socket *sock;
540
541 inode = new_inode_pseudo(sock_mnt->mnt_sb);
542 if (!inode)
543 return NULL;
544
545 sock = SOCKET_I(inode);
546
547 kmemcheck_annotate_bitfield(sock, type);
548 inode->i_ino = get_next_ino();
549 inode->i_mode = S_IFSOCK | S_IRWXUGO;
550 inode->i_uid = current_fsuid();
551 inode->i_gid = current_fsgid();
552 inode->i_op = &sockfs_inode_ops;
553
554 this_cpu_add(sockets_in_use, 1);
555 return sock;
556 }
557
558 /**
559 * sock_release - close a socket
560 * @sock: socket to close
561 *
562 * The socket is released from the protocol stack if it has a release
563 * callback, and the inode is then released if the socket is bound to
564 * an inode not a file.
565 */
566
567 void sock_release(struct socket *sock)
568 {
569 if (sock->ops) {
570 struct module *owner = sock->ops->owner;
571
572 sock->ops->release(sock);
573 sock->ops = NULL;
574 module_put(owner);
575 }
576
577 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
578 pr_err("%s: fasync list not empty!\n", __func__);
579
580 this_cpu_sub(sockets_in_use, 1);
581 if (!sock->file) {
582 iput(SOCK_INODE(sock));
583 return;
584 }
585 sock->file = NULL;
586 }
587 EXPORT_SYMBOL(sock_release);
588
589 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
590 {
591 u8 flags = *tx_flags;
592
593 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
594 flags |= SKBTX_HW_TSTAMP;
595
596 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
597 flags |= SKBTX_SW_TSTAMP;
598
599 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
600 flags |= SKBTX_SCHED_TSTAMP;
601
602 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
603 flags |= SKBTX_ACK_TSTAMP;
604
605 *tx_flags = flags;
606 }
607 EXPORT_SYMBOL(__sock_tx_timestamp);
608
609 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
610 {
611 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
612 BUG_ON(ret == -EIOCBQUEUED);
613 return ret;
614 }
615
616 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
617 {
618 int err = security_socket_sendmsg(sock, msg,
619 msg_data_left(msg));
620
621 return err ?: sock_sendmsg_nosec(sock, msg);
622 }
623 EXPORT_SYMBOL(sock_sendmsg);
624
625 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
626 struct kvec *vec, size_t num, size_t size)
627 {
628 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
629 return sock_sendmsg(sock, msg);
630 }
631 EXPORT_SYMBOL(kernel_sendmsg);
632
633 /*
634 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
635 */
636 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
637 struct sk_buff *skb)
638 {
639 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
640 struct scm_timestamping tss;
641 int empty = 1;
642 struct skb_shared_hwtstamps *shhwtstamps =
643 skb_hwtstamps(skb);
644
645 /* Race occurred between timestamp enabling and packet
646 receiving. Fill in the current time for now. */
647 if (need_software_tstamp && skb->tstamp.tv64 == 0)
648 __net_timestamp(skb);
649
650 if (need_software_tstamp) {
651 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
652 struct timeval tv;
653 skb_get_timestamp(skb, &tv);
654 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
655 sizeof(tv), &tv);
656 } else {
657 struct timespec ts;
658 skb_get_timestampns(skb, &ts);
659 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
660 sizeof(ts), &ts);
661 }
662 }
663
664 memset(&tss, 0, sizeof(tss));
665 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
666 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
667 empty = 0;
668 if (shhwtstamps &&
669 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
670 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
671 empty = 0;
672 if (!empty)
673 put_cmsg(msg, SOL_SOCKET,
674 SCM_TIMESTAMPING, sizeof(tss), &tss);
675 }
676 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
677
678 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
679 struct sk_buff *skb)
680 {
681 int ack;
682
683 if (!sock_flag(sk, SOCK_WIFI_STATUS))
684 return;
685 if (!skb->wifi_acked_valid)
686 return;
687
688 ack = skb->wifi_acked;
689
690 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
691 }
692 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
693
694 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
695 struct sk_buff *skb)
696 {
697 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
698 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
699 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
700 }
701
702 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 sock_recv_timestamp(msg, sk, skb);
706 sock_recv_drops(msg, sk, skb);
707 }
708 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
709
710 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
711 int flags)
712 {
713 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
714 }
715
716 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
717 {
718 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
719
720 return err ?: sock_recvmsg_nosec(sock, msg, flags);
721 }
722 EXPORT_SYMBOL(sock_recvmsg);
723
724 /**
725 * kernel_recvmsg - Receive a message from a socket (kernel space)
726 * @sock: The socket to receive the message from
727 * @msg: Received message
728 * @vec: Input s/g array for message data
729 * @num: Size of input s/g array
730 * @size: Number of bytes to read
731 * @flags: Message flags (MSG_DONTWAIT, etc...)
732 *
733 * On return the msg structure contains the scatter/gather array passed in the
734 * vec argument. The array is modified so that it consists of the unfilled
735 * portion of the original array.
736 *
737 * The returned value is the total number of bytes received, or an error.
738 */
739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
740 struct kvec *vec, size_t num, size_t size, int flags)
741 {
742 mm_segment_t oldfs = get_fs();
743 int result;
744
745 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
746 set_fs(KERNEL_DS);
747 result = sock_recvmsg(sock, msg, flags);
748 set_fs(oldfs);
749 return result;
750 }
751 EXPORT_SYMBOL(kernel_recvmsg);
752
753 static ssize_t sock_sendpage(struct file *file, struct page *page,
754 int offset, size_t size, loff_t *ppos, int more)
755 {
756 struct socket *sock;
757 int flags;
758
759 sock = file->private_data;
760
761 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
762 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
763 flags |= more;
764
765 return kernel_sendpage(sock, page, offset, size, flags);
766 }
767
768 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
769 struct pipe_inode_info *pipe, size_t len,
770 unsigned int flags)
771 {
772 struct socket *sock = file->private_data;
773
774 if (unlikely(!sock->ops->splice_read))
775 return -EINVAL;
776
777 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
778 }
779
780 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
781 {
782 struct file *file = iocb->ki_filp;
783 struct socket *sock = file->private_data;
784 struct msghdr msg = {.msg_iter = *to,
785 .msg_iocb = iocb};
786 ssize_t res;
787
788 if (file->f_flags & O_NONBLOCK)
789 msg.msg_flags = MSG_DONTWAIT;
790
791 if (iocb->ki_pos != 0)
792 return -ESPIPE;
793
794 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
795 return 0;
796
797 res = sock_recvmsg(sock, &msg, msg.msg_flags);
798 *to = msg.msg_iter;
799 return res;
800 }
801
802 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
803 {
804 struct file *file = iocb->ki_filp;
805 struct socket *sock = file->private_data;
806 struct msghdr msg = {.msg_iter = *from,
807 .msg_iocb = iocb};
808 ssize_t res;
809
810 if (iocb->ki_pos != 0)
811 return -ESPIPE;
812
813 if (file->f_flags & O_NONBLOCK)
814 msg.msg_flags = MSG_DONTWAIT;
815
816 if (sock->type == SOCK_SEQPACKET)
817 msg.msg_flags |= MSG_EOR;
818
819 res = sock_sendmsg(sock, &msg);
820 *from = msg.msg_iter;
821 return res;
822 }
823
824 /*
825 * Atomic setting of ioctl hooks to avoid race
826 * with module unload.
827 */
828
829 static DEFINE_MUTEX(br_ioctl_mutex);
830 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
831
832 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
833 {
834 mutex_lock(&br_ioctl_mutex);
835 br_ioctl_hook = hook;
836 mutex_unlock(&br_ioctl_mutex);
837 }
838 EXPORT_SYMBOL(brioctl_set);
839
840 static DEFINE_MUTEX(vlan_ioctl_mutex);
841 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
842
843 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
844 {
845 mutex_lock(&vlan_ioctl_mutex);
846 vlan_ioctl_hook = hook;
847 mutex_unlock(&vlan_ioctl_mutex);
848 }
849 EXPORT_SYMBOL(vlan_ioctl_set);
850
851 static DEFINE_MUTEX(dlci_ioctl_mutex);
852 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
853
854 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
855 {
856 mutex_lock(&dlci_ioctl_mutex);
857 dlci_ioctl_hook = hook;
858 mutex_unlock(&dlci_ioctl_mutex);
859 }
860 EXPORT_SYMBOL(dlci_ioctl_set);
861
862 static long sock_do_ioctl(struct net *net, struct socket *sock,
863 unsigned int cmd, unsigned long arg)
864 {
865 int err;
866 void __user *argp = (void __user *)arg;
867
868 err = sock->ops->ioctl(sock, cmd, arg);
869
870 /*
871 * If this ioctl is unknown try to hand it down
872 * to the NIC driver.
873 */
874 if (err == -ENOIOCTLCMD)
875 err = dev_ioctl(net, cmd, argp);
876
877 return err;
878 }
879
880 /*
881 * With an ioctl, arg may well be a user mode pointer, but we don't know
882 * what to do with it - that's up to the protocol still.
883 */
884
885 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
886 {
887 struct socket *sock;
888 struct sock *sk;
889 void __user *argp = (void __user *)arg;
890 int pid, err;
891 struct net *net;
892
893 sock = file->private_data;
894 sk = sock->sk;
895 net = sock_net(sk);
896 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
897 err = dev_ioctl(net, cmd, argp);
898 } else
899 #ifdef CONFIG_WEXT_CORE
900 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
901 err = dev_ioctl(net, cmd, argp);
902 } else
903 #endif
904 switch (cmd) {
905 case FIOSETOWN:
906 case SIOCSPGRP:
907 err = -EFAULT;
908 if (get_user(pid, (int __user *)argp))
909 break;
910 f_setown(sock->file, pid, 1);
911 err = 0;
912 break;
913 case FIOGETOWN:
914 case SIOCGPGRP:
915 err = put_user(f_getown(sock->file),
916 (int __user *)argp);
917 break;
918 case SIOCGIFBR:
919 case SIOCSIFBR:
920 case SIOCBRADDBR:
921 case SIOCBRDELBR:
922 err = -ENOPKG;
923 if (!br_ioctl_hook)
924 request_module("bridge");
925
926 mutex_lock(&br_ioctl_mutex);
927 if (br_ioctl_hook)
928 err = br_ioctl_hook(net, cmd, argp);
929 mutex_unlock(&br_ioctl_mutex);
930 break;
931 case SIOCGIFVLAN:
932 case SIOCSIFVLAN:
933 err = -ENOPKG;
934 if (!vlan_ioctl_hook)
935 request_module("8021q");
936
937 mutex_lock(&vlan_ioctl_mutex);
938 if (vlan_ioctl_hook)
939 err = vlan_ioctl_hook(net, argp);
940 mutex_unlock(&vlan_ioctl_mutex);
941 break;
942 case SIOCADDDLCI:
943 case SIOCDELDLCI:
944 err = -ENOPKG;
945 if (!dlci_ioctl_hook)
946 request_module("dlci");
947
948 mutex_lock(&dlci_ioctl_mutex);
949 if (dlci_ioctl_hook)
950 err = dlci_ioctl_hook(cmd, argp);
951 mutex_unlock(&dlci_ioctl_mutex);
952 break;
953 default:
954 err = sock_do_ioctl(net, sock, cmd, arg);
955 break;
956 }
957 return err;
958 }
959
960 int sock_create_lite(int family, int type, int protocol, struct socket **res)
961 {
962 int err;
963 struct socket *sock = NULL;
964
965 err = security_socket_create(family, type, protocol, 1);
966 if (err)
967 goto out;
968
969 sock = sock_alloc();
970 if (!sock) {
971 err = -ENOMEM;
972 goto out;
973 }
974
975 sock->type = type;
976 err = security_socket_post_create(sock, family, type, protocol, 1);
977 if (err)
978 goto out_release;
979
980 out:
981 *res = sock;
982 return err;
983 out_release:
984 sock_release(sock);
985 sock = NULL;
986 goto out;
987 }
988 EXPORT_SYMBOL(sock_create_lite);
989
990 /* No kernel lock held - perfect */
991 static unsigned int sock_poll(struct file *file, poll_table *wait)
992 {
993 unsigned int busy_flag = 0;
994 struct socket *sock;
995
996 /*
997 * We can't return errors to poll, so it's either yes or no.
998 */
999 sock = file->private_data;
1000
1001 if (sk_can_busy_loop(sock->sk)) {
1002 /* this socket can poll_ll so tell the system call */
1003 busy_flag = POLL_BUSY_LOOP;
1004
1005 /* once, only if requested by syscall */
1006 if (wait && (wait->_key & POLL_BUSY_LOOP))
1007 sk_busy_loop(sock->sk, 1);
1008 }
1009
1010 return busy_flag | sock->ops->poll(file, sock, wait);
1011 }
1012
1013 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1014 {
1015 struct socket *sock = file->private_data;
1016
1017 return sock->ops->mmap(file, sock, vma);
1018 }
1019
1020 static int sock_close(struct inode *inode, struct file *filp)
1021 {
1022 sock_release(SOCKET_I(inode));
1023 return 0;
1024 }
1025
1026 /*
1027 * Update the socket async list
1028 *
1029 * Fasync_list locking strategy.
1030 *
1031 * 1. fasync_list is modified only under process context socket lock
1032 * i.e. under semaphore.
1033 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1034 * or under socket lock
1035 */
1036
1037 static int sock_fasync(int fd, struct file *filp, int on)
1038 {
1039 struct socket *sock = filp->private_data;
1040 struct sock *sk = sock->sk;
1041 struct socket_wq *wq;
1042
1043 if (sk == NULL)
1044 return -EINVAL;
1045
1046 lock_sock(sk);
1047 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1048 fasync_helper(fd, filp, on, &wq->fasync_list);
1049
1050 if (!wq->fasync_list)
1051 sock_reset_flag(sk, SOCK_FASYNC);
1052 else
1053 sock_set_flag(sk, SOCK_FASYNC);
1054
1055 release_sock(sk);
1056 return 0;
1057 }
1058
1059 /* This function may be called only under rcu_lock */
1060
1061 int sock_wake_async(struct socket_wq *wq, int how, int band)
1062 {
1063 if (!wq || !wq->fasync_list)
1064 return -1;
1065
1066 switch (how) {
1067 case SOCK_WAKE_WAITD:
1068 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1069 break;
1070 goto call_kill;
1071 case SOCK_WAKE_SPACE:
1072 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1073 break;
1074 /* fall through */
1075 case SOCK_WAKE_IO:
1076 call_kill:
1077 kill_fasync(&wq->fasync_list, SIGIO, band);
1078 break;
1079 case SOCK_WAKE_URG:
1080 kill_fasync(&wq->fasync_list, SIGURG, band);
1081 }
1082
1083 return 0;
1084 }
1085 EXPORT_SYMBOL(sock_wake_async);
1086
1087 int __sock_create(struct net *net, int family, int type, int protocol,
1088 struct socket **res, int kern)
1089 {
1090 int err;
1091 struct socket *sock;
1092 const struct net_proto_family *pf;
1093
1094 /*
1095 * Check protocol is in range
1096 */
1097 if (family < 0 || family >= NPROTO)
1098 return -EAFNOSUPPORT;
1099 if (type < 0 || type >= SOCK_MAX)
1100 return -EINVAL;
1101
1102 /* Compatibility.
1103
1104 This uglymoron is moved from INET layer to here to avoid
1105 deadlock in module load.
1106 */
1107 if (family == PF_INET && type == SOCK_PACKET) {
1108 static int warned;
1109 if (!warned) {
1110 warned = 1;
1111 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1112 current->comm);
1113 }
1114 family = PF_PACKET;
1115 }
1116
1117 err = security_socket_create(family, type, protocol, kern);
1118 if (err)
1119 return err;
1120
1121 /*
1122 * Allocate the socket and allow the family to set things up. if
1123 * the protocol is 0, the family is instructed to select an appropriate
1124 * default.
1125 */
1126 sock = sock_alloc();
1127 if (!sock) {
1128 net_warn_ratelimited("socket: no more sockets\n");
1129 return -ENFILE; /* Not exactly a match, but its the
1130 closest posix thing */
1131 }
1132
1133 sock->type = type;
1134
1135 #ifdef CONFIG_MODULES
1136 /* Attempt to load a protocol module if the find failed.
1137 *
1138 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1139 * requested real, full-featured networking support upon configuration.
1140 * Otherwise module support will break!
1141 */
1142 if (rcu_access_pointer(net_families[family]) == NULL)
1143 request_module("net-pf-%d", family);
1144 #endif
1145
1146 rcu_read_lock();
1147 pf = rcu_dereference(net_families[family]);
1148 err = -EAFNOSUPPORT;
1149 if (!pf)
1150 goto out_release;
1151
1152 /*
1153 * We will call the ->create function, that possibly is in a loadable
1154 * module, so we have to bump that loadable module refcnt first.
1155 */
1156 if (!try_module_get(pf->owner))
1157 goto out_release;
1158
1159 /* Now protected by module ref count */
1160 rcu_read_unlock();
1161
1162 err = pf->create(net, sock, protocol, kern);
1163 if (err < 0)
1164 goto out_module_put;
1165
1166 /*
1167 * Now to bump the refcnt of the [loadable] module that owns this
1168 * socket at sock_release time we decrement its refcnt.
1169 */
1170 if (!try_module_get(sock->ops->owner))
1171 goto out_module_busy;
1172
1173 /*
1174 * Now that we're done with the ->create function, the [loadable]
1175 * module can have its refcnt decremented
1176 */
1177 module_put(pf->owner);
1178 err = security_socket_post_create(sock, family, type, protocol, kern);
1179 if (err)
1180 goto out_sock_release;
1181 *res = sock;
1182
1183 return 0;
1184
1185 out_module_busy:
1186 err = -EAFNOSUPPORT;
1187 out_module_put:
1188 sock->ops = NULL;
1189 module_put(pf->owner);
1190 out_sock_release:
1191 sock_release(sock);
1192 return err;
1193
1194 out_release:
1195 rcu_read_unlock();
1196 goto out_sock_release;
1197 }
1198 EXPORT_SYMBOL(__sock_create);
1199
1200 int sock_create(int family, int type, int protocol, struct socket **res)
1201 {
1202 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1203 }
1204 EXPORT_SYMBOL(sock_create);
1205
1206 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1207 {
1208 return __sock_create(net, family, type, protocol, res, 1);
1209 }
1210 EXPORT_SYMBOL(sock_create_kern);
1211
1212 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1213 {
1214 int retval;
1215 struct socket *sock;
1216 int flags;
1217
1218 /* Check the SOCK_* constants for consistency. */
1219 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1220 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1221 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1222 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1223
1224 flags = type & ~SOCK_TYPE_MASK;
1225 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1226 return -EINVAL;
1227 type &= SOCK_TYPE_MASK;
1228
1229 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1230 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1231
1232 retval = sock_create(family, type, protocol, &sock);
1233 if (retval < 0)
1234 goto out;
1235
1236 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1237 if (retval < 0)
1238 goto out_release;
1239
1240 out:
1241 /* It may be already another descriptor 8) Not kernel problem. */
1242 return retval;
1243
1244 out_release:
1245 sock_release(sock);
1246 return retval;
1247 }
1248
1249 /*
1250 * Create a pair of connected sockets.
1251 */
1252
1253 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1254 int __user *, usockvec)
1255 {
1256 struct socket *sock1, *sock2;
1257 int fd1, fd2, err;
1258 struct file *newfile1, *newfile2;
1259 int flags;
1260
1261 flags = type & ~SOCK_TYPE_MASK;
1262 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1263 return -EINVAL;
1264 type &= SOCK_TYPE_MASK;
1265
1266 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1267 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1268
1269 /*
1270 * Obtain the first socket and check if the underlying protocol
1271 * supports the socketpair call.
1272 */
1273
1274 err = sock_create(family, type, protocol, &sock1);
1275 if (err < 0)
1276 goto out;
1277
1278 err = sock_create(family, type, protocol, &sock2);
1279 if (err < 0)
1280 goto out_release_1;
1281
1282 err = sock1->ops->socketpair(sock1, sock2);
1283 if (err < 0)
1284 goto out_release_both;
1285
1286 fd1 = get_unused_fd_flags(flags);
1287 if (unlikely(fd1 < 0)) {
1288 err = fd1;
1289 goto out_release_both;
1290 }
1291
1292 fd2 = get_unused_fd_flags(flags);
1293 if (unlikely(fd2 < 0)) {
1294 err = fd2;
1295 goto out_put_unused_1;
1296 }
1297
1298 newfile1 = sock_alloc_file(sock1, flags, NULL);
1299 if (IS_ERR(newfile1)) {
1300 err = PTR_ERR(newfile1);
1301 goto out_put_unused_both;
1302 }
1303
1304 newfile2 = sock_alloc_file(sock2, flags, NULL);
1305 if (IS_ERR(newfile2)) {
1306 err = PTR_ERR(newfile2);
1307 goto out_fput_1;
1308 }
1309
1310 err = put_user(fd1, &usockvec[0]);
1311 if (err)
1312 goto out_fput_both;
1313
1314 err = put_user(fd2, &usockvec[1]);
1315 if (err)
1316 goto out_fput_both;
1317
1318 audit_fd_pair(fd1, fd2);
1319
1320 fd_install(fd1, newfile1);
1321 fd_install(fd2, newfile2);
1322 /* fd1 and fd2 may be already another descriptors.
1323 * Not kernel problem.
1324 */
1325
1326 return 0;
1327
1328 out_fput_both:
1329 fput(newfile2);
1330 fput(newfile1);
1331 put_unused_fd(fd2);
1332 put_unused_fd(fd1);
1333 goto out;
1334
1335 out_fput_1:
1336 fput(newfile1);
1337 put_unused_fd(fd2);
1338 put_unused_fd(fd1);
1339 sock_release(sock2);
1340 goto out;
1341
1342 out_put_unused_both:
1343 put_unused_fd(fd2);
1344 out_put_unused_1:
1345 put_unused_fd(fd1);
1346 out_release_both:
1347 sock_release(sock2);
1348 out_release_1:
1349 sock_release(sock1);
1350 out:
1351 return err;
1352 }
1353
1354 /*
1355 * Bind a name to a socket. Nothing much to do here since it's
1356 * the protocol's responsibility to handle the local address.
1357 *
1358 * We move the socket address to kernel space before we call
1359 * the protocol layer (having also checked the address is ok).
1360 */
1361
1362 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1363 {
1364 struct socket *sock;
1365 struct sockaddr_storage address;
1366 int err, fput_needed;
1367
1368 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1369 if (sock) {
1370 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1371 if (err >= 0) {
1372 err = security_socket_bind(sock,
1373 (struct sockaddr *)&address,
1374 addrlen);
1375 if (!err)
1376 err = sock->ops->bind(sock,
1377 (struct sockaddr *)
1378 &address, addrlen);
1379 }
1380 fput_light(sock->file, fput_needed);
1381 }
1382 return err;
1383 }
1384
1385 /*
1386 * Perform a listen. Basically, we allow the protocol to do anything
1387 * necessary for a listen, and if that works, we mark the socket as
1388 * ready for listening.
1389 */
1390
1391 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1392 {
1393 struct socket *sock;
1394 int err, fput_needed;
1395 int somaxconn;
1396
1397 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1398 if (sock) {
1399 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1400 if ((unsigned int)backlog > somaxconn)
1401 backlog = somaxconn;
1402
1403 err = security_socket_listen(sock, backlog);
1404 if (!err)
1405 err = sock->ops->listen(sock, backlog);
1406
1407 fput_light(sock->file, fput_needed);
1408 }
1409 return err;
1410 }
1411
1412 /*
1413 * For accept, we attempt to create a new socket, set up the link
1414 * with the client, wake up the client, then return the new
1415 * connected fd. We collect the address of the connector in kernel
1416 * space and move it to user at the very end. This is unclean because
1417 * we open the socket then return an error.
1418 *
1419 * 1003.1g adds the ability to recvmsg() to query connection pending
1420 * status to recvmsg. We need to add that support in a way thats
1421 * clean when we restucture accept also.
1422 */
1423
1424 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1425 int __user *, upeer_addrlen, int, flags)
1426 {
1427 struct socket *sock, *newsock;
1428 struct file *newfile;
1429 int err, len, newfd, fput_needed;
1430 struct sockaddr_storage address;
1431
1432 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1433 return -EINVAL;
1434
1435 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1436 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1437
1438 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1439 if (!sock)
1440 goto out;
1441
1442 err = -ENFILE;
1443 newsock = sock_alloc();
1444 if (!newsock)
1445 goto out_put;
1446
1447 newsock->type = sock->type;
1448 newsock->ops = sock->ops;
1449
1450 /*
1451 * We don't need try_module_get here, as the listening socket (sock)
1452 * has the protocol module (sock->ops->owner) held.
1453 */
1454 __module_get(newsock->ops->owner);
1455
1456 newfd = get_unused_fd_flags(flags);
1457 if (unlikely(newfd < 0)) {
1458 err = newfd;
1459 sock_release(newsock);
1460 goto out_put;
1461 }
1462 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1463 if (IS_ERR(newfile)) {
1464 err = PTR_ERR(newfile);
1465 put_unused_fd(newfd);
1466 sock_release(newsock);
1467 goto out_put;
1468 }
1469
1470 err = security_socket_accept(sock, newsock);
1471 if (err)
1472 goto out_fd;
1473
1474 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1475 if (err < 0)
1476 goto out_fd;
1477
1478 if (upeer_sockaddr) {
1479 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1480 &len, 2) < 0) {
1481 err = -ECONNABORTED;
1482 goto out_fd;
1483 }
1484 err = move_addr_to_user(&address,
1485 len, upeer_sockaddr, upeer_addrlen);
1486 if (err < 0)
1487 goto out_fd;
1488 }
1489
1490 /* File flags are not inherited via accept() unlike another OSes. */
1491
1492 fd_install(newfd, newfile);
1493 err = newfd;
1494
1495 out_put:
1496 fput_light(sock->file, fput_needed);
1497 out:
1498 return err;
1499 out_fd:
1500 fput(newfile);
1501 put_unused_fd(newfd);
1502 goto out_put;
1503 }
1504
1505 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1506 int __user *, upeer_addrlen)
1507 {
1508 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1509 }
1510
1511 /*
1512 * Attempt to connect to a socket with the server address. The address
1513 * is in user space so we verify it is OK and move it to kernel space.
1514 *
1515 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1516 * break bindings
1517 *
1518 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1519 * other SEQPACKET protocols that take time to connect() as it doesn't
1520 * include the -EINPROGRESS status for such sockets.
1521 */
1522
1523 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1524 int, addrlen)
1525 {
1526 struct socket *sock;
1527 struct sockaddr_storage address;
1528 int err, fput_needed;
1529
1530 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 if (!sock)
1532 goto out;
1533 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1534 if (err < 0)
1535 goto out_put;
1536
1537 err =
1538 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1539 if (err)
1540 goto out_put;
1541
1542 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1543 sock->file->f_flags);
1544 out_put:
1545 fput_light(sock->file, fput_needed);
1546 out:
1547 return err;
1548 }
1549
1550 /*
1551 * Get the local address ('name') of a socket object. Move the obtained
1552 * name to user space.
1553 */
1554
1555 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1556 int __user *, usockaddr_len)
1557 {
1558 struct socket *sock;
1559 struct sockaddr_storage address;
1560 int len, err, fput_needed;
1561
1562 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563 if (!sock)
1564 goto out;
1565
1566 err = security_socket_getsockname(sock);
1567 if (err)
1568 goto out_put;
1569
1570 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1571 if (err)
1572 goto out_put;
1573 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1574
1575 out_put:
1576 fput_light(sock->file, fput_needed);
1577 out:
1578 return err;
1579 }
1580
1581 /*
1582 * Get the remote address ('name') of a socket object. Move the obtained
1583 * name to user space.
1584 */
1585
1586 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1587 int __user *, usockaddr_len)
1588 {
1589 struct socket *sock;
1590 struct sockaddr_storage address;
1591 int len, err, fput_needed;
1592
1593 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1594 if (sock != NULL) {
1595 err = security_socket_getpeername(sock);
1596 if (err) {
1597 fput_light(sock->file, fput_needed);
1598 return err;
1599 }
1600
1601 err =
1602 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1603 1);
1604 if (!err)
1605 err = move_addr_to_user(&address, len, usockaddr,
1606 usockaddr_len);
1607 fput_light(sock->file, fput_needed);
1608 }
1609 return err;
1610 }
1611
1612 /*
1613 * Send a datagram to a given address. We move the address into kernel
1614 * space and check the user space data area is readable before invoking
1615 * the protocol.
1616 */
1617
1618 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1619 unsigned int, flags, struct sockaddr __user *, addr,
1620 int, addr_len)
1621 {
1622 struct socket *sock;
1623 struct sockaddr_storage address;
1624 int err;
1625 struct msghdr msg;
1626 struct iovec iov;
1627 int fput_needed;
1628
1629 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1630 if (unlikely(err))
1631 return err;
1632 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1633 if (!sock)
1634 goto out;
1635
1636 msg.msg_name = NULL;
1637 msg.msg_control = NULL;
1638 msg.msg_controllen = 0;
1639 msg.msg_namelen = 0;
1640 if (addr) {
1641 err = move_addr_to_kernel(addr, addr_len, &address);
1642 if (err < 0)
1643 goto out_put;
1644 msg.msg_name = (struct sockaddr *)&address;
1645 msg.msg_namelen = addr_len;
1646 }
1647 if (sock->file->f_flags & O_NONBLOCK)
1648 flags |= MSG_DONTWAIT;
1649 msg.msg_flags = flags;
1650 err = sock_sendmsg(sock, &msg);
1651
1652 out_put:
1653 fput_light(sock->file, fput_needed);
1654 out:
1655 return err;
1656 }
1657
1658 /*
1659 * Send a datagram down a socket.
1660 */
1661
1662 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1663 unsigned int, flags)
1664 {
1665 return sys_sendto(fd, buff, len, flags, NULL, 0);
1666 }
1667
1668 /*
1669 * Receive a frame from the socket and optionally record the address of the
1670 * sender. We verify the buffers are writable and if needed move the
1671 * sender address from kernel to user space.
1672 */
1673
1674 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1675 unsigned int, flags, struct sockaddr __user *, addr,
1676 int __user *, addr_len)
1677 {
1678 struct socket *sock;
1679 struct iovec iov;
1680 struct msghdr msg;
1681 struct sockaddr_storage address;
1682 int err, err2;
1683 int fput_needed;
1684
1685 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1686 if (unlikely(err))
1687 return err;
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (!sock)
1690 goto out;
1691
1692 msg.msg_control = NULL;
1693 msg.msg_controllen = 0;
1694 /* Save some cycles and don't copy the address if not needed */
1695 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1696 /* We assume all kernel code knows the size of sockaddr_storage */
1697 msg.msg_namelen = 0;
1698 msg.msg_iocb = NULL;
1699 msg.msg_flags = 0;
1700 if (sock->file->f_flags & O_NONBLOCK)
1701 flags |= MSG_DONTWAIT;
1702 err = sock_recvmsg(sock, &msg, flags);
1703
1704 if (err >= 0 && addr != NULL) {
1705 err2 = move_addr_to_user(&address,
1706 msg.msg_namelen, addr, addr_len);
1707 if (err2 < 0)
1708 err = err2;
1709 }
1710
1711 fput_light(sock->file, fput_needed);
1712 out:
1713 return err;
1714 }
1715
1716 /*
1717 * Receive a datagram from a socket.
1718 */
1719
1720 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1721 unsigned int, flags)
1722 {
1723 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1724 }
1725
1726 /*
1727 * Set a socket option. Because we don't know the option lengths we have
1728 * to pass the user mode parameter for the protocols to sort out.
1729 */
1730
1731 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1732 char __user *, optval, int, optlen)
1733 {
1734 int err, fput_needed;
1735 struct socket *sock;
1736
1737 if (optlen < 0)
1738 return -EINVAL;
1739
1740 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1741 if (sock != NULL) {
1742 err = security_socket_setsockopt(sock, level, optname);
1743 if (err)
1744 goto out_put;
1745
1746 if (level == SOL_SOCKET)
1747 err =
1748 sock_setsockopt(sock, level, optname, optval,
1749 optlen);
1750 else
1751 err =
1752 sock->ops->setsockopt(sock, level, optname, optval,
1753 optlen);
1754 out_put:
1755 fput_light(sock->file, fput_needed);
1756 }
1757 return err;
1758 }
1759
1760 /*
1761 * Get a socket option. Because we don't know the option lengths we have
1762 * to pass a user mode parameter for the protocols to sort out.
1763 */
1764
1765 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1766 char __user *, optval, int __user *, optlen)
1767 {
1768 int err, fput_needed;
1769 struct socket *sock;
1770
1771 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1772 if (sock != NULL) {
1773 err = security_socket_getsockopt(sock, level, optname);
1774 if (err)
1775 goto out_put;
1776
1777 if (level == SOL_SOCKET)
1778 err =
1779 sock_getsockopt(sock, level, optname, optval,
1780 optlen);
1781 else
1782 err =
1783 sock->ops->getsockopt(sock, level, optname, optval,
1784 optlen);
1785 out_put:
1786 fput_light(sock->file, fput_needed);
1787 }
1788 return err;
1789 }
1790
1791 /*
1792 * Shutdown a socket.
1793 */
1794
1795 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1796 {
1797 int err, fput_needed;
1798 struct socket *sock;
1799
1800 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1801 if (sock != NULL) {
1802 err = security_socket_shutdown(sock, how);
1803 if (!err)
1804 err = sock->ops->shutdown(sock, how);
1805 fput_light(sock->file, fput_needed);
1806 }
1807 return err;
1808 }
1809
1810 /* A couple of helpful macros for getting the address of the 32/64 bit
1811 * fields which are the same type (int / unsigned) on our platforms.
1812 */
1813 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1814 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1815 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1816
1817 struct used_address {
1818 struct sockaddr_storage name;
1819 unsigned int name_len;
1820 };
1821
1822 static int copy_msghdr_from_user(struct msghdr *kmsg,
1823 struct user_msghdr __user *umsg,
1824 struct sockaddr __user **save_addr,
1825 struct iovec **iov)
1826 {
1827 struct sockaddr __user *uaddr;
1828 struct iovec __user *uiov;
1829 size_t nr_segs;
1830 ssize_t err;
1831
1832 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1833 __get_user(uaddr, &umsg->msg_name) ||
1834 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1835 __get_user(uiov, &umsg->msg_iov) ||
1836 __get_user(nr_segs, &umsg->msg_iovlen) ||
1837 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1838 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1839 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1840 return -EFAULT;
1841
1842 if (!uaddr)
1843 kmsg->msg_namelen = 0;
1844
1845 if (kmsg->msg_namelen < 0)
1846 return -EINVAL;
1847
1848 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1849 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1850
1851 if (save_addr)
1852 *save_addr = uaddr;
1853
1854 if (uaddr && kmsg->msg_namelen) {
1855 if (!save_addr) {
1856 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1857 kmsg->msg_name);
1858 if (err < 0)
1859 return err;
1860 }
1861 } else {
1862 kmsg->msg_name = NULL;
1863 kmsg->msg_namelen = 0;
1864 }
1865
1866 if (nr_segs > UIO_MAXIOV)
1867 return -EMSGSIZE;
1868
1869 kmsg->msg_iocb = NULL;
1870
1871 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1872 UIO_FASTIOV, iov, &kmsg->msg_iter);
1873 }
1874
1875 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1876 struct msghdr *msg_sys, unsigned int flags,
1877 struct used_address *used_address)
1878 {
1879 struct compat_msghdr __user *msg_compat =
1880 (struct compat_msghdr __user *)msg;
1881 struct sockaddr_storage address;
1882 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1883 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1884 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1885 /* 20 is size of ipv6_pktinfo */
1886 unsigned char *ctl_buf = ctl;
1887 int ctl_len;
1888 ssize_t err;
1889
1890 msg_sys->msg_name = &address;
1891
1892 if (MSG_CMSG_COMPAT & flags)
1893 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1894 else
1895 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1896 if (err < 0)
1897 return err;
1898
1899 err = -ENOBUFS;
1900
1901 if (msg_sys->msg_controllen > INT_MAX)
1902 goto out_freeiov;
1903 ctl_len = msg_sys->msg_controllen;
1904 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1905 err =
1906 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1907 sizeof(ctl));
1908 if (err)
1909 goto out_freeiov;
1910 ctl_buf = msg_sys->msg_control;
1911 ctl_len = msg_sys->msg_controllen;
1912 } else if (ctl_len) {
1913 if (ctl_len > sizeof(ctl)) {
1914 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1915 if (ctl_buf == NULL)
1916 goto out_freeiov;
1917 }
1918 err = -EFAULT;
1919 /*
1920 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1921 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1922 * checking falls down on this.
1923 */
1924 if (copy_from_user(ctl_buf,
1925 (void __user __force *)msg_sys->msg_control,
1926 ctl_len))
1927 goto out_freectl;
1928 msg_sys->msg_control = ctl_buf;
1929 }
1930 msg_sys->msg_flags = flags;
1931
1932 if (sock->file->f_flags & O_NONBLOCK)
1933 msg_sys->msg_flags |= MSG_DONTWAIT;
1934 /*
1935 * If this is sendmmsg() and current destination address is same as
1936 * previously succeeded address, omit asking LSM's decision.
1937 * used_address->name_len is initialized to UINT_MAX so that the first
1938 * destination address never matches.
1939 */
1940 if (used_address && msg_sys->msg_name &&
1941 used_address->name_len == msg_sys->msg_namelen &&
1942 !memcmp(&used_address->name, msg_sys->msg_name,
1943 used_address->name_len)) {
1944 err = sock_sendmsg_nosec(sock, msg_sys);
1945 goto out_freectl;
1946 }
1947 err = sock_sendmsg(sock, msg_sys);
1948 /*
1949 * If this is sendmmsg() and sending to current destination address was
1950 * successful, remember it.
1951 */
1952 if (used_address && err >= 0) {
1953 used_address->name_len = msg_sys->msg_namelen;
1954 if (msg_sys->msg_name)
1955 memcpy(&used_address->name, msg_sys->msg_name,
1956 used_address->name_len);
1957 }
1958
1959 out_freectl:
1960 if (ctl_buf != ctl)
1961 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1962 out_freeiov:
1963 kfree(iov);
1964 return err;
1965 }
1966
1967 /*
1968 * BSD sendmsg interface
1969 */
1970
1971 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1972 {
1973 int fput_needed, err;
1974 struct msghdr msg_sys;
1975 struct socket *sock;
1976
1977 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1978 if (!sock)
1979 goto out;
1980
1981 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1982
1983 fput_light(sock->file, fput_needed);
1984 out:
1985 return err;
1986 }
1987
1988 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1989 {
1990 if (flags & MSG_CMSG_COMPAT)
1991 return -EINVAL;
1992 return __sys_sendmsg(fd, msg, flags);
1993 }
1994
1995 /*
1996 * Linux sendmmsg interface
1997 */
1998
1999 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2000 unsigned int flags)
2001 {
2002 int fput_needed, err, datagrams;
2003 struct socket *sock;
2004 struct mmsghdr __user *entry;
2005 struct compat_mmsghdr __user *compat_entry;
2006 struct msghdr msg_sys;
2007 struct used_address used_address;
2008
2009 if (vlen > UIO_MAXIOV)
2010 vlen = UIO_MAXIOV;
2011
2012 datagrams = 0;
2013
2014 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2015 if (!sock)
2016 return err;
2017
2018 used_address.name_len = UINT_MAX;
2019 entry = mmsg;
2020 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2021 err = 0;
2022
2023 while (datagrams < vlen) {
2024 if (MSG_CMSG_COMPAT & flags) {
2025 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2026 &msg_sys, flags, &used_address);
2027 if (err < 0)
2028 break;
2029 err = __put_user(err, &compat_entry->msg_len);
2030 ++compat_entry;
2031 } else {
2032 err = ___sys_sendmsg(sock,
2033 (struct user_msghdr __user *)entry,
2034 &msg_sys, flags, &used_address);
2035 if (err < 0)
2036 break;
2037 err = put_user(err, &entry->msg_len);
2038 ++entry;
2039 }
2040
2041 if (err)
2042 break;
2043 ++datagrams;
2044 if (msg_data_left(&msg_sys))
2045 break;
2046 }
2047
2048 fput_light(sock->file, fput_needed);
2049
2050 /* We only return an error if no datagrams were able to be sent */
2051 if (datagrams != 0)
2052 return datagrams;
2053
2054 return err;
2055 }
2056
2057 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2058 unsigned int, vlen, unsigned int, flags)
2059 {
2060 if (flags & MSG_CMSG_COMPAT)
2061 return -EINVAL;
2062 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2063 }
2064
2065 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2066 struct msghdr *msg_sys, unsigned int flags, int nosec)
2067 {
2068 struct compat_msghdr __user *msg_compat =
2069 (struct compat_msghdr __user *)msg;
2070 struct iovec iovstack[UIO_FASTIOV];
2071 struct iovec *iov = iovstack;
2072 unsigned long cmsg_ptr;
2073 int len;
2074 ssize_t err;
2075
2076 /* kernel mode address */
2077 struct sockaddr_storage addr;
2078
2079 /* user mode address pointers */
2080 struct sockaddr __user *uaddr;
2081 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2082
2083 msg_sys->msg_name = &addr;
2084
2085 if (MSG_CMSG_COMPAT & flags)
2086 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2087 else
2088 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2089 if (err < 0)
2090 return err;
2091
2092 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2093 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2094
2095 /* We assume all kernel code knows the size of sockaddr_storage */
2096 msg_sys->msg_namelen = 0;
2097
2098 if (sock->file->f_flags & O_NONBLOCK)
2099 flags |= MSG_DONTWAIT;
2100 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2101 if (err < 0)
2102 goto out_freeiov;
2103 len = err;
2104
2105 if (uaddr != NULL) {
2106 err = move_addr_to_user(&addr,
2107 msg_sys->msg_namelen, uaddr,
2108 uaddr_len);
2109 if (err < 0)
2110 goto out_freeiov;
2111 }
2112 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2113 COMPAT_FLAGS(msg));
2114 if (err)
2115 goto out_freeiov;
2116 if (MSG_CMSG_COMPAT & flags)
2117 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2118 &msg_compat->msg_controllen);
2119 else
2120 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2121 &msg->msg_controllen);
2122 if (err)
2123 goto out_freeiov;
2124 err = len;
2125
2126 out_freeiov:
2127 kfree(iov);
2128 return err;
2129 }
2130
2131 /*
2132 * BSD recvmsg interface
2133 */
2134
2135 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2136 {
2137 int fput_needed, err;
2138 struct msghdr msg_sys;
2139 struct socket *sock;
2140
2141 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2142 if (!sock)
2143 goto out;
2144
2145 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2146
2147 fput_light(sock->file, fput_needed);
2148 out:
2149 return err;
2150 }
2151
2152 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2153 unsigned int, flags)
2154 {
2155 if (flags & MSG_CMSG_COMPAT)
2156 return -EINVAL;
2157 return __sys_recvmsg(fd, msg, flags);
2158 }
2159
2160 /*
2161 * Linux recvmmsg interface
2162 */
2163
2164 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2165 unsigned int flags, struct timespec *timeout)
2166 {
2167 int fput_needed, err, datagrams;
2168 struct socket *sock;
2169 struct mmsghdr __user *entry;
2170 struct compat_mmsghdr __user *compat_entry;
2171 struct msghdr msg_sys;
2172 struct timespec end_time;
2173
2174 if (timeout &&
2175 poll_select_set_timeout(&end_time, timeout->tv_sec,
2176 timeout->tv_nsec))
2177 return -EINVAL;
2178
2179 datagrams = 0;
2180
2181 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182 if (!sock)
2183 return err;
2184
2185 err = sock_error(sock->sk);
2186 if (err) {
2187 datagrams = err;
2188 goto out_put;
2189 }
2190
2191 entry = mmsg;
2192 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2193
2194 while (datagrams < vlen) {
2195 /*
2196 * No need to ask LSM for more than the first datagram.
2197 */
2198 if (MSG_CMSG_COMPAT & flags) {
2199 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2200 &msg_sys, flags & ~MSG_WAITFORONE,
2201 datagrams);
2202 if (err < 0)
2203 break;
2204 err = __put_user(err, &compat_entry->msg_len);
2205 ++compat_entry;
2206 } else {
2207 err = ___sys_recvmsg(sock,
2208 (struct user_msghdr __user *)entry,
2209 &msg_sys, flags & ~MSG_WAITFORONE,
2210 datagrams);
2211 if (err < 0)
2212 break;
2213 err = put_user(err, &entry->msg_len);
2214 ++entry;
2215 }
2216
2217 if (err)
2218 break;
2219 ++datagrams;
2220
2221 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2222 if (flags & MSG_WAITFORONE)
2223 flags |= MSG_DONTWAIT;
2224
2225 if (timeout) {
2226 ktime_get_ts(timeout);
2227 *timeout = timespec_sub(end_time, *timeout);
2228 if (timeout->tv_sec < 0) {
2229 timeout->tv_sec = timeout->tv_nsec = 0;
2230 break;
2231 }
2232
2233 /* Timeout, return less than vlen datagrams */
2234 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2235 break;
2236 }
2237
2238 /* Out of band data, return right away */
2239 if (msg_sys.msg_flags & MSG_OOB)
2240 break;
2241 }
2242
2243 if (err == 0)
2244 goto out_put;
2245
2246 if (datagrams == 0) {
2247 datagrams = err;
2248 goto out_put;
2249 }
2250
2251 /*
2252 * We may return less entries than requested (vlen) if the
2253 * sock is non block and there aren't enough datagrams...
2254 */
2255 if (err != -EAGAIN) {
2256 /*
2257 * ... or if recvmsg returns an error after we
2258 * received some datagrams, where we record the
2259 * error to return on the next call or if the
2260 * app asks about it using getsockopt(SO_ERROR).
2261 */
2262 sock->sk->sk_err = -err;
2263 }
2264 out_put:
2265 fput_light(sock->file, fput_needed);
2266
2267 return datagrams;
2268 }
2269
2270 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2271 unsigned int, vlen, unsigned int, flags,
2272 struct timespec __user *, timeout)
2273 {
2274 int datagrams;
2275 struct timespec timeout_sys;
2276
2277 if (flags & MSG_CMSG_COMPAT)
2278 return -EINVAL;
2279
2280 if (!timeout)
2281 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2282
2283 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2284 return -EFAULT;
2285
2286 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2287
2288 if (datagrams > 0 &&
2289 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2290 datagrams = -EFAULT;
2291
2292 return datagrams;
2293 }
2294
2295 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2296 /* Argument list sizes for sys_socketcall */
2297 #define AL(x) ((x) * sizeof(unsigned long))
2298 static const unsigned char nargs[21] = {
2299 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2300 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2301 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2302 AL(4), AL(5), AL(4)
2303 };
2304
2305 #undef AL
2306
2307 /*
2308 * System call vectors.
2309 *
2310 * Argument checking cleaned up. Saved 20% in size.
2311 * This function doesn't need to set the kernel lock because
2312 * it is set by the callees.
2313 */
2314
2315 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2316 {
2317 unsigned long a[AUDITSC_ARGS];
2318 unsigned long a0, a1;
2319 int err;
2320 unsigned int len;
2321
2322 if (call < 1 || call > SYS_SENDMMSG)
2323 return -EINVAL;
2324
2325 len = nargs[call];
2326 if (len > sizeof(a))
2327 return -EINVAL;
2328
2329 /* copy_from_user should be SMP safe. */
2330 if (copy_from_user(a, args, len))
2331 return -EFAULT;
2332
2333 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2334 if (err)
2335 return err;
2336
2337 a0 = a[0];
2338 a1 = a[1];
2339
2340 switch (call) {
2341 case SYS_SOCKET:
2342 err = sys_socket(a0, a1, a[2]);
2343 break;
2344 case SYS_BIND:
2345 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2346 break;
2347 case SYS_CONNECT:
2348 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2349 break;
2350 case SYS_LISTEN:
2351 err = sys_listen(a0, a1);
2352 break;
2353 case SYS_ACCEPT:
2354 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2355 (int __user *)a[2], 0);
2356 break;
2357 case SYS_GETSOCKNAME:
2358 err =
2359 sys_getsockname(a0, (struct sockaddr __user *)a1,
2360 (int __user *)a[2]);
2361 break;
2362 case SYS_GETPEERNAME:
2363 err =
2364 sys_getpeername(a0, (struct sockaddr __user *)a1,
2365 (int __user *)a[2]);
2366 break;
2367 case SYS_SOCKETPAIR:
2368 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2369 break;
2370 case SYS_SEND:
2371 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2372 break;
2373 case SYS_SENDTO:
2374 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2375 (struct sockaddr __user *)a[4], a[5]);
2376 break;
2377 case SYS_RECV:
2378 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2379 break;
2380 case SYS_RECVFROM:
2381 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2382 (struct sockaddr __user *)a[4],
2383 (int __user *)a[5]);
2384 break;
2385 case SYS_SHUTDOWN:
2386 err = sys_shutdown(a0, a1);
2387 break;
2388 case SYS_SETSOCKOPT:
2389 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2390 break;
2391 case SYS_GETSOCKOPT:
2392 err =
2393 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2394 (int __user *)a[4]);
2395 break;
2396 case SYS_SENDMSG:
2397 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2398 break;
2399 case SYS_SENDMMSG:
2400 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2401 break;
2402 case SYS_RECVMSG:
2403 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404 break;
2405 case SYS_RECVMMSG:
2406 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2407 (struct timespec __user *)a[4]);
2408 break;
2409 case SYS_ACCEPT4:
2410 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2411 (int __user *)a[2], a[3]);
2412 break;
2413 default:
2414 err = -EINVAL;
2415 break;
2416 }
2417 return err;
2418 }
2419
2420 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2421
2422 /**
2423 * sock_register - add a socket protocol handler
2424 * @ops: description of protocol
2425 *
2426 * This function is called by a protocol handler that wants to
2427 * advertise its address family, and have it linked into the
2428 * socket interface. The value ops->family corresponds to the
2429 * socket system call protocol family.
2430 */
2431 int sock_register(const struct net_proto_family *ops)
2432 {
2433 int err;
2434
2435 if (ops->family >= NPROTO) {
2436 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2437 return -ENOBUFS;
2438 }
2439
2440 spin_lock(&net_family_lock);
2441 if (rcu_dereference_protected(net_families[ops->family],
2442 lockdep_is_held(&net_family_lock)))
2443 err = -EEXIST;
2444 else {
2445 rcu_assign_pointer(net_families[ops->family], ops);
2446 err = 0;
2447 }
2448 spin_unlock(&net_family_lock);
2449
2450 pr_info("NET: Registered protocol family %d\n", ops->family);
2451 return err;
2452 }
2453 EXPORT_SYMBOL(sock_register);
2454
2455 /**
2456 * sock_unregister - remove a protocol handler
2457 * @family: protocol family to remove
2458 *
2459 * This function is called by a protocol handler that wants to
2460 * remove its address family, and have it unlinked from the
2461 * new socket creation.
2462 *
2463 * If protocol handler is a module, then it can use module reference
2464 * counts to protect against new references. If protocol handler is not
2465 * a module then it needs to provide its own protection in
2466 * the ops->create routine.
2467 */
2468 void sock_unregister(int family)
2469 {
2470 BUG_ON(family < 0 || family >= NPROTO);
2471
2472 spin_lock(&net_family_lock);
2473 RCU_INIT_POINTER(net_families[family], NULL);
2474 spin_unlock(&net_family_lock);
2475
2476 synchronize_rcu();
2477
2478 pr_info("NET: Unregistered protocol family %d\n", family);
2479 }
2480 EXPORT_SYMBOL(sock_unregister);
2481
2482 static int __init sock_init(void)
2483 {
2484 int err;
2485 /*
2486 * Initialize the network sysctl infrastructure.
2487 */
2488 err = net_sysctl_init();
2489 if (err)
2490 goto out;
2491
2492 /*
2493 * Initialize skbuff SLAB cache
2494 */
2495 skb_init();
2496
2497 /*
2498 * Initialize the protocols module.
2499 */
2500
2501 init_inodecache();
2502
2503 err = register_filesystem(&sock_fs_type);
2504 if (err)
2505 goto out_fs;
2506 sock_mnt = kern_mount(&sock_fs_type);
2507 if (IS_ERR(sock_mnt)) {
2508 err = PTR_ERR(sock_mnt);
2509 goto out_mount;
2510 }
2511
2512 /* The real protocol initialization is performed in later initcalls.
2513 */
2514
2515 #ifdef CONFIG_NETFILTER
2516 err = netfilter_init();
2517 if (err)
2518 goto out;
2519 #endif
2520
2521 ptp_classifier_init();
2522
2523 out:
2524 return err;
2525
2526 out_mount:
2527 unregister_filesystem(&sock_fs_type);
2528 out_fs:
2529 goto out;
2530 }
2531
2532 core_initcall(sock_init); /* early initcall */
2533
2534 static int __init jit_init(void)
2535 {
2536 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2537 bpf_jit_enable = 1;
2538 #endif
2539 return 0;
2540 }
2541 pure_initcall(jit_init);
2542
2543 #ifdef CONFIG_PROC_FS
2544 void socket_seq_show(struct seq_file *seq)
2545 {
2546 int cpu;
2547 int counter = 0;
2548
2549 for_each_possible_cpu(cpu)
2550 counter += per_cpu(sockets_in_use, cpu);
2551
2552 /* It can be negative, by the way. 8) */
2553 if (counter < 0)
2554 counter = 0;
2555
2556 seq_printf(seq, "sockets: used %d\n", counter);
2557 }
2558 #endif /* CONFIG_PROC_FS */
2559
2560 #ifdef CONFIG_COMPAT
2561 static int do_siocgstamp(struct net *net, struct socket *sock,
2562 unsigned int cmd, void __user *up)
2563 {
2564 mm_segment_t old_fs = get_fs();
2565 struct timeval ktv;
2566 int err;
2567
2568 set_fs(KERNEL_DS);
2569 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2570 set_fs(old_fs);
2571 if (!err)
2572 err = compat_put_timeval(&ktv, up);
2573
2574 return err;
2575 }
2576
2577 static int do_siocgstampns(struct net *net, struct socket *sock,
2578 unsigned int cmd, void __user *up)
2579 {
2580 mm_segment_t old_fs = get_fs();
2581 struct timespec kts;
2582 int err;
2583
2584 set_fs(KERNEL_DS);
2585 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2586 set_fs(old_fs);
2587 if (!err)
2588 err = compat_put_timespec(&kts, up);
2589
2590 return err;
2591 }
2592
2593 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2594 {
2595 struct ifreq __user *uifr;
2596 int err;
2597
2598 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2599 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2600 return -EFAULT;
2601
2602 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2603 if (err)
2604 return err;
2605
2606 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2607 return -EFAULT;
2608
2609 return 0;
2610 }
2611
2612 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2613 {
2614 struct compat_ifconf ifc32;
2615 struct ifconf ifc;
2616 struct ifconf __user *uifc;
2617 struct compat_ifreq __user *ifr32;
2618 struct ifreq __user *ifr;
2619 unsigned int i, j;
2620 int err;
2621
2622 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2623 return -EFAULT;
2624
2625 memset(&ifc, 0, sizeof(ifc));
2626 if (ifc32.ifcbuf == 0) {
2627 ifc32.ifc_len = 0;
2628 ifc.ifc_len = 0;
2629 ifc.ifc_req = NULL;
2630 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2631 } else {
2632 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2633 sizeof(struct ifreq);
2634 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2635 ifc.ifc_len = len;
2636 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2637 ifr32 = compat_ptr(ifc32.ifcbuf);
2638 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2639 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2640 return -EFAULT;
2641 ifr++;
2642 ifr32++;
2643 }
2644 }
2645 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2646 return -EFAULT;
2647
2648 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2649 if (err)
2650 return err;
2651
2652 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2653 return -EFAULT;
2654
2655 ifr = ifc.ifc_req;
2656 ifr32 = compat_ptr(ifc32.ifcbuf);
2657 for (i = 0, j = 0;
2658 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2659 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2660 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2661 return -EFAULT;
2662 ifr32++;
2663 ifr++;
2664 }
2665
2666 if (ifc32.ifcbuf == 0) {
2667 /* Translate from 64-bit structure multiple to
2668 * a 32-bit one.
2669 */
2670 i = ifc.ifc_len;
2671 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2672 ifc32.ifc_len = i;
2673 } else {
2674 ifc32.ifc_len = i;
2675 }
2676 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2677 return -EFAULT;
2678
2679 return 0;
2680 }
2681
2682 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2683 {
2684 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2685 bool convert_in = false, convert_out = false;
2686 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2687 struct ethtool_rxnfc __user *rxnfc;
2688 struct ifreq __user *ifr;
2689 u32 rule_cnt = 0, actual_rule_cnt;
2690 u32 ethcmd;
2691 u32 data;
2692 int ret;
2693
2694 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2695 return -EFAULT;
2696
2697 compat_rxnfc = compat_ptr(data);
2698
2699 if (get_user(ethcmd, &compat_rxnfc->cmd))
2700 return -EFAULT;
2701
2702 /* Most ethtool structures are defined without padding.
2703 * Unfortunately struct ethtool_rxnfc is an exception.
2704 */
2705 switch (ethcmd) {
2706 default:
2707 break;
2708 case ETHTOOL_GRXCLSRLALL:
2709 /* Buffer size is variable */
2710 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2711 return -EFAULT;
2712 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2713 return -ENOMEM;
2714 buf_size += rule_cnt * sizeof(u32);
2715 /* fall through */
2716 case ETHTOOL_GRXRINGS:
2717 case ETHTOOL_GRXCLSRLCNT:
2718 case ETHTOOL_GRXCLSRULE:
2719 case ETHTOOL_SRXCLSRLINS:
2720 convert_out = true;
2721 /* fall through */
2722 case ETHTOOL_SRXCLSRLDEL:
2723 buf_size += sizeof(struct ethtool_rxnfc);
2724 convert_in = true;
2725 break;
2726 }
2727
2728 ifr = compat_alloc_user_space(buf_size);
2729 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2730
2731 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2732 return -EFAULT;
2733
2734 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2735 &ifr->ifr_ifru.ifru_data))
2736 return -EFAULT;
2737
2738 if (convert_in) {
2739 /* We expect there to be holes between fs.m_ext and
2740 * fs.ring_cookie and at the end of fs, but nowhere else.
2741 */
2742 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2743 sizeof(compat_rxnfc->fs.m_ext) !=
2744 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2745 sizeof(rxnfc->fs.m_ext));
2746 BUILD_BUG_ON(
2747 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2748 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2749 offsetof(struct ethtool_rxnfc, fs.location) -
2750 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2751
2752 if (copy_in_user(rxnfc, compat_rxnfc,
2753 (void __user *)(&rxnfc->fs.m_ext + 1) -
2754 (void __user *)rxnfc) ||
2755 copy_in_user(&rxnfc->fs.ring_cookie,
2756 &compat_rxnfc->fs.ring_cookie,
2757 (void __user *)(&rxnfc->fs.location + 1) -
2758 (void __user *)&rxnfc->fs.ring_cookie) ||
2759 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2760 sizeof(rxnfc->rule_cnt)))
2761 return -EFAULT;
2762 }
2763
2764 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2765 if (ret)
2766 return ret;
2767
2768 if (convert_out) {
2769 if (copy_in_user(compat_rxnfc, rxnfc,
2770 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2771 (const void __user *)rxnfc) ||
2772 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2773 &rxnfc->fs.ring_cookie,
2774 (const void __user *)(&rxnfc->fs.location + 1) -
2775 (const void __user *)&rxnfc->fs.ring_cookie) ||
2776 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2777 sizeof(rxnfc->rule_cnt)))
2778 return -EFAULT;
2779
2780 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2781 /* As an optimisation, we only copy the actual
2782 * number of rules that the underlying
2783 * function returned. Since Mallory might
2784 * change the rule count in user memory, we
2785 * check that it is less than the rule count
2786 * originally given (as the user buffer size),
2787 * which has been range-checked.
2788 */
2789 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2790 return -EFAULT;
2791 if (actual_rule_cnt < rule_cnt)
2792 rule_cnt = actual_rule_cnt;
2793 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2794 &rxnfc->rule_locs[0],
2795 rule_cnt * sizeof(u32)))
2796 return -EFAULT;
2797 }
2798 }
2799
2800 return 0;
2801 }
2802
2803 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2804 {
2805 void __user *uptr;
2806 compat_uptr_t uptr32;
2807 struct ifreq __user *uifr;
2808
2809 uifr = compat_alloc_user_space(sizeof(*uifr));
2810 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2811 return -EFAULT;
2812
2813 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2814 return -EFAULT;
2815
2816 uptr = compat_ptr(uptr32);
2817
2818 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2819 return -EFAULT;
2820
2821 return dev_ioctl(net, SIOCWANDEV, uifr);
2822 }
2823
2824 static int bond_ioctl(struct net *net, unsigned int cmd,
2825 struct compat_ifreq __user *ifr32)
2826 {
2827 struct ifreq kifr;
2828 mm_segment_t old_fs;
2829 int err;
2830
2831 switch (cmd) {
2832 case SIOCBONDENSLAVE:
2833 case SIOCBONDRELEASE:
2834 case SIOCBONDSETHWADDR:
2835 case SIOCBONDCHANGEACTIVE:
2836 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2837 return -EFAULT;
2838
2839 old_fs = get_fs();
2840 set_fs(KERNEL_DS);
2841 err = dev_ioctl(net, cmd,
2842 (struct ifreq __user __force *) &kifr);
2843 set_fs(old_fs);
2844
2845 return err;
2846 default:
2847 return -ENOIOCTLCMD;
2848 }
2849 }
2850
2851 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2852 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2853 struct compat_ifreq __user *u_ifreq32)
2854 {
2855 struct ifreq __user *u_ifreq64;
2856 char tmp_buf[IFNAMSIZ];
2857 void __user *data64;
2858 u32 data32;
2859
2860 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2861 IFNAMSIZ))
2862 return -EFAULT;
2863 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2864 return -EFAULT;
2865 data64 = compat_ptr(data32);
2866
2867 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2868
2869 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2870 IFNAMSIZ))
2871 return -EFAULT;
2872 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2873 return -EFAULT;
2874
2875 return dev_ioctl(net, cmd, u_ifreq64);
2876 }
2877
2878 static int dev_ifsioc(struct net *net, struct socket *sock,
2879 unsigned int cmd, struct compat_ifreq __user *uifr32)
2880 {
2881 struct ifreq __user *uifr;
2882 int err;
2883
2884 uifr = compat_alloc_user_space(sizeof(*uifr));
2885 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2886 return -EFAULT;
2887
2888 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2889
2890 if (!err) {
2891 switch (cmd) {
2892 case SIOCGIFFLAGS:
2893 case SIOCGIFMETRIC:
2894 case SIOCGIFMTU:
2895 case SIOCGIFMEM:
2896 case SIOCGIFHWADDR:
2897 case SIOCGIFINDEX:
2898 case SIOCGIFADDR:
2899 case SIOCGIFBRDADDR:
2900 case SIOCGIFDSTADDR:
2901 case SIOCGIFNETMASK:
2902 case SIOCGIFPFLAGS:
2903 case SIOCGIFTXQLEN:
2904 case SIOCGMIIPHY:
2905 case SIOCGMIIREG:
2906 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2907 err = -EFAULT;
2908 break;
2909 }
2910 }
2911 return err;
2912 }
2913
2914 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2915 struct compat_ifreq __user *uifr32)
2916 {
2917 struct ifreq ifr;
2918 struct compat_ifmap __user *uifmap32;
2919 mm_segment_t old_fs;
2920 int err;
2921
2922 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2923 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2924 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2925 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2926 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2927 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2928 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2929 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2930 if (err)
2931 return -EFAULT;
2932
2933 old_fs = get_fs();
2934 set_fs(KERNEL_DS);
2935 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2936 set_fs(old_fs);
2937
2938 if (cmd == SIOCGIFMAP && !err) {
2939 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2940 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2941 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2942 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2943 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2944 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2945 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2946 if (err)
2947 err = -EFAULT;
2948 }
2949 return err;
2950 }
2951
2952 struct rtentry32 {
2953 u32 rt_pad1;
2954 struct sockaddr rt_dst; /* target address */
2955 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2956 struct sockaddr rt_genmask; /* target network mask (IP) */
2957 unsigned short rt_flags;
2958 short rt_pad2;
2959 u32 rt_pad3;
2960 unsigned char rt_tos;
2961 unsigned char rt_class;
2962 short rt_pad4;
2963 short rt_metric; /* +1 for binary compatibility! */
2964 /* char * */ u32 rt_dev; /* forcing the device at add */
2965 u32 rt_mtu; /* per route MTU/Window */
2966 u32 rt_window; /* Window clamping */
2967 unsigned short rt_irtt; /* Initial RTT */
2968 };
2969
2970 struct in6_rtmsg32 {
2971 struct in6_addr rtmsg_dst;
2972 struct in6_addr rtmsg_src;
2973 struct in6_addr rtmsg_gateway;
2974 u32 rtmsg_type;
2975 u16 rtmsg_dst_len;
2976 u16 rtmsg_src_len;
2977 u32 rtmsg_metric;
2978 u32 rtmsg_info;
2979 u32 rtmsg_flags;
2980 s32 rtmsg_ifindex;
2981 };
2982
2983 static int routing_ioctl(struct net *net, struct socket *sock,
2984 unsigned int cmd, void __user *argp)
2985 {
2986 int ret;
2987 void *r = NULL;
2988 struct in6_rtmsg r6;
2989 struct rtentry r4;
2990 char devname[16];
2991 u32 rtdev;
2992 mm_segment_t old_fs = get_fs();
2993
2994 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2995 struct in6_rtmsg32 __user *ur6 = argp;
2996 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2997 3 * sizeof(struct in6_addr));
2998 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2999 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3000 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3001 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3002 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3003 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3004 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3005
3006 r = (void *) &r6;
3007 } else { /* ipv4 */
3008 struct rtentry32 __user *ur4 = argp;
3009 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3010 3 * sizeof(struct sockaddr));
3011 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3012 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3013 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3014 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3015 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3016 ret |= get_user(rtdev, &(ur4->rt_dev));
3017 if (rtdev) {
3018 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3019 r4.rt_dev = (char __user __force *)devname;
3020 devname[15] = 0;
3021 } else
3022 r4.rt_dev = NULL;
3023
3024 r = (void *) &r4;
3025 }
3026
3027 if (ret) {
3028 ret = -EFAULT;
3029 goto out;
3030 }
3031
3032 set_fs(KERNEL_DS);
3033 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3034 set_fs(old_fs);
3035
3036 out:
3037 return ret;
3038 }
3039
3040 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3041 * for some operations; this forces use of the newer bridge-utils that
3042 * use compatible ioctls
3043 */
3044 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3045 {
3046 compat_ulong_t tmp;
3047
3048 if (get_user(tmp, argp))
3049 return -EFAULT;
3050 if (tmp == BRCTL_GET_VERSION)
3051 return BRCTL_VERSION + 1;
3052 return -EINVAL;
3053 }
3054
3055 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3056 unsigned int cmd, unsigned long arg)
3057 {
3058 void __user *argp = compat_ptr(arg);
3059 struct sock *sk = sock->sk;
3060 struct net *net = sock_net(sk);
3061
3062 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3063 return compat_ifr_data_ioctl(net, cmd, argp);
3064
3065 switch (cmd) {
3066 case SIOCSIFBR:
3067 case SIOCGIFBR:
3068 return old_bridge_ioctl(argp);
3069 case SIOCGIFNAME:
3070 return dev_ifname32(net, argp);
3071 case SIOCGIFCONF:
3072 return dev_ifconf(net, argp);
3073 case SIOCETHTOOL:
3074 return ethtool_ioctl(net, argp);
3075 case SIOCWANDEV:
3076 return compat_siocwandev(net, argp);
3077 case SIOCGIFMAP:
3078 case SIOCSIFMAP:
3079 return compat_sioc_ifmap(net, cmd, argp);
3080 case SIOCBONDENSLAVE:
3081 case SIOCBONDRELEASE:
3082 case SIOCBONDSETHWADDR:
3083 case SIOCBONDCHANGEACTIVE:
3084 return bond_ioctl(net, cmd, argp);
3085 case SIOCADDRT:
3086 case SIOCDELRT:
3087 return routing_ioctl(net, sock, cmd, argp);
3088 case SIOCGSTAMP:
3089 return do_siocgstamp(net, sock, cmd, argp);
3090 case SIOCGSTAMPNS:
3091 return do_siocgstampns(net, sock, cmd, argp);
3092 case SIOCBONDSLAVEINFOQUERY:
3093 case SIOCBONDINFOQUERY:
3094 case SIOCSHWTSTAMP:
3095 case SIOCGHWTSTAMP:
3096 return compat_ifr_data_ioctl(net, cmd, argp);
3097
3098 case FIOSETOWN:
3099 case SIOCSPGRP:
3100 case FIOGETOWN:
3101 case SIOCGPGRP:
3102 case SIOCBRADDBR:
3103 case SIOCBRDELBR:
3104 case SIOCGIFVLAN:
3105 case SIOCSIFVLAN:
3106 case SIOCADDDLCI:
3107 case SIOCDELDLCI:
3108 return sock_ioctl(file, cmd, arg);
3109
3110 case SIOCGIFFLAGS:
3111 case SIOCSIFFLAGS:
3112 case SIOCGIFMETRIC:
3113 case SIOCSIFMETRIC:
3114 case SIOCGIFMTU:
3115 case SIOCSIFMTU:
3116 case SIOCGIFMEM:
3117 case SIOCSIFMEM:
3118 case SIOCGIFHWADDR:
3119 case SIOCSIFHWADDR:
3120 case SIOCADDMULTI:
3121 case SIOCDELMULTI:
3122 case SIOCGIFINDEX:
3123 case SIOCGIFADDR:
3124 case SIOCSIFADDR:
3125 case SIOCSIFHWBROADCAST:
3126 case SIOCDIFADDR:
3127 case SIOCGIFBRDADDR:
3128 case SIOCSIFBRDADDR:
3129 case SIOCGIFDSTADDR:
3130 case SIOCSIFDSTADDR:
3131 case SIOCGIFNETMASK:
3132 case SIOCSIFNETMASK:
3133 case SIOCSIFPFLAGS:
3134 case SIOCGIFPFLAGS:
3135 case SIOCGIFTXQLEN:
3136 case SIOCSIFTXQLEN:
3137 case SIOCBRADDIF:
3138 case SIOCBRDELIF:
3139 case SIOCSIFNAME:
3140 case SIOCGMIIPHY:
3141 case SIOCGMIIREG:
3142 case SIOCSMIIREG:
3143 return dev_ifsioc(net, sock, cmd, argp);
3144
3145 case SIOCSARP:
3146 case SIOCGARP:
3147 case SIOCDARP:
3148 case SIOCATMARK:
3149 return sock_do_ioctl(net, sock, cmd, arg);
3150 }
3151
3152 return -ENOIOCTLCMD;
3153 }
3154
3155 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3156 unsigned long arg)
3157 {
3158 struct socket *sock = file->private_data;
3159 int ret = -ENOIOCTLCMD;
3160 struct sock *sk;
3161 struct net *net;
3162
3163 sk = sock->sk;
3164 net = sock_net(sk);
3165
3166 if (sock->ops->compat_ioctl)
3167 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3168
3169 if (ret == -ENOIOCTLCMD &&
3170 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3171 ret = compat_wext_handle_ioctl(net, cmd, arg);
3172
3173 if (ret == -ENOIOCTLCMD)
3174 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3175
3176 return ret;
3177 }
3178 #endif
3179
3180 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3181 {
3182 return sock->ops->bind(sock, addr, addrlen);
3183 }
3184 EXPORT_SYMBOL(kernel_bind);
3185
3186 int kernel_listen(struct socket *sock, int backlog)
3187 {
3188 return sock->ops->listen(sock, backlog);
3189 }
3190 EXPORT_SYMBOL(kernel_listen);
3191
3192 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3193 {
3194 struct sock *sk = sock->sk;
3195 int err;
3196
3197 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3198 newsock);
3199 if (err < 0)
3200 goto done;
3201
3202 err = sock->ops->accept(sock, *newsock, flags);
3203 if (err < 0) {
3204 sock_release(*newsock);
3205 *newsock = NULL;
3206 goto done;
3207 }
3208
3209 (*newsock)->ops = sock->ops;
3210 __module_get((*newsock)->ops->owner);
3211
3212 done:
3213 return err;
3214 }
3215 EXPORT_SYMBOL(kernel_accept);
3216
3217 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3218 int flags)
3219 {
3220 return sock->ops->connect(sock, addr, addrlen, flags);
3221 }
3222 EXPORT_SYMBOL(kernel_connect);
3223
3224 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3225 int *addrlen)
3226 {
3227 return sock->ops->getname(sock, addr, addrlen, 0);
3228 }
3229 EXPORT_SYMBOL(kernel_getsockname);
3230
3231 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3232 int *addrlen)
3233 {
3234 return sock->ops->getname(sock, addr, addrlen, 1);
3235 }
3236 EXPORT_SYMBOL(kernel_getpeername);
3237
3238 int kernel_getsockopt(struct socket *sock, int level, int optname,
3239 char *optval, int *optlen)
3240 {
3241 mm_segment_t oldfs = get_fs();
3242 char __user *uoptval;
3243 int __user *uoptlen;
3244 int err;
3245
3246 uoptval = (char __user __force *) optval;
3247 uoptlen = (int __user __force *) optlen;
3248
3249 set_fs(KERNEL_DS);
3250 if (level == SOL_SOCKET)
3251 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3252 else
3253 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3254 uoptlen);
3255 set_fs(oldfs);
3256 return err;
3257 }
3258 EXPORT_SYMBOL(kernel_getsockopt);
3259
3260 int kernel_setsockopt(struct socket *sock, int level, int optname,
3261 char *optval, unsigned int optlen)
3262 {
3263 mm_segment_t oldfs = get_fs();
3264 char __user *uoptval;
3265 int err;
3266
3267 uoptval = (char __user __force *) optval;
3268
3269 set_fs(KERNEL_DS);
3270 if (level == SOL_SOCKET)
3271 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3272 else
3273 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3274 optlen);
3275 set_fs(oldfs);
3276 return err;
3277 }
3278 EXPORT_SYMBOL(kernel_setsockopt);
3279
3280 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3281 size_t size, int flags)
3282 {
3283 if (sock->ops->sendpage)
3284 return sock->ops->sendpage(sock, page, offset, size, flags);
3285
3286 return sock_no_sendpage(sock, page, offset, size, flags);
3287 }
3288 EXPORT_SYMBOL(kernel_sendpage);
3289
3290 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3291 {
3292 mm_segment_t oldfs = get_fs();
3293 int err;
3294
3295 set_fs(KERNEL_DS);
3296 err = sock->ops->ioctl(sock, cmd, arg);
3297 set_fs(oldfs);
3298
3299 return err;
3300 }
3301 EXPORT_SYMBOL(kernel_sock_ioctl);
3302
3303 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3304 {
3305 return sock->ops->shutdown(sock, how);
3306 }
3307 EXPORT_SYMBOL(kernel_sock_shutdown);