2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static unsigned int sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use
);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
190 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
194 if (copy_from_user(kaddr
, uaddr
, ulen
))
196 return audit_sockaddr(ulen
, kaddr
);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
217 void __user
*uaddr
, int __user
*ulen
)
222 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
223 err
= get_user(len
, ulen
);
231 if (audit_sockaddr(klen
, kaddr
))
233 if (copy_to_user(uaddr
, kaddr
, len
))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen
, ulen
);
243 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
245 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
247 struct socket_alloc
*ei
;
248 struct socket_wq
*wq
;
250 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
253 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
255 kmem_cache_free(sock_inode_cachep
, ei
);
258 init_waitqueue_head(&wq
->wait
);
259 wq
->fasync_list
= NULL
;
261 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
263 ei
->socket
.state
= SS_UNCONNECTED
;
264 ei
->socket
.flags
= 0;
265 ei
->socket
.ops
= NULL
;
266 ei
->socket
.sk
= NULL
;
267 ei
->socket
.file
= NULL
;
269 return &ei
->vfs_inode
;
272 static void sock_destroy_inode(struct inode
*inode
)
274 struct socket_alloc
*ei
;
275 struct socket_wq
*wq
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static int init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
297 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
299 if (sock_inode_cachep
== NULL
)
304 static const struct super_operations sockfs_ops
= {
305 .alloc_inode
= sock_alloc_inode
,
306 .destroy_inode
= sock_destroy_inode
,
307 .statfs
= simple_statfs
,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
315 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
316 d_inode(dentry
)->i_ino
);
319 static const struct dentry_operations sockfs_dentry_operations
= {
320 .d_dname
= sockfs_dname
,
323 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
324 struct dentry
*dentry
, struct inode
*inode
,
325 const char *suffix
, void *value
, size_t size
)
328 if (dentry
->d_name
.len
+ 1 > size
)
330 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
332 return dentry
->d_name
.len
+ 1;
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339 static const struct xattr_handler sockfs_xattr_handler
= {
340 .name
= XATTR_NAME_SOCKPROTONAME
,
341 .get
= sockfs_xattr_get
,
344 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
345 &sockfs_xattr_handler
,
349 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
350 int flags
, const char *dev_name
, void *data
)
352 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
353 sockfs_xattr_handlers
,
354 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
357 static struct vfsmount
*sock_mnt __read_mostly
;
359 static struct file_system_type sock_fs_type
= {
361 .mount
= sockfs_mount
,
362 .kill_sb
= kill_anon_super
,
366 * Obtains the first available file descriptor and sets it up for use.
368 * These functions create file structures and maps them to fd space
369 * of the current process. On success it returns file descriptor
370 * and file struct implicitly stored in sock->file.
371 * Note that another thread may close file descriptor before we return
372 * from this function. We use the fact that now we do not refer
373 * to socket after mapping. If one day we will need it, this
374 * function will increment ref. count on file by 1.
376 * In any case returned fd MAY BE not valid!
377 * This race condition is unavoidable
378 * with shared fd spaces, we cannot solve it inside kernel,
379 * but we take care of internal coherence yet.
382 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
384 struct qstr name
= { .name
= "" };
390 name
.len
= strlen(name
.name
);
391 } else if (sock
->sk
) {
392 name
.name
= sock
->sk
->sk_prot_creator
->name
;
393 name
.len
= strlen(name
.name
);
395 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
396 if (unlikely(!path
.dentry
))
397 return ERR_PTR(-ENOMEM
);
398 path
.mnt
= mntget(sock_mnt
);
400 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
402 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
405 /* drop dentry, keep inode */
406 ihold(d_inode(path
.dentry
));
412 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
413 file
->private_data
= sock
;
416 EXPORT_SYMBOL(sock_alloc_file
);
418 static int sock_map_fd(struct socket
*sock
, int flags
)
420 struct file
*newfile
;
421 int fd
= get_unused_fd_flags(flags
);
422 if (unlikely(fd
< 0))
425 newfile
= sock_alloc_file(sock
, flags
, NULL
);
426 if (likely(!IS_ERR(newfile
))) {
427 fd_install(fd
, newfile
);
432 return PTR_ERR(newfile
);
435 struct socket
*sock_from_file(struct file
*file
, int *err
)
437 if (file
->f_op
== &socket_file_ops
)
438 return file
->private_data
; /* set in sock_map_fd */
443 EXPORT_SYMBOL(sock_from_file
);
446 * sockfd_lookup - Go from a file number to its socket slot
448 * @err: pointer to an error code return
450 * The file handle passed in is locked and the socket it is bound
451 * too is returned. If an error occurs the err pointer is overwritten
452 * with a negative errno code and NULL is returned. The function checks
453 * for both invalid handles and passing a handle which is not a socket.
455 * On a success the socket object pointer is returned.
458 struct socket
*sockfd_lookup(int fd
, int *err
)
469 sock
= sock_from_file(file
, err
);
474 EXPORT_SYMBOL(sockfd_lookup
);
476 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
478 struct fd f
= fdget(fd
);
483 sock
= sock_from_file(f
.file
, err
);
485 *fput_needed
= f
.flags
;
493 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
499 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
509 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
514 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
521 static const struct inode_operations sockfs_inode_ops
= {
522 .listxattr
= sockfs_listxattr
,
526 * sock_alloc - allocate a socket
528 * Allocate a new inode and socket object. The two are bound together
529 * and initialised. The socket is then returned. If we are out of inodes
533 struct socket
*sock_alloc(void)
538 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
542 sock
= SOCKET_I(inode
);
544 kmemcheck_annotate_bitfield(sock
, type
);
545 inode
->i_ino
= get_next_ino();
546 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
547 inode
->i_uid
= current_fsuid();
548 inode
->i_gid
= current_fsgid();
549 inode
->i_op
= &sockfs_inode_ops
;
551 this_cpu_add(sockets_in_use
, 1);
554 EXPORT_SYMBOL(sock_alloc
);
557 * sock_release - close a socket
558 * @sock: socket to close
560 * The socket is released from the protocol stack if it has a release
561 * callback, and the inode is then released if the socket is bound to
562 * an inode not a file.
565 void sock_release(struct socket
*sock
)
568 struct module
*owner
= sock
->ops
->owner
;
570 sock
->ops
->release(sock
);
575 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
576 pr_err("%s: fasync list not empty!\n", __func__
);
578 this_cpu_sub(sockets_in_use
, 1);
580 iput(SOCK_INODE(sock
));
585 EXPORT_SYMBOL(sock_release
);
587 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
589 u8 flags
= *tx_flags
;
591 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
592 flags
|= SKBTX_HW_TSTAMP
;
594 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
595 flags
|= SKBTX_SW_TSTAMP
;
597 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
598 flags
|= SKBTX_SCHED_TSTAMP
;
602 EXPORT_SYMBOL(__sock_tx_timestamp
);
604 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
606 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
607 BUG_ON(ret
== -EIOCBQUEUED
);
611 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
613 int err
= security_socket_sendmsg(sock
, msg
,
616 return err
?: sock_sendmsg_nosec(sock
, msg
);
618 EXPORT_SYMBOL(sock_sendmsg
);
620 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
621 struct kvec
*vec
, size_t num
, size_t size
)
623 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
624 return sock_sendmsg(sock
, msg
);
626 EXPORT_SYMBOL(kernel_sendmsg
);
629 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
631 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
634 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
635 struct scm_timestamping tss
;
637 struct skb_shared_hwtstamps
*shhwtstamps
=
640 /* Race occurred between timestamp enabling and packet
641 receiving. Fill in the current time for now. */
642 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
643 __net_timestamp(skb
);
645 if (need_software_tstamp
) {
646 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
648 skb_get_timestamp(skb
, &tv
);
649 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
653 skb_get_timestampns(skb
, &ts
);
654 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
659 memset(&tss
, 0, sizeof(tss
));
660 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
661 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
664 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
665 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
668 put_cmsg(msg
, SOL_SOCKET
,
669 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
671 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
673 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
678 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
680 if (!skb
->wifi_acked_valid
)
683 ack
= skb
->wifi_acked
;
685 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
687 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
689 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
692 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
693 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
694 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
697 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
700 sock_recv_timestamp(msg
, sk
, skb
);
701 sock_recv_drops(msg
, sk
, skb
);
703 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
705 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
708 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
711 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
713 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
715 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
717 EXPORT_SYMBOL(sock_recvmsg
);
720 * kernel_recvmsg - Receive a message from a socket (kernel space)
721 * @sock: The socket to receive the message from
722 * @msg: Received message
723 * @vec: Input s/g array for message data
724 * @num: Size of input s/g array
725 * @size: Number of bytes to read
726 * @flags: Message flags (MSG_DONTWAIT, etc...)
728 * On return the msg structure contains the scatter/gather array passed in the
729 * vec argument. The array is modified so that it consists of the unfilled
730 * portion of the original array.
732 * The returned value is the total number of bytes received, or an error.
734 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
735 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
737 mm_segment_t oldfs
= get_fs();
740 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
742 result
= sock_recvmsg(sock
, msg
, flags
);
746 EXPORT_SYMBOL(kernel_recvmsg
);
748 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
749 int offset
, size_t size
, loff_t
*ppos
, int more
)
754 sock
= file
->private_data
;
756 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
757 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
760 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
763 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
764 struct pipe_inode_info
*pipe
, size_t len
,
767 struct socket
*sock
= file
->private_data
;
769 if (unlikely(!sock
->ops
->splice_read
))
772 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
775 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
777 struct file
*file
= iocb
->ki_filp
;
778 struct socket
*sock
= file
->private_data
;
779 struct msghdr msg
= {.msg_iter
= *to
,
783 if (file
->f_flags
& O_NONBLOCK
)
784 msg
.msg_flags
= MSG_DONTWAIT
;
786 if (iocb
->ki_pos
!= 0)
789 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
792 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
797 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
799 struct file
*file
= iocb
->ki_filp
;
800 struct socket
*sock
= file
->private_data
;
801 struct msghdr msg
= {.msg_iter
= *from
,
805 if (iocb
->ki_pos
!= 0)
808 if (file
->f_flags
& O_NONBLOCK
)
809 msg
.msg_flags
= MSG_DONTWAIT
;
811 if (sock
->type
== SOCK_SEQPACKET
)
812 msg
.msg_flags
|= MSG_EOR
;
814 res
= sock_sendmsg(sock
, &msg
);
815 *from
= msg
.msg_iter
;
820 * Atomic setting of ioctl hooks to avoid race
821 * with module unload.
824 static DEFINE_MUTEX(br_ioctl_mutex
);
825 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
827 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
829 mutex_lock(&br_ioctl_mutex
);
830 br_ioctl_hook
= hook
;
831 mutex_unlock(&br_ioctl_mutex
);
833 EXPORT_SYMBOL(brioctl_set
);
835 static DEFINE_MUTEX(vlan_ioctl_mutex
);
836 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
838 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
840 mutex_lock(&vlan_ioctl_mutex
);
841 vlan_ioctl_hook
= hook
;
842 mutex_unlock(&vlan_ioctl_mutex
);
844 EXPORT_SYMBOL(vlan_ioctl_set
);
846 static DEFINE_MUTEX(dlci_ioctl_mutex
);
847 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
849 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
851 mutex_lock(&dlci_ioctl_mutex
);
852 dlci_ioctl_hook
= hook
;
853 mutex_unlock(&dlci_ioctl_mutex
);
855 EXPORT_SYMBOL(dlci_ioctl_set
);
857 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
858 unsigned int cmd
, unsigned long arg
)
861 void __user
*argp
= (void __user
*)arg
;
863 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
866 * If this ioctl is unknown try to hand it down
869 if (err
== -ENOIOCTLCMD
)
870 err
= dev_ioctl(net
, cmd
, argp
);
876 * With an ioctl, arg may well be a user mode pointer, but we don't know
877 * what to do with it - that's up to the protocol still.
880 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
884 void __user
*argp
= (void __user
*)arg
;
888 sock
= file
->private_data
;
891 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
892 err
= dev_ioctl(net
, cmd
, argp
);
894 #ifdef CONFIG_WEXT_CORE
895 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
896 err
= dev_ioctl(net
, cmd
, argp
);
903 if (get_user(pid
, (int __user
*)argp
))
905 f_setown(sock
->file
, pid
, 1);
910 err
= put_user(f_getown(sock
->file
),
919 request_module("bridge");
921 mutex_lock(&br_ioctl_mutex
);
923 err
= br_ioctl_hook(net
, cmd
, argp
);
924 mutex_unlock(&br_ioctl_mutex
);
929 if (!vlan_ioctl_hook
)
930 request_module("8021q");
932 mutex_lock(&vlan_ioctl_mutex
);
934 err
= vlan_ioctl_hook(net
, argp
);
935 mutex_unlock(&vlan_ioctl_mutex
);
940 if (!dlci_ioctl_hook
)
941 request_module("dlci");
943 mutex_lock(&dlci_ioctl_mutex
);
945 err
= dlci_ioctl_hook(cmd
, argp
);
946 mutex_unlock(&dlci_ioctl_mutex
);
949 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
955 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
958 struct socket
*sock
= NULL
;
960 err
= security_socket_create(family
, type
, protocol
, 1);
971 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
983 EXPORT_SYMBOL(sock_create_lite
);
985 /* No kernel lock held - perfect */
986 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
988 unsigned int busy_flag
= 0;
992 * We can't return errors to poll, so it's either yes or no.
994 sock
= file
->private_data
;
996 if (sk_can_busy_loop(sock
->sk
)) {
997 /* this socket can poll_ll so tell the system call */
998 busy_flag
= POLL_BUSY_LOOP
;
1000 /* once, only if requested by syscall */
1001 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1002 sk_busy_loop(sock
->sk
, 1);
1005 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1008 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1010 struct socket
*sock
= file
->private_data
;
1012 return sock
->ops
->mmap(file
, sock
, vma
);
1015 static int sock_close(struct inode
*inode
, struct file
*filp
)
1017 sock_release(SOCKET_I(inode
));
1022 * Update the socket async list
1024 * Fasync_list locking strategy.
1026 * 1. fasync_list is modified only under process context socket lock
1027 * i.e. under semaphore.
1028 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1029 * or under socket lock
1032 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1034 struct socket
*sock
= filp
->private_data
;
1035 struct sock
*sk
= sock
->sk
;
1036 struct socket_wq
*wq
;
1042 wq
= rcu_dereference_protected(sock
->wq
, lockdep_sock_is_held(sk
));
1043 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1045 if (!wq
->fasync_list
)
1046 sock_reset_flag(sk
, SOCK_FASYNC
);
1048 sock_set_flag(sk
, SOCK_FASYNC
);
1054 /* This function may be called only under rcu_lock */
1056 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1058 if (!wq
|| !wq
->fasync_list
)
1062 case SOCK_WAKE_WAITD
:
1063 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1066 case SOCK_WAKE_SPACE
:
1067 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1072 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1075 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1080 EXPORT_SYMBOL(sock_wake_async
);
1082 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1083 struct socket
**res
, int kern
)
1086 struct socket
*sock
;
1087 const struct net_proto_family
*pf
;
1090 * Check protocol is in range
1092 if (family
< 0 || family
>= NPROTO
)
1093 return -EAFNOSUPPORT
;
1094 if (type
< 0 || type
>= SOCK_MAX
)
1099 This uglymoron is moved from INET layer to here to avoid
1100 deadlock in module load.
1102 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1103 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1108 err
= security_socket_create(family
, type
, protocol
, kern
);
1113 * Allocate the socket and allow the family to set things up. if
1114 * the protocol is 0, the family is instructed to select an appropriate
1117 sock
= sock_alloc();
1119 net_warn_ratelimited("socket: no more sockets\n");
1120 return -ENFILE
; /* Not exactly a match, but its the
1121 closest posix thing */
1126 #ifdef CONFIG_MODULES
1127 /* Attempt to load a protocol module if the find failed.
1129 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1130 * requested real, full-featured networking support upon configuration.
1131 * Otherwise module support will break!
1133 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1134 request_module("net-pf-%d", family
);
1138 pf
= rcu_dereference(net_families
[family
]);
1139 err
= -EAFNOSUPPORT
;
1144 * We will call the ->create function, that possibly is in a loadable
1145 * module, so we have to bump that loadable module refcnt first.
1147 if (!try_module_get(pf
->owner
))
1150 /* Now protected by module ref count */
1153 err
= pf
->create(net
, sock
, protocol
, kern
);
1155 goto out_module_put
;
1158 * Now to bump the refcnt of the [loadable] module that owns this
1159 * socket at sock_release time we decrement its refcnt.
1161 if (!try_module_get(sock
->ops
->owner
))
1162 goto out_module_busy
;
1165 * Now that we're done with the ->create function, the [loadable]
1166 * module can have its refcnt decremented
1168 module_put(pf
->owner
);
1169 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1171 goto out_sock_release
;
1177 err
= -EAFNOSUPPORT
;
1180 module_put(pf
->owner
);
1187 goto out_sock_release
;
1189 EXPORT_SYMBOL(__sock_create
);
1191 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1193 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1195 EXPORT_SYMBOL(sock_create
);
1197 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1199 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1201 EXPORT_SYMBOL(sock_create_kern
);
1203 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1206 struct socket
*sock
;
1209 /* Check the SOCK_* constants for consistency. */
1210 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1211 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1212 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1213 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1215 flags
= type
& ~SOCK_TYPE_MASK
;
1216 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1218 type
&= SOCK_TYPE_MASK
;
1220 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1221 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1223 retval
= sock_create(family
, type
, protocol
, &sock
);
1227 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1232 /* It may be already another descriptor 8) Not kernel problem. */
1241 * Create a pair of connected sockets.
1244 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1245 int __user
*, usockvec
)
1247 struct socket
*sock1
, *sock2
;
1249 struct file
*newfile1
, *newfile2
;
1252 flags
= type
& ~SOCK_TYPE_MASK
;
1253 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1255 type
&= SOCK_TYPE_MASK
;
1257 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1258 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1261 * Obtain the first socket and check if the underlying protocol
1262 * supports the socketpair call.
1265 err
= sock_create(family
, type
, protocol
, &sock1
);
1269 err
= sock_create(family
, type
, protocol
, &sock2
);
1273 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1275 goto out_release_both
;
1277 fd1
= get_unused_fd_flags(flags
);
1278 if (unlikely(fd1
< 0)) {
1280 goto out_release_both
;
1283 fd2
= get_unused_fd_flags(flags
);
1284 if (unlikely(fd2
< 0)) {
1286 goto out_put_unused_1
;
1289 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1290 if (IS_ERR(newfile1
)) {
1291 err
= PTR_ERR(newfile1
);
1292 goto out_put_unused_both
;
1295 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1296 if (IS_ERR(newfile2
)) {
1297 err
= PTR_ERR(newfile2
);
1301 err
= put_user(fd1
, &usockvec
[0]);
1305 err
= put_user(fd2
, &usockvec
[1]);
1309 audit_fd_pair(fd1
, fd2
);
1311 fd_install(fd1
, newfile1
);
1312 fd_install(fd2
, newfile2
);
1313 /* fd1 and fd2 may be already another descriptors.
1314 * Not kernel problem.
1330 sock_release(sock2
);
1333 out_put_unused_both
:
1338 sock_release(sock2
);
1340 sock_release(sock1
);
1346 * Bind a name to a socket. Nothing much to do here since it's
1347 * the protocol's responsibility to handle the local address.
1349 * We move the socket address to kernel space before we call
1350 * the protocol layer (having also checked the address is ok).
1353 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1355 struct socket
*sock
;
1356 struct sockaddr_storage address
;
1357 int err
, fput_needed
;
1359 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1361 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1363 err
= security_socket_bind(sock
,
1364 (struct sockaddr
*)&address
,
1367 err
= sock
->ops
->bind(sock
,
1371 fput_light(sock
->file
, fput_needed
);
1377 * Perform a listen. Basically, we allow the protocol to do anything
1378 * necessary for a listen, and if that works, we mark the socket as
1379 * ready for listening.
1382 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1384 struct socket
*sock
;
1385 int err
, fput_needed
;
1388 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1390 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1391 if ((unsigned int)backlog
> somaxconn
)
1392 backlog
= somaxconn
;
1394 err
= security_socket_listen(sock
, backlog
);
1396 err
= sock
->ops
->listen(sock
, backlog
);
1398 fput_light(sock
->file
, fput_needed
);
1404 * For accept, we attempt to create a new socket, set up the link
1405 * with the client, wake up the client, then return the new
1406 * connected fd. We collect the address of the connector in kernel
1407 * space and move it to user at the very end. This is unclean because
1408 * we open the socket then return an error.
1410 * 1003.1g adds the ability to recvmsg() to query connection pending
1411 * status to recvmsg. We need to add that support in a way thats
1412 * clean when we restucture accept also.
1415 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1416 int __user
*, upeer_addrlen
, int, flags
)
1418 struct socket
*sock
, *newsock
;
1419 struct file
*newfile
;
1420 int err
, len
, newfd
, fput_needed
;
1421 struct sockaddr_storage address
;
1423 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1426 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1427 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1429 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1434 newsock
= sock_alloc();
1438 newsock
->type
= sock
->type
;
1439 newsock
->ops
= sock
->ops
;
1442 * We don't need try_module_get here, as the listening socket (sock)
1443 * has the protocol module (sock->ops->owner) held.
1445 __module_get(newsock
->ops
->owner
);
1447 newfd
= get_unused_fd_flags(flags
);
1448 if (unlikely(newfd
< 0)) {
1450 sock_release(newsock
);
1453 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1454 if (IS_ERR(newfile
)) {
1455 err
= PTR_ERR(newfile
);
1456 put_unused_fd(newfd
);
1457 sock_release(newsock
);
1461 err
= security_socket_accept(sock
, newsock
);
1465 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1469 if (upeer_sockaddr
) {
1470 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1472 err
= -ECONNABORTED
;
1475 err
= move_addr_to_user(&address
,
1476 len
, upeer_sockaddr
, upeer_addrlen
);
1481 /* File flags are not inherited via accept() unlike another OSes. */
1483 fd_install(newfd
, newfile
);
1487 fput_light(sock
->file
, fput_needed
);
1492 put_unused_fd(newfd
);
1496 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1497 int __user
*, upeer_addrlen
)
1499 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1503 * Attempt to connect to a socket with the server address. The address
1504 * is in user space so we verify it is OK and move it to kernel space.
1506 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1509 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1510 * other SEQPACKET protocols that take time to connect() as it doesn't
1511 * include the -EINPROGRESS status for such sockets.
1514 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1517 struct socket
*sock
;
1518 struct sockaddr_storage address
;
1519 int err
, fput_needed
;
1521 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1524 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1529 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1533 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1534 sock
->file
->f_flags
);
1536 fput_light(sock
->file
, fput_needed
);
1542 * Get the local address ('name') of a socket object. Move the obtained
1543 * name to user space.
1546 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1547 int __user
*, usockaddr_len
)
1549 struct socket
*sock
;
1550 struct sockaddr_storage address
;
1551 int len
, err
, fput_needed
;
1553 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1557 err
= security_socket_getsockname(sock
);
1561 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1564 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1567 fput_light(sock
->file
, fput_needed
);
1573 * Get the remote address ('name') of a socket object. Move the obtained
1574 * name to user space.
1577 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1578 int __user
*, usockaddr_len
)
1580 struct socket
*sock
;
1581 struct sockaddr_storage address
;
1582 int len
, err
, fput_needed
;
1584 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1586 err
= security_socket_getpeername(sock
);
1588 fput_light(sock
->file
, fput_needed
);
1593 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1596 err
= move_addr_to_user(&address
, len
, usockaddr
,
1598 fput_light(sock
->file
, fput_needed
);
1604 * Send a datagram to a given address. We move the address into kernel
1605 * space and check the user space data area is readable before invoking
1609 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1610 unsigned int, flags
, struct sockaddr __user
*, addr
,
1613 struct socket
*sock
;
1614 struct sockaddr_storage address
;
1620 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1623 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1627 msg
.msg_name
= NULL
;
1628 msg
.msg_control
= NULL
;
1629 msg
.msg_controllen
= 0;
1630 msg
.msg_namelen
= 0;
1632 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1635 msg
.msg_name
= (struct sockaddr
*)&address
;
1636 msg
.msg_namelen
= addr_len
;
1638 if (sock
->file
->f_flags
& O_NONBLOCK
)
1639 flags
|= MSG_DONTWAIT
;
1640 msg
.msg_flags
= flags
;
1641 err
= sock_sendmsg(sock
, &msg
);
1644 fput_light(sock
->file
, fput_needed
);
1650 * Send a datagram down a socket.
1653 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1654 unsigned int, flags
)
1656 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1660 * Receive a frame from the socket and optionally record the address of the
1661 * sender. We verify the buffers are writable and if needed move the
1662 * sender address from kernel to user space.
1665 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1666 unsigned int, flags
, struct sockaddr __user
*, addr
,
1667 int __user
*, addr_len
)
1669 struct socket
*sock
;
1672 struct sockaddr_storage address
;
1676 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1679 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1683 msg
.msg_control
= NULL
;
1684 msg
.msg_controllen
= 0;
1685 /* Save some cycles and don't copy the address if not needed */
1686 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1687 /* We assume all kernel code knows the size of sockaddr_storage */
1688 msg
.msg_namelen
= 0;
1689 msg
.msg_iocb
= NULL
;
1690 if (sock
->file
->f_flags
& O_NONBLOCK
)
1691 flags
|= MSG_DONTWAIT
;
1692 err
= sock_recvmsg(sock
, &msg
, flags
);
1694 if (err
>= 0 && addr
!= NULL
) {
1695 err2
= move_addr_to_user(&address
,
1696 msg
.msg_namelen
, addr
, addr_len
);
1701 fput_light(sock
->file
, fput_needed
);
1707 * Receive a datagram from a socket.
1710 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1711 unsigned int, flags
)
1713 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1717 * Set a socket option. Because we don't know the option lengths we have
1718 * to pass the user mode parameter for the protocols to sort out.
1721 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1722 char __user
*, optval
, int, optlen
)
1724 int err
, fput_needed
;
1725 struct socket
*sock
;
1730 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1732 err
= security_socket_setsockopt(sock
, level
, optname
);
1736 if (level
== SOL_SOCKET
)
1738 sock_setsockopt(sock
, level
, optname
, optval
,
1742 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1745 fput_light(sock
->file
, fput_needed
);
1751 * Get a socket option. Because we don't know the option lengths we have
1752 * to pass a user mode parameter for the protocols to sort out.
1755 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1756 char __user
*, optval
, int __user
*, optlen
)
1758 int err
, fput_needed
;
1759 struct socket
*sock
;
1761 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1763 err
= security_socket_getsockopt(sock
, level
, optname
);
1767 if (level
== SOL_SOCKET
)
1769 sock_getsockopt(sock
, level
, optname
, optval
,
1773 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1776 fput_light(sock
->file
, fput_needed
);
1782 * Shutdown a socket.
1785 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1787 int err
, fput_needed
;
1788 struct socket
*sock
;
1790 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1792 err
= security_socket_shutdown(sock
, how
);
1794 err
= sock
->ops
->shutdown(sock
, how
);
1795 fput_light(sock
->file
, fput_needed
);
1800 /* A couple of helpful macros for getting the address of the 32/64 bit
1801 * fields which are the same type (int / unsigned) on our platforms.
1803 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1804 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1805 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1807 struct used_address
{
1808 struct sockaddr_storage name
;
1809 unsigned int name_len
;
1812 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1813 struct user_msghdr __user
*umsg
,
1814 struct sockaddr __user
**save_addr
,
1817 struct sockaddr __user
*uaddr
;
1818 struct iovec __user
*uiov
;
1822 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1823 __get_user(uaddr
, &umsg
->msg_name
) ||
1824 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1825 __get_user(uiov
, &umsg
->msg_iov
) ||
1826 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1827 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1828 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1829 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1833 kmsg
->msg_namelen
= 0;
1835 if (kmsg
->msg_namelen
< 0)
1838 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1839 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1844 if (uaddr
&& kmsg
->msg_namelen
) {
1846 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1852 kmsg
->msg_name
= NULL
;
1853 kmsg
->msg_namelen
= 0;
1856 if (nr_segs
> UIO_MAXIOV
)
1859 kmsg
->msg_iocb
= NULL
;
1861 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1862 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1865 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1866 struct msghdr
*msg_sys
, unsigned int flags
,
1867 struct used_address
*used_address
,
1868 unsigned int allowed_msghdr_flags
)
1870 struct compat_msghdr __user
*msg_compat
=
1871 (struct compat_msghdr __user
*)msg
;
1872 struct sockaddr_storage address
;
1873 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1874 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1875 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1876 /* 20 is size of ipv6_pktinfo */
1877 unsigned char *ctl_buf
= ctl
;
1881 msg_sys
->msg_name
= &address
;
1883 if (MSG_CMSG_COMPAT
& flags
)
1884 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1886 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1892 if (msg_sys
->msg_controllen
> INT_MAX
)
1894 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
1895 ctl_len
= msg_sys
->msg_controllen
;
1896 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1898 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1902 ctl_buf
= msg_sys
->msg_control
;
1903 ctl_len
= msg_sys
->msg_controllen
;
1904 } else if (ctl_len
) {
1905 if (ctl_len
> sizeof(ctl
)) {
1906 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1907 if (ctl_buf
== NULL
)
1912 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1913 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1914 * checking falls down on this.
1916 if (copy_from_user(ctl_buf
,
1917 (void __user __force
*)msg_sys
->msg_control
,
1920 msg_sys
->msg_control
= ctl_buf
;
1922 msg_sys
->msg_flags
= flags
;
1924 if (sock
->file
->f_flags
& O_NONBLOCK
)
1925 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1927 * If this is sendmmsg() and current destination address is same as
1928 * previously succeeded address, omit asking LSM's decision.
1929 * used_address->name_len is initialized to UINT_MAX so that the first
1930 * destination address never matches.
1932 if (used_address
&& msg_sys
->msg_name
&&
1933 used_address
->name_len
== msg_sys
->msg_namelen
&&
1934 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1935 used_address
->name_len
)) {
1936 err
= sock_sendmsg_nosec(sock
, msg_sys
);
1939 err
= sock_sendmsg(sock
, msg_sys
);
1941 * If this is sendmmsg() and sending to current destination address was
1942 * successful, remember it.
1944 if (used_address
&& err
>= 0) {
1945 used_address
->name_len
= msg_sys
->msg_namelen
;
1946 if (msg_sys
->msg_name
)
1947 memcpy(&used_address
->name
, msg_sys
->msg_name
,
1948 used_address
->name_len
);
1953 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1960 * BSD sendmsg interface
1963 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
1965 int fput_needed
, err
;
1966 struct msghdr msg_sys
;
1967 struct socket
*sock
;
1969 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1973 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
1975 fput_light(sock
->file
, fput_needed
);
1980 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
1982 if (flags
& MSG_CMSG_COMPAT
)
1984 return __sys_sendmsg(fd
, msg
, flags
);
1988 * Linux sendmmsg interface
1991 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
1994 int fput_needed
, err
, datagrams
;
1995 struct socket
*sock
;
1996 struct mmsghdr __user
*entry
;
1997 struct compat_mmsghdr __user
*compat_entry
;
1998 struct msghdr msg_sys
;
1999 struct used_address used_address
;
2000 unsigned int oflags
= flags
;
2002 if (vlen
> UIO_MAXIOV
)
2007 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2011 used_address
.name_len
= UINT_MAX
;
2013 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2017 while (datagrams
< vlen
) {
2018 if (datagrams
== vlen
- 1)
2021 if (MSG_CMSG_COMPAT
& flags
) {
2022 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2023 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2026 err
= __put_user(err
, &compat_entry
->msg_len
);
2029 err
= ___sys_sendmsg(sock
,
2030 (struct user_msghdr __user
*)entry
,
2031 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2034 err
= put_user(err
, &entry
->msg_len
);
2041 if (msg_data_left(&msg_sys
))
2046 fput_light(sock
->file
, fput_needed
);
2048 /* We only return an error if no datagrams were able to be sent */
2055 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2056 unsigned int, vlen
, unsigned int, flags
)
2058 if (flags
& MSG_CMSG_COMPAT
)
2060 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2063 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2064 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2066 struct compat_msghdr __user
*msg_compat
=
2067 (struct compat_msghdr __user
*)msg
;
2068 struct iovec iovstack
[UIO_FASTIOV
];
2069 struct iovec
*iov
= iovstack
;
2070 unsigned long cmsg_ptr
;
2074 /* kernel mode address */
2075 struct sockaddr_storage addr
;
2077 /* user mode address pointers */
2078 struct sockaddr __user
*uaddr
;
2079 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2081 msg_sys
->msg_name
= &addr
;
2083 if (MSG_CMSG_COMPAT
& flags
)
2084 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2086 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2090 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2091 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2093 /* We assume all kernel code knows the size of sockaddr_storage */
2094 msg_sys
->msg_namelen
= 0;
2096 if (sock
->file
->f_flags
& O_NONBLOCK
)
2097 flags
|= MSG_DONTWAIT
;
2098 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2103 if (uaddr
!= NULL
) {
2104 err
= move_addr_to_user(&addr
,
2105 msg_sys
->msg_namelen
, uaddr
,
2110 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2114 if (MSG_CMSG_COMPAT
& flags
)
2115 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2116 &msg_compat
->msg_controllen
);
2118 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2119 &msg
->msg_controllen
);
2130 * BSD recvmsg interface
2133 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2135 int fput_needed
, err
;
2136 struct msghdr msg_sys
;
2137 struct socket
*sock
;
2139 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2143 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2145 fput_light(sock
->file
, fput_needed
);
2150 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2151 unsigned int, flags
)
2153 if (flags
& MSG_CMSG_COMPAT
)
2155 return __sys_recvmsg(fd
, msg
, flags
);
2159 * Linux recvmmsg interface
2162 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2163 unsigned int flags
, struct timespec
*timeout
)
2165 int fput_needed
, err
, datagrams
;
2166 struct socket
*sock
;
2167 struct mmsghdr __user
*entry
;
2168 struct compat_mmsghdr __user
*compat_entry
;
2169 struct msghdr msg_sys
;
2170 struct timespec64 end_time
;
2171 struct timespec64 timeout64
;
2174 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2180 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2184 err
= sock_error(sock
->sk
);
2189 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2191 while (datagrams
< vlen
) {
2193 * No need to ask LSM for more than the first datagram.
2195 if (MSG_CMSG_COMPAT
& flags
) {
2196 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2197 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2201 err
= __put_user(err
, &compat_entry
->msg_len
);
2204 err
= ___sys_recvmsg(sock
,
2205 (struct user_msghdr __user
*)entry
,
2206 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2210 err
= put_user(err
, &entry
->msg_len
);
2218 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2219 if (flags
& MSG_WAITFORONE
)
2220 flags
|= MSG_DONTWAIT
;
2223 ktime_get_ts64(&timeout64
);
2224 *timeout
= timespec64_to_timespec(
2225 timespec64_sub(end_time
, timeout64
));
2226 if (timeout
->tv_sec
< 0) {
2227 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2231 /* Timeout, return less than vlen datagrams */
2232 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2236 /* Out of band data, return right away */
2237 if (msg_sys
.msg_flags
& MSG_OOB
)
2245 if (datagrams
== 0) {
2251 * We may return less entries than requested (vlen) if the
2252 * sock is non block and there aren't enough datagrams...
2254 if (err
!= -EAGAIN
) {
2256 * ... or if recvmsg returns an error after we
2257 * received some datagrams, where we record the
2258 * error to return on the next call or if the
2259 * app asks about it using getsockopt(SO_ERROR).
2261 sock
->sk
->sk_err
= -err
;
2264 fput_light(sock
->file
, fput_needed
);
2269 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2270 unsigned int, vlen
, unsigned int, flags
,
2271 struct timespec __user
*, timeout
)
2274 struct timespec timeout_sys
;
2276 if (flags
& MSG_CMSG_COMPAT
)
2280 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2282 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2285 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2287 if (datagrams
> 0 &&
2288 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2289 datagrams
= -EFAULT
;
2294 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2295 /* Argument list sizes for sys_socketcall */
2296 #define AL(x) ((x) * sizeof(unsigned long))
2297 static const unsigned char nargs
[21] = {
2298 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2299 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2300 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2307 * System call vectors.
2309 * Argument checking cleaned up. Saved 20% in size.
2310 * This function doesn't need to set the kernel lock because
2311 * it is set by the callees.
2314 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2316 unsigned long a
[AUDITSC_ARGS
];
2317 unsigned long a0
, a1
;
2321 if (call
< 1 || call
> SYS_SENDMMSG
)
2325 if (len
> sizeof(a
))
2328 /* copy_from_user should be SMP safe. */
2329 if (copy_from_user(a
, args
, len
))
2332 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2341 err
= sys_socket(a0
, a1
, a
[2]);
2344 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2347 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2350 err
= sys_listen(a0
, a1
);
2353 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2354 (int __user
*)a
[2], 0);
2356 case SYS_GETSOCKNAME
:
2358 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2359 (int __user
*)a
[2]);
2361 case SYS_GETPEERNAME
:
2363 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2364 (int __user
*)a
[2]);
2366 case SYS_SOCKETPAIR
:
2367 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2370 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2373 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2374 (struct sockaddr __user
*)a
[4], a
[5]);
2377 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2380 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2381 (struct sockaddr __user
*)a
[4],
2382 (int __user
*)a
[5]);
2385 err
= sys_shutdown(a0
, a1
);
2387 case SYS_SETSOCKOPT
:
2388 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2390 case SYS_GETSOCKOPT
:
2392 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2393 (int __user
*)a
[4]);
2396 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2399 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2402 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2405 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2406 (struct timespec __user
*)a
[4]);
2409 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2410 (int __user
*)a
[2], a
[3]);
2419 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2422 * sock_register - add a socket protocol handler
2423 * @ops: description of protocol
2425 * This function is called by a protocol handler that wants to
2426 * advertise its address family, and have it linked into the
2427 * socket interface. The value ops->family corresponds to the
2428 * socket system call protocol family.
2430 int sock_register(const struct net_proto_family
*ops
)
2434 if (ops
->family
>= NPROTO
) {
2435 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2439 spin_lock(&net_family_lock
);
2440 if (rcu_dereference_protected(net_families
[ops
->family
],
2441 lockdep_is_held(&net_family_lock
)))
2444 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2447 spin_unlock(&net_family_lock
);
2449 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2452 EXPORT_SYMBOL(sock_register
);
2455 * sock_unregister - remove a protocol handler
2456 * @family: protocol family to remove
2458 * This function is called by a protocol handler that wants to
2459 * remove its address family, and have it unlinked from the
2460 * new socket creation.
2462 * If protocol handler is a module, then it can use module reference
2463 * counts to protect against new references. If protocol handler is not
2464 * a module then it needs to provide its own protection in
2465 * the ops->create routine.
2467 void sock_unregister(int family
)
2469 BUG_ON(family
< 0 || family
>= NPROTO
);
2471 spin_lock(&net_family_lock
);
2472 RCU_INIT_POINTER(net_families
[family
], NULL
);
2473 spin_unlock(&net_family_lock
);
2477 pr_info("NET: Unregistered protocol family %d\n", family
);
2479 EXPORT_SYMBOL(sock_unregister
);
2481 static int __init
sock_init(void)
2485 * Initialize the network sysctl infrastructure.
2487 err
= net_sysctl_init();
2492 * Initialize skbuff SLAB cache
2497 * Initialize the protocols module.
2502 err
= register_filesystem(&sock_fs_type
);
2505 sock_mnt
= kern_mount(&sock_fs_type
);
2506 if (IS_ERR(sock_mnt
)) {
2507 err
= PTR_ERR(sock_mnt
);
2511 /* The real protocol initialization is performed in later initcalls.
2514 #ifdef CONFIG_NETFILTER
2515 err
= netfilter_init();
2520 ptp_classifier_init();
2526 unregister_filesystem(&sock_fs_type
);
2531 core_initcall(sock_init
); /* early initcall */
2533 #ifdef CONFIG_PROC_FS
2534 void socket_seq_show(struct seq_file
*seq
)
2539 for_each_possible_cpu(cpu
)
2540 counter
+= per_cpu(sockets_in_use
, cpu
);
2542 /* It can be negative, by the way. 8) */
2546 seq_printf(seq
, "sockets: used %d\n", counter
);
2548 #endif /* CONFIG_PROC_FS */
2550 #ifdef CONFIG_COMPAT
2551 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2552 unsigned int cmd
, void __user
*up
)
2554 mm_segment_t old_fs
= get_fs();
2559 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2562 err
= compat_put_timeval(&ktv
, up
);
2567 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2568 unsigned int cmd
, void __user
*up
)
2570 mm_segment_t old_fs
= get_fs();
2571 struct timespec kts
;
2575 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2578 err
= compat_put_timespec(&kts
, up
);
2583 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2585 struct ifreq __user
*uifr
;
2588 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2589 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2592 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2596 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2602 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2604 struct compat_ifconf ifc32
;
2606 struct ifconf __user
*uifc
;
2607 struct compat_ifreq __user
*ifr32
;
2608 struct ifreq __user
*ifr
;
2612 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2615 memset(&ifc
, 0, sizeof(ifc
));
2616 if (ifc32
.ifcbuf
== 0) {
2620 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2622 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2623 sizeof(struct ifreq
);
2624 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2626 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2627 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2628 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2629 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2635 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2638 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2642 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2646 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2648 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2649 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2650 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2656 if (ifc32
.ifcbuf
== 0) {
2657 /* Translate from 64-bit structure multiple to
2661 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2666 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2672 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2674 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2675 bool convert_in
= false, convert_out
= false;
2676 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2677 struct ethtool_rxnfc __user
*rxnfc
;
2678 struct ifreq __user
*ifr
;
2679 u32 rule_cnt
= 0, actual_rule_cnt
;
2684 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2687 compat_rxnfc
= compat_ptr(data
);
2689 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2692 /* Most ethtool structures are defined without padding.
2693 * Unfortunately struct ethtool_rxnfc is an exception.
2698 case ETHTOOL_GRXCLSRLALL
:
2699 /* Buffer size is variable */
2700 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2702 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2704 buf_size
+= rule_cnt
* sizeof(u32
);
2706 case ETHTOOL_GRXRINGS
:
2707 case ETHTOOL_GRXCLSRLCNT
:
2708 case ETHTOOL_GRXCLSRULE
:
2709 case ETHTOOL_SRXCLSRLINS
:
2712 case ETHTOOL_SRXCLSRLDEL
:
2713 buf_size
+= sizeof(struct ethtool_rxnfc
);
2718 ifr
= compat_alloc_user_space(buf_size
);
2719 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2721 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2724 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2725 &ifr
->ifr_ifru
.ifru_data
))
2729 /* We expect there to be holes between fs.m_ext and
2730 * fs.ring_cookie and at the end of fs, but nowhere else.
2732 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2733 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2734 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2735 sizeof(rxnfc
->fs
.m_ext
));
2737 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2738 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2739 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2740 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2742 if (copy_in_user(rxnfc
, compat_rxnfc
,
2743 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2744 (void __user
*)rxnfc
) ||
2745 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2746 &compat_rxnfc
->fs
.ring_cookie
,
2747 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2748 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2749 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2750 sizeof(rxnfc
->rule_cnt
)))
2754 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2759 if (copy_in_user(compat_rxnfc
, rxnfc
,
2760 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2761 (const void __user
*)rxnfc
) ||
2762 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2763 &rxnfc
->fs
.ring_cookie
,
2764 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2765 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2766 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2767 sizeof(rxnfc
->rule_cnt
)))
2770 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2771 /* As an optimisation, we only copy the actual
2772 * number of rules that the underlying
2773 * function returned. Since Mallory might
2774 * change the rule count in user memory, we
2775 * check that it is less than the rule count
2776 * originally given (as the user buffer size),
2777 * which has been range-checked.
2779 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2781 if (actual_rule_cnt
< rule_cnt
)
2782 rule_cnt
= actual_rule_cnt
;
2783 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2784 &rxnfc
->rule_locs
[0],
2785 rule_cnt
* sizeof(u32
)))
2793 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2796 compat_uptr_t uptr32
;
2797 struct ifreq __user
*uifr
;
2799 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2800 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2803 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2806 uptr
= compat_ptr(uptr32
);
2808 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2811 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2814 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2815 struct compat_ifreq __user
*ifr32
)
2818 mm_segment_t old_fs
;
2822 case SIOCBONDENSLAVE
:
2823 case SIOCBONDRELEASE
:
2824 case SIOCBONDSETHWADDR
:
2825 case SIOCBONDCHANGEACTIVE
:
2826 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2831 err
= dev_ioctl(net
, cmd
,
2832 (struct ifreq __user __force
*) &kifr
);
2837 return -ENOIOCTLCMD
;
2841 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2842 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2843 struct compat_ifreq __user
*u_ifreq32
)
2845 struct ifreq __user
*u_ifreq64
;
2846 char tmp_buf
[IFNAMSIZ
];
2847 void __user
*data64
;
2850 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2853 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2855 data64
= compat_ptr(data32
);
2857 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2859 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2862 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2865 return dev_ioctl(net
, cmd
, u_ifreq64
);
2868 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2869 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2871 struct ifreq __user
*uifr
;
2874 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2875 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2878 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2889 case SIOCGIFBRDADDR
:
2890 case SIOCGIFDSTADDR
:
2891 case SIOCGIFNETMASK
:
2896 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2904 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2905 struct compat_ifreq __user
*uifr32
)
2908 struct compat_ifmap __user
*uifmap32
;
2909 mm_segment_t old_fs
;
2912 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2913 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2914 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2915 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2916 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2917 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2918 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2919 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2925 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2928 if (cmd
== SIOCGIFMAP
&& !err
) {
2929 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2930 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2931 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2932 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2933 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2934 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2935 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2944 struct sockaddr rt_dst
; /* target address */
2945 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2946 struct sockaddr rt_genmask
; /* target network mask (IP) */
2947 unsigned short rt_flags
;
2950 unsigned char rt_tos
;
2951 unsigned char rt_class
;
2953 short rt_metric
; /* +1 for binary compatibility! */
2954 /* char * */ u32 rt_dev
; /* forcing the device at add */
2955 u32 rt_mtu
; /* per route MTU/Window */
2956 u32 rt_window
; /* Window clamping */
2957 unsigned short rt_irtt
; /* Initial RTT */
2960 struct in6_rtmsg32
{
2961 struct in6_addr rtmsg_dst
;
2962 struct in6_addr rtmsg_src
;
2963 struct in6_addr rtmsg_gateway
;
2973 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
2974 unsigned int cmd
, void __user
*argp
)
2978 struct in6_rtmsg r6
;
2982 mm_segment_t old_fs
= get_fs();
2984 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
2985 struct in6_rtmsg32 __user
*ur6
= argp
;
2986 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
2987 3 * sizeof(struct in6_addr
));
2988 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
2989 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
2990 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
2991 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
2992 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
2993 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
2994 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
2998 struct rtentry32 __user
*ur4
= argp
;
2999 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3000 3 * sizeof(struct sockaddr
));
3001 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3002 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3003 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3004 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3005 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3006 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3008 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3009 r4
.rt_dev
= (char __user __force
*)devname
;
3023 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3030 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3031 * for some operations; this forces use of the newer bridge-utils that
3032 * use compatible ioctls
3034 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3038 if (get_user(tmp
, argp
))
3040 if (tmp
== BRCTL_GET_VERSION
)
3041 return BRCTL_VERSION
+ 1;
3045 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3046 unsigned int cmd
, unsigned long arg
)
3048 void __user
*argp
= compat_ptr(arg
);
3049 struct sock
*sk
= sock
->sk
;
3050 struct net
*net
= sock_net(sk
);
3052 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3053 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3058 return old_bridge_ioctl(argp
);
3060 return dev_ifname32(net
, argp
);
3062 return dev_ifconf(net
, argp
);
3064 return ethtool_ioctl(net
, argp
);
3066 return compat_siocwandev(net
, argp
);
3069 return compat_sioc_ifmap(net
, cmd
, argp
);
3070 case SIOCBONDENSLAVE
:
3071 case SIOCBONDRELEASE
:
3072 case SIOCBONDSETHWADDR
:
3073 case SIOCBONDCHANGEACTIVE
:
3074 return bond_ioctl(net
, cmd
, argp
);
3077 return routing_ioctl(net
, sock
, cmd
, argp
);
3079 return do_siocgstamp(net
, sock
, cmd
, argp
);
3081 return do_siocgstampns(net
, sock
, cmd
, argp
);
3082 case SIOCBONDSLAVEINFOQUERY
:
3083 case SIOCBONDINFOQUERY
:
3086 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3098 return sock_ioctl(file
, cmd
, arg
);
3115 case SIOCSIFHWBROADCAST
:
3117 case SIOCGIFBRDADDR
:
3118 case SIOCSIFBRDADDR
:
3119 case SIOCGIFDSTADDR
:
3120 case SIOCSIFDSTADDR
:
3121 case SIOCGIFNETMASK
:
3122 case SIOCSIFNETMASK
:
3133 return dev_ifsioc(net
, sock
, cmd
, argp
);
3139 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3142 return -ENOIOCTLCMD
;
3145 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3148 struct socket
*sock
= file
->private_data
;
3149 int ret
= -ENOIOCTLCMD
;
3156 if (sock
->ops
->compat_ioctl
)
3157 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3159 if (ret
== -ENOIOCTLCMD
&&
3160 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3161 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3163 if (ret
== -ENOIOCTLCMD
)
3164 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3170 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3172 return sock
->ops
->bind(sock
, addr
, addrlen
);
3174 EXPORT_SYMBOL(kernel_bind
);
3176 int kernel_listen(struct socket
*sock
, int backlog
)
3178 return sock
->ops
->listen(sock
, backlog
);
3180 EXPORT_SYMBOL(kernel_listen
);
3182 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3184 struct sock
*sk
= sock
->sk
;
3187 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3192 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3194 sock_release(*newsock
);
3199 (*newsock
)->ops
= sock
->ops
;
3200 __module_get((*newsock
)->ops
->owner
);
3205 EXPORT_SYMBOL(kernel_accept
);
3207 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3210 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3212 EXPORT_SYMBOL(kernel_connect
);
3214 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3217 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3219 EXPORT_SYMBOL(kernel_getsockname
);
3221 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3224 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3226 EXPORT_SYMBOL(kernel_getpeername
);
3228 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3229 char *optval
, int *optlen
)
3231 mm_segment_t oldfs
= get_fs();
3232 char __user
*uoptval
;
3233 int __user
*uoptlen
;
3236 uoptval
= (char __user __force
*) optval
;
3237 uoptlen
= (int __user __force
*) optlen
;
3240 if (level
== SOL_SOCKET
)
3241 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3243 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3248 EXPORT_SYMBOL(kernel_getsockopt
);
3250 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3251 char *optval
, unsigned int optlen
)
3253 mm_segment_t oldfs
= get_fs();
3254 char __user
*uoptval
;
3257 uoptval
= (char __user __force
*) optval
;
3260 if (level
== SOL_SOCKET
)
3261 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3263 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3268 EXPORT_SYMBOL(kernel_setsockopt
);
3270 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3271 size_t size
, int flags
)
3273 if (sock
->ops
->sendpage
)
3274 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3276 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3278 EXPORT_SYMBOL(kernel_sendpage
);
3280 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3282 mm_segment_t oldfs
= get_fs();
3286 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3291 EXPORT_SYMBOL(kernel_sock_ioctl
);
3293 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3295 return sock
->ops
->shutdown(sock
, how
);
3297 EXPORT_SYMBOL(kernel_sock_shutdown
);