]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
Merge tag 'acpi-5.13-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143
144 /*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149 static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158 #endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166 };
167
168 /*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175 /*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181 /**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201 }
202
203 /**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222 {
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245 }
246
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
269 static void sock_free_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static void init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294 }
295
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300 };
301
302 /*
303 * sockfs_dname() is called from d_path().
304 */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309 }
310
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313 };
314
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318 {
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325 }
326
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334 };
335
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct user_namespace *mnt_userns,
338 struct dentry *dentry, struct inode *inode,
339 const char *suffix, const void *value,
340 size_t size, int flags)
341 {
342 /* Handled by LSM. */
343 return -EAGAIN;
344 }
345
346 static const struct xattr_handler sockfs_security_xattr_handler = {
347 .prefix = XATTR_SECURITY_PREFIX,
348 .set = sockfs_security_xattr_set,
349 };
350
351 static const struct xattr_handler *sockfs_xattr_handlers[] = {
352 &sockfs_xattr_handler,
353 &sockfs_security_xattr_handler,
354 NULL
355 };
356
357 static int sockfs_init_fs_context(struct fs_context *fc)
358 {
359 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
360 if (!ctx)
361 return -ENOMEM;
362 ctx->ops = &sockfs_ops;
363 ctx->dops = &sockfs_dentry_operations;
364 ctx->xattr = sockfs_xattr_handlers;
365 return 0;
366 }
367
368 static struct vfsmount *sock_mnt __read_mostly;
369
370 static struct file_system_type sock_fs_type = {
371 .name = "sockfs",
372 .init_fs_context = sockfs_init_fs_context,
373 .kill_sb = kill_anon_super,
374 };
375
376 /*
377 * Obtains the first available file descriptor and sets it up for use.
378 *
379 * These functions create file structures and maps them to fd space
380 * of the current process. On success it returns file descriptor
381 * and file struct implicitly stored in sock->file.
382 * Note that another thread may close file descriptor before we return
383 * from this function. We use the fact that now we do not refer
384 * to socket after mapping. If one day we will need it, this
385 * function will increment ref. count on file by 1.
386 *
387 * In any case returned fd MAY BE not valid!
388 * This race condition is unavoidable
389 * with shared fd spaces, we cannot solve it inside kernel,
390 * but we take care of internal coherence yet.
391 */
392
393 /**
394 * sock_alloc_file - Bind a &socket to a &file
395 * @sock: socket
396 * @flags: file status flags
397 * @dname: protocol name
398 *
399 * Returns the &file bound with @sock, implicitly storing it
400 * in sock->file. If dname is %NULL, sets to "".
401 * On failure the return is a ERR pointer (see linux/err.h).
402 * This function uses GFP_KERNEL internally.
403 */
404
405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
406 {
407 struct file *file;
408
409 if (!dname)
410 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
411
412 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
413 O_RDWR | (flags & O_NONBLOCK),
414 &socket_file_ops);
415 if (IS_ERR(file)) {
416 sock_release(sock);
417 return file;
418 }
419
420 sock->file = file;
421 file->private_data = sock;
422 stream_open(SOCK_INODE(sock), file);
423 return file;
424 }
425 EXPORT_SYMBOL(sock_alloc_file);
426
427 static int sock_map_fd(struct socket *sock, int flags)
428 {
429 struct file *newfile;
430 int fd = get_unused_fd_flags(flags);
431 if (unlikely(fd < 0)) {
432 sock_release(sock);
433 return fd;
434 }
435
436 newfile = sock_alloc_file(sock, flags, NULL);
437 if (!IS_ERR(newfile)) {
438 fd_install(fd, newfile);
439 return fd;
440 }
441
442 put_unused_fd(fd);
443 return PTR_ERR(newfile);
444 }
445
446 /**
447 * sock_from_file - Return the &socket bounded to @file.
448 * @file: file
449 *
450 * On failure returns %NULL.
451 */
452
453 struct socket *sock_from_file(struct file *file)
454 {
455 if (file->f_op == &socket_file_ops)
456 return file->private_data; /* set in sock_map_fd */
457
458 return NULL;
459 }
460 EXPORT_SYMBOL(sock_from_file);
461
462 /**
463 * sockfd_lookup - Go from a file number to its socket slot
464 * @fd: file handle
465 * @err: pointer to an error code return
466 *
467 * The file handle passed in is locked and the socket it is bound
468 * to is returned. If an error occurs the err pointer is overwritten
469 * with a negative errno code and NULL is returned. The function checks
470 * for both invalid handles and passing a handle which is not a socket.
471 *
472 * On a success the socket object pointer is returned.
473 */
474
475 struct socket *sockfd_lookup(int fd, int *err)
476 {
477 struct file *file;
478 struct socket *sock;
479
480 file = fget(fd);
481 if (!file) {
482 *err = -EBADF;
483 return NULL;
484 }
485
486 sock = sock_from_file(file);
487 if (!sock) {
488 *err = -ENOTSOCK;
489 fput(file);
490 }
491 return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494
495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 struct fd f = fdget(fd);
498 struct socket *sock;
499
500 *err = -EBADF;
501 if (f.file) {
502 sock = sock_from_file(f.file);
503 if (likely(sock)) {
504 *fput_needed = f.flags & FDPUT_FPUT;
505 return sock;
506 }
507 *err = -ENOTSOCK;
508 fdput(f);
509 }
510 return NULL;
511 }
512
513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 size_t size)
515 {
516 ssize_t len;
517 ssize_t used = 0;
518
519 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
520 if (len < 0)
521 return len;
522 used += len;
523 if (buffer) {
524 if (size < used)
525 return -ERANGE;
526 buffer += len;
527 }
528
529 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
530 used += len;
531 if (buffer) {
532 if (size < used)
533 return -ERANGE;
534 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
535 buffer += len;
536 }
537
538 return used;
539 }
540
541 static int sockfs_setattr(struct user_namespace *mnt_userns,
542 struct dentry *dentry, struct iattr *iattr)
543 {
544 int err = simple_setattr(&init_user_ns, dentry, iattr);
545
546 if (!err && (iattr->ia_valid & ATTR_UID)) {
547 struct socket *sock = SOCKET_I(d_inode(dentry));
548
549 if (sock->sk)
550 sock->sk->sk_uid = iattr->ia_uid;
551 else
552 err = -ENOENT;
553 }
554
555 return err;
556 }
557
558 static const struct inode_operations sockfs_inode_ops = {
559 .listxattr = sockfs_listxattr,
560 .setattr = sockfs_setattr,
561 };
562
563 /**
564 * sock_alloc - allocate a socket
565 *
566 * Allocate a new inode and socket object. The two are bound together
567 * and initialised. The socket is then returned. If we are out of inodes
568 * NULL is returned. This functions uses GFP_KERNEL internally.
569 */
570
571 struct socket *sock_alloc(void)
572 {
573 struct inode *inode;
574 struct socket *sock;
575
576 inode = new_inode_pseudo(sock_mnt->mnt_sb);
577 if (!inode)
578 return NULL;
579
580 sock = SOCKET_I(inode);
581
582 inode->i_ino = get_next_ino();
583 inode->i_mode = S_IFSOCK | S_IRWXUGO;
584 inode->i_uid = current_fsuid();
585 inode->i_gid = current_fsgid();
586 inode->i_op = &sockfs_inode_ops;
587
588 return sock;
589 }
590 EXPORT_SYMBOL(sock_alloc);
591
592 static void __sock_release(struct socket *sock, struct inode *inode)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 if (inode)
598 inode_lock(inode);
599 sock->ops->release(sock);
600 sock->sk = NULL;
601 if (inode)
602 inode_unlock(inode);
603 sock->ops = NULL;
604 module_put(owner);
605 }
606
607 if (sock->wq.fasync_list)
608 pr_err("%s: fasync list not empty!\n", __func__);
609
610 if (!sock->file) {
611 iput(SOCK_INODE(sock));
612 return;
613 }
614 sock->file = NULL;
615 }
616
617 /**
618 * sock_release - close a socket
619 * @sock: socket to close
620 *
621 * The socket is released from the protocol stack if it has a release
622 * callback, and the inode is then released if the socket is bound to
623 * an inode not a file.
624 */
625 void sock_release(struct socket *sock)
626 {
627 __sock_release(sock, NULL);
628 }
629 EXPORT_SYMBOL(sock_release);
630
631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
632 {
633 u8 flags = *tx_flags;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
636 flags |= SKBTX_HW_TSTAMP;
637
638 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
639 flags |= SKBTX_SW_TSTAMP;
640
641 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
642 flags |= SKBTX_SCHED_TSTAMP;
643
644 *tx_flags = flags;
645 }
646 EXPORT_SYMBOL(__sock_tx_timestamp);
647
648 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
649 size_t));
650 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
651 size_t));
652 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
653 {
654 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
655 inet_sendmsg, sock, msg,
656 msg_data_left(msg));
657 BUG_ON(ret == -EIOCBQUEUED);
658 return ret;
659 }
660
661 /**
662 * sock_sendmsg - send a message through @sock
663 * @sock: socket
664 * @msg: message to send
665 *
666 * Sends @msg through @sock, passing through LSM.
667 * Returns the number of bytes sent, or an error code.
668 */
669 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
670 {
671 int err = security_socket_sendmsg(sock, msg,
672 msg_data_left(msg));
673
674 return err ?: sock_sendmsg_nosec(sock, msg);
675 }
676 EXPORT_SYMBOL(sock_sendmsg);
677
678 /**
679 * kernel_sendmsg - send a message through @sock (kernel-space)
680 * @sock: socket
681 * @msg: message header
682 * @vec: kernel vec
683 * @num: vec array length
684 * @size: total message data size
685 *
686 * Builds the message data with @vec and sends it through @sock.
687 * Returns the number of bytes sent, or an error code.
688 */
689
690 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
691 struct kvec *vec, size_t num, size_t size)
692 {
693 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
694 return sock_sendmsg(sock, msg);
695 }
696 EXPORT_SYMBOL(kernel_sendmsg);
697
698 /**
699 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
700 * @sk: sock
701 * @msg: message header
702 * @vec: output s/g array
703 * @num: output s/g array length
704 * @size: total message data size
705 *
706 * Builds the message data with @vec and sends it through @sock.
707 * Returns the number of bytes sent, or an error code.
708 * Caller must hold @sk.
709 */
710
711 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
712 struct kvec *vec, size_t num, size_t size)
713 {
714 struct socket *sock = sk->sk_socket;
715
716 if (!sock->ops->sendmsg_locked)
717 return sock_no_sendmsg_locked(sk, msg, size);
718
719 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
720
721 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
722 }
723 EXPORT_SYMBOL(kernel_sendmsg_locked);
724
725 static bool skb_is_err_queue(const struct sk_buff *skb)
726 {
727 /* pkt_type of skbs enqueued on the error queue are set to
728 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
729 * in recvmsg, since skbs received on a local socket will never
730 * have a pkt_type of PACKET_OUTGOING.
731 */
732 return skb->pkt_type == PACKET_OUTGOING;
733 }
734
735 /* On transmit, software and hardware timestamps are returned independently.
736 * As the two skb clones share the hardware timestamp, which may be updated
737 * before the software timestamp is received, a hardware TX timestamp may be
738 * returned only if there is no software TX timestamp. Ignore false software
739 * timestamps, which may be made in the __sock_recv_timestamp() call when the
740 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
741 * hardware timestamp.
742 */
743 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
744 {
745 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
746 }
747
748 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
749 {
750 struct scm_ts_pktinfo ts_pktinfo;
751 struct net_device *orig_dev;
752
753 if (!skb_mac_header_was_set(skb))
754 return;
755
756 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
757
758 rcu_read_lock();
759 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
760 if (orig_dev)
761 ts_pktinfo.if_index = orig_dev->ifindex;
762 rcu_read_unlock();
763
764 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
766 sizeof(ts_pktinfo), &ts_pktinfo);
767 }
768
769 /*
770 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
771 */
772 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
773 struct sk_buff *skb)
774 {
775 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
776 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
777 struct scm_timestamping_internal tss;
778
779 int empty = 1, false_tstamp = 0;
780 struct skb_shared_hwtstamps *shhwtstamps =
781 skb_hwtstamps(skb);
782
783 /* Race occurred between timestamp enabling and packet
784 receiving. Fill in the current time for now. */
785 if (need_software_tstamp && skb->tstamp == 0) {
786 __net_timestamp(skb);
787 false_tstamp = 1;
788 }
789
790 if (need_software_tstamp) {
791 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
792 if (new_tstamp) {
793 struct __kernel_sock_timeval tv;
794
795 skb_get_new_timestamp(skb, &tv);
796 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
797 sizeof(tv), &tv);
798 } else {
799 struct __kernel_old_timeval tv;
800
801 skb_get_timestamp(skb, &tv);
802 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
803 sizeof(tv), &tv);
804 }
805 } else {
806 if (new_tstamp) {
807 struct __kernel_timespec ts;
808
809 skb_get_new_timestampns(skb, &ts);
810 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
811 sizeof(ts), &ts);
812 } else {
813 struct __kernel_old_timespec ts;
814
815 skb_get_timestampns(skb, &ts);
816 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
817 sizeof(ts), &ts);
818 }
819 }
820 }
821
822 memset(&tss, 0, sizeof(tss));
823 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
824 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
825 empty = 0;
826 if (shhwtstamps &&
827 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
828 !skb_is_swtx_tstamp(skb, false_tstamp) &&
829 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
830 empty = 0;
831 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
832 !skb_is_err_queue(skb))
833 put_ts_pktinfo(msg, skb);
834 }
835 if (!empty) {
836 if (sock_flag(sk, SOCK_TSTAMP_NEW))
837 put_cmsg_scm_timestamping64(msg, &tss);
838 else
839 put_cmsg_scm_timestamping(msg, &tss);
840
841 if (skb_is_err_queue(skb) && skb->len &&
842 SKB_EXT_ERR(skb)->opt_stats)
843 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
844 skb->len, skb->data);
845 }
846 }
847 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
848
849 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
850 struct sk_buff *skb)
851 {
852 int ack;
853
854 if (!sock_flag(sk, SOCK_WIFI_STATUS))
855 return;
856 if (!skb->wifi_acked_valid)
857 return;
858
859 ack = skb->wifi_acked;
860
861 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
864
865 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
866 struct sk_buff *skb)
867 {
868 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
869 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
870 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
871 }
872
873 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
874 struct sk_buff *skb)
875 {
876 sock_recv_timestamp(msg, sk, skb);
877 sock_recv_drops(msg, sk, skb);
878 }
879 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
880
881 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
882 size_t, int));
883 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
884 size_t, int));
885 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
886 int flags)
887 {
888 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
889 inet_recvmsg, sock, msg, msg_data_left(msg),
890 flags);
891 }
892
893 /**
894 * sock_recvmsg - receive a message from @sock
895 * @sock: socket
896 * @msg: message to receive
897 * @flags: message flags
898 *
899 * Receives @msg from @sock, passing through LSM. Returns the total number
900 * of bytes received, or an error.
901 */
902 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
903 {
904 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
905
906 return err ?: sock_recvmsg_nosec(sock, msg, flags);
907 }
908 EXPORT_SYMBOL(sock_recvmsg);
909
910 /**
911 * kernel_recvmsg - Receive a message from a socket (kernel space)
912 * @sock: The socket to receive the message from
913 * @msg: Received message
914 * @vec: Input s/g array for message data
915 * @num: Size of input s/g array
916 * @size: Number of bytes to read
917 * @flags: Message flags (MSG_DONTWAIT, etc...)
918 *
919 * On return the msg structure contains the scatter/gather array passed in the
920 * vec argument. The array is modified so that it consists of the unfilled
921 * portion of the original array.
922 *
923 * The returned value is the total number of bytes received, or an error.
924 */
925
926 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
927 struct kvec *vec, size_t num, size_t size, int flags)
928 {
929 msg->msg_control_is_user = false;
930 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 return sock_recvmsg(sock, msg, flags);
932 }
933 EXPORT_SYMBOL(kernel_recvmsg);
934
935 static ssize_t sock_sendpage(struct file *file, struct page *page,
936 int offset, size_t size, loff_t *ppos, int more)
937 {
938 struct socket *sock;
939 int flags;
940
941 sock = file->private_data;
942
943 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
944 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
945 flags |= more;
946
947 return kernel_sendpage(sock, page, offset, size, flags);
948 }
949
950 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
951 struct pipe_inode_info *pipe, size_t len,
952 unsigned int flags)
953 {
954 struct socket *sock = file->private_data;
955
956 if (unlikely(!sock->ops->splice_read))
957 return generic_file_splice_read(file, ppos, pipe, len, flags);
958
959 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
960 }
961
962 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
963 {
964 struct file *file = iocb->ki_filp;
965 struct socket *sock = file->private_data;
966 struct msghdr msg = {.msg_iter = *to,
967 .msg_iocb = iocb};
968 ssize_t res;
969
970 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
971 msg.msg_flags = MSG_DONTWAIT;
972
973 if (iocb->ki_pos != 0)
974 return -ESPIPE;
975
976 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
977 return 0;
978
979 res = sock_recvmsg(sock, &msg, msg.msg_flags);
980 *to = msg.msg_iter;
981 return res;
982 }
983
984 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
985 {
986 struct file *file = iocb->ki_filp;
987 struct socket *sock = file->private_data;
988 struct msghdr msg = {.msg_iter = *from,
989 .msg_iocb = iocb};
990 ssize_t res;
991
992 if (iocb->ki_pos != 0)
993 return -ESPIPE;
994
995 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
996 msg.msg_flags = MSG_DONTWAIT;
997
998 if (sock->type == SOCK_SEQPACKET)
999 msg.msg_flags |= MSG_EOR;
1000
1001 res = sock_sendmsg(sock, &msg);
1002 *from = msg.msg_iter;
1003 return res;
1004 }
1005
1006 /*
1007 * Atomic setting of ioctl hooks to avoid race
1008 * with module unload.
1009 */
1010
1011 static DEFINE_MUTEX(br_ioctl_mutex);
1012 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1013
1014 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1015 {
1016 mutex_lock(&br_ioctl_mutex);
1017 br_ioctl_hook = hook;
1018 mutex_unlock(&br_ioctl_mutex);
1019 }
1020 EXPORT_SYMBOL(brioctl_set);
1021
1022 static DEFINE_MUTEX(vlan_ioctl_mutex);
1023 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1024
1025 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1026 {
1027 mutex_lock(&vlan_ioctl_mutex);
1028 vlan_ioctl_hook = hook;
1029 mutex_unlock(&vlan_ioctl_mutex);
1030 }
1031 EXPORT_SYMBOL(vlan_ioctl_set);
1032
1033 static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 unsigned int cmd, unsigned long arg)
1035 {
1036 int err;
1037 void __user *argp = (void __user *)arg;
1038
1039 err = sock->ops->ioctl(sock, cmd, arg);
1040
1041 /*
1042 * If this ioctl is unknown try to hand it down
1043 * to the NIC driver.
1044 */
1045 if (err != -ENOIOCTLCMD)
1046 return err;
1047
1048 if (cmd == SIOCGIFCONF) {
1049 struct ifconf ifc;
1050 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 return -EFAULT;
1052 rtnl_lock();
1053 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 rtnl_unlock();
1055 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 err = -EFAULT;
1057 } else {
1058 struct ifreq ifr;
1059 bool need_copyout;
1060 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 return -EFAULT;
1062 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 if (!err && need_copyout)
1064 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 return -EFAULT;
1066 }
1067 return err;
1068 }
1069
1070 /*
1071 * With an ioctl, arg may well be a user mode pointer, but we don't know
1072 * what to do with it - that's up to the protocol still.
1073 */
1074
1075 /**
1076 * get_net_ns - increment the refcount of the network namespace
1077 * @ns: common namespace (net)
1078 *
1079 * Returns the net's common namespace.
1080 */
1081
1082 struct ns_common *get_net_ns(struct ns_common *ns)
1083 {
1084 return &get_net(container_of(ns, struct net, ns))->ns;
1085 }
1086 EXPORT_SYMBOL_GPL(get_net_ns);
1087
1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1089 {
1090 struct socket *sock;
1091 struct sock *sk;
1092 void __user *argp = (void __user *)arg;
1093 int pid, err;
1094 struct net *net;
1095
1096 sock = file->private_data;
1097 sk = sock->sk;
1098 net = sock_net(sk);
1099 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1100 struct ifreq ifr;
1101 bool need_copyout;
1102 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1103 return -EFAULT;
1104 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1105 if (!err && need_copyout)
1106 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1107 return -EFAULT;
1108 } else
1109 #ifdef CONFIG_WEXT_CORE
1110 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1111 err = wext_handle_ioctl(net, cmd, argp);
1112 } else
1113 #endif
1114 switch (cmd) {
1115 case FIOSETOWN:
1116 case SIOCSPGRP:
1117 err = -EFAULT;
1118 if (get_user(pid, (int __user *)argp))
1119 break;
1120 err = f_setown(sock->file, pid, 1);
1121 break;
1122 case FIOGETOWN:
1123 case SIOCGPGRP:
1124 err = put_user(f_getown(sock->file),
1125 (int __user *)argp);
1126 break;
1127 case SIOCGIFBR:
1128 case SIOCSIFBR:
1129 case SIOCBRADDBR:
1130 case SIOCBRDELBR:
1131 err = -ENOPKG;
1132 if (!br_ioctl_hook)
1133 request_module("bridge");
1134
1135 mutex_lock(&br_ioctl_mutex);
1136 if (br_ioctl_hook)
1137 err = br_ioctl_hook(net, cmd, argp);
1138 mutex_unlock(&br_ioctl_mutex);
1139 break;
1140 case SIOCGIFVLAN:
1141 case SIOCSIFVLAN:
1142 err = -ENOPKG;
1143 if (!vlan_ioctl_hook)
1144 request_module("8021q");
1145
1146 mutex_lock(&vlan_ioctl_mutex);
1147 if (vlan_ioctl_hook)
1148 err = vlan_ioctl_hook(net, argp);
1149 mutex_unlock(&vlan_ioctl_mutex);
1150 break;
1151 case SIOCGSKNS:
1152 err = -EPERM;
1153 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1154 break;
1155
1156 err = open_related_ns(&net->ns, get_net_ns);
1157 break;
1158 case SIOCGSTAMP_OLD:
1159 case SIOCGSTAMPNS_OLD:
1160 if (!sock->ops->gettstamp) {
1161 err = -ENOIOCTLCMD;
1162 break;
1163 }
1164 err = sock->ops->gettstamp(sock, argp,
1165 cmd == SIOCGSTAMP_OLD,
1166 !IS_ENABLED(CONFIG_64BIT));
1167 break;
1168 case SIOCGSTAMP_NEW:
1169 case SIOCGSTAMPNS_NEW:
1170 if (!sock->ops->gettstamp) {
1171 err = -ENOIOCTLCMD;
1172 break;
1173 }
1174 err = sock->ops->gettstamp(sock, argp,
1175 cmd == SIOCGSTAMP_NEW,
1176 false);
1177 break;
1178 default:
1179 err = sock_do_ioctl(net, sock, cmd, arg);
1180 break;
1181 }
1182 return err;
1183 }
1184
1185 /**
1186 * sock_create_lite - creates a socket
1187 * @family: protocol family (AF_INET, ...)
1188 * @type: communication type (SOCK_STREAM, ...)
1189 * @protocol: protocol (0, ...)
1190 * @res: new socket
1191 *
1192 * Creates a new socket and assigns it to @res, passing through LSM.
1193 * The new socket initialization is not complete, see kernel_accept().
1194 * Returns 0 or an error. On failure @res is set to %NULL.
1195 * This function internally uses GFP_KERNEL.
1196 */
1197
1198 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1199 {
1200 int err;
1201 struct socket *sock = NULL;
1202
1203 err = security_socket_create(family, type, protocol, 1);
1204 if (err)
1205 goto out;
1206
1207 sock = sock_alloc();
1208 if (!sock) {
1209 err = -ENOMEM;
1210 goto out;
1211 }
1212
1213 sock->type = type;
1214 err = security_socket_post_create(sock, family, type, protocol, 1);
1215 if (err)
1216 goto out_release;
1217
1218 out:
1219 *res = sock;
1220 return err;
1221 out_release:
1222 sock_release(sock);
1223 sock = NULL;
1224 goto out;
1225 }
1226 EXPORT_SYMBOL(sock_create_lite);
1227
1228 /* No kernel lock held - perfect */
1229 static __poll_t sock_poll(struct file *file, poll_table *wait)
1230 {
1231 struct socket *sock = file->private_data;
1232 __poll_t events = poll_requested_events(wait), flag = 0;
1233
1234 if (!sock->ops->poll)
1235 return 0;
1236
1237 if (sk_can_busy_loop(sock->sk)) {
1238 /* poll once if requested by the syscall */
1239 if (events & POLL_BUSY_LOOP)
1240 sk_busy_loop(sock->sk, 1);
1241
1242 /* if this socket can poll_ll, tell the system call */
1243 flag = POLL_BUSY_LOOP;
1244 }
1245
1246 return sock->ops->poll(file, sock, wait) | flag;
1247 }
1248
1249 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1250 {
1251 struct socket *sock = file->private_data;
1252
1253 return sock->ops->mmap(file, sock, vma);
1254 }
1255
1256 static int sock_close(struct inode *inode, struct file *filp)
1257 {
1258 __sock_release(SOCKET_I(inode), inode);
1259 return 0;
1260 }
1261
1262 /*
1263 * Update the socket async list
1264 *
1265 * Fasync_list locking strategy.
1266 *
1267 * 1. fasync_list is modified only under process context socket lock
1268 * i.e. under semaphore.
1269 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1270 * or under socket lock
1271 */
1272
1273 static int sock_fasync(int fd, struct file *filp, int on)
1274 {
1275 struct socket *sock = filp->private_data;
1276 struct sock *sk = sock->sk;
1277 struct socket_wq *wq = &sock->wq;
1278
1279 if (sk == NULL)
1280 return -EINVAL;
1281
1282 lock_sock(sk);
1283 fasync_helper(fd, filp, on, &wq->fasync_list);
1284
1285 if (!wq->fasync_list)
1286 sock_reset_flag(sk, SOCK_FASYNC);
1287 else
1288 sock_set_flag(sk, SOCK_FASYNC);
1289
1290 release_sock(sk);
1291 return 0;
1292 }
1293
1294 /* This function may be called only under rcu_lock */
1295
1296 int sock_wake_async(struct socket_wq *wq, int how, int band)
1297 {
1298 if (!wq || !wq->fasync_list)
1299 return -1;
1300
1301 switch (how) {
1302 case SOCK_WAKE_WAITD:
1303 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1304 break;
1305 goto call_kill;
1306 case SOCK_WAKE_SPACE:
1307 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1308 break;
1309 fallthrough;
1310 case SOCK_WAKE_IO:
1311 call_kill:
1312 kill_fasync(&wq->fasync_list, SIGIO, band);
1313 break;
1314 case SOCK_WAKE_URG:
1315 kill_fasync(&wq->fasync_list, SIGURG, band);
1316 }
1317
1318 return 0;
1319 }
1320 EXPORT_SYMBOL(sock_wake_async);
1321
1322 /**
1323 * __sock_create - creates a socket
1324 * @net: net namespace
1325 * @family: protocol family (AF_INET, ...)
1326 * @type: communication type (SOCK_STREAM, ...)
1327 * @protocol: protocol (0, ...)
1328 * @res: new socket
1329 * @kern: boolean for kernel space sockets
1330 *
1331 * Creates a new socket and assigns it to @res, passing through LSM.
1332 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1333 * be set to true if the socket resides in kernel space.
1334 * This function internally uses GFP_KERNEL.
1335 */
1336
1337 int __sock_create(struct net *net, int family, int type, int protocol,
1338 struct socket **res, int kern)
1339 {
1340 int err;
1341 struct socket *sock;
1342 const struct net_proto_family *pf;
1343
1344 /*
1345 * Check protocol is in range
1346 */
1347 if (family < 0 || family >= NPROTO)
1348 return -EAFNOSUPPORT;
1349 if (type < 0 || type >= SOCK_MAX)
1350 return -EINVAL;
1351
1352 /* Compatibility.
1353
1354 This uglymoron is moved from INET layer to here to avoid
1355 deadlock in module load.
1356 */
1357 if (family == PF_INET && type == SOCK_PACKET) {
1358 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1359 current->comm);
1360 family = PF_PACKET;
1361 }
1362
1363 err = security_socket_create(family, type, protocol, kern);
1364 if (err)
1365 return err;
1366
1367 /*
1368 * Allocate the socket and allow the family to set things up. if
1369 * the protocol is 0, the family is instructed to select an appropriate
1370 * default.
1371 */
1372 sock = sock_alloc();
1373 if (!sock) {
1374 net_warn_ratelimited("socket: no more sockets\n");
1375 return -ENFILE; /* Not exactly a match, but its the
1376 closest posix thing */
1377 }
1378
1379 sock->type = type;
1380
1381 #ifdef CONFIG_MODULES
1382 /* Attempt to load a protocol module if the find failed.
1383 *
1384 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1385 * requested real, full-featured networking support upon configuration.
1386 * Otherwise module support will break!
1387 */
1388 if (rcu_access_pointer(net_families[family]) == NULL)
1389 request_module("net-pf-%d", family);
1390 #endif
1391
1392 rcu_read_lock();
1393 pf = rcu_dereference(net_families[family]);
1394 err = -EAFNOSUPPORT;
1395 if (!pf)
1396 goto out_release;
1397
1398 /*
1399 * We will call the ->create function, that possibly is in a loadable
1400 * module, so we have to bump that loadable module refcnt first.
1401 */
1402 if (!try_module_get(pf->owner))
1403 goto out_release;
1404
1405 /* Now protected by module ref count */
1406 rcu_read_unlock();
1407
1408 err = pf->create(net, sock, protocol, kern);
1409 if (err < 0)
1410 goto out_module_put;
1411
1412 /*
1413 * Now to bump the refcnt of the [loadable] module that owns this
1414 * socket at sock_release time we decrement its refcnt.
1415 */
1416 if (!try_module_get(sock->ops->owner))
1417 goto out_module_busy;
1418
1419 /*
1420 * Now that we're done with the ->create function, the [loadable]
1421 * module can have its refcnt decremented
1422 */
1423 module_put(pf->owner);
1424 err = security_socket_post_create(sock, family, type, protocol, kern);
1425 if (err)
1426 goto out_sock_release;
1427 *res = sock;
1428
1429 return 0;
1430
1431 out_module_busy:
1432 err = -EAFNOSUPPORT;
1433 out_module_put:
1434 sock->ops = NULL;
1435 module_put(pf->owner);
1436 out_sock_release:
1437 sock_release(sock);
1438 return err;
1439
1440 out_release:
1441 rcu_read_unlock();
1442 goto out_sock_release;
1443 }
1444 EXPORT_SYMBOL(__sock_create);
1445
1446 /**
1447 * sock_create - creates a socket
1448 * @family: protocol family (AF_INET, ...)
1449 * @type: communication type (SOCK_STREAM, ...)
1450 * @protocol: protocol (0, ...)
1451 * @res: new socket
1452 *
1453 * A wrapper around __sock_create().
1454 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1455 */
1456
1457 int sock_create(int family, int type, int protocol, struct socket **res)
1458 {
1459 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1460 }
1461 EXPORT_SYMBOL(sock_create);
1462
1463 /**
1464 * sock_create_kern - creates a socket (kernel space)
1465 * @net: net namespace
1466 * @family: protocol family (AF_INET, ...)
1467 * @type: communication type (SOCK_STREAM, ...)
1468 * @protocol: protocol (0, ...)
1469 * @res: new socket
1470 *
1471 * A wrapper around __sock_create().
1472 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1473 */
1474
1475 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1476 {
1477 return __sock_create(net, family, type, protocol, res, 1);
1478 }
1479 EXPORT_SYMBOL(sock_create_kern);
1480
1481 int __sys_socket(int family, int type, int protocol)
1482 {
1483 int retval;
1484 struct socket *sock;
1485 int flags;
1486
1487 /* Check the SOCK_* constants for consistency. */
1488 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1489 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1490 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1491 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1492
1493 flags = type & ~SOCK_TYPE_MASK;
1494 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1495 return -EINVAL;
1496 type &= SOCK_TYPE_MASK;
1497
1498 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1499 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1500
1501 retval = sock_create(family, type, protocol, &sock);
1502 if (retval < 0)
1503 return retval;
1504
1505 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1506 }
1507
1508 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1509 {
1510 return __sys_socket(family, type, protocol);
1511 }
1512
1513 /*
1514 * Create a pair of connected sockets.
1515 */
1516
1517 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1518 {
1519 struct socket *sock1, *sock2;
1520 int fd1, fd2, err;
1521 struct file *newfile1, *newfile2;
1522 int flags;
1523
1524 flags = type & ~SOCK_TYPE_MASK;
1525 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1526 return -EINVAL;
1527 type &= SOCK_TYPE_MASK;
1528
1529 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1530 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1531
1532 /*
1533 * reserve descriptors and make sure we won't fail
1534 * to return them to userland.
1535 */
1536 fd1 = get_unused_fd_flags(flags);
1537 if (unlikely(fd1 < 0))
1538 return fd1;
1539
1540 fd2 = get_unused_fd_flags(flags);
1541 if (unlikely(fd2 < 0)) {
1542 put_unused_fd(fd1);
1543 return fd2;
1544 }
1545
1546 err = put_user(fd1, &usockvec[0]);
1547 if (err)
1548 goto out;
1549
1550 err = put_user(fd2, &usockvec[1]);
1551 if (err)
1552 goto out;
1553
1554 /*
1555 * Obtain the first socket and check if the underlying protocol
1556 * supports the socketpair call.
1557 */
1558
1559 err = sock_create(family, type, protocol, &sock1);
1560 if (unlikely(err < 0))
1561 goto out;
1562
1563 err = sock_create(family, type, protocol, &sock2);
1564 if (unlikely(err < 0)) {
1565 sock_release(sock1);
1566 goto out;
1567 }
1568
1569 err = security_socket_socketpair(sock1, sock2);
1570 if (unlikely(err)) {
1571 sock_release(sock2);
1572 sock_release(sock1);
1573 goto out;
1574 }
1575
1576 err = sock1->ops->socketpair(sock1, sock2);
1577 if (unlikely(err < 0)) {
1578 sock_release(sock2);
1579 sock_release(sock1);
1580 goto out;
1581 }
1582
1583 newfile1 = sock_alloc_file(sock1, flags, NULL);
1584 if (IS_ERR(newfile1)) {
1585 err = PTR_ERR(newfile1);
1586 sock_release(sock2);
1587 goto out;
1588 }
1589
1590 newfile2 = sock_alloc_file(sock2, flags, NULL);
1591 if (IS_ERR(newfile2)) {
1592 err = PTR_ERR(newfile2);
1593 fput(newfile1);
1594 goto out;
1595 }
1596
1597 audit_fd_pair(fd1, fd2);
1598
1599 fd_install(fd1, newfile1);
1600 fd_install(fd2, newfile2);
1601 return 0;
1602
1603 out:
1604 put_unused_fd(fd2);
1605 put_unused_fd(fd1);
1606 return err;
1607 }
1608
1609 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1610 int __user *, usockvec)
1611 {
1612 return __sys_socketpair(family, type, protocol, usockvec);
1613 }
1614
1615 /*
1616 * Bind a name to a socket. Nothing much to do here since it's
1617 * the protocol's responsibility to handle the local address.
1618 *
1619 * We move the socket address to kernel space before we call
1620 * the protocol layer (having also checked the address is ok).
1621 */
1622
1623 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1624 {
1625 struct socket *sock;
1626 struct sockaddr_storage address;
1627 int err, fput_needed;
1628
1629 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1630 if (sock) {
1631 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1632 if (!err) {
1633 err = security_socket_bind(sock,
1634 (struct sockaddr *)&address,
1635 addrlen);
1636 if (!err)
1637 err = sock->ops->bind(sock,
1638 (struct sockaddr *)
1639 &address, addrlen);
1640 }
1641 fput_light(sock->file, fput_needed);
1642 }
1643 return err;
1644 }
1645
1646 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1647 {
1648 return __sys_bind(fd, umyaddr, addrlen);
1649 }
1650
1651 /*
1652 * Perform a listen. Basically, we allow the protocol to do anything
1653 * necessary for a listen, and if that works, we mark the socket as
1654 * ready for listening.
1655 */
1656
1657 int __sys_listen(int fd, int backlog)
1658 {
1659 struct socket *sock;
1660 int err, fput_needed;
1661 int somaxconn;
1662
1663 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1664 if (sock) {
1665 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1666 if ((unsigned int)backlog > somaxconn)
1667 backlog = somaxconn;
1668
1669 err = security_socket_listen(sock, backlog);
1670 if (!err)
1671 err = sock->ops->listen(sock, backlog);
1672
1673 fput_light(sock->file, fput_needed);
1674 }
1675 return err;
1676 }
1677
1678 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1679 {
1680 return __sys_listen(fd, backlog);
1681 }
1682
1683 int __sys_accept4_file(struct file *file, unsigned file_flags,
1684 struct sockaddr __user *upeer_sockaddr,
1685 int __user *upeer_addrlen, int flags,
1686 unsigned long nofile)
1687 {
1688 struct socket *sock, *newsock;
1689 struct file *newfile;
1690 int err, len, newfd;
1691 struct sockaddr_storage address;
1692
1693 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1694 return -EINVAL;
1695
1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698
1699 sock = sock_from_file(file);
1700 if (!sock) {
1701 err = -ENOTSOCK;
1702 goto out;
1703 }
1704
1705 err = -ENFILE;
1706 newsock = sock_alloc();
1707 if (!newsock)
1708 goto out;
1709
1710 newsock->type = sock->type;
1711 newsock->ops = sock->ops;
1712
1713 /*
1714 * We don't need try_module_get here, as the listening socket (sock)
1715 * has the protocol module (sock->ops->owner) held.
1716 */
1717 __module_get(newsock->ops->owner);
1718
1719 newfd = __get_unused_fd_flags(flags, nofile);
1720 if (unlikely(newfd < 0)) {
1721 err = newfd;
1722 sock_release(newsock);
1723 goto out;
1724 }
1725 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1726 if (IS_ERR(newfile)) {
1727 err = PTR_ERR(newfile);
1728 put_unused_fd(newfd);
1729 goto out;
1730 }
1731
1732 err = security_socket_accept(sock, newsock);
1733 if (err)
1734 goto out_fd;
1735
1736 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1737 false);
1738 if (err < 0)
1739 goto out_fd;
1740
1741 if (upeer_sockaddr) {
1742 len = newsock->ops->getname(newsock,
1743 (struct sockaddr *)&address, 2);
1744 if (len < 0) {
1745 err = -ECONNABORTED;
1746 goto out_fd;
1747 }
1748 err = move_addr_to_user(&address,
1749 len, upeer_sockaddr, upeer_addrlen);
1750 if (err < 0)
1751 goto out_fd;
1752 }
1753
1754 /* File flags are not inherited via accept() unlike another OSes. */
1755
1756 fd_install(newfd, newfile);
1757 err = newfd;
1758 out:
1759 return err;
1760 out_fd:
1761 fput(newfile);
1762 put_unused_fd(newfd);
1763 goto out;
1764
1765 }
1766
1767 /*
1768 * For accept, we attempt to create a new socket, set up the link
1769 * with the client, wake up the client, then return the new
1770 * connected fd. We collect the address of the connector in kernel
1771 * space and move it to user at the very end. This is unclean because
1772 * we open the socket then return an error.
1773 *
1774 * 1003.1g adds the ability to recvmsg() to query connection pending
1775 * status to recvmsg. We need to add that support in a way thats
1776 * clean when we restructure accept also.
1777 */
1778
1779 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1780 int __user *upeer_addrlen, int flags)
1781 {
1782 int ret = -EBADF;
1783 struct fd f;
1784
1785 f = fdget(fd);
1786 if (f.file) {
1787 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1788 upeer_addrlen, flags,
1789 rlimit(RLIMIT_NOFILE));
1790 fdput(f);
1791 }
1792
1793 return ret;
1794 }
1795
1796 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1797 int __user *, upeer_addrlen, int, flags)
1798 {
1799 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1800 }
1801
1802 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1803 int __user *, upeer_addrlen)
1804 {
1805 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1806 }
1807
1808 /*
1809 * Attempt to connect to a socket with the server address. The address
1810 * is in user space so we verify it is OK and move it to kernel space.
1811 *
1812 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1813 * break bindings
1814 *
1815 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1816 * other SEQPACKET protocols that take time to connect() as it doesn't
1817 * include the -EINPROGRESS status for such sockets.
1818 */
1819
1820 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1821 int addrlen, int file_flags)
1822 {
1823 struct socket *sock;
1824 int err;
1825
1826 sock = sock_from_file(file);
1827 if (!sock) {
1828 err = -ENOTSOCK;
1829 goto out;
1830 }
1831
1832 err =
1833 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1834 if (err)
1835 goto out;
1836
1837 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1838 sock->file->f_flags | file_flags);
1839 out:
1840 return err;
1841 }
1842
1843 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1844 {
1845 int ret = -EBADF;
1846 struct fd f;
1847
1848 f = fdget(fd);
1849 if (f.file) {
1850 struct sockaddr_storage address;
1851
1852 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1853 if (!ret)
1854 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1855 fdput(f);
1856 }
1857
1858 return ret;
1859 }
1860
1861 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1862 int, addrlen)
1863 {
1864 return __sys_connect(fd, uservaddr, addrlen);
1865 }
1866
1867 /*
1868 * Get the local address ('name') of a socket object. Move the obtained
1869 * name to user space.
1870 */
1871
1872 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1873 int __user *usockaddr_len)
1874 {
1875 struct socket *sock;
1876 struct sockaddr_storage address;
1877 int err, fput_needed;
1878
1879 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 if (!sock)
1881 goto out;
1882
1883 err = security_socket_getsockname(sock);
1884 if (err)
1885 goto out_put;
1886
1887 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1888 if (err < 0)
1889 goto out_put;
1890 /* "err" is actually length in this case */
1891 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1892
1893 out_put:
1894 fput_light(sock->file, fput_needed);
1895 out:
1896 return err;
1897 }
1898
1899 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1900 int __user *, usockaddr_len)
1901 {
1902 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1903 }
1904
1905 /*
1906 * Get the remote address ('name') of a socket object. Move the obtained
1907 * name to user space.
1908 */
1909
1910 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1911 int __user *usockaddr_len)
1912 {
1913 struct socket *sock;
1914 struct sockaddr_storage address;
1915 int err, fput_needed;
1916
1917 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1918 if (sock != NULL) {
1919 err = security_socket_getpeername(sock);
1920 if (err) {
1921 fput_light(sock->file, fput_needed);
1922 return err;
1923 }
1924
1925 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1926 if (err >= 0)
1927 /* "err" is actually length in this case */
1928 err = move_addr_to_user(&address, err, usockaddr,
1929 usockaddr_len);
1930 fput_light(sock->file, fput_needed);
1931 }
1932 return err;
1933 }
1934
1935 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1936 int __user *, usockaddr_len)
1937 {
1938 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1939 }
1940
1941 /*
1942 * Send a datagram to a given address. We move the address into kernel
1943 * space and check the user space data area is readable before invoking
1944 * the protocol.
1945 */
1946 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1947 struct sockaddr __user *addr, int addr_len)
1948 {
1949 struct socket *sock;
1950 struct sockaddr_storage address;
1951 int err;
1952 struct msghdr msg;
1953 struct iovec iov;
1954 int fput_needed;
1955
1956 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1957 if (unlikely(err))
1958 return err;
1959 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1960 if (!sock)
1961 goto out;
1962
1963 msg.msg_name = NULL;
1964 msg.msg_control = NULL;
1965 msg.msg_controllen = 0;
1966 msg.msg_namelen = 0;
1967 if (addr) {
1968 err = move_addr_to_kernel(addr, addr_len, &address);
1969 if (err < 0)
1970 goto out_put;
1971 msg.msg_name = (struct sockaddr *)&address;
1972 msg.msg_namelen = addr_len;
1973 }
1974 if (sock->file->f_flags & O_NONBLOCK)
1975 flags |= MSG_DONTWAIT;
1976 msg.msg_flags = flags;
1977 err = sock_sendmsg(sock, &msg);
1978
1979 out_put:
1980 fput_light(sock->file, fput_needed);
1981 out:
1982 return err;
1983 }
1984
1985 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1986 unsigned int, flags, struct sockaddr __user *, addr,
1987 int, addr_len)
1988 {
1989 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1990 }
1991
1992 /*
1993 * Send a datagram down a socket.
1994 */
1995
1996 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1997 unsigned int, flags)
1998 {
1999 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2000 }
2001
2002 /*
2003 * Receive a frame from the socket and optionally record the address of the
2004 * sender. We verify the buffers are writable and if needed move the
2005 * sender address from kernel to user space.
2006 */
2007 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2008 struct sockaddr __user *addr, int __user *addr_len)
2009 {
2010 struct socket *sock;
2011 struct iovec iov;
2012 struct msghdr msg;
2013 struct sockaddr_storage address;
2014 int err, err2;
2015 int fput_needed;
2016
2017 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2018 if (unlikely(err))
2019 return err;
2020 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021 if (!sock)
2022 goto out;
2023
2024 msg.msg_control = NULL;
2025 msg.msg_controllen = 0;
2026 /* Save some cycles and don't copy the address if not needed */
2027 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2028 /* We assume all kernel code knows the size of sockaddr_storage */
2029 msg.msg_namelen = 0;
2030 msg.msg_iocb = NULL;
2031 msg.msg_flags = 0;
2032 if (sock->file->f_flags & O_NONBLOCK)
2033 flags |= MSG_DONTWAIT;
2034 err = sock_recvmsg(sock, &msg, flags);
2035
2036 if (err >= 0 && addr != NULL) {
2037 err2 = move_addr_to_user(&address,
2038 msg.msg_namelen, addr, addr_len);
2039 if (err2 < 0)
2040 err = err2;
2041 }
2042
2043 fput_light(sock->file, fput_needed);
2044 out:
2045 return err;
2046 }
2047
2048 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2049 unsigned int, flags, struct sockaddr __user *, addr,
2050 int __user *, addr_len)
2051 {
2052 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2053 }
2054
2055 /*
2056 * Receive a datagram from a socket.
2057 */
2058
2059 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2060 unsigned int, flags)
2061 {
2062 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2063 }
2064
2065 static bool sock_use_custom_sol_socket(const struct socket *sock)
2066 {
2067 const struct sock *sk = sock->sk;
2068
2069 /* Use sock->ops->setsockopt() for MPTCP */
2070 return IS_ENABLED(CONFIG_MPTCP) &&
2071 sk->sk_protocol == IPPROTO_MPTCP &&
2072 sk->sk_type == SOCK_STREAM &&
2073 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2074 }
2075
2076 /*
2077 * Set a socket option. Because we don't know the option lengths we have
2078 * to pass the user mode parameter for the protocols to sort out.
2079 */
2080 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2081 int optlen)
2082 {
2083 sockptr_t optval = USER_SOCKPTR(user_optval);
2084 char *kernel_optval = NULL;
2085 int err, fput_needed;
2086 struct socket *sock;
2087
2088 if (optlen < 0)
2089 return -EINVAL;
2090
2091 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2092 if (!sock)
2093 return err;
2094
2095 err = security_socket_setsockopt(sock, level, optname);
2096 if (err)
2097 goto out_put;
2098
2099 if (!in_compat_syscall())
2100 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2101 user_optval, &optlen,
2102 &kernel_optval);
2103 if (err < 0)
2104 goto out_put;
2105 if (err > 0) {
2106 err = 0;
2107 goto out_put;
2108 }
2109
2110 if (kernel_optval)
2111 optval = KERNEL_SOCKPTR(kernel_optval);
2112 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2113 err = sock_setsockopt(sock, level, optname, optval, optlen);
2114 else if (unlikely(!sock->ops->setsockopt))
2115 err = -EOPNOTSUPP;
2116 else
2117 err = sock->ops->setsockopt(sock, level, optname, optval,
2118 optlen);
2119 kfree(kernel_optval);
2120 out_put:
2121 fput_light(sock->file, fput_needed);
2122 return err;
2123 }
2124
2125 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2126 char __user *, optval, int, optlen)
2127 {
2128 return __sys_setsockopt(fd, level, optname, optval, optlen);
2129 }
2130
2131 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2132 int optname));
2133
2134 /*
2135 * Get a socket option. Because we don't know the option lengths we have
2136 * to pass a user mode parameter for the protocols to sort out.
2137 */
2138 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2139 int __user *optlen)
2140 {
2141 int err, fput_needed;
2142 struct socket *sock;
2143 int max_optlen;
2144
2145 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2146 if (!sock)
2147 return err;
2148
2149 err = security_socket_getsockopt(sock, level, optname);
2150 if (err)
2151 goto out_put;
2152
2153 if (!in_compat_syscall())
2154 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2155
2156 if (level == SOL_SOCKET)
2157 err = sock_getsockopt(sock, level, optname, optval, optlen);
2158 else if (unlikely(!sock->ops->getsockopt))
2159 err = -EOPNOTSUPP;
2160 else
2161 err = sock->ops->getsockopt(sock, level, optname, optval,
2162 optlen);
2163
2164 if (!in_compat_syscall())
2165 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2166 optval, optlen, max_optlen,
2167 err);
2168 out_put:
2169 fput_light(sock->file, fput_needed);
2170 return err;
2171 }
2172
2173 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2174 char __user *, optval, int __user *, optlen)
2175 {
2176 return __sys_getsockopt(fd, level, optname, optval, optlen);
2177 }
2178
2179 /*
2180 * Shutdown a socket.
2181 */
2182
2183 int __sys_shutdown_sock(struct socket *sock, int how)
2184 {
2185 int err;
2186
2187 err = security_socket_shutdown(sock, how);
2188 if (!err)
2189 err = sock->ops->shutdown(sock, how);
2190
2191 return err;
2192 }
2193
2194 int __sys_shutdown(int fd, int how)
2195 {
2196 int err, fput_needed;
2197 struct socket *sock;
2198
2199 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2200 if (sock != NULL) {
2201 err = __sys_shutdown_sock(sock, how);
2202 fput_light(sock->file, fput_needed);
2203 }
2204 return err;
2205 }
2206
2207 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2208 {
2209 return __sys_shutdown(fd, how);
2210 }
2211
2212 /* A couple of helpful macros for getting the address of the 32/64 bit
2213 * fields which are the same type (int / unsigned) on our platforms.
2214 */
2215 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2216 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2217 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2218
2219 struct used_address {
2220 struct sockaddr_storage name;
2221 unsigned int name_len;
2222 };
2223
2224 int __copy_msghdr_from_user(struct msghdr *kmsg,
2225 struct user_msghdr __user *umsg,
2226 struct sockaddr __user **save_addr,
2227 struct iovec __user **uiov, size_t *nsegs)
2228 {
2229 struct user_msghdr msg;
2230 ssize_t err;
2231
2232 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2233 return -EFAULT;
2234
2235 kmsg->msg_control_is_user = true;
2236 kmsg->msg_control_user = msg.msg_control;
2237 kmsg->msg_controllen = msg.msg_controllen;
2238 kmsg->msg_flags = msg.msg_flags;
2239
2240 kmsg->msg_namelen = msg.msg_namelen;
2241 if (!msg.msg_name)
2242 kmsg->msg_namelen = 0;
2243
2244 if (kmsg->msg_namelen < 0)
2245 return -EINVAL;
2246
2247 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2248 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2249
2250 if (save_addr)
2251 *save_addr = msg.msg_name;
2252
2253 if (msg.msg_name && kmsg->msg_namelen) {
2254 if (!save_addr) {
2255 err = move_addr_to_kernel(msg.msg_name,
2256 kmsg->msg_namelen,
2257 kmsg->msg_name);
2258 if (err < 0)
2259 return err;
2260 }
2261 } else {
2262 kmsg->msg_name = NULL;
2263 kmsg->msg_namelen = 0;
2264 }
2265
2266 if (msg.msg_iovlen > UIO_MAXIOV)
2267 return -EMSGSIZE;
2268
2269 kmsg->msg_iocb = NULL;
2270 *uiov = msg.msg_iov;
2271 *nsegs = msg.msg_iovlen;
2272 return 0;
2273 }
2274
2275 static int copy_msghdr_from_user(struct msghdr *kmsg,
2276 struct user_msghdr __user *umsg,
2277 struct sockaddr __user **save_addr,
2278 struct iovec **iov)
2279 {
2280 struct user_msghdr msg;
2281 ssize_t err;
2282
2283 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2284 &msg.msg_iovlen);
2285 if (err)
2286 return err;
2287
2288 err = import_iovec(save_addr ? READ : WRITE,
2289 msg.msg_iov, msg.msg_iovlen,
2290 UIO_FASTIOV, iov, &kmsg->msg_iter);
2291 return err < 0 ? err : 0;
2292 }
2293
2294 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2295 unsigned int flags, struct used_address *used_address,
2296 unsigned int allowed_msghdr_flags)
2297 {
2298 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2299 __aligned(sizeof(__kernel_size_t));
2300 /* 20 is size of ipv6_pktinfo */
2301 unsigned char *ctl_buf = ctl;
2302 int ctl_len;
2303 ssize_t err;
2304
2305 err = -ENOBUFS;
2306
2307 if (msg_sys->msg_controllen > INT_MAX)
2308 goto out;
2309 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2310 ctl_len = msg_sys->msg_controllen;
2311 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2312 err =
2313 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2314 sizeof(ctl));
2315 if (err)
2316 goto out;
2317 ctl_buf = msg_sys->msg_control;
2318 ctl_len = msg_sys->msg_controllen;
2319 } else if (ctl_len) {
2320 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2321 CMSG_ALIGN(sizeof(struct cmsghdr)));
2322 if (ctl_len > sizeof(ctl)) {
2323 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2324 if (ctl_buf == NULL)
2325 goto out;
2326 }
2327 err = -EFAULT;
2328 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2329 goto out_freectl;
2330 msg_sys->msg_control = ctl_buf;
2331 msg_sys->msg_control_is_user = false;
2332 }
2333 msg_sys->msg_flags = flags;
2334
2335 if (sock->file->f_flags & O_NONBLOCK)
2336 msg_sys->msg_flags |= MSG_DONTWAIT;
2337 /*
2338 * If this is sendmmsg() and current destination address is same as
2339 * previously succeeded address, omit asking LSM's decision.
2340 * used_address->name_len is initialized to UINT_MAX so that the first
2341 * destination address never matches.
2342 */
2343 if (used_address && msg_sys->msg_name &&
2344 used_address->name_len == msg_sys->msg_namelen &&
2345 !memcmp(&used_address->name, msg_sys->msg_name,
2346 used_address->name_len)) {
2347 err = sock_sendmsg_nosec(sock, msg_sys);
2348 goto out_freectl;
2349 }
2350 err = sock_sendmsg(sock, msg_sys);
2351 /*
2352 * If this is sendmmsg() and sending to current destination address was
2353 * successful, remember it.
2354 */
2355 if (used_address && err >= 0) {
2356 used_address->name_len = msg_sys->msg_namelen;
2357 if (msg_sys->msg_name)
2358 memcpy(&used_address->name, msg_sys->msg_name,
2359 used_address->name_len);
2360 }
2361
2362 out_freectl:
2363 if (ctl_buf != ctl)
2364 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2365 out:
2366 return err;
2367 }
2368
2369 int sendmsg_copy_msghdr(struct msghdr *msg,
2370 struct user_msghdr __user *umsg, unsigned flags,
2371 struct iovec **iov)
2372 {
2373 int err;
2374
2375 if (flags & MSG_CMSG_COMPAT) {
2376 struct compat_msghdr __user *msg_compat;
2377
2378 msg_compat = (struct compat_msghdr __user *) umsg;
2379 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2380 } else {
2381 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2382 }
2383 if (err < 0)
2384 return err;
2385
2386 return 0;
2387 }
2388
2389 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2390 struct msghdr *msg_sys, unsigned int flags,
2391 struct used_address *used_address,
2392 unsigned int allowed_msghdr_flags)
2393 {
2394 struct sockaddr_storage address;
2395 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2396 ssize_t err;
2397
2398 msg_sys->msg_name = &address;
2399
2400 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2401 if (err < 0)
2402 return err;
2403
2404 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2405 allowed_msghdr_flags);
2406 kfree(iov);
2407 return err;
2408 }
2409
2410 /*
2411 * BSD sendmsg interface
2412 */
2413 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2414 unsigned int flags)
2415 {
2416 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2417 }
2418
2419 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2420 bool forbid_cmsg_compat)
2421 {
2422 int fput_needed, err;
2423 struct msghdr msg_sys;
2424 struct socket *sock;
2425
2426 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2427 return -EINVAL;
2428
2429 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2430 if (!sock)
2431 goto out;
2432
2433 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2434
2435 fput_light(sock->file, fput_needed);
2436 out:
2437 return err;
2438 }
2439
2440 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2441 {
2442 return __sys_sendmsg(fd, msg, flags, true);
2443 }
2444
2445 /*
2446 * Linux sendmmsg interface
2447 */
2448
2449 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2450 unsigned int flags, bool forbid_cmsg_compat)
2451 {
2452 int fput_needed, err, datagrams;
2453 struct socket *sock;
2454 struct mmsghdr __user *entry;
2455 struct compat_mmsghdr __user *compat_entry;
2456 struct msghdr msg_sys;
2457 struct used_address used_address;
2458 unsigned int oflags = flags;
2459
2460 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2461 return -EINVAL;
2462
2463 if (vlen > UIO_MAXIOV)
2464 vlen = UIO_MAXIOV;
2465
2466 datagrams = 0;
2467
2468 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2469 if (!sock)
2470 return err;
2471
2472 used_address.name_len = UINT_MAX;
2473 entry = mmsg;
2474 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2475 err = 0;
2476 flags |= MSG_BATCH;
2477
2478 while (datagrams < vlen) {
2479 if (datagrams == vlen - 1)
2480 flags = oflags;
2481
2482 if (MSG_CMSG_COMPAT & flags) {
2483 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2484 &msg_sys, flags, &used_address, MSG_EOR);
2485 if (err < 0)
2486 break;
2487 err = __put_user(err, &compat_entry->msg_len);
2488 ++compat_entry;
2489 } else {
2490 err = ___sys_sendmsg(sock,
2491 (struct user_msghdr __user *)entry,
2492 &msg_sys, flags, &used_address, MSG_EOR);
2493 if (err < 0)
2494 break;
2495 err = put_user(err, &entry->msg_len);
2496 ++entry;
2497 }
2498
2499 if (err)
2500 break;
2501 ++datagrams;
2502 if (msg_data_left(&msg_sys))
2503 break;
2504 cond_resched();
2505 }
2506
2507 fput_light(sock->file, fput_needed);
2508
2509 /* We only return an error if no datagrams were able to be sent */
2510 if (datagrams != 0)
2511 return datagrams;
2512
2513 return err;
2514 }
2515
2516 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2517 unsigned int, vlen, unsigned int, flags)
2518 {
2519 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2520 }
2521
2522 int recvmsg_copy_msghdr(struct msghdr *msg,
2523 struct user_msghdr __user *umsg, unsigned flags,
2524 struct sockaddr __user **uaddr,
2525 struct iovec **iov)
2526 {
2527 ssize_t err;
2528
2529 if (MSG_CMSG_COMPAT & flags) {
2530 struct compat_msghdr __user *msg_compat;
2531
2532 msg_compat = (struct compat_msghdr __user *) umsg;
2533 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2534 } else {
2535 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2536 }
2537 if (err < 0)
2538 return err;
2539
2540 return 0;
2541 }
2542
2543 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2544 struct user_msghdr __user *msg,
2545 struct sockaddr __user *uaddr,
2546 unsigned int flags, int nosec)
2547 {
2548 struct compat_msghdr __user *msg_compat =
2549 (struct compat_msghdr __user *) msg;
2550 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2551 struct sockaddr_storage addr;
2552 unsigned long cmsg_ptr;
2553 int len;
2554 ssize_t err;
2555
2556 msg_sys->msg_name = &addr;
2557 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2558 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2559
2560 /* We assume all kernel code knows the size of sockaddr_storage */
2561 msg_sys->msg_namelen = 0;
2562
2563 if (sock->file->f_flags & O_NONBLOCK)
2564 flags |= MSG_DONTWAIT;
2565
2566 if (unlikely(nosec))
2567 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2568 else
2569 err = sock_recvmsg(sock, msg_sys, flags);
2570
2571 if (err < 0)
2572 goto out;
2573 len = err;
2574
2575 if (uaddr != NULL) {
2576 err = move_addr_to_user(&addr,
2577 msg_sys->msg_namelen, uaddr,
2578 uaddr_len);
2579 if (err < 0)
2580 goto out;
2581 }
2582 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2583 COMPAT_FLAGS(msg));
2584 if (err)
2585 goto out;
2586 if (MSG_CMSG_COMPAT & flags)
2587 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2588 &msg_compat->msg_controllen);
2589 else
2590 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2591 &msg->msg_controllen);
2592 if (err)
2593 goto out;
2594 err = len;
2595 out:
2596 return err;
2597 }
2598
2599 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2600 struct msghdr *msg_sys, unsigned int flags, int nosec)
2601 {
2602 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2603 /* user mode address pointers */
2604 struct sockaddr __user *uaddr;
2605 ssize_t err;
2606
2607 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2608 if (err < 0)
2609 return err;
2610
2611 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2612 kfree(iov);
2613 return err;
2614 }
2615
2616 /*
2617 * BSD recvmsg interface
2618 */
2619
2620 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2621 struct user_msghdr __user *umsg,
2622 struct sockaddr __user *uaddr, unsigned int flags)
2623 {
2624 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2625 }
2626
2627 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2628 bool forbid_cmsg_compat)
2629 {
2630 int fput_needed, err;
2631 struct msghdr msg_sys;
2632 struct socket *sock;
2633
2634 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2635 return -EINVAL;
2636
2637 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2638 if (!sock)
2639 goto out;
2640
2641 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2642
2643 fput_light(sock->file, fput_needed);
2644 out:
2645 return err;
2646 }
2647
2648 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2649 unsigned int, flags)
2650 {
2651 return __sys_recvmsg(fd, msg, flags, true);
2652 }
2653
2654 /*
2655 * Linux recvmmsg interface
2656 */
2657
2658 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2659 unsigned int vlen, unsigned int flags,
2660 struct timespec64 *timeout)
2661 {
2662 int fput_needed, err, datagrams;
2663 struct socket *sock;
2664 struct mmsghdr __user *entry;
2665 struct compat_mmsghdr __user *compat_entry;
2666 struct msghdr msg_sys;
2667 struct timespec64 end_time;
2668 struct timespec64 timeout64;
2669
2670 if (timeout &&
2671 poll_select_set_timeout(&end_time, timeout->tv_sec,
2672 timeout->tv_nsec))
2673 return -EINVAL;
2674
2675 datagrams = 0;
2676
2677 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2678 if (!sock)
2679 return err;
2680
2681 if (likely(!(flags & MSG_ERRQUEUE))) {
2682 err = sock_error(sock->sk);
2683 if (err) {
2684 datagrams = err;
2685 goto out_put;
2686 }
2687 }
2688
2689 entry = mmsg;
2690 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2691
2692 while (datagrams < vlen) {
2693 /*
2694 * No need to ask LSM for more than the first datagram.
2695 */
2696 if (MSG_CMSG_COMPAT & flags) {
2697 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2698 &msg_sys, flags & ~MSG_WAITFORONE,
2699 datagrams);
2700 if (err < 0)
2701 break;
2702 err = __put_user(err, &compat_entry->msg_len);
2703 ++compat_entry;
2704 } else {
2705 err = ___sys_recvmsg(sock,
2706 (struct user_msghdr __user *)entry,
2707 &msg_sys, flags & ~MSG_WAITFORONE,
2708 datagrams);
2709 if (err < 0)
2710 break;
2711 err = put_user(err, &entry->msg_len);
2712 ++entry;
2713 }
2714
2715 if (err)
2716 break;
2717 ++datagrams;
2718
2719 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2720 if (flags & MSG_WAITFORONE)
2721 flags |= MSG_DONTWAIT;
2722
2723 if (timeout) {
2724 ktime_get_ts64(&timeout64);
2725 *timeout = timespec64_sub(end_time, timeout64);
2726 if (timeout->tv_sec < 0) {
2727 timeout->tv_sec = timeout->tv_nsec = 0;
2728 break;
2729 }
2730
2731 /* Timeout, return less than vlen datagrams */
2732 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2733 break;
2734 }
2735
2736 /* Out of band data, return right away */
2737 if (msg_sys.msg_flags & MSG_OOB)
2738 break;
2739 cond_resched();
2740 }
2741
2742 if (err == 0)
2743 goto out_put;
2744
2745 if (datagrams == 0) {
2746 datagrams = err;
2747 goto out_put;
2748 }
2749
2750 /*
2751 * We may return less entries than requested (vlen) if the
2752 * sock is non block and there aren't enough datagrams...
2753 */
2754 if (err != -EAGAIN) {
2755 /*
2756 * ... or if recvmsg returns an error after we
2757 * received some datagrams, where we record the
2758 * error to return on the next call or if the
2759 * app asks about it using getsockopt(SO_ERROR).
2760 */
2761 sock->sk->sk_err = -err;
2762 }
2763 out_put:
2764 fput_light(sock->file, fput_needed);
2765
2766 return datagrams;
2767 }
2768
2769 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2770 unsigned int vlen, unsigned int flags,
2771 struct __kernel_timespec __user *timeout,
2772 struct old_timespec32 __user *timeout32)
2773 {
2774 int datagrams;
2775 struct timespec64 timeout_sys;
2776
2777 if (timeout && get_timespec64(&timeout_sys, timeout))
2778 return -EFAULT;
2779
2780 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2781 return -EFAULT;
2782
2783 if (!timeout && !timeout32)
2784 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2785
2786 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2787
2788 if (datagrams <= 0)
2789 return datagrams;
2790
2791 if (timeout && put_timespec64(&timeout_sys, timeout))
2792 datagrams = -EFAULT;
2793
2794 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2795 datagrams = -EFAULT;
2796
2797 return datagrams;
2798 }
2799
2800 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2801 unsigned int, vlen, unsigned int, flags,
2802 struct __kernel_timespec __user *, timeout)
2803 {
2804 if (flags & MSG_CMSG_COMPAT)
2805 return -EINVAL;
2806
2807 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2808 }
2809
2810 #ifdef CONFIG_COMPAT_32BIT_TIME
2811 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2812 unsigned int, vlen, unsigned int, flags,
2813 struct old_timespec32 __user *, timeout)
2814 {
2815 if (flags & MSG_CMSG_COMPAT)
2816 return -EINVAL;
2817
2818 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2819 }
2820 #endif
2821
2822 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2823 /* Argument list sizes for sys_socketcall */
2824 #define AL(x) ((x) * sizeof(unsigned long))
2825 static const unsigned char nargs[21] = {
2826 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2827 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2828 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2829 AL(4), AL(5), AL(4)
2830 };
2831
2832 #undef AL
2833
2834 /*
2835 * System call vectors.
2836 *
2837 * Argument checking cleaned up. Saved 20% in size.
2838 * This function doesn't need to set the kernel lock because
2839 * it is set by the callees.
2840 */
2841
2842 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2843 {
2844 unsigned long a[AUDITSC_ARGS];
2845 unsigned long a0, a1;
2846 int err;
2847 unsigned int len;
2848
2849 if (call < 1 || call > SYS_SENDMMSG)
2850 return -EINVAL;
2851 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2852
2853 len = nargs[call];
2854 if (len > sizeof(a))
2855 return -EINVAL;
2856
2857 /* copy_from_user should be SMP safe. */
2858 if (copy_from_user(a, args, len))
2859 return -EFAULT;
2860
2861 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2862 if (err)
2863 return err;
2864
2865 a0 = a[0];
2866 a1 = a[1];
2867
2868 switch (call) {
2869 case SYS_SOCKET:
2870 err = __sys_socket(a0, a1, a[2]);
2871 break;
2872 case SYS_BIND:
2873 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2874 break;
2875 case SYS_CONNECT:
2876 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2877 break;
2878 case SYS_LISTEN:
2879 err = __sys_listen(a0, a1);
2880 break;
2881 case SYS_ACCEPT:
2882 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2883 (int __user *)a[2], 0);
2884 break;
2885 case SYS_GETSOCKNAME:
2886 err =
2887 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2888 (int __user *)a[2]);
2889 break;
2890 case SYS_GETPEERNAME:
2891 err =
2892 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2893 (int __user *)a[2]);
2894 break;
2895 case SYS_SOCKETPAIR:
2896 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2897 break;
2898 case SYS_SEND:
2899 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2900 NULL, 0);
2901 break;
2902 case SYS_SENDTO:
2903 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2904 (struct sockaddr __user *)a[4], a[5]);
2905 break;
2906 case SYS_RECV:
2907 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2908 NULL, NULL);
2909 break;
2910 case SYS_RECVFROM:
2911 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2912 (struct sockaddr __user *)a[4],
2913 (int __user *)a[5]);
2914 break;
2915 case SYS_SHUTDOWN:
2916 err = __sys_shutdown(a0, a1);
2917 break;
2918 case SYS_SETSOCKOPT:
2919 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2920 a[4]);
2921 break;
2922 case SYS_GETSOCKOPT:
2923 err =
2924 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2925 (int __user *)a[4]);
2926 break;
2927 case SYS_SENDMSG:
2928 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2929 a[2], true);
2930 break;
2931 case SYS_SENDMMSG:
2932 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2933 a[3], true);
2934 break;
2935 case SYS_RECVMSG:
2936 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2937 a[2], true);
2938 break;
2939 case SYS_RECVMMSG:
2940 if (IS_ENABLED(CONFIG_64BIT))
2941 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2942 a[2], a[3],
2943 (struct __kernel_timespec __user *)a[4],
2944 NULL);
2945 else
2946 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2947 a[2], a[3], NULL,
2948 (struct old_timespec32 __user *)a[4]);
2949 break;
2950 case SYS_ACCEPT4:
2951 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2952 (int __user *)a[2], a[3]);
2953 break;
2954 default:
2955 err = -EINVAL;
2956 break;
2957 }
2958 return err;
2959 }
2960
2961 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2962
2963 /**
2964 * sock_register - add a socket protocol handler
2965 * @ops: description of protocol
2966 *
2967 * This function is called by a protocol handler that wants to
2968 * advertise its address family, and have it linked into the
2969 * socket interface. The value ops->family corresponds to the
2970 * socket system call protocol family.
2971 */
2972 int sock_register(const struct net_proto_family *ops)
2973 {
2974 int err;
2975
2976 if (ops->family >= NPROTO) {
2977 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2978 return -ENOBUFS;
2979 }
2980
2981 spin_lock(&net_family_lock);
2982 if (rcu_dereference_protected(net_families[ops->family],
2983 lockdep_is_held(&net_family_lock)))
2984 err = -EEXIST;
2985 else {
2986 rcu_assign_pointer(net_families[ops->family], ops);
2987 err = 0;
2988 }
2989 spin_unlock(&net_family_lock);
2990
2991 pr_info("NET: Registered protocol family %d\n", ops->family);
2992 return err;
2993 }
2994 EXPORT_SYMBOL(sock_register);
2995
2996 /**
2997 * sock_unregister - remove a protocol handler
2998 * @family: protocol family to remove
2999 *
3000 * This function is called by a protocol handler that wants to
3001 * remove its address family, and have it unlinked from the
3002 * new socket creation.
3003 *
3004 * If protocol handler is a module, then it can use module reference
3005 * counts to protect against new references. If protocol handler is not
3006 * a module then it needs to provide its own protection in
3007 * the ops->create routine.
3008 */
3009 void sock_unregister(int family)
3010 {
3011 BUG_ON(family < 0 || family >= NPROTO);
3012
3013 spin_lock(&net_family_lock);
3014 RCU_INIT_POINTER(net_families[family], NULL);
3015 spin_unlock(&net_family_lock);
3016
3017 synchronize_rcu();
3018
3019 pr_info("NET: Unregistered protocol family %d\n", family);
3020 }
3021 EXPORT_SYMBOL(sock_unregister);
3022
3023 bool sock_is_registered(int family)
3024 {
3025 return family < NPROTO && rcu_access_pointer(net_families[family]);
3026 }
3027
3028 static int __init sock_init(void)
3029 {
3030 int err;
3031 /*
3032 * Initialize the network sysctl infrastructure.
3033 */
3034 err = net_sysctl_init();
3035 if (err)
3036 goto out;
3037
3038 /*
3039 * Initialize skbuff SLAB cache
3040 */
3041 skb_init();
3042
3043 /*
3044 * Initialize the protocols module.
3045 */
3046
3047 init_inodecache();
3048
3049 err = register_filesystem(&sock_fs_type);
3050 if (err)
3051 goto out;
3052 sock_mnt = kern_mount(&sock_fs_type);
3053 if (IS_ERR(sock_mnt)) {
3054 err = PTR_ERR(sock_mnt);
3055 goto out_mount;
3056 }
3057
3058 /* The real protocol initialization is performed in later initcalls.
3059 */
3060
3061 #ifdef CONFIG_NETFILTER
3062 err = netfilter_init();
3063 if (err)
3064 goto out;
3065 #endif
3066
3067 ptp_classifier_init();
3068
3069 out:
3070 return err;
3071
3072 out_mount:
3073 unregister_filesystem(&sock_fs_type);
3074 goto out;
3075 }
3076
3077 core_initcall(sock_init); /* early initcall */
3078
3079 #ifdef CONFIG_PROC_FS
3080 void socket_seq_show(struct seq_file *seq)
3081 {
3082 seq_printf(seq, "sockets: used %d\n",
3083 sock_inuse_get(seq->private));
3084 }
3085 #endif /* CONFIG_PROC_FS */
3086
3087 #ifdef CONFIG_COMPAT
3088 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3089 {
3090 struct compat_ifconf ifc32;
3091 struct ifconf ifc;
3092 int err;
3093
3094 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3095 return -EFAULT;
3096
3097 ifc.ifc_len = ifc32.ifc_len;
3098 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3099
3100 rtnl_lock();
3101 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3102 rtnl_unlock();
3103 if (err)
3104 return err;
3105
3106 ifc32.ifc_len = ifc.ifc_len;
3107 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3108 return -EFAULT;
3109
3110 return 0;
3111 }
3112
3113 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3114 {
3115 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3116 bool convert_in = false, convert_out = false;
3117 size_t buf_size = 0;
3118 struct ethtool_rxnfc __user *rxnfc = NULL;
3119 struct ifreq ifr;
3120 u32 rule_cnt = 0, actual_rule_cnt;
3121 u32 ethcmd;
3122 u32 data;
3123 int ret;
3124
3125 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3126 return -EFAULT;
3127
3128 compat_rxnfc = compat_ptr(data);
3129
3130 if (get_user(ethcmd, &compat_rxnfc->cmd))
3131 return -EFAULT;
3132
3133 /* Most ethtool structures are defined without padding.
3134 * Unfortunately struct ethtool_rxnfc is an exception.
3135 */
3136 switch (ethcmd) {
3137 default:
3138 break;
3139 case ETHTOOL_GRXCLSRLALL:
3140 /* Buffer size is variable */
3141 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3142 return -EFAULT;
3143 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3144 return -ENOMEM;
3145 buf_size += rule_cnt * sizeof(u32);
3146 fallthrough;
3147 case ETHTOOL_GRXRINGS:
3148 case ETHTOOL_GRXCLSRLCNT:
3149 case ETHTOOL_GRXCLSRULE:
3150 case ETHTOOL_SRXCLSRLINS:
3151 convert_out = true;
3152 fallthrough;
3153 case ETHTOOL_SRXCLSRLDEL:
3154 buf_size += sizeof(struct ethtool_rxnfc);
3155 convert_in = true;
3156 rxnfc = compat_alloc_user_space(buf_size);
3157 break;
3158 }
3159
3160 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3161 return -EFAULT;
3162
3163 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3164
3165 if (convert_in) {
3166 /* We expect there to be holes between fs.m_ext and
3167 * fs.ring_cookie and at the end of fs, but nowhere else.
3168 */
3169 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3170 sizeof(compat_rxnfc->fs.m_ext) !=
3171 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3172 sizeof(rxnfc->fs.m_ext));
3173 BUILD_BUG_ON(
3174 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3175 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3176 offsetof(struct ethtool_rxnfc, fs.location) -
3177 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3178
3179 if (copy_in_user(rxnfc, compat_rxnfc,
3180 (void __user *)(&rxnfc->fs.m_ext + 1) -
3181 (void __user *)rxnfc) ||
3182 copy_in_user(&rxnfc->fs.ring_cookie,
3183 &compat_rxnfc->fs.ring_cookie,
3184 (void __user *)(&rxnfc->fs.location + 1) -
3185 (void __user *)&rxnfc->fs.ring_cookie))
3186 return -EFAULT;
3187 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3188 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3189 return -EFAULT;
3190 } else if (copy_in_user(&rxnfc->rule_cnt,
3191 &compat_rxnfc->rule_cnt,
3192 sizeof(rxnfc->rule_cnt)))
3193 return -EFAULT;
3194 }
3195
3196 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3197 if (ret)
3198 return ret;
3199
3200 if (convert_out) {
3201 if (copy_in_user(compat_rxnfc, rxnfc,
3202 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3203 (const void __user *)rxnfc) ||
3204 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3205 &rxnfc->fs.ring_cookie,
3206 (const void __user *)(&rxnfc->fs.location + 1) -
3207 (const void __user *)&rxnfc->fs.ring_cookie) ||
3208 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3209 sizeof(rxnfc->rule_cnt)))
3210 return -EFAULT;
3211
3212 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3213 /* As an optimisation, we only copy the actual
3214 * number of rules that the underlying
3215 * function returned. Since Mallory might
3216 * change the rule count in user memory, we
3217 * check that it is less than the rule count
3218 * originally given (as the user buffer size),
3219 * which has been range-checked.
3220 */
3221 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3222 return -EFAULT;
3223 if (actual_rule_cnt < rule_cnt)
3224 rule_cnt = actual_rule_cnt;
3225 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3226 &rxnfc->rule_locs[0],
3227 rule_cnt * sizeof(u32)))
3228 return -EFAULT;
3229 }
3230 }
3231
3232 return 0;
3233 }
3234
3235 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3236 {
3237 compat_uptr_t uptr32;
3238 struct ifreq ifr;
3239 void __user *saved;
3240 int err;
3241
3242 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3243 return -EFAULT;
3244
3245 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3246 return -EFAULT;
3247
3248 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3249 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3250
3251 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3252 if (!err) {
3253 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3254 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3255 err = -EFAULT;
3256 }
3257 return err;
3258 }
3259
3260 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3261 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3262 struct compat_ifreq __user *u_ifreq32)
3263 {
3264 struct ifreq ifreq;
3265 u32 data32;
3266
3267 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3268 return -EFAULT;
3269 if (get_user(data32, &u_ifreq32->ifr_data))
3270 return -EFAULT;
3271 ifreq.ifr_data = compat_ptr(data32);
3272
3273 return dev_ioctl(net, cmd, &ifreq, NULL);
3274 }
3275
3276 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3277 unsigned int cmd,
3278 struct compat_ifreq __user *uifr32)
3279 {
3280 struct ifreq __user *uifr;
3281 int err;
3282
3283 /* Handle the fact that while struct ifreq has the same *layout* on
3284 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3285 * which are handled elsewhere, it still has different *size* due to
3286 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3287 * resulting in struct ifreq being 32 and 40 bytes respectively).
3288 * As a result, if the struct happens to be at the end of a page and
3289 * the next page isn't readable/writable, we get a fault. To prevent
3290 * that, copy back and forth to the full size.
3291 */
3292
3293 uifr = compat_alloc_user_space(sizeof(*uifr));
3294 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3295 return -EFAULT;
3296
3297 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3298
3299 if (!err) {
3300 switch (cmd) {
3301 case SIOCGIFFLAGS:
3302 case SIOCGIFMETRIC:
3303 case SIOCGIFMTU:
3304 case SIOCGIFMEM:
3305 case SIOCGIFHWADDR:
3306 case SIOCGIFINDEX:
3307 case SIOCGIFADDR:
3308 case SIOCGIFBRDADDR:
3309 case SIOCGIFDSTADDR:
3310 case SIOCGIFNETMASK:
3311 case SIOCGIFPFLAGS:
3312 case SIOCGIFTXQLEN:
3313 case SIOCGMIIPHY:
3314 case SIOCGMIIREG:
3315 case SIOCGIFNAME:
3316 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3317 err = -EFAULT;
3318 break;
3319 }
3320 }
3321 return err;
3322 }
3323
3324 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3325 struct compat_ifreq __user *uifr32)
3326 {
3327 struct ifreq ifr;
3328 struct compat_ifmap __user *uifmap32;
3329 int err;
3330
3331 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3332 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3333 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3334 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3335 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3336 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3337 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3338 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3339 if (err)
3340 return -EFAULT;
3341
3342 err = dev_ioctl(net, cmd, &ifr, NULL);
3343
3344 if (cmd == SIOCGIFMAP && !err) {
3345 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3346 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3347 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3348 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3349 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3350 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3351 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3352 if (err)
3353 err = -EFAULT;
3354 }
3355 return err;
3356 }
3357
3358 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3359 * for some operations; this forces use of the newer bridge-utils that
3360 * use compatible ioctls
3361 */
3362 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3363 {
3364 compat_ulong_t tmp;
3365
3366 if (get_user(tmp, argp))
3367 return -EFAULT;
3368 if (tmp == BRCTL_GET_VERSION)
3369 return BRCTL_VERSION + 1;
3370 return -EINVAL;
3371 }
3372
3373 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3374 unsigned int cmd, unsigned long arg)
3375 {
3376 void __user *argp = compat_ptr(arg);
3377 struct sock *sk = sock->sk;
3378 struct net *net = sock_net(sk);
3379
3380 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3381 return compat_ifr_data_ioctl(net, cmd, argp);
3382
3383 switch (cmd) {
3384 case SIOCSIFBR:
3385 case SIOCGIFBR:
3386 return old_bridge_ioctl(argp);
3387 case SIOCGIFCONF:
3388 return compat_dev_ifconf(net, argp);
3389 case SIOCETHTOOL:
3390 return ethtool_ioctl(net, argp);
3391 case SIOCWANDEV:
3392 return compat_siocwandev(net, argp);
3393 case SIOCGIFMAP:
3394 case SIOCSIFMAP:
3395 return compat_sioc_ifmap(net, cmd, argp);
3396 case SIOCGSTAMP_OLD:
3397 case SIOCGSTAMPNS_OLD:
3398 if (!sock->ops->gettstamp)
3399 return -ENOIOCTLCMD;
3400 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3401 !COMPAT_USE_64BIT_TIME);
3402
3403 case SIOCBONDSLAVEINFOQUERY:
3404 case SIOCBONDINFOQUERY:
3405 case SIOCSHWTSTAMP:
3406 case SIOCGHWTSTAMP:
3407 return compat_ifr_data_ioctl(net, cmd, argp);
3408
3409 case FIOSETOWN:
3410 case SIOCSPGRP:
3411 case FIOGETOWN:
3412 case SIOCGPGRP:
3413 case SIOCBRADDBR:
3414 case SIOCBRDELBR:
3415 case SIOCGIFVLAN:
3416 case SIOCSIFVLAN:
3417 case SIOCGSKNS:
3418 case SIOCGSTAMP_NEW:
3419 case SIOCGSTAMPNS_NEW:
3420 return sock_ioctl(file, cmd, arg);
3421
3422 case SIOCGIFFLAGS:
3423 case SIOCSIFFLAGS:
3424 case SIOCGIFMETRIC:
3425 case SIOCSIFMETRIC:
3426 case SIOCGIFMTU:
3427 case SIOCSIFMTU:
3428 case SIOCGIFMEM:
3429 case SIOCSIFMEM:
3430 case SIOCGIFHWADDR:
3431 case SIOCSIFHWADDR:
3432 case SIOCADDMULTI:
3433 case SIOCDELMULTI:
3434 case SIOCGIFINDEX:
3435 case SIOCGIFADDR:
3436 case SIOCSIFADDR:
3437 case SIOCSIFHWBROADCAST:
3438 case SIOCDIFADDR:
3439 case SIOCGIFBRDADDR:
3440 case SIOCSIFBRDADDR:
3441 case SIOCGIFDSTADDR:
3442 case SIOCSIFDSTADDR:
3443 case SIOCGIFNETMASK:
3444 case SIOCSIFNETMASK:
3445 case SIOCSIFPFLAGS:
3446 case SIOCGIFPFLAGS:
3447 case SIOCGIFTXQLEN:
3448 case SIOCSIFTXQLEN:
3449 case SIOCBRADDIF:
3450 case SIOCBRDELIF:
3451 case SIOCGIFNAME:
3452 case SIOCSIFNAME:
3453 case SIOCGMIIPHY:
3454 case SIOCGMIIREG:
3455 case SIOCSMIIREG:
3456 case SIOCBONDENSLAVE:
3457 case SIOCBONDRELEASE:
3458 case SIOCBONDSETHWADDR:
3459 case SIOCBONDCHANGEACTIVE:
3460 return compat_ifreq_ioctl(net, sock, cmd, argp);
3461
3462 case SIOCSARP:
3463 case SIOCGARP:
3464 case SIOCDARP:
3465 case SIOCOUTQ:
3466 case SIOCOUTQNSD:
3467 case SIOCATMARK:
3468 return sock_do_ioctl(net, sock, cmd, arg);
3469 }
3470
3471 return -ENOIOCTLCMD;
3472 }
3473
3474 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3475 unsigned long arg)
3476 {
3477 struct socket *sock = file->private_data;
3478 int ret = -ENOIOCTLCMD;
3479 struct sock *sk;
3480 struct net *net;
3481
3482 sk = sock->sk;
3483 net = sock_net(sk);
3484
3485 if (sock->ops->compat_ioctl)
3486 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3487
3488 if (ret == -ENOIOCTLCMD &&
3489 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3490 ret = compat_wext_handle_ioctl(net, cmd, arg);
3491
3492 if (ret == -ENOIOCTLCMD)
3493 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3494
3495 return ret;
3496 }
3497 #endif
3498
3499 /**
3500 * kernel_bind - bind an address to a socket (kernel space)
3501 * @sock: socket
3502 * @addr: address
3503 * @addrlen: length of address
3504 *
3505 * Returns 0 or an error.
3506 */
3507
3508 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3509 {
3510 return sock->ops->bind(sock, addr, addrlen);
3511 }
3512 EXPORT_SYMBOL(kernel_bind);
3513
3514 /**
3515 * kernel_listen - move socket to listening state (kernel space)
3516 * @sock: socket
3517 * @backlog: pending connections queue size
3518 *
3519 * Returns 0 or an error.
3520 */
3521
3522 int kernel_listen(struct socket *sock, int backlog)
3523 {
3524 return sock->ops->listen(sock, backlog);
3525 }
3526 EXPORT_SYMBOL(kernel_listen);
3527
3528 /**
3529 * kernel_accept - accept a connection (kernel space)
3530 * @sock: listening socket
3531 * @newsock: new connected socket
3532 * @flags: flags
3533 *
3534 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3535 * If it fails, @newsock is guaranteed to be %NULL.
3536 * Returns 0 or an error.
3537 */
3538
3539 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3540 {
3541 struct sock *sk = sock->sk;
3542 int err;
3543
3544 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3545 newsock);
3546 if (err < 0)
3547 goto done;
3548
3549 err = sock->ops->accept(sock, *newsock, flags, true);
3550 if (err < 0) {
3551 sock_release(*newsock);
3552 *newsock = NULL;
3553 goto done;
3554 }
3555
3556 (*newsock)->ops = sock->ops;
3557 __module_get((*newsock)->ops->owner);
3558
3559 done:
3560 return err;
3561 }
3562 EXPORT_SYMBOL(kernel_accept);
3563
3564 /**
3565 * kernel_connect - connect a socket (kernel space)
3566 * @sock: socket
3567 * @addr: address
3568 * @addrlen: address length
3569 * @flags: flags (O_NONBLOCK, ...)
3570 *
3571 * For datagram sockets, @addr is the address to which datagrams are sent
3572 * by default, and the only address from which datagrams are received.
3573 * For stream sockets, attempts to connect to @addr.
3574 * Returns 0 or an error code.
3575 */
3576
3577 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3578 int flags)
3579 {
3580 return sock->ops->connect(sock, addr, addrlen, flags);
3581 }
3582 EXPORT_SYMBOL(kernel_connect);
3583
3584 /**
3585 * kernel_getsockname - get the address which the socket is bound (kernel space)
3586 * @sock: socket
3587 * @addr: address holder
3588 *
3589 * Fills the @addr pointer with the address which the socket is bound.
3590 * Returns 0 or an error code.
3591 */
3592
3593 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3594 {
3595 return sock->ops->getname(sock, addr, 0);
3596 }
3597 EXPORT_SYMBOL(kernel_getsockname);
3598
3599 /**
3600 * kernel_getpeername - get the address which the socket is connected (kernel space)
3601 * @sock: socket
3602 * @addr: address holder
3603 *
3604 * Fills the @addr pointer with the address which the socket is connected.
3605 * Returns 0 or an error code.
3606 */
3607
3608 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3609 {
3610 return sock->ops->getname(sock, addr, 1);
3611 }
3612 EXPORT_SYMBOL(kernel_getpeername);
3613
3614 /**
3615 * kernel_sendpage - send a &page through a socket (kernel space)
3616 * @sock: socket
3617 * @page: page
3618 * @offset: page offset
3619 * @size: total size in bytes
3620 * @flags: flags (MSG_DONTWAIT, ...)
3621 *
3622 * Returns the total amount sent in bytes or an error.
3623 */
3624
3625 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3626 size_t size, int flags)
3627 {
3628 if (sock->ops->sendpage) {
3629 /* Warn in case the improper page to zero-copy send */
3630 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3631 return sock->ops->sendpage(sock, page, offset, size, flags);
3632 }
3633 return sock_no_sendpage(sock, page, offset, size, flags);
3634 }
3635 EXPORT_SYMBOL(kernel_sendpage);
3636
3637 /**
3638 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3639 * @sk: sock
3640 * @page: page
3641 * @offset: page offset
3642 * @size: total size in bytes
3643 * @flags: flags (MSG_DONTWAIT, ...)
3644 *
3645 * Returns the total amount sent in bytes or an error.
3646 * Caller must hold @sk.
3647 */
3648
3649 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3650 size_t size, int flags)
3651 {
3652 struct socket *sock = sk->sk_socket;
3653
3654 if (sock->ops->sendpage_locked)
3655 return sock->ops->sendpage_locked(sk, page, offset, size,
3656 flags);
3657
3658 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3659 }
3660 EXPORT_SYMBOL(kernel_sendpage_locked);
3661
3662 /**
3663 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3664 * @sock: socket
3665 * @how: connection part
3666 *
3667 * Returns 0 or an error.
3668 */
3669
3670 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3671 {
3672 return sock->ops->shutdown(sock, how);
3673 }
3674 EXPORT_SYMBOL(kernel_sock_shutdown);
3675
3676 /**
3677 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3678 * @sk: socket
3679 *
3680 * This routine returns the IP overhead imposed by a socket i.e.
3681 * the length of the underlying IP header, depending on whether
3682 * this is an IPv4 or IPv6 socket and the length from IP options turned
3683 * on at the socket. Assumes that the caller has a lock on the socket.
3684 */
3685
3686 u32 kernel_sock_ip_overhead(struct sock *sk)
3687 {
3688 struct inet_sock *inet;
3689 struct ip_options_rcu *opt;
3690 u32 overhead = 0;
3691 #if IS_ENABLED(CONFIG_IPV6)
3692 struct ipv6_pinfo *np;
3693 struct ipv6_txoptions *optv6 = NULL;
3694 #endif /* IS_ENABLED(CONFIG_IPV6) */
3695
3696 if (!sk)
3697 return overhead;
3698
3699 switch (sk->sk_family) {
3700 case AF_INET:
3701 inet = inet_sk(sk);
3702 overhead += sizeof(struct iphdr);
3703 opt = rcu_dereference_protected(inet->inet_opt,
3704 sock_owned_by_user(sk));
3705 if (opt)
3706 overhead += opt->opt.optlen;
3707 return overhead;
3708 #if IS_ENABLED(CONFIG_IPV6)
3709 case AF_INET6:
3710 np = inet6_sk(sk);
3711 overhead += sizeof(struct ipv6hdr);
3712 if (np)
3713 optv6 = rcu_dereference_protected(np->opt,
3714 sock_owned_by_user(sk));
3715 if (optv6)
3716 overhead += (optv6->opt_flen + optv6->opt_nflen);
3717 return overhead;
3718 #endif /* IS_ENABLED(CONFIG_IPV6) */
3719 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3720 return overhead;
3721 }
3722 }
3723 EXPORT_SYMBOL(kernel_sock_ip_overhead);