]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
net: Convert net_ratelimit uses to net_<level>_ratelimited
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static int init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296 }
297
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302 };
303
304 /*
305 * sockfs_dname() is called from d_path().
306 */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311 }
312
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315 };
316
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319 {
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
359
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
364 }
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384
385 *f = file;
386 return fd;
387 }
388
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
393
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
396
397 return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400
401 static struct socket *sock_from_file(struct file *file, int *err)
402 {
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
405
406 *err = -ENOTSOCK;
407 return NULL;
408 }
409
410 /**
411 * sockfd_lookup - Go from a file number to its socket slot
412 * @fd: file handle
413 * @err: pointer to an error code return
414 *
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
419 *
420 * On a success the socket object pointer is returned.
421 */
422
423 struct socket *sockfd_lookup(int fd, int *err)
424 {
425 struct file *file;
426 struct socket *sock;
427
428 file = fget(fd);
429 if (!file) {
430 *err = -EBADF;
431 return NULL;
432 }
433
434 sock = sock_from_file(file, err);
435 if (!sock)
436 fput(file);
437 return sock;
438 }
439 EXPORT_SYMBOL(sockfd_lookup);
440
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
442 {
443 struct file *file;
444 struct socket *sock;
445
446 *err = -EBADF;
447 file = fget_light(fd, fput_needed);
448 if (file) {
449 sock = sock_from_file(file, err);
450 if (sock)
451 return sock;
452 fput_light(file, *fput_needed);
453 }
454 return NULL;
455 }
456
457 /**
458 * sock_alloc - allocate a socket
459 *
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
462 * NULL is returned.
463 */
464
465 static struct socket *sock_alloc(void)
466 {
467 struct inode *inode;
468 struct socket *sock;
469
470 inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 if (!inode)
472 return NULL;
473
474 sock = SOCKET_I(inode);
475
476 kmemcheck_annotate_bitfield(sock, type);
477 inode->i_ino = get_next_ino();
478 inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 inode->i_uid = current_fsuid();
480 inode->i_gid = current_fsgid();
481
482 percpu_add(sockets_in_use, 1);
483 return sock;
484 }
485
486 /*
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
490 */
491
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493 {
494 return -ENXIO;
495 }
496
497 const struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500 .llseek = noop_llseek,
501 };
502
503 /**
504 * sock_release - close a socket
505 * @sock: socket to close
506 *
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
510 */
511
512 void sock_release(struct socket *sock)
513 {
514 if (sock->ops) {
515 struct module *owner = sock->ops->owner;
516
517 sock->ops->release(sock);
518 sock->ops = NULL;
519 module_put(owner);
520 }
521
522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 printk(KERN_ERR "sock_release: fasync list not empty!\n");
524
525 percpu_sub(sockets_in_use, 1);
526 if (!sock->file) {
527 iput(SOCK_INODE(sock));
528 return;
529 }
530 sock->file = NULL;
531 }
532 EXPORT_SYMBOL(sock_release);
533
534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
535 {
536 *tx_flags = 0;
537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
538 *tx_flags |= SKBTX_HW_TSTAMP;
539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
540 *tx_flags |= SKBTX_SW_TSTAMP;
541 if (sock_flag(sk, SOCK_WIFI_STATUS))
542 *tx_flags |= SKBTX_WIFI_STATUS;
543 return 0;
544 }
545 EXPORT_SYMBOL(sock_tx_timestamp);
546
547 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
548 struct msghdr *msg, size_t size)
549 {
550 struct sock_iocb *si = kiocb_to_siocb(iocb);
551
552 sock_update_classid(sock->sk);
553
554 sock_update_netprioidx(sock->sk);
555
556 si->sock = sock;
557 si->scm = NULL;
558 si->msg = msg;
559 si->size = size;
560
561 return sock->ops->sendmsg(iocb, sock, msg, size);
562 }
563
564 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
565 struct msghdr *msg, size_t size)
566 {
567 int err = security_socket_sendmsg(sock, msg, size);
568
569 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
570 }
571
572 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
573 {
574 struct kiocb iocb;
575 struct sock_iocb siocb;
576 int ret;
577
578 init_sync_kiocb(&iocb, NULL);
579 iocb.private = &siocb;
580 ret = __sock_sendmsg(&iocb, sock, msg, size);
581 if (-EIOCBQUEUED == ret)
582 ret = wait_on_sync_kiocb(&iocb);
583 return ret;
584 }
585 EXPORT_SYMBOL(sock_sendmsg);
586
587 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
588 {
589 struct kiocb iocb;
590 struct sock_iocb siocb;
591 int ret;
592
593 init_sync_kiocb(&iocb, NULL);
594 iocb.private = &siocb;
595 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
596 if (-EIOCBQUEUED == ret)
597 ret = wait_on_sync_kiocb(&iocb);
598 return ret;
599 }
600
601 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
602 struct kvec *vec, size_t num, size_t size)
603 {
604 mm_segment_t oldfs = get_fs();
605 int result;
606
607 set_fs(KERNEL_DS);
608 /*
609 * the following is safe, since for compiler definitions of kvec and
610 * iovec are identical, yielding the same in-core layout and alignment
611 */
612 msg->msg_iov = (struct iovec *)vec;
613 msg->msg_iovlen = num;
614 result = sock_sendmsg(sock, msg, size);
615 set_fs(oldfs);
616 return result;
617 }
618 EXPORT_SYMBOL(kernel_sendmsg);
619
620 static int ktime2ts(ktime_t kt, struct timespec *ts)
621 {
622 if (kt.tv64) {
623 *ts = ktime_to_timespec(kt);
624 return 1;
625 } else {
626 return 0;
627 }
628 }
629
630 /*
631 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
632 */
633 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
634 struct sk_buff *skb)
635 {
636 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
637 struct timespec ts[3];
638 int empty = 1;
639 struct skb_shared_hwtstamps *shhwtstamps =
640 skb_hwtstamps(skb);
641
642 /* Race occurred between timestamp enabling and packet
643 receiving. Fill in the current time for now. */
644 if (need_software_tstamp && skb->tstamp.tv64 == 0)
645 __net_timestamp(skb);
646
647 if (need_software_tstamp) {
648 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
649 struct timeval tv;
650 skb_get_timestamp(skb, &tv);
651 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
652 sizeof(tv), &tv);
653 } else {
654 skb_get_timestampns(skb, &ts[0]);
655 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
656 sizeof(ts[0]), &ts[0]);
657 }
658 }
659
660
661 memset(ts, 0, sizeof(ts));
662 if (skb->tstamp.tv64 &&
663 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
664 skb_get_timestampns(skb, ts + 0);
665 empty = 0;
666 }
667 if (shhwtstamps) {
668 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
669 ktime2ts(shhwtstamps->syststamp, ts + 1))
670 empty = 0;
671 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
672 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
673 empty = 0;
674 }
675 if (!empty)
676 put_cmsg(msg, SOL_SOCKET,
677 SCM_TIMESTAMPING, sizeof(ts), &ts);
678 }
679 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
680
681 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
682 struct sk_buff *skb)
683 {
684 int ack;
685
686 if (!sock_flag(sk, SOCK_WIFI_STATUS))
687 return;
688 if (!skb->wifi_acked_valid)
689 return;
690
691 ack = skb->wifi_acked;
692
693 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
694 }
695 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
696
697 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
698 struct sk_buff *skb)
699 {
700 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
701 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
702 sizeof(__u32), &skb->dropcount);
703 }
704
705 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
707 {
708 sock_recv_timestamp(msg, sk, skb);
709 sock_recv_drops(msg, sk, skb);
710 }
711 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
712
713 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
714 struct msghdr *msg, size_t size, int flags)
715 {
716 struct sock_iocb *si = kiocb_to_siocb(iocb);
717
718 sock_update_classid(sock->sk);
719
720 si->sock = sock;
721 si->scm = NULL;
722 si->msg = msg;
723 si->size = size;
724 si->flags = flags;
725
726 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
727 }
728
729 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
730 struct msghdr *msg, size_t size, int flags)
731 {
732 int err = security_socket_recvmsg(sock, msg, size, flags);
733
734 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
735 }
736
737 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
738 size_t size, int flags)
739 {
740 struct kiocb iocb;
741 struct sock_iocb siocb;
742 int ret;
743
744 init_sync_kiocb(&iocb, NULL);
745 iocb.private = &siocb;
746 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
747 if (-EIOCBQUEUED == ret)
748 ret = wait_on_sync_kiocb(&iocb);
749 return ret;
750 }
751 EXPORT_SYMBOL(sock_recvmsg);
752
753 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
754 size_t size, int flags)
755 {
756 struct kiocb iocb;
757 struct sock_iocb siocb;
758 int ret;
759
760 init_sync_kiocb(&iocb, NULL);
761 iocb.private = &siocb;
762 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
763 if (-EIOCBQUEUED == ret)
764 ret = wait_on_sync_kiocb(&iocb);
765 return ret;
766 }
767
768 /**
769 * kernel_recvmsg - Receive a message from a socket (kernel space)
770 * @sock: The socket to receive the message from
771 * @msg: Received message
772 * @vec: Input s/g array for message data
773 * @num: Size of input s/g array
774 * @size: Number of bytes to read
775 * @flags: Message flags (MSG_DONTWAIT, etc...)
776 *
777 * On return the msg structure contains the scatter/gather array passed in the
778 * vec argument. The array is modified so that it consists of the unfilled
779 * portion of the original array.
780 *
781 * The returned value is the total number of bytes received, or an error.
782 */
783 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
784 struct kvec *vec, size_t num, size_t size, int flags)
785 {
786 mm_segment_t oldfs = get_fs();
787 int result;
788
789 set_fs(KERNEL_DS);
790 /*
791 * the following is safe, since for compiler definitions of kvec and
792 * iovec are identical, yielding the same in-core layout and alignment
793 */
794 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
795 result = sock_recvmsg(sock, msg, size, flags);
796 set_fs(oldfs);
797 return result;
798 }
799 EXPORT_SYMBOL(kernel_recvmsg);
800
801 static void sock_aio_dtor(struct kiocb *iocb)
802 {
803 kfree(iocb->private);
804 }
805
806 static ssize_t sock_sendpage(struct file *file, struct page *page,
807 int offset, size_t size, loff_t *ppos, int more)
808 {
809 struct socket *sock;
810 int flags;
811
812 sock = file->private_data;
813
814 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
815 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
816 flags |= more;
817
818 return kernel_sendpage(sock, page, offset, size, flags);
819 }
820
821 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
822 struct pipe_inode_info *pipe, size_t len,
823 unsigned int flags)
824 {
825 struct socket *sock = file->private_data;
826
827 if (unlikely(!sock->ops->splice_read))
828 return -EINVAL;
829
830 sock_update_classid(sock->sk);
831
832 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
833 }
834
835 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
836 struct sock_iocb *siocb)
837 {
838 if (!is_sync_kiocb(iocb)) {
839 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
840 if (!siocb)
841 return NULL;
842 iocb->ki_dtor = sock_aio_dtor;
843 }
844
845 siocb->kiocb = iocb;
846 iocb->private = siocb;
847 return siocb;
848 }
849
850 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
851 struct file *file, const struct iovec *iov,
852 unsigned long nr_segs)
853 {
854 struct socket *sock = file->private_data;
855 size_t size = 0;
856 int i;
857
858 for (i = 0; i < nr_segs; i++)
859 size += iov[i].iov_len;
860
861 msg->msg_name = NULL;
862 msg->msg_namelen = 0;
863 msg->msg_control = NULL;
864 msg->msg_controllen = 0;
865 msg->msg_iov = (struct iovec *)iov;
866 msg->msg_iovlen = nr_segs;
867 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
868
869 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
870 }
871
872 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
873 unsigned long nr_segs, loff_t pos)
874 {
875 struct sock_iocb siocb, *x;
876
877 if (pos != 0)
878 return -ESPIPE;
879
880 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
881 return 0;
882
883
884 x = alloc_sock_iocb(iocb, &siocb);
885 if (!x)
886 return -ENOMEM;
887 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
888 }
889
890 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
891 struct file *file, const struct iovec *iov,
892 unsigned long nr_segs)
893 {
894 struct socket *sock = file->private_data;
895 size_t size = 0;
896 int i;
897
898 for (i = 0; i < nr_segs; i++)
899 size += iov[i].iov_len;
900
901 msg->msg_name = NULL;
902 msg->msg_namelen = 0;
903 msg->msg_control = NULL;
904 msg->msg_controllen = 0;
905 msg->msg_iov = (struct iovec *)iov;
906 msg->msg_iovlen = nr_segs;
907 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
908 if (sock->type == SOCK_SEQPACKET)
909 msg->msg_flags |= MSG_EOR;
910
911 return __sock_sendmsg(iocb, sock, msg, size);
912 }
913
914 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
915 unsigned long nr_segs, loff_t pos)
916 {
917 struct sock_iocb siocb, *x;
918
919 if (pos != 0)
920 return -ESPIPE;
921
922 x = alloc_sock_iocb(iocb, &siocb);
923 if (!x)
924 return -ENOMEM;
925
926 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
927 }
928
929 /*
930 * Atomic setting of ioctl hooks to avoid race
931 * with module unload.
932 */
933
934 static DEFINE_MUTEX(br_ioctl_mutex);
935 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
936
937 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
938 {
939 mutex_lock(&br_ioctl_mutex);
940 br_ioctl_hook = hook;
941 mutex_unlock(&br_ioctl_mutex);
942 }
943 EXPORT_SYMBOL(brioctl_set);
944
945 static DEFINE_MUTEX(vlan_ioctl_mutex);
946 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
947
948 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
949 {
950 mutex_lock(&vlan_ioctl_mutex);
951 vlan_ioctl_hook = hook;
952 mutex_unlock(&vlan_ioctl_mutex);
953 }
954 EXPORT_SYMBOL(vlan_ioctl_set);
955
956 static DEFINE_MUTEX(dlci_ioctl_mutex);
957 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
958
959 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
960 {
961 mutex_lock(&dlci_ioctl_mutex);
962 dlci_ioctl_hook = hook;
963 mutex_unlock(&dlci_ioctl_mutex);
964 }
965 EXPORT_SYMBOL(dlci_ioctl_set);
966
967 static long sock_do_ioctl(struct net *net, struct socket *sock,
968 unsigned int cmd, unsigned long arg)
969 {
970 int err;
971 void __user *argp = (void __user *)arg;
972
973 err = sock->ops->ioctl(sock, cmd, arg);
974
975 /*
976 * If this ioctl is unknown try to hand it down
977 * to the NIC driver.
978 */
979 if (err == -ENOIOCTLCMD)
980 err = dev_ioctl(net, cmd, argp);
981
982 return err;
983 }
984
985 /*
986 * With an ioctl, arg may well be a user mode pointer, but we don't know
987 * what to do with it - that's up to the protocol still.
988 */
989
990 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
991 {
992 struct socket *sock;
993 struct sock *sk;
994 void __user *argp = (void __user *)arg;
995 int pid, err;
996 struct net *net;
997
998 sock = file->private_data;
999 sk = sock->sk;
1000 net = sock_net(sk);
1001 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1002 err = dev_ioctl(net, cmd, argp);
1003 } else
1004 #ifdef CONFIG_WEXT_CORE
1005 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1006 err = dev_ioctl(net, cmd, argp);
1007 } else
1008 #endif
1009 switch (cmd) {
1010 case FIOSETOWN:
1011 case SIOCSPGRP:
1012 err = -EFAULT;
1013 if (get_user(pid, (int __user *)argp))
1014 break;
1015 err = f_setown(sock->file, pid, 1);
1016 break;
1017 case FIOGETOWN:
1018 case SIOCGPGRP:
1019 err = put_user(f_getown(sock->file),
1020 (int __user *)argp);
1021 break;
1022 case SIOCGIFBR:
1023 case SIOCSIFBR:
1024 case SIOCBRADDBR:
1025 case SIOCBRDELBR:
1026 err = -ENOPKG;
1027 if (!br_ioctl_hook)
1028 request_module("bridge");
1029
1030 mutex_lock(&br_ioctl_mutex);
1031 if (br_ioctl_hook)
1032 err = br_ioctl_hook(net, cmd, argp);
1033 mutex_unlock(&br_ioctl_mutex);
1034 break;
1035 case SIOCGIFVLAN:
1036 case SIOCSIFVLAN:
1037 err = -ENOPKG;
1038 if (!vlan_ioctl_hook)
1039 request_module("8021q");
1040
1041 mutex_lock(&vlan_ioctl_mutex);
1042 if (vlan_ioctl_hook)
1043 err = vlan_ioctl_hook(net, argp);
1044 mutex_unlock(&vlan_ioctl_mutex);
1045 break;
1046 case SIOCADDDLCI:
1047 case SIOCDELDLCI:
1048 err = -ENOPKG;
1049 if (!dlci_ioctl_hook)
1050 request_module("dlci");
1051
1052 mutex_lock(&dlci_ioctl_mutex);
1053 if (dlci_ioctl_hook)
1054 err = dlci_ioctl_hook(cmd, argp);
1055 mutex_unlock(&dlci_ioctl_mutex);
1056 break;
1057 default:
1058 err = sock_do_ioctl(net, sock, cmd, arg);
1059 break;
1060 }
1061 return err;
1062 }
1063
1064 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1065 {
1066 int err;
1067 struct socket *sock = NULL;
1068
1069 err = security_socket_create(family, type, protocol, 1);
1070 if (err)
1071 goto out;
1072
1073 sock = sock_alloc();
1074 if (!sock) {
1075 err = -ENOMEM;
1076 goto out;
1077 }
1078
1079 sock->type = type;
1080 err = security_socket_post_create(sock, family, type, protocol, 1);
1081 if (err)
1082 goto out_release;
1083
1084 out:
1085 *res = sock;
1086 return err;
1087 out_release:
1088 sock_release(sock);
1089 sock = NULL;
1090 goto out;
1091 }
1092 EXPORT_SYMBOL(sock_create_lite);
1093
1094 /* No kernel lock held - perfect */
1095 static unsigned int sock_poll(struct file *file, poll_table *wait)
1096 {
1097 struct socket *sock;
1098
1099 /*
1100 * We can't return errors to poll, so it's either yes or no.
1101 */
1102 sock = file->private_data;
1103 return sock->ops->poll(file, sock, wait);
1104 }
1105
1106 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1107 {
1108 struct socket *sock = file->private_data;
1109
1110 return sock->ops->mmap(file, sock, vma);
1111 }
1112
1113 static int sock_close(struct inode *inode, struct file *filp)
1114 {
1115 /*
1116 * It was possible the inode is NULL we were
1117 * closing an unfinished socket.
1118 */
1119
1120 if (!inode) {
1121 printk(KERN_DEBUG "sock_close: NULL inode\n");
1122 return 0;
1123 }
1124 sock_release(SOCKET_I(inode));
1125 return 0;
1126 }
1127
1128 /*
1129 * Update the socket async list
1130 *
1131 * Fasync_list locking strategy.
1132 *
1133 * 1. fasync_list is modified only under process context socket lock
1134 * i.e. under semaphore.
1135 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1136 * or under socket lock
1137 */
1138
1139 static int sock_fasync(int fd, struct file *filp, int on)
1140 {
1141 struct socket *sock = filp->private_data;
1142 struct sock *sk = sock->sk;
1143 struct socket_wq *wq;
1144
1145 if (sk == NULL)
1146 return -EINVAL;
1147
1148 lock_sock(sk);
1149 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1150 fasync_helper(fd, filp, on, &wq->fasync_list);
1151
1152 if (!wq->fasync_list)
1153 sock_reset_flag(sk, SOCK_FASYNC);
1154 else
1155 sock_set_flag(sk, SOCK_FASYNC);
1156
1157 release_sock(sk);
1158 return 0;
1159 }
1160
1161 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1162
1163 int sock_wake_async(struct socket *sock, int how, int band)
1164 {
1165 struct socket_wq *wq;
1166
1167 if (!sock)
1168 return -1;
1169 rcu_read_lock();
1170 wq = rcu_dereference(sock->wq);
1171 if (!wq || !wq->fasync_list) {
1172 rcu_read_unlock();
1173 return -1;
1174 }
1175 switch (how) {
1176 case SOCK_WAKE_WAITD:
1177 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1178 break;
1179 goto call_kill;
1180 case SOCK_WAKE_SPACE:
1181 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1182 break;
1183 /* fall through */
1184 case SOCK_WAKE_IO:
1185 call_kill:
1186 kill_fasync(&wq->fasync_list, SIGIO, band);
1187 break;
1188 case SOCK_WAKE_URG:
1189 kill_fasync(&wq->fasync_list, SIGURG, band);
1190 }
1191 rcu_read_unlock();
1192 return 0;
1193 }
1194 EXPORT_SYMBOL(sock_wake_async);
1195
1196 int __sock_create(struct net *net, int family, int type, int protocol,
1197 struct socket **res, int kern)
1198 {
1199 int err;
1200 struct socket *sock;
1201 const struct net_proto_family *pf;
1202
1203 /*
1204 * Check protocol is in range
1205 */
1206 if (family < 0 || family >= NPROTO)
1207 return -EAFNOSUPPORT;
1208 if (type < 0 || type >= SOCK_MAX)
1209 return -EINVAL;
1210
1211 /* Compatibility.
1212
1213 This uglymoron is moved from INET layer to here to avoid
1214 deadlock in module load.
1215 */
1216 if (family == PF_INET && type == SOCK_PACKET) {
1217 static int warned;
1218 if (!warned) {
1219 warned = 1;
1220 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1221 current->comm);
1222 }
1223 family = PF_PACKET;
1224 }
1225
1226 err = security_socket_create(family, type, protocol, kern);
1227 if (err)
1228 return err;
1229
1230 /*
1231 * Allocate the socket and allow the family to set things up. if
1232 * the protocol is 0, the family is instructed to select an appropriate
1233 * default.
1234 */
1235 sock = sock_alloc();
1236 if (!sock) {
1237 net_warn_ratelimited("socket: no more sockets\n");
1238 return -ENFILE; /* Not exactly a match, but its the
1239 closest posix thing */
1240 }
1241
1242 sock->type = type;
1243
1244 #ifdef CONFIG_MODULES
1245 /* Attempt to load a protocol module if the find failed.
1246 *
1247 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1248 * requested real, full-featured networking support upon configuration.
1249 * Otherwise module support will break!
1250 */
1251 if (rcu_access_pointer(net_families[family]) == NULL)
1252 request_module("net-pf-%d", family);
1253 #endif
1254
1255 rcu_read_lock();
1256 pf = rcu_dereference(net_families[family]);
1257 err = -EAFNOSUPPORT;
1258 if (!pf)
1259 goto out_release;
1260
1261 /*
1262 * We will call the ->create function, that possibly is in a loadable
1263 * module, so we have to bump that loadable module refcnt first.
1264 */
1265 if (!try_module_get(pf->owner))
1266 goto out_release;
1267
1268 /* Now protected by module ref count */
1269 rcu_read_unlock();
1270
1271 err = pf->create(net, sock, protocol, kern);
1272 if (err < 0)
1273 goto out_module_put;
1274
1275 /*
1276 * Now to bump the refcnt of the [loadable] module that owns this
1277 * socket at sock_release time we decrement its refcnt.
1278 */
1279 if (!try_module_get(sock->ops->owner))
1280 goto out_module_busy;
1281
1282 /*
1283 * Now that we're done with the ->create function, the [loadable]
1284 * module can have its refcnt decremented
1285 */
1286 module_put(pf->owner);
1287 err = security_socket_post_create(sock, family, type, protocol, kern);
1288 if (err)
1289 goto out_sock_release;
1290 *res = sock;
1291
1292 return 0;
1293
1294 out_module_busy:
1295 err = -EAFNOSUPPORT;
1296 out_module_put:
1297 sock->ops = NULL;
1298 module_put(pf->owner);
1299 out_sock_release:
1300 sock_release(sock);
1301 return err;
1302
1303 out_release:
1304 rcu_read_unlock();
1305 goto out_sock_release;
1306 }
1307 EXPORT_SYMBOL(__sock_create);
1308
1309 int sock_create(int family, int type, int protocol, struct socket **res)
1310 {
1311 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1312 }
1313 EXPORT_SYMBOL(sock_create);
1314
1315 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1316 {
1317 return __sock_create(&init_net, family, type, protocol, res, 1);
1318 }
1319 EXPORT_SYMBOL(sock_create_kern);
1320
1321 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1322 {
1323 int retval;
1324 struct socket *sock;
1325 int flags;
1326
1327 /* Check the SOCK_* constants for consistency. */
1328 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1329 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1330 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1331 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1332
1333 flags = type & ~SOCK_TYPE_MASK;
1334 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1335 return -EINVAL;
1336 type &= SOCK_TYPE_MASK;
1337
1338 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1339 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1340
1341 retval = sock_create(family, type, protocol, &sock);
1342 if (retval < 0)
1343 goto out;
1344
1345 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1346 if (retval < 0)
1347 goto out_release;
1348
1349 out:
1350 /* It may be already another descriptor 8) Not kernel problem. */
1351 return retval;
1352
1353 out_release:
1354 sock_release(sock);
1355 return retval;
1356 }
1357
1358 /*
1359 * Create a pair of connected sockets.
1360 */
1361
1362 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1363 int __user *, usockvec)
1364 {
1365 struct socket *sock1, *sock2;
1366 int fd1, fd2, err;
1367 struct file *newfile1, *newfile2;
1368 int flags;
1369
1370 flags = type & ~SOCK_TYPE_MASK;
1371 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1372 return -EINVAL;
1373 type &= SOCK_TYPE_MASK;
1374
1375 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1376 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1377
1378 /*
1379 * Obtain the first socket and check if the underlying protocol
1380 * supports the socketpair call.
1381 */
1382
1383 err = sock_create(family, type, protocol, &sock1);
1384 if (err < 0)
1385 goto out;
1386
1387 err = sock_create(family, type, protocol, &sock2);
1388 if (err < 0)
1389 goto out_release_1;
1390
1391 err = sock1->ops->socketpair(sock1, sock2);
1392 if (err < 0)
1393 goto out_release_both;
1394
1395 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1396 if (unlikely(fd1 < 0)) {
1397 err = fd1;
1398 goto out_release_both;
1399 }
1400
1401 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1402 if (unlikely(fd2 < 0)) {
1403 err = fd2;
1404 fput(newfile1);
1405 put_unused_fd(fd1);
1406 sock_release(sock2);
1407 goto out;
1408 }
1409
1410 audit_fd_pair(fd1, fd2);
1411 fd_install(fd1, newfile1);
1412 fd_install(fd2, newfile2);
1413 /* fd1 and fd2 may be already another descriptors.
1414 * Not kernel problem.
1415 */
1416
1417 err = put_user(fd1, &usockvec[0]);
1418 if (!err)
1419 err = put_user(fd2, &usockvec[1]);
1420 if (!err)
1421 return 0;
1422
1423 sys_close(fd2);
1424 sys_close(fd1);
1425 return err;
1426
1427 out_release_both:
1428 sock_release(sock2);
1429 out_release_1:
1430 sock_release(sock1);
1431 out:
1432 return err;
1433 }
1434
1435 /*
1436 * Bind a name to a socket. Nothing much to do here since it's
1437 * the protocol's responsibility to handle the local address.
1438 *
1439 * We move the socket address to kernel space before we call
1440 * the protocol layer (having also checked the address is ok).
1441 */
1442
1443 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1444 {
1445 struct socket *sock;
1446 struct sockaddr_storage address;
1447 int err, fput_needed;
1448
1449 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1450 if (sock) {
1451 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1452 if (err >= 0) {
1453 err = security_socket_bind(sock,
1454 (struct sockaddr *)&address,
1455 addrlen);
1456 if (!err)
1457 err = sock->ops->bind(sock,
1458 (struct sockaddr *)
1459 &address, addrlen);
1460 }
1461 fput_light(sock->file, fput_needed);
1462 }
1463 return err;
1464 }
1465
1466 /*
1467 * Perform a listen. Basically, we allow the protocol to do anything
1468 * necessary for a listen, and if that works, we mark the socket as
1469 * ready for listening.
1470 */
1471
1472 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1473 {
1474 struct socket *sock;
1475 int err, fput_needed;
1476 int somaxconn;
1477
1478 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1479 if (sock) {
1480 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1481 if ((unsigned int)backlog > somaxconn)
1482 backlog = somaxconn;
1483
1484 err = security_socket_listen(sock, backlog);
1485 if (!err)
1486 err = sock->ops->listen(sock, backlog);
1487
1488 fput_light(sock->file, fput_needed);
1489 }
1490 return err;
1491 }
1492
1493 /*
1494 * For accept, we attempt to create a new socket, set up the link
1495 * with the client, wake up the client, then return the new
1496 * connected fd. We collect the address of the connector in kernel
1497 * space and move it to user at the very end. This is unclean because
1498 * we open the socket then return an error.
1499 *
1500 * 1003.1g adds the ability to recvmsg() to query connection pending
1501 * status to recvmsg. We need to add that support in a way thats
1502 * clean when we restucture accept also.
1503 */
1504
1505 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1506 int __user *, upeer_addrlen, int, flags)
1507 {
1508 struct socket *sock, *newsock;
1509 struct file *newfile;
1510 int err, len, newfd, fput_needed;
1511 struct sockaddr_storage address;
1512
1513 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1514 return -EINVAL;
1515
1516 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1517 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1518
1519 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1520 if (!sock)
1521 goto out;
1522
1523 err = -ENFILE;
1524 newsock = sock_alloc();
1525 if (!newsock)
1526 goto out_put;
1527
1528 newsock->type = sock->type;
1529 newsock->ops = sock->ops;
1530
1531 /*
1532 * We don't need try_module_get here, as the listening socket (sock)
1533 * has the protocol module (sock->ops->owner) held.
1534 */
1535 __module_get(newsock->ops->owner);
1536
1537 newfd = sock_alloc_file(newsock, &newfile, flags);
1538 if (unlikely(newfd < 0)) {
1539 err = newfd;
1540 sock_release(newsock);
1541 goto out_put;
1542 }
1543
1544 err = security_socket_accept(sock, newsock);
1545 if (err)
1546 goto out_fd;
1547
1548 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1549 if (err < 0)
1550 goto out_fd;
1551
1552 if (upeer_sockaddr) {
1553 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1554 &len, 2) < 0) {
1555 err = -ECONNABORTED;
1556 goto out_fd;
1557 }
1558 err = move_addr_to_user(&address,
1559 len, upeer_sockaddr, upeer_addrlen);
1560 if (err < 0)
1561 goto out_fd;
1562 }
1563
1564 /* File flags are not inherited via accept() unlike another OSes. */
1565
1566 fd_install(newfd, newfile);
1567 err = newfd;
1568
1569 out_put:
1570 fput_light(sock->file, fput_needed);
1571 out:
1572 return err;
1573 out_fd:
1574 fput(newfile);
1575 put_unused_fd(newfd);
1576 goto out_put;
1577 }
1578
1579 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1580 int __user *, upeer_addrlen)
1581 {
1582 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1583 }
1584
1585 /*
1586 * Attempt to connect to a socket with the server address. The address
1587 * is in user space so we verify it is OK and move it to kernel space.
1588 *
1589 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1590 * break bindings
1591 *
1592 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1593 * other SEQPACKET protocols that take time to connect() as it doesn't
1594 * include the -EINPROGRESS status for such sockets.
1595 */
1596
1597 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1598 int, addrlen)
1599 {
1600 struct socket *sock;
1601 struct sockaddr_storage address;
1602 int err, fput_needed;
1603
1604 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1605 if (!sock)
1606 goto out;
1607 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1608 if (err < 0)
1609 goto out_put;
1610
1611 err =
1612 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1613 if (err)
1614 goto out_put;
1615
1616 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1617 sock->file->f_flags);
1618 out_put:
1619 fput_light(sock->file, fput_needed);
1620 out:
1621 return err;
1622 }
1623
1624 /*
1625 * Get the local address ('name') of a socket object. Move the obtained
1626 * name to user space.
1627 */
1628
1629 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1630 int __user *, usockaddr_len)
1631 {
1632 struct socket *sock;
1633 struct sockaddr_storage address;
1634 int len, err, fput_needed;
1635
1636 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1637 if (!sock)
1638 goto out;
1639
1640 err = security_socket_getsockname(sock);
1641 if (err)
1642 goto out_put;
1643
1644 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1645 if (err)
1646 goto out_put;
1647 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1648
1649 out_put:
1650 fput_light(sock->file, fput_needed);
1651 out:
1652 return err;
1653 }
1654
1655 /*
1656 * Get the remote address ('name') of a socket object. Move the obtained
1657 * name to user space.
1658 */
1659
1660 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1661 int __user *, usockaddr_len)
1662 {
1663 struct socket *sock;
1664 struct sockaddr_storage address;
1665 int len, err, fput_needed;
1666
1667 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1668 if (sock != NULL) {
1669 err = security_socket_getpeername(sock);
1670 if (err) {
1671 fput_light(sock->file, fput_needed);
1672 return err;
1673 }
1674
1675 err =
1676 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1677 1);
1678 if (!err)
1679 err = move_addr_to_user(&address, len, usockaddr,
1680 usockaddr_len);
1681 fput_light(sock->file, fput_needed);
1682 }
1683 return err;
1684 }
1685
1686 /*
1687 * Send a datagram to a given address. We move the address into kernel
1688 * space and check the user space data area is readable before invoking
1689 * the protocol.
1690 */
1691
1692 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1693 unsigned int, flags, struct sockaddr __user *, addr,
1694 int, addr_len)
1695 {
1696 struct socket *sock;
1697 struct sockaddr_storage address;
1698 int err;
1699 struct msghdr msg;
1700 struct iovec iov;
1701 int fput_needed;
1702
1703 if (len > INT_MAX)
1704 len = INT_MAX;
1705 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 if (!sock)
1707 goto out;
1708
1709 iov.iov_base = buff;
1710 iov.iov_len = len;
1711 msg.msg_name = NULL;
1712 msg.msg_iov = &iov;
1713 msg.msg_iovlen = 1;
1714 msg.msg_control = NULL;
1715 msg.msg_controllen = 0;
1716 msg.msg_namelen = 0;
1717 if (addr) {
1718 err = move_addr_to_kernel(addr, addr_len, &address);
1719 if (err < 0)
1720 goto out_put;
1721 msg.msg_name = (struct sockaddr *)&address;
1722 msg.msg_namelen = addr_len;
1723 }
1724 if (sock->file->f_flags & O_NONBLOCK)
1725 flags |= MSG_DONTWAIT;
1726 msg.msg_flags = flags;
1727 err = sock_sendmsg(sock, &msg, len);
1728
1729 out_put:
1730 fput_light(sock->file, fput_needed);
1731 out:
1732 return err;
1733 }
1734
1735 /*
1736 * Send a datagram down a socket.
1737 */
1738
1739 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1740 unsigned int, flags)
1741 {
1742 return sys_sendto(fd, buff, len, flags, NULL, 0);
1743 }
1744
1745 /*
1746 * Receive a frame from the socket and optionally record the address of the
1747 * sender. We verify the buffers are writable and if needed move the
1748 * sender address from kernel to user space.
1749 */
1750
1751 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1752 unsigned int, flags, struct sockaddr __user *, addr,
1753 int __user *, addr_len)
1754 {
1755 struct socket *sock;
1756 struct iovec iov;
1757 struct msghdr msg;
1758 struct sockaddr_storage address;
1759 int err, err2;
1760 int fput_needed;
1761
1762 if (size > INT_MAX)
1763 size = INT_MAX;
1764 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 if (!sock)
1766 goto out;
1767
1768 msg.msg_control = NULL;
1769 msg.msg_controllen = 0;
1770 msg.msg_iovlen = 1;
1771 msg.msg_iov = &iov;
1772 iov.iov_len = size;
1773 iov.iov_base = ubuf;
1774 msg.msg_name = (struct sockaddr *)&address;
1775 msg.msg_namelen = sizeof(address);
1776 if (sock->file->f_flags & O_NONBLOCK)
1777 flags |= MSG_DONTWAIT;
1778 err = sock_recvmsg(sock, &msg, size, flags);
1779
1780 if (err >= 0 && addr != NULL) {
1781 err2 = move_addr_to_user(&address,
1782 msg.msg_namelen, addr, addr_len);
1783 if (err2 < 0)
1784 err = err2;
1785 }
1786
1787 fput_light(sock->file, fput_needed);
1788 out:
1789 return err;
1790 }
1791
1792 /*
1793 * Receive a datagram from a socket.
1794 */
1795
1796 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1797 unsigned int flags)
1798 {
1799 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1800 }
1801
1802 /*
1803 * Set a socket option. Because we don't know the option lengths we have
1804 * to pass the user mode parameter for the protocols to sort out.
1805 */
1806
1807 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1808 char __user *, optval, int, optlen)
1809 {
1810 int err, fput_needed;
1811 struct socket *sock;
1812
1813 if (optlen < 0)
1814 return -EINVAL;
1815
1816 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 if (sock != NULL) {
1818 err = security_socket_setsockopt(sock, level, optname);
1819 if (err)
1820 goto out_put;
1821
1822 if (level == SOL_SOCKET)
1823 err =
1824 sock_setsockopt(sock, level, optname, optval,
1825 optlen);
1826 else
1827 err =
1828 sock->ops->setsockopt(sock, level, optname, optval,
1829 optlen);
1830 out_put:
1831 fput_light(sock->file, fput_needed);
1832 }
1833 return err;
1834 }
1835
1836 /*
1837 * Get a socket option. Because we don't know the option lengths we have
1838 * to pass a user mode parameter for the protocols to sort out.
1839 */
1840
1841 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1842 char __user *, optval, int __user *, optlen)
1843 {
1844 int err, fput_needed;
1845 struct socket *sock;
1846
1847 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 if (sock != NULL) {
1849 err = security_socket_getsockopt(sock, level, optname);
1850 if (err)
1851 goto out_put;
1852
1853 if (level == SOL_SOCKET)
1854 err =
1855 sock_getsockopt(sock, level, optname, optval,
1856 optlen);
1857 else
1858 err =
1859 sock->ops->getsockopt(sock, level, optname, optval,
1860 optlen);
1861 out_put:
1862 fput_light(sock->file, fput_needed);
1863 }
1864 return err;
1865 }
1866
1867 /*
1868 * Shutdown a socket.
1869 */
1870
1871 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1872 {
1873 int err, fput_needed;
1874 struct socket *sock;
1875
1876 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1877 if (sock != NULL) {
1878 err = security_socket_shutdown(sock, how);
1879 if (!err)
1880 err = sock->ops->shutdown(sock, how);
1881 fput_light(sock->file, fput_needed);
1882 }
1883 return err;
1884 }
1885
1886 /* A couple of helpful macros for getting the address of the 32/64 bit
1887 * fields which are the same type (int / unsigned) on our platforms.
1888 */
1889 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1890 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1891 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1892
1893 struct used_address {
1894 struct sockaddr_storage name;
1895 unsigned int name_len;
1896 };
1897
1898 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1899 struct msghdr *msg_sys, unsigned int flags,
1900 struct used_address *used_address)
1901 {
1902 struct compat_msghdr __user *msg_compat =
1903 (struct compat_msghdr __user *)msg;
1904 struct sockaddr_storage address;
1905 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1906 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1907 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1908 /* 20 is size of ipv6_pktinfo */
1909 unsigned char *ctl_buf = ctl;
1910 int err, ctl_len, total_len;
1911
1912 err = -EFAULT;
1913 if (MSG_CMSG_COMPAT & flags) {
1914 if (get_compat_msghdr(msg_sys, msg_compat))
1915 return -EFAULT;
1916 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1917 return -EFAULT;
1918
1919 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1920 err = -EMSGSIZE;
1921 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1922 goto out;
1923 err = -ENOMEM;
1924 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
1925 GFP_KERNEL);
1926 if (!iov)
1927 goto out;
1928 }
1929
1930 /* This will also move the address data into kernel space */
1931 if (MSG_CMSG_COMPAT & flags) {
1932 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
1933 } else
1934 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
1935 if (err < 0)
1936 goto out_freeiov;
1937 total_len = err;
1938
1939 err = -ENOBUFS;
1940
1941 if (msg_sys->msg_controllen > INT_MAX)
1942 goto out_freeiov;
1943 ctl_len = msg_sys->msg_controllen;
1944 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1945 err =
1946 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1947 sizeof(ctl));
1948 if (err)
1949 goto out_freeiov;
1950 ctl_buf = msg_sys->msg_control;
1951 ctl_len = msg_sys->msg_controllen;
1952 } else if (ctl_len) {
1953 if (ctl_len > sizeof(ctl)) {
1954 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1955 if (ctl_buf == NULL)
1956 goto out_freeiov;
1957 }
1958 err = -EFAULT;
1959 /*
1960 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1961 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1962 * checking falls down on this.
1963 */
1964 if (copy_from_user(ctl_buf,
1965 (void __user __force *)msg_sys->msg_control,
1966 ctl_len))
1967 goto out_freectl;
1968 msg_sys->msg_control = ctl_buf;
1969 }
1970 msg_sys->msg_flags = flags;
1971
1972 if (sock->file->f_flags & O_NONBLOCK)
1973 msg_sys->msg_flags |= MSG_DONTWAIT;
1974 /*
1975 * If this is sendmmsg() and current destination address is same as
1976 * previously succeeded address, omit asking LSM's decision.
1977 * used_address->name_len is initialized to UINT_MAX so that the first
1978 * destination address never matches.
1979 */
1980 if (used_address && msg_sys->msg_name &&
1981 used_address->name_len == msg_sys->msg_namelen &&
1982 !memcmp(&used_address->name, msg_sys->msg_name,
1983 used_address->name_len)) {
1984 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1985 goto out_freectl;
1986 }
1987 err = sock_sendmsg(sock, msg_sys, total_len);
1988 /*
1989 * If this is sendmmsg() and sending to current destination address was
1990 * successful, remember it.
1991 */
1992 if (used_address && err >= 0) {
1993 used_address->name_len = msg_sys->msg_namelen;
1994 if (msg_sys->msg_name)
1995 memcpy(&used_address->name, msg_sys->msg_name,
1996 used_address->name_len);
1997 }
1998
1999 out_freectl:
2000 if (ctl_buf != ctl)
2001 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2002 out_freeiov:
2003 if (iov != iovstack)
2004 kfree(iov);
2005 out:
2006 return err;
2007 }
2008
2009 /*
2010 * BSD sendmsg interface
2011 */
2012
2013 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2014 {
2015 int fput_needed, err;
2016 struct msghdr msg_sys;
2017 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2018
2019 if (!sock)
2020 goto out;
2021
2022 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2023
2024 fput_light(sock->file, fput_needed);
2025 out:
2026 return err;
2027 }
2028
2029 /*
2030 * Linux sendmmsg interface
2031 */
2032
2033 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2034 unsigned int flags)
2035 {
2036 int fput_needed, err, datagrams;
2037 struct socket *sock;
2038 struct mmsghdr __user *entry;
2039 struct compat_mmsghdr __user *compat_entry;
2040 struct msghdr msg_sys;
2041 struct used_address used_address;
2042
2043 if (vlen > UIO_MAXIOV)
2044 vlen = UIO_MAXIOV;
2045
2046 datagrams = 0;
2047
2048 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049 if (!sock)
2050 return err;
2051
2052 used_address.name_len = UINT_MAX;
2053 entry = mmsg;
2054 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2055 err = 0;
2056
2057 while (datagrams < vlen) {
2058 if (MSG_CMSG_COMPAT & flags) {
2059 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2060 &msg_sys, flags, &used_address);
2061 if (err < 0)
2062 break;
2063 err = __put_user(err, &compat_entry->msg_len);
2064 ++compat_entry;
2065 } else {
2066 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2067 &msg_sys, flags, &used_address);
2068 if (err < 0)
2069 break;
2070 err = put_user(err, &entry->msg_len);
2071 ++entry;
2072 }
2073
2074 if (err)
2075 break;
2076 ++datagrams;
2077 }
2078
2079 fput_light(sock->file, fput_needed);
2080
2081 /* We only return an error if no datagrams were able to be sent */
2082 if (datagrams != 0)
2083 return datagrams;
2084
2085 return err;
2086 }
2087
2088 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2089 unsigned int, vlen, unsigned int, flags)
2090 {
2091 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2092 }
2093
2094 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2095 struct msghdr *msg_sys, unsigned int flags, int nosec)
2096 {
2097 struct compat_msghdr __user *msg_compat =
2098 (struct compat_msghdr __user *)msg;
2099 struct iovec iovstack[UIO_FASTIOV];
2100 struct iovec *iov = iovstack;
2101 unsigned long cmsg_ptr;
2102 int err, total_len, len;
2103
2104 /* kernel mode address */
2105 struct sockaddr_storage addr;
2106
2107 /* user mode address pointers */
2108 struct sockaddr __user *uaddr;
2109 int __user *uaddr_len;
2110
2111 if (MSG_CMSG_COMPAT & flags) {
2112 if (get_compat_msghdr(msg_sys, msg_compat))
2113 return -EFAULT;
2114 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2115 return -EFAULT;
2116
2117 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2118 err = -EMSGSIZE;
2119 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2120 goto out;
2121 err = -ENOMEM;
2122 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2123 GFP_KERNEL);
2124 if (!iov)
2125 goto out;
2126 }
2127
2128 /*
2129 * Save the user-mode address (verify_iovec will change the
2130 * kernel msghdr to use the kernel address space)
2131 */
2132
2133 uaddr = (__force void __user *)msg_sys->msg_name;
2134 uaddr_len = COMPAT_NAMELEN(msg);
2135 if (MSG_CMSG_COMPAT & flags) {
2136 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2137 } else
2138 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2139 if (err < 0)
2140 goto out_freeiov;
2141 total_len = err;
2142
2143 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2144 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2145
2146 if (sock->file->f_flags & O_NONBLOCK)
2147 flags |= MSG_DONTWAIT;
2148 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2149 total_len, flags);
2150 if (err < 0)
2151 goto out_freeiov;
2152 len = err;
2153
2154 if (uaddr != NULL) {
2155 err = move_addr_to_user(&addr,
2156 msg_sys->msg_namelen, uaddr,
2157 uaddr_len);
2158 if (err < 0)
2159 goto out_freeiov;
2160 }
2161 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2162 COMPAT_FLAGS(msg));
2163 if (err)
2164 goto out_freeiov;
2165 if (MSG_CMSG_COMPAT & flags)
2166 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2167 &msg_compat->msg_controllen);
2168 else
2169 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2170 &msg->msg_controllen);
2171 if (err)
2172 goto out_freeiov;
2173 err = len;
2174
2175 out_freeiov:
2176 if (iov != iovstack)
2177 kfree(iov);
2178 out:
2179 return err;
2180 }
2181
2182 /*
2183 * BSD recvmsg interface
2184 */
2185
2186 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2187 unsigned int, flags)
2188 {
2189 int fput_needed, err;
2190 struct msghdr msg_sys;
2191 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2192
2193 if (!sock)
2194 goto out;
2195
2196 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2197
2198 fput_light(sock->file, fput_needed);
2199 out:
2200 return err;
2201 }
2202
2203 /*
2204 * Linux recvmmsg interface
2205 */
2206
2207 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2208 unsigned int flags, struct timespec *timeout)
2209 {
2210 int fput_needed, err, datagrams;
2211 struct socket *sock;
2212 struct mmsghdr __user *entry;
2213 struct compat_mmsghdr __user *compat_entry;
2214 struct msghdr msg_sys;
2215 struct timespec end_time;
2216
2217 if (timeout &&
2218 poll_select_set_timeout(&end_time, timeout->tv_sec,
2219 timeout->tv_nsec))
2220 return -EINVAL;
2221
2222 datagrams = 0;
2223
2224 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2225 if (!sock)
2226 return err;
2227
2228 err = sock_error(sock->sk);
2229 if (err)
2230 goto out_put;
2231
2232 entry = mmsg;
2233 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2234
2235 while (datagrams < vlen) {
2236 /*
2237 * No need to ask LSM for more than the first datagram.
2238 */
2239 if (MSG_CMSG_COMPAT & flags) {
2240 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2241 &msg_sys, flags & ~MSG_WAITFORONE,
2242 datagrams);
2243 if (err < 0)
2244 break;
2245 err = __put_user(err, &compat_entry->msg_len);
2246 ++compat_entry;
2247 } else {
2248 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2249 &msg_sys, flags & ~MSG_WAITFORONE,
2250 datagrams);
2251 if (err < 0)
2252 break;
2253 err = put_user(err, &entry->msg_len);
2254 ++entry;
2255 }
2256
2257 if (err)
2258 break;
2259 ++datagrams;
2260
2261 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2262 if (flags & MSG_WAITFORONE)
2263 flags |= MSG_DONTWAIT;
2264
2265 if (timeout) {
2266 ktime_get_ts(timeout);
2267 *timeout = timespec_sub(end_time, *timeout);
2268 if (timeout->tv_sec < 0) {
2269 timeout->tv_sec = timeout->tv_nsec = 0;
2270 break;
2271 }
2272
2273 /* Timeout, return less than vlen datagrams */
2274 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2275 break;
2276 }
2277
2278 /* Out of band data, return right away */
2279 if (msg_sys.msg_flags & MSG_OOB)
2280 break;
2281 }
2282
2283 out_put:
2284 fput_light(sock->file, fput_needed);
2285
2286 if (err == 0)
2287 return datagrams;
2288
2289 if (datagrams != 0) {
2290 /*
2291 * We may return less entries than requested (vlen) if the
2292 * sock is non block and there aren't enough datagrams...
2293 */
2294 if (err != -EAGAIN) {
2295 /*
2296 * ... or if recvmsg returns an error after we
2297 * received some datagrams, where we record the
2298 * error to return on the next call or if the
2299 * app asks about it using getsockopt(SO_ERROR).
2300 */
2301 sock->sk->sk_err = -err;
2302 }
2303
2304 return datagrams;
2305 }
2306
2307 return err;
2308 }
2309
2310 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2311 unsigned int, vlen, unsigned int, flags,
2312 struct timespec __user *, timeout)
2313 {
2314 int datagrams;
2315 struct timespec timeout_sys;
2316
2317 if (!timeout)
2318 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2319
2320 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2321 return -EFAULT;
2322
2323 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2324
2325 if (datagrams > 0 &&
2326 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2327 datagrams = -EFAULT;
2328
2329 return datagrams;
2330 }
2331
2332 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2333 /* Argument list sizes for sys_socketcall */
2334 #define AL(x) ((x) * sizeof(unsigned long))
2335 static const unsigned char nargs[21] = {
2336 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2337 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2338 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2339 AL(4), AL(5), AL(4)
2340 };
2341
2342 #undef AL
2343
2344 /*
2345 * System call vectors.
2346 *
2347 * Argument checking cleaned up. Saved 20% in size.
2348 * This function doesn't need to set the kernel lock because
2349 * it is set by the callees.
2350 */
2351
2352 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2353 {
2354 unsigned long a[6];
2355 unsigned long a0, a1;
2356 int err;
2357 unsigned int len;
2358
2359 if (call < 1 || call > SYS_SENDMMSG)
2360 return -EINVAL;
2361
2362 len = nargs[call];
2363 if (len > sizeof(a))
2364 return -EINVAL;
2365
2366 /* copy_from_user should be SMP safe. */
2367 if (copy_from_user(a, args, len))
2368 return -EFAULT;
2369
2370 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2371
2372 a0 = a[0];
2373 a1 = a[1];
2374
2375 switch (call) {
2376 case SYS_SOCKET:
2377 err = sys_socket(a0, a1, a[2]);
2378 break;
2379 case SYS_BIND:
2380 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2381 break;
2382 case SYS_CONNECT:
2383 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2384 break;
2385 case SYS_LISTEN:
2386 err = sys_listen(a0, a1);
2387 break;
2388 case SYS_ACCEPT:
2389 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2390 (int __user *)a[2], 0);
2391 break;
2392 case SYS_GETSOCKNAME:
2393 err =
2394 sys_getsockname(a0, (struct sockaddr __user *)a1,
2395 (int __user *)a[2]);
2396 break;
2397 case SYS_GETPEERNAME:
2398 err =
2399 sys_getpeername(a0, (struct sockaddr __user *)a1,
2400 (int __user *)a[2]);
2401 break;
2402 case SYS_SOCKETPAIR:
2403 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2404 break;
2405 case SYS_SEND:
2406 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2407 break;
2408 case SYS_SENDTO:
2409 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2410 (struct sockaddr __user *)a[4], a[5]);
2411 break;
2412 case SYS_RECV:
2413 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2414 break;
2415 case SYS_RECVFROM:
2416 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2417 (struct sockaddr __user *)a[4],
2418 (int __user *)a[5]);
2419 break;
2420 case SYS_SHUTDOWN:
2421 err = sys_shutdown(a0, a1);
2422 break;
2423 case SYS_SETSOCKOPT:
2424 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2425 break;
2426 case SYS_GETSOCKOPT:
2427 err =
2428 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2429 (int __user *)a[4]);
2430 break;
2431 case SYS_SENDMSG:
2432 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2433 break;
2434 case SYS_SENDMMSG:
2435 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2436 break;
2437 case SYS_RECVMSG:
2438 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2439 break;
2440 case SYS_RECVMMSG:
2441 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2442 (struct timespec __user *)a[4]);
2443 break;
2444 case SYS_ACCEPT4:
2445 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2446 (int __user *)a[2], a[3]);
2447 break;
2448 default:
2449 err = -EINVAL;
2450 break;
2451 }
2452 return err;
2453 }
2454
2455 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2456
2457 /**
2458 * sock_register - add a socket protocol handler
2459 * @ops: description of protocol
2460 *
2461 * This function is called by a protocol handler that wants to
2462 * advertise its address family, and have it linked into the
2463 * socket interface. The value ops->family coresponds to the
2464 * socket system call protocol family.
2465 */
2466 int sock_register(const struct net_proto_family *ops)
2467 {
2468 int err;
2469
2470 if (ops->family >= NPROTO) {
2471 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2472 NPROTO);
2473 return -ENOBUFS;
2474 }
2475
2476 spin_lock(&net_family_lock);
2477 if (rcu_dereference_protected(net_families[ops->family],
2478 lockdep_is_held(&net_family_lock)))
2479 err = -EEXIST;
2480 else {
2481 rcu_assign_pointer(net_families[ops->family], ops);
2482 err = 0;
2483 }
2484 spin_unlock(&net_family_lock);
2485
2486 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2487 return err;
2488 }
2489 EXPORT_SYMBOL(sock_register);
2490
2491 /**
2492 * sock_unregister - remove a protocol handler
2493 * @family: protocol family to remove
2494 *
2495 * This function is called by a protocol handler that wants to
2496 * remove its address family, and have it unlinked from the
2497 * new socket creation.
2498 *
2499 * If protocol handler is a module, then it can use module reference
2500 * counts to protect against new references. If protocol handler is not
2501 * a module then it needs to provide its own protection in
2502 * the ops->create routine.
2503 */
2504 void sock_unregister(int family)
2505 {
2506 BUG_ON(family < 0 || family >= NPROTO);
2507
2508 spin_lock(&net_family_lock);
2509 RCU_INIT_POINTER(net_families[family], NULL);
2510 spin_unlock(&net_family_lock);
2511
2512 synchronize_rcu();
2513
2514 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2515 }
2516 EXPORT_SYMBOL(sock_unregister);
2517
2518 static int __init sock_init(void)
2519 {
2520 int err;
2521 /*
2522 * Initialize the network sysctl infrastructure.
2523 */
2524 err = net_sysctl_init();
2525 if (err)
2526 goto out;
2527
2528 /*
2529 * Initialize sock SLAB cache.
2530 */
2531
2532 sk_init();
2533
2534 /*
2535 * Initialize skbuff SLAB cache
2536 */
2537 skb_init();
2538
2539 /*
2540 * Initialize the protocols module.
2541 */
2542
2543 init_inodecache();
2544
2545 err = register_filesystem(&sock_fs_type);
2546 if (err)
2547 goto out_fs;
2548 sock_mnt = kern_mount(&sock_fs_type);
2549 if (IS_ERR(sock_mnt)) {
2550 err = PTR_ERR(sock_mnt);
2551 goto out_mount;
2552 }
2553
2554 /* The real protocol initialization is performed in later initcalls.
2555 */
2556
2557 #ifdef CONFIG_NETFILTER
2558 netfilter_init();
2559 #endif
2560
2561 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2562 skb_timestamping_init();
2563 #endif
2564
2565 out:
2566 return err;
2567
2568 out_mount:
2569 unregister_filesystem(&sock_fs_type);
2570 out_fs:
2571 goto out;
2572 }
2573
2574 core_initcall(sock_init); /* early initcall */
2575
2576 #ifdef CONFIG_PROC_FS
2577 void socket_seq_show(struct seq_file *seq)
2578 {
2579 int cpu;
2580 int counter = 0;
2581
2582 for_each_possible_cpu(cpu)
2583 counter += per_cpu(sockets_in_use, cpu);
2584
2585 /* It can be negative, by the way. 8) */
2586 if (counter < 0)
2587 counter = 0;
2588
2589 seq_printf(seq, "sockets: used %d\n", counter);
2590 }
2591 #endif /* CONFIG_PROC_FS */
2592
2593 #ifdef CONFIG_COMPAT
2594 static int do_siocgstamp(struct net *net, struct socket *sock,
2595 unsigned int cmd, void __user *up)
2596 {
2597 mm_segment_t old_fs = get_fs();
2598 struct timeval ktv;
2599 int err;
2600
2601 set_fs(KERNEL_DS);
2602 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2603 set_fs(old_fs);
2604 if (!err)
2605 err = compat_put_timeval(up, &ktv);
2606
2607 return err;
2608 }
2609
2610 static int do_siocgstampns(struct net *net, struct socket *sock,
2611 unsigned int cmd, void __user *up)
2612 {
2613 mm_segment_t old_fs = get_fs();
2614 struct timespec kts;
2615 int err;
2616
2617 set_fs(KERNEL_DS);
2618 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2619 set_fs(old_fs);
2620 if (!err)
2621 err = compat_put_timespec(up, &kts);
2622
2623 return err;
2624 }
2625
2626 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2627 {
2628 struct ifreq __user *uifr;
2629 int err;
2630
2631 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2632 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2633 return -EFAULT;
2634
2635 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2636 if (err)
2637 return err;
2638
2639 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2640 return -EFAULT;
2641
2642 return 0;
2643 }
2644
2645 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2646 {
2647 struct compat_ifconf ifc32;
2648 struct ifconf ifc;
2649 struct ifconf __user *uifc;
2650 struct compat_ifreq __user *ifr32;
2651 struct ifreq __user *ifr;
2652 unsigned int i, j;
2653 int err;
2654
2655 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2656 return -EFAULT;
2657
2658 if (ifc32.ifcbuf == 0) {
2659 ifc32.ifc_len = 0;
2660 ifc.ifc_len = 0;
2661 ifc.ifc_req = NULL;
2662 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2663 } else {
2664 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2665 sizeof(struct ifreq);
2666 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2667 ifc.ifc_len = len;
2668 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2669 ifr32 = compat_ptr(ifc32.ifcbuf);
2670 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2671 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2672 return -EFAULT;
2673 ifr++;
2674 ifr32++;
2675 }
2676 }
2677 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2678 return -EFAULT;
2679
2680 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2681 if (err)
2682 return err;
2683
2684 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2685 return -EFAULT;
2686
2687 ifr = ifc.ifc_req;
2688 ifr32 = compat_ptr(ifc32.ifcbuf);
2689 for (i = 0, j = 0;
2690 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2691 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2692 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2693 return -EFAULT;
2694 ifr32++;
2695 ifr++;
2696 }
2697
2698 if (ifc32.ifcbuf == 0) {
2699 /* Translate from 64-bit structure multiple to
2700 * a 32-bit one.
2701 */
2702 i = ifc.ifc_len;
2703 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2704 ifc32.ifc_len = i;
2705 } else {
2706 ifc32.ifc_len = i;
2707 }
2708 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2709 return -EFAULT;
2710
2711 return 0;
2712 }
2713
2714 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2715 {
2716 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2717 bool convert_in = false, convert_out = false;
2718 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2719 struct ethtool_rxnfc __user *rxnfc;
2720 struct ifreq __user *ifr;
2721 u32 rule_cnt = 0, actual_rule_cnt;
2722 u32 ethcmd;
2723 u32 data;
2724 int ret;
2725
2726 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2727 return -EFAULT;
2728
2729 compat_rxnfc = compat_ptr(data);
2730
2731 if (get_user(ethcmd, &compat_rxnfc->cmd))
2732 return -EFAULT;
2733
2734 /* Most ethtool structures are defined without padding.
2735 * Unfortunately struct ethtool_rxnfc is an exception.
2736 */
2737 switch (ethcmd) {
2738 default:
2739 break;
2740 case ETHTOOL_GRXCLSRLALL:
2741 /* Buffer size is variable */
2742 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2743 return -EFAULT;
2744 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2745 return -ENOMEM;
2746 buf_size += rule_cnt * sizeof(u32);
2747 /* fall through */
2748 case ETHTOOL_GRXRINGS:
2749 case ETHTOOL_GRXCLSRLCNT:
2750 case ETHTOOL_GRXCLSRULE:
2751 case ETHTOOL_SRXCLSRLINS:
2752 convert_out = true;
2753 /* fall through */
2754 case ETHTOOL_SRXCLSRLDEL:
2755 buf_size += sizeof(struct ethtool_rxnfc);
2756 convert_in = true;
2757 break;
2758 }
2759
2760 ifr = compat_alloc_user_space(buf_size);
2761 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2762
2763 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2764 return -EFAULT;
2765
2766 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2767 &ifr->ifr_ifru.ifru_data))
2768 return -EFAULT;
2769
2770 if (convert_in) {
2771 /* We expect there to be holes between fs.m_ext and
2772 * fs.ring_cookie and at the end of fs, but nowhere else.
2773 */
2774 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2775 sizeof(compat_rxnfc->fs.m_ext) !=
2776 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2777 sizeof(rxnfc->fs.m_ext));
2778 BUILD_BUG_ON(
2779 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2780 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2781 offsetof(struct ethtool_rxnfc, fs.location) -
2782 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2783
2784 if (copy_in_user(rxnfc, compat_rxnfc,
2785 (void *)(&rxnfc->fs.m_ext + 1) -
2786 (void *)rxnfc) ||
2787 copy_in_user(&rxnfc->fs.ring_cookie,
2788 &compat_rxnfc->fs.ring_cookie,
2789 (void *)(&rxnfc->fs.location + 1) -
2790 (void *)&rxnfc->fs.ring_cookie) ||
2791 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2792 sizeof(rxnfc->rule_cnt)))
2793 return -EFAULT;
2794 }
2795
2796 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2797 if (ret)
2798 return ret;
2799
2800 if (convert_out) {
2801 if (copy_in_user(compat_rxnfc, rxnfc,
2802 (const void *)(&rxnfc->fs.m_ext + 1) -
2803 (const void *)rxnfc) ||
2804 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2805 &rxnfc->fs.ring_cookie,
2806 (const void *)(&rxnfc->fs.location + 1) -
2807 (const void *)&rxnfc->fs.ring_cookie) ||
2808 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2809 sizeof(rxnfc->rule_cnt)))
2810 return -EFAULT;
2811
2812 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2813 /* As an optimisation, we only copy the actual
2814 * number of rules that the underlying
2815 * function returned. Since Mallory might
2816 * change the rule count in user memory, we
2817 * check that it is less than the rule count
2818 * originally given (as the user buffer size),
2819 * which has been range-checked.
2820 */
2821 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2822 return -EFAULT;
2823 if (actual_rule_cnt < rule_cnt)
2824 rule_cnt = actual_rule_cnt;
2825 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2826 &rxnfc->rule_locs[0],
2827 rule_cnt * sizeof(u32)))
2828 return -EFAULT;
2829 }
2830 }
2831
2832 return 0;
2833 }
2834
2835 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2836 {
2837 void __user *uptr;
2838 compat_uptr_t uptr32;
2839 struct ifreq __user *uifr;
2840
2841 uifr = compat_alloc_user_space(sizeof(*uifr));
2842 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2843 return -EFAULT;
2844
2845 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2846 return -EFAULT;
2847
2848 uptr = compat_ptr(uptr32);
2849
2850 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2851 return -EFAULT;
2852
2853 return dev_ioctl(net, SIOCWANDEV, uifr);
2854 }
2855
2856 static int bond_ioctl(struct net *net, unsigned int cmd,
2857 struct compat_ifreq __user *ifr32)
2858 {
2859 struct ifreq kifr;
2860 struct ifreq __user *uifr;
2861 mm_segment_t old_fs;
2862 int err;
2863 u32 data;
2864 void __user *datap;
2865
2866 switch (cmd) {
2867 case SIOCBONDENSLAVE:
2868 case SIOCBONDRELEASE:
2869 case SIOCBONDSETHWADDR:
2870 case SIOCBONDCHANGEACTIVE:
2871 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2872 return -EFAULT;
2873
2874 old_fs = get_fs();
2875 set_fs(KERNEL_DS);
2876 err = dev_ioctl(net, cmd,
2877 (struct ifreq __user __force *) &kifr);
2878 set_fs(old_fs);
2879
2880 return err;
2881 case SIOCBONDSLAVEINFOQUERY:
2882 case SIOCBONDINFOQUERY:
2883 uifr = compat_alloc_user_space(sizeof(*uifr));
2884 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2885 return -EFAULT;
2886
2887 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2888 return -EFAULT;
2889
2890 datap = compat_ptr(data);
2891 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2892 return -EFAULT;
2893
2894 return dev_ioctl(net, cmd, uifr);
2895 default:
2896 return -ENOIOCTLCMD;
2897 }
2898 }
2899
2900 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2901 struct compat_ifreq __user *u_ifreq32)
2902 {
2903 struct ifreq __user *u_ifreq64;
2904 char tmp_buf[IFNAMSIZ];
2905 void __user *data64;
2906 u32 data32;
2907
2908 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2909 IFNAMSIZ))
2910 return -EFAULT;
2911 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2912 return -EFAULT;
2913 data64 = compat_ptr(data32);
2914
2915 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2916
2917 /* Don't check these user accesses, just let that get trapped
2918 * in the ioctl handler instead.
2919 */
2920 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2921 IFNAMSIZ))
2922 return -EFAULT;
2923 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2924 return -EFAULT;
2925
2926 return dev_ioctl(net, cmd, u_ifreq64);
2927 }
2928
2929 static int dev_ifsioc(struct net *net, struct socket *sock,
2930 unsigned int cmd, struct compat_ifreq __user *uifr32)
2931 {
2932 struct ifreq __user *uifr;
2933 int err;
2934
2935 uifr = compat_alloc_user_space(sizeof(*uifr));
2936 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2937 return -EFAULT;
2938
2939 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2940
2941 if (!err) {
2942 switch (cmd) {
2943 case SIOCGIFFLAGS:
2944 case SIOCGIFMETRIC:
2945 case SIOCGIFMTU:
2946 case SIOCGIFMEM:
2947 case SIOCGIFHWADDR:
2948 case SIOCGIFINDEX:
2949 case SIOCGIFADDR:
2950 case SIOCGIFBRDADDR:
2951 case SIOCGIFDSTADDR:
2952 case SIOCGIFNETMASK:
2953 case SIOCGIFPFLAGS:
2954 case SIOCGIFTXQLEN:
2955 case SIOCGMIIPHY:
2956 case SIOCGMIIREG:
2957 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2958 err = -EFAULT;
2959 break;
2960 }
2961 }
2962 return err;
2963 }
2964
2965 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2966 struct compat_ifreq __user *uifr32)
2967 {
2968 struct ifreq ifr;
2969 struct compat_ifmap __user *uifmap32;
2970 mm_segment_t old_fs;
2971 int err;
2972
2973 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2974 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2975 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2976 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2977 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2978 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2979 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2980 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2981 if (err)
2982 return -EFAULT;
2983
2984 old_fs = get_fs();
2985 set_fs(KERNEL_DS);
2986 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2987 set_fs(old_fs);
2988
2989 if (cmd == SIOCGIFMAP && !err) {
2990 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2991 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2992 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2993 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2994 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2995 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2996 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2997 if (err)
2998 err = -EFAULT;
2999 }
3000 return err;
3001 }
3002
3003 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3004 {
3005 void __user *uptr;
3006 compat_uptr_t uptr32;
3007 struct ifreq __user *uifr;
3008
3009 uifr = compat_alloc_user_space(sizeof(*uifr));
3010 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3011 return -EFAULT;
3012
3013 if (get_user(uptr32, &uifr32->ifr_data))
3014 return -EFAULT;
3015
3016 uptr = compat_ptr(uptr32);
3017
3018 if (put_user(uptr, &uifr->ifr_data))
3019 return -EFAULT;
3020
3021 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3022 }
3023
3024 struct rtentry32 {
3025 u32 rt_pad1;
3026 struct sockaddr rt_dst; /* target address */
3027 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3028 struct sockaddr rt_genmask; /* target network mask (IP) */
3029 unsigned short rt_flags;
3030 short rt_pad2;
3031 u32 rt_pad3;
3032 unsigned char rt_tos;
3033 unsigned char rt_class;
3034 short rt_pad4;
3035 short rt_metric; /* +1 for binary compatibility! */
3036 /* char * */ u32 rt_dev; /* forcing the device at add */
3037 u32 rt_mtu; /* per route MTU/Window */
3038 u32 rt_window; /* Window clamping */
3039 unsigned short rt_irtt; /* Initial RTT */
3040 };
3041
3042 struct in6_rtmsg32 {
3043 struct in6_addr rtmsg_dst;
3044 struct in6_addr rtmsg_src;
3045 struct in6_addr rtmsg_gateway;
3046 u32 rtmsg_type;
3047 u16 rtmsg_dst_len;
3048 u16 rtmsg_src_len;
3049 u32 rtmsg_metric;
3050 u32 rtmsg_info;
3051 u32 rtmsg_flags;
3052 s32 rtmsg_ifindex;
3053 };
3054
3055 static int routing_ioctl(struct net *net, struct socket *sock,
3056 unsigned int cmd, void __user *argp)
3057 {
3058 int ret;
3059 void *r = NULL;
3060 struct in6_rtmsg r6;
3061 struct rtentry r4;
3062 char devname[16];
3063 u32 rtdev;
3064 mm_segment_t old_fs = get_fs();
3065
3066 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3067 struct in6_rtmsg32 __user *ur6 = argp;
3068 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3069 3 * sizeof(struct in6_addr));
3070 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3071 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3072 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3073 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3074 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3075 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3076 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3077
3078 r = (void *) &r6;
3079 } else { /* ipv4 */
3080 struct rtentry32 __user *ur4 = argp;
3081 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3082 3 * sizeof(struct sockaddr));
3083 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3084 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3085 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3086 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3087 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3088 ret |= __get_user(rtdev, &(ur4->rt_dev));
3089 if (rtdev) {
3090 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3091 r4.rt_dev = (char __user __force *)devname;
3092 devname[15] = 0;
3093 } else
3094 r4.rt_dev = NULL;
3095
3096 r = (void *) &r4;
3097 }
3098
3099 if (ret) {
3100 ret = -EFAULT;
3101 goto out;
3102 }
3103
3104 set_fs(KERNEL_DS);
3105 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3106 set_fs(old_fs);
3107
3108 out:
3109 return ret;
3110 }
3111
3112 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3113 * for some operations; this forces use of the newer bridge-utils that
3114 * use compatible ioctls
3115 */
3116 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3117 {
3118 compat_ulong_t tmp;
3119
3120 if (get_user(tmp, argp))
3121 return -EFAULT;
3122 if (tmp == BRCTL_GET_VERSION)
3123 return BRCTL_VERSION + 1;
3124 return -EINVAL;
3125 }
3126
3127 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3128 unsigned int cmd, unsigned long arg)
3129 {
3130 void __user *argp = compat_ptr(arg);
3131 struct sock *sk = sock->sk;
3132 struct net *net = sock_net(sk);
3133
3134 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3135 return siocdevprivate_ioctl(net, cmd, argp);
3136
3137 switch (cmd) {
3138 case SIOCSIFBR:
3139 case SIOCGIFBR:
3140 return old_bridge_ioctl(argp);
3141 case SIOCGIFNAME:
3142 return dev_ifname32(net, argp);
3143 case SIOCGIFCONF:
3144 return dev_ifconf(net, argp);
3145 case SIOCETHTOOL:
3146 return ethtool_ioctl(net, argp);
3147 case SIOCWANDEV:
3148 return compat_siocwandev(net, argp);
3149 case SIOCGIFMAP:
3150 case SIOCSIFMAP:
3151 return compat_sioc_ifmap(net, cmd, argp);
3152 case SIOCBONDENSLAVE:
3153 case SIOCBONDRELEASE:
3154 case SIOCBONDSETHWADDR:
3155 case SIOCBONDSLAVEINFOQUERY:
3156 case SIOCBONDINFOQUERY:
3157 case SIOCBONDCHANGEACTIVE:
3158 return bond_ioctl(net, cmd, argp);
3159 case SIOCADDRT:
3160 case SIOCDELRT:
3161 return routing_ioctl(net, sock, cmd, argp);
3162 case SIOCGSTAMP:
3163 return do_siocgstamp(net, sock, cmd, argp);
3164 case SIOCGSTAMPNS:
3165 return do_siocgstampns(net, sock, cmd, argp);
3166 case SIOCSHWTSTAMP:
3167 return compat_siocshwtstamp(net, argp);
3168
3169 case FIOSETOWN:
3170 case SIOCSPGRP:
3171 case FIOGETOWN:
3172 case SIOCGPGRP:
3173 case SIOCBRADDBR:
3174 case SIOCBRDELBR:
3175 case SIOCGIFVLAN:
3176 case SIOCSIFVLAN:
3177 case SIOCADDDLCI:
3178 case SIOCDELDLCI:
3179 return sock_ioctl(file, cmd, arg);
3180
3181 case SIOCGIFFLAGS:
3182 case SIOCSIFFLAGS:
3183 case SIOCGIFMETRIC:
3184 case SIOCSIFMETRIC:
3185 case SIOCGIFMTU:
3186 case SIOCSIFMTU:
3187 case SIOCGIFMEM:
3188 case SIOCSIFMEM:
3189 case SIOCGIFHWADDR:
3190 case SIOCSIFHWADDR:
3191 case SIOCADDMULTI:
3192 case SIOCDELMULTI:
3193 case SIOCGIFINDEX:
3194 case SIOCGIFADDR:
3195 case SIOCSIFADDR:
3196 case SIOCSIFHWBROADCAST:
3197 case SIOCDIFADDR:
3198 case SIOCGIFBRDADDR:
3199 case SIOCSIFBRDADDR:
3200 case SIOCGIFDSTADDR:
3201 case SIOCSIFDSTADDR:
3202 case SIOCGIFNETMASK:
3203 case SIOCSIFNETMASK:
3204 case SIOCSIFPFLAGS:
3205 case SIOCGIFPFLAGS:
3206 case SIOCGIFTXQLEN:
3207 case SIOCSIFTXQLEN:
3208 case SIOCBRADDIF:
3209 case SIOCBRDELIF:
3210 case SIOCSIFNAME:
3211 case SIOCGMIIPHY:
3212 case SIOCGMIIREG:
3213 case SIOCSMIIREG:
3214 return dev_ifsioc(net, sock, cmd, argp);
3215
3216 case SIOCSARP:
3217 case SIOCGARP:
3218 case SIOCDARP:
3219 case SIOCATMARK:
3220 return sock_do_ioctl(net, sock, cmd, arg);
3221 }
3222
3223 return -ENOIOCTLCMD;
3224 }
3225
3226 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3227 unsigned long arg)
3228 {
3229 struct socket *sock = file->private_data;
3230 int ret = -ENOIOCTLCMD;
3231 struct sock *sk;
3232 struct net *net;
3233
3234 sk = sock->sk;
3235 net = sock_net(sk);
3236
3237 if (sock->ops->compat_ioctl)
3238 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3239
3240 if (ret == -ENOIOCTLCMD &&
3241 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3242 ret = compat_wext_handle_ioctl(net, cmd, arg);
3243
3244 if (ret == -ENOIOCTLCMD)
3245 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3246
3247 return ret;
3248 }
3249 #endif
3250
3251 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3252 {
3253 return sock->ops->bind(sock, addr, addrlen);
3254 }
3255 EXPORT_SYMBOL(kernel_bind);
3256
3257 int kernel_listen(struct socket *sock, int backlog)
3258 {
3259 return sock->ops->listen(sock, backlog);
3260 }
3261 EXPORT_SYMBOL(kernel_listen);
3262
3263 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3264 {
3265 struct sock *sk = sock->sk;
3266 int err;
3267
3268 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3269 newsock);
3270 if (err < 0)
3271 goto done;
3272
3273 err = sock->ops->accept(sock, *newsock, flags);
3274 if (err < 0) {
3275 sock_release(*newsock);
3276 *newsock = NULL;
3277 goto done;
3278 }
3279
3280 (*newsock)->ops = sock->ops;
3281 __module_get((*newsock)->ops->owner);
3282
3283 done:
3284 return err;
3285 }
3286 EXPORT_SYMBOL(kernel_accept);
3287
3288 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3289 int flags)
3290 {
3291 return sock->ops->connect(sock, addr, addrlen, flags);
3292 }
3293 EXPORT_SYMBOL(kernel_connect);
3294
3295 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3296 int *addrlen)
3297 {
3298 return sock->ops->getname(sock, addr, addrlen, 0);
3299 }
3300 EXPORT_SYMBOL(kernel_getsockname);
3301
3302 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3303 int *addrlen)
3304 {
3305 return sock->ops->getname(sock, addr, addrlen, 1);
3306 }
3307 EXPORT_SYMBOL(kernel_getpeername);
3308
3309 int kernel_getsockopt(struct socket *sock, int level, int optname,
3310 char *optval, int *optlen)
3311 {
3312 mm_segment_t oldfs = get_fs();
3313 char __user *uoptval;
3314 int __user *uoptlen;
3315 int err;
3316
3317 uoptval = (char __user __force *) optval;
3318 uoptlen = (int __user __force *) optlen;
3319
3320 set_fs(KERNEL_DS);
3321 if (level == SOL_SOCKET)
3322 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3323 else
3324 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3325 uoptlen);
3326 set_fs(oldfs);
3327 return err;
3328 }
3329 EXPORT_SYMBOL(kernel_getsockopt);
3330
3331 int kernel_setsockopt(struct socket *sock, int level, int optname,
3332 char *optval, unsigned int optlen)
3333 {
3334 mm_segment_t oldfs = get_fs();
3335 char __user *uoptval;
3336 int err;
3337
3338 uoptval = (char __user __force *) optval;
3339
3340 set_fs(KERNEL_DS);
3341 if (level == SOL_SOCKET)
3342 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3343 else
3344 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3345 optlen);
3346 set_fs(oldfs);
3347 return err;
3348 }
3349 EXPORT_SYMBOL(kernel_setsockopt);
3350
3351 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3352 size_t size, int flags)
3353 {
3354 sock_update_classid(sock->sk);
3355
3356 if (sock->ops->sendpage)
3357 return sock->ops->sendpage(sock, page, offset, size, flags);
3358
3359 return sock_no_sendpage(sock, page, offset, size, flags);
3360 }
3361 EXPORT_SYMBOL(kernel_sendpage);
3362
3363 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3364 {
3365 mm_segment_t oldfs = get_fs();
3366 int err;
3367
3368 set_fs(KERNEL_DS);
3369 err = sock->ops->ioctl(sock, cmd, arg);
3370 set_fs(oldfs);
3371
3372 return err;
3373 }
3374 EXPORT_SYMBOL(kernel_sock_ioctl);
3375
3376 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3377 {
3378 return sock->ops->shutdown(sock, how);
3379 }
3380 EXPORT_SYMBOL(kernel_sock_shutdown);