]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
Merge tag 'char-misc-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118
119 static int sock_close(struct inode *inode, struct file *file);
120 static struct wait_queue_head *sock_get_poll_head(struct file *file,
121 __poll_t events);
122 static __poll_t sock_poll_mask(struct file *file, __poll_t);
123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135
136 /*
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
139 */
140
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .read_iter = sock_read_iter,
145 .write_iter = sock_write_iter,
146 .get_poll_head = sock_get_poll_head,
147 .poll_mask = sock_poll_mask,
148 .poll = sock_poll,
149 .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 .compat_ioctl = compat_sock_ioctl,
152 #endif
153 .mmap = sock_mmap,
154 .release = sock_close,
155 .fasync = sock_fasync,
156 .sendpage = sock_sendpage,
157 .splice_write = generic_splice_sendpage,
158 .splice_read = sock_splice_read,
159 };
160
161 /*
162 * The protocol list. Each protocol is registered in here.
163 */
164
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167
168 /*
169 * Support routines.
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
172 */
173
174 /**
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
179 *
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
183 */
184
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 return -EINVAL;
189 if (ulen == 0)
190 return 0;
191 if (copy_from_user(kaddr, uaddr, ulen))
192 return -EFAULT;
193 return audit_sockaddr(ulen, kaddr);
194 }
195
196 /**
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
202 *
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
207 * accessible.
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
211 */
212
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
215 {
216 int err;
217 int len;
218
219 BUG_ON(klen > sizeof(struct sockaddr_storage));
220 err = get_user(len, ulen);
221 if (err)
222 return err;
223 if (len > klen)
224 len = klen;
225 if (len < 0)
226 return -EINVAL;
227 if (len) {
228 if (audit_sockaddr(klen, kaddr))
229 return -ENOMEM;
230 if (copy_to_user(uaddr, kaddr, len))
231 return -EFAULT;
232 }
233 /*
234 * "fromlen shall refer to the value before truncation.."
235 * 1003.1g
236 */
237 return __put_user(klen, ulen);
238 }
239
240 static struct kmem_cache *sock_inode_cachep __ro_after_init;
241
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 struct socket_alloc *ei;
245 struct socket_wq *wq;
246
247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 if (!ei)
249 return NULL;
250 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 if (!wq) {
252 kmem_cache_free(sock_inode_cachep, ei);
253 return NULL;
254 }
255 init_waitqueue_head(&wq->wait);
256 wq->fasync_list = NULL;
257 wq->flags = 0;
258 RCU_INIT_POINTER(ei->socket.wq, wq);
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267 }
268
269 static void sock_destroy_inode(struct inode *inode)
270 {
271 struct socket_alloc *ei;
272 struct socket_wq *wq;
273
274 ei = container_of(inode, struct socket_alloc, vfs_inode);
275 wq = rcu_dereference_protected(ei->socket.wq, 1);
276 kfree_rcu(wq, rcu);
277 kmem_cache_free(sock_inode_cachep, ei);
278 }
279
280 static void init_once(void *foo)
281 {
282 struct socket_alloc *ei = (struct socket_alloc *)foo;
283
284 inode_init_once(&ei->vfs_inode);
285 }
286
287 static void init_inodecache(void)
288 {
289 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
290 sizeof(struct socket_alloc),
291 0,
292 (SLAB_HWCACHE_ALIGN |
293 SLAB_RECLAIM_ACCOUNT |
294 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
295 init_once);
296 BUG_ON(sock_inode_cachep == NULL);
297 }
298
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
303 };
304
305 /*
306 * sockfs_dname() is called from d_path().
307 */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 d_inode(dentry)->i_ino);
312 }
313
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
316 };
317
318 static int sockfs_xattr_get(const struct xattr_handler *handler,
319 struct dentry *dentry, struct inode *inode,
320 const char *suffix, void *value, size_t size)
321 {
322 if (value) {
323 if (dentry->d_name.len + 1 > size)
324 return -ERANGE;
325 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
326 }
327 return dentry->d_name.len + 1;
328 }
329
330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
333
334 static const struct xattr_handler sockfs_xattr_handler = {
335 .name = XATTR_NAME_SOCKPROTONAME,
336 .get = sockfs_xattr_get,
337 };
338
339 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
340 struct dentry *dentry, struct inode *inode,
341 const char *suffix, const void *value,
342 size_t size, int flags)
343 {
344 /* Handled by LSM. */
345 return -EAGAIN;
346 }
347
348 static const struct xattr_handler sockfs_security_xattr_handler = {
349 .prefix = XATTR_SECURITY_PREFIX,
350 .set = sockfs_security_xattr_set,
351 };
352
353 static const struct xattr_handler *sockfs_xattr_handlers[] = {
354 &sockfs_xattr_handler,
355 &sockfs_security_xattr_handler,
356 NULL
357 };
358
359 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
360 int flags, const char *dev_name, void *data)
361 {
362 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
363 sockfs_xattr_handlers,
364 &sockfs_dentry_operations, SOCKFS_MAGIC);
365 }
366
367 static struct vfsmount *sock_mnt __read_mostly;
368
369 static struct file_system_type sock_fs_type = {
370 .name = "sockfs",
371 .mount = sockfs_mount,
372 .kill_sb = kill_anon_super,
373 };
374
375 /*
376 * Obtains the first available file descriptor and sets it up for use.
377 *
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
385 *
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
390 */
391
392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
393 {
394 struct qstr name = { .name = "" };
395 struct path path;
396 struct file *file;
397
398 if (dname) {
399 name.name = dname;
400 name.len = strlen(name.name);
401 } else if (sock->sk) {
402 name.name = sock->sk->sk_prot_creator->name;
403 name.len = strlen(name.name);
404 }
405 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
406 if (unlikely(!path.dentry)) {
407 sock_release(sock);
408 return ERR_PTR(-ENOMEM);
409 }
410 path.mnt = mntget(sock_mnt);
411
412 d_instantiate(path.dentry, SOCK_INODE(sock));
413
414 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
415 &socket_file_ops);
416 if (IS_ERR(file)) {
417 /* drop dentry, keep inode for a bit */
418 ihold(d_inode(path.dentry));
419 path_put(&path);
420 /* ... and now kill it properly */
421 sock_release(sock);
422 return file;
423 }
424
425 sock->file = file;
426 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
427 file->private_data = sock;
428 return file;
429 }
430 EXPORT_SYMBOL(sock_alloc_file);
431
432 static int sock_map_fd(struct socket *sock, int flags)
433 {
434 struct file *newfile;
435 int fd = get_unused_fd_flags(flags);
436 if (unlikely(fd < 0)) {
437 sock_release(sock);
438 return fd;
439 }
440
441 newfile = sock_alloc_file(sock, flags, NULL);
442 if (likely(!IS_ERR(newfile))) {
443 fd_install(fd, newfile);
444 return fd;
445 }
446
447 put_unused_fd(fd);
448 return PTR_ERR(newfile);
449 }
450
451 struct socket *sock_from_file(struct file *file, int *err)
452 {
453 if (file->f_op == &socket_file_ops)
454 return file->private_data; /* set in sock_map_fd */
455
456 *err = -ENOTSOCK;
457 return NULL;
458 }
459 EXPORT_SYMBOL(sock_from_file);
460
461 /**
462 * sockfd_lookup - Go from a file number to its socket slot
463 * @fd: file handle
464 * @err: pointer to an error code return
465 *
466 * The file handle passed in is locked and the socket it is bound
467 * to is returned. If an error occurs the err pointer is overwritten
468 * with a negative errno code and NULL is returned. The function checks
469 * for both invalid handles and passing a handle which is not a socket.
470 *
471 * On a success the socket object pointer is returned.
472 */
473
474 struct socket *sockfd_lookup(int fd, int *err)
475 {
476 struct file *file;
477 struct socket *sock;
478
479 file = fget(fd);
480 if (!file) {
481 *err = -EBADF;
482 return NULL;
483 }
484
485 sock = sock_from_file(file, err);
486 if (!sock)
487 fput(file);
488 return sock;
489 }
490 EXPORT_SYMBOL(sockfd_lookup);
491
492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 {
494 struct fd f = fdget(fd);
495 struct socket *sock;
496
497 *err = -EBADF;
498 if (f.file) {
499 sock = sock_from_file(f.file, err);
500 if (likely(sock)) {
501 *fput_needed = f.flags;
502 return sock;
503 }
504 fdput(f);
505 }
506 return NULL;
507 }
508
509 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
510 size_t size)
511 {
512 ssize_t len;
513 ssize_t used = 0;
514
515 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
516 if (len < 0)
517 return len;
518 used += len;
519 if (buffer) {
520 if (size < used)
521 return -ERANGE;
522 buffer += len;
523 }
524
525 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 used += len;
527 if (buffer) {
528 if (size < used)
529 return -ERANGE;
530 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
531 buffer += len;
532 }
533
534 return used;
535 }
536
537 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
538 {
539 int err = simple_setattr(dentry, iattr);
540
541 if (!err && (iattr->ia_valid & ATTR_UID)) {
542 struct socket *sock = SOCKET_I(d_inode(dentry));
543
544 sock->sk->sk_uid = iattr->ia_uid;
545 }
546
547 return err;
548 }
549
550 static const struct inode_operations sockfs_inode_ops = {
551 .listxattr = sockfs_listxattr,
552 .setattr = sockfs_setattr,
553 };
554
555 /**
556 * sock_alloc - allocate a socket
557 *
558 * Allocate a new inode and socket object. The two are bound together
559 * and initialised. The socket is then returned. If we are out of inodes
560 * NULL is returned.
561 */
562
563 struct socket *sock_alloc(void)
564 {
565 struct inode *inode;
566 struct socket *sock;
567
568 inode = new_inode_pseudo(sock_mnt->mnt_sb);
569 if (!inode)
570 return NULL;
571
572 sock = SOCKET_I(inode);
573
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
579
580 return sock;
581 }
582 EXPORT_SYMBOL(sock_alloc);
583
584 /**
585 * sock_release - close a socket
586 * @sock: socket to close
587 *
588 * The socket is released from the protocol stack if it has a release
589 * callback, and the inode is then released if the socket is bound to
590 * an inode not a file.
591 */
592
593 void sock_release(struct socket *sock)
594 {
595 if (sock->ops) {
596 struct module *owner = sock->ops->owner;
597
598 sock->ops->release(sock);
599 sock->ops = NULL;
600 module_put(owner);
601 }
602
603 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
604 pr_err("%s: fasync list not empty!\n", __func__);
605
606 if (!sock->file) {
607 iput(SOCK_INODE(sock));
608 return;
609 }
610 sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
635 return ret;
636 }
637
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 int err = security_socket_sendmsg(sock, msg,
641 msg_data_left(msg));
642
643 return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
649 {
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654
655 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
656 struct kvec *vec, size_t num, size_t size)
657 {
658 struct socket *sock = sk->sk_socket;
659
660 if (!sock->ops->sendmsg_locked)
661 return sock_no_sendmsg_locked(sk, msg, size);
662
663 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
664
665 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
666 }
667 EXPORT_SYMBOL(kernel_sendmsg_locked);
668
669 static bool skb_is_err_queue(const struct sk_buff *skb)
670 {
671 /* pkt_type of skbs enqueued on the error queue are set to
672 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
673 * in recvmsg, since skbs received on a local socket will never
674 * have a pkt_type of PACKET_OUTGOING.
675 */
676 return skb->pkt_type == PACKET_OUTGOING;
677 }
678
679 /* On transmit, software and hardware timestamps are returned independently.
680 * As the two skb clones share the hardware timestamp, which may be updated
681 * before the software timestamp is received, a hardware TX timestamp may be
682 * returned only if there is no software TX timestamp. Ignore false software
683 * timestamps, which may be made in the __sock_recv_timestamp() call when the
684 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
685 * hardware timestamp.
686 */
687 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
688 {
689 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
690 }
691
692 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
693 {
694 struct scm_ts_pktinfo ts_pktinfo;
695 struct net_device *orig_dev;
696
697 if (!skb_mac_header_was_set(skb))
698 return;
699
700 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
701
702 rcu_read_lock();
703 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
704 if (orig_dev)
705 ts_pktinfo.if_index = orig_dev->ifindex;
706 rcu_read_unlock();
707
708 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
710 sizeof(ts_pktinfo), &ts_pktinfo);
711 }
712
713 /*
714 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
715 */
716 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
717 struct sk_buff *skb)
718 {
719 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
720 struct scm_timestamping tss;
721 int empty = 1, false_tstamp = 0;
722 struct skb_shared_hwtstamps *shhwtstamps =
723 skb_hwtstamps(skb);
724
725 /* Race occurred between timestamp enabling and packet
726 receiving. Fill in the current time for now. */
727 if (need_software_tstamp && skb->tstamp == 0) {
728 __net_timestamp(skb);
729 false_tstamp = 1;
730 }
731
732 if (need_software_tstamp) {
733 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
734 struct timeval tv;
735 skb_get_timestamp(skb, &tv);
736 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
737 sizeof(tv), &tv);
738 } else {
739 struct timespec ts;
740 skb_get_timestampns(skb, &ts);
741 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
742 sizeof(ts), &ts);
743 }
744 }
745
746 memset(&tss, 0, sizeof(tss));
747 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
748 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
749 empty = 0;
750 if (shhwtstamps &&
751 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
752 !skb_is_swtx_tstamp(skb, false_tstamp) &&
753 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
754 empty = 0;
755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
756 !skb_is_err_queue(skb))
757 put_ts_pktinfo(msg, skb);
758 }
759 if (!empty) {
760 put_cmsg(msg, SOL_SOCKET,
761 SCM_TIMESTAMPING, sizeof(tss), &tss);
762
763 if (skb_is_err_queue(skb) && skb->len &&
764 SKB_EXT_ERR(skb)->opt_stats)
765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
766 skb->len, skb->data);
767 }
768 }
769 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
770
771 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
772 struct sk_buff *skb)
773 {
774 int ack;
775
776 if (!sock_flag(sk, SOCK_WIFI_STATUS))
777 return;
778 if (!skb->wifi_acked_valid)
779 return;
780
781 ack = skb->wifi_acked;
782
783 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
784 }
785 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
786
787 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
788 struct sk_buff *skb)
789 {
790 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
791 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
792 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
793 }
794
795 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
796 struct sk_buff *skb)
797 {
798 sock_recv_timestamp(msg, sk, skb);
799 sock_recv_drops(msg, sk, skb);
800 }
801 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
802
803 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
804 int flags)
805 {
806 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
807 }
808
809 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
810 {
811 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
812
813 return err ?: sock_recvmsg_nosec(sock, msg, flags);
814 }
815 EXPORT_SYMBOL(sock_recvmsg);
816
817 /**
818 * kernel_recvmsg - Receive a message from a socket (kernel space)
819 * @sock: The socket to receive the message from
820 * @msg: Received message
821 * @vec: Input s/g array for message data
822 * @num: Size of input s/g array
823 * @size: Number of bytes to read
824 * @flags: Message flags (MSG_DONTWAIT, etc...)
825 *
826 * On return the msg structure contains the scatter/gather array passed in the
827 * vec argument. The array is modified so that it consists of the unfilled
828 * portion of the original array.
829 *
830 * The returned value is the total number of bytes received, or an error.
831 */
832 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
833 struct kvec *vec, size_t num, size_t size, int flags)
834 {
835 mm_segment_t oldfs = get_fs();
836 int result;
837
838 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
839 set_fs(KERNEL_DS);
840 result = sock_recvmsg(sock, msg, flags);
841 set_fs(oldfs);
842 return result;
843 }
844 EXPORT_SYMBOL(kernel_recvmsg);
845
846 static ssize_t sock_sendpage(struct file *file, struct page *page,
847 int offset, size_t size, loff_t *ppos, int more)
848 {
849 struct socket *sock;
850 int flags;
851
852 sock = file->private_data;
853
854 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
855 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
856 flags |= more;
857
858 return kernel_sendpage(sock, page, offset, size, flags);
859 }
860
861 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
862 struct pipe_inode_info *pipe, size_t len,
863 unsigned int flags)
864 {
865 struct socket *sock = file->private_data;
866
867 if (unlikely(!sock->ops->splice_read))
868 return -EINVAL;
869
870 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
871 }
872
873 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
874 {
875 struct file *file = iocb->ki_filp;
876 struct socket *sock = file->private_data;
877 struct msghdr msg = {.msg_iter = *to,
878 .msg_iocb = iocb};
879 ssize_t res;
880
881 if (file->f_flags & O_NONBLOCK)
882 msg.msg_flags = MSG_DONTWAIT;
883
884 if (iocb->ki_pos != 0)
885 return -ESPIPE;
886
887 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
888 return 0;
889
890 res = sock_recvmsg(sock, &msg, msg.msg_flags);
891 *to = msg.msg_iter;
892 return res;
893 }
894
895 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
896 {
897 struct file *file = iocb->ki_filp;
898 struct socket *sock = file->private_data;
899 struct msghdr msg = {.msg_iter = *from,
900 .msg_iocb = iocb};
901 ssize_t res;
902
903 if (iocb->ki_pos != 0)
904 return -ESPIPE;
905
906 if (file->f_flags & O_NONBLOCK)
907 msg.msg_flags = MSG_DONTWAIT;
908
909 if (sock->type == SOCK_SEQPACKET)
910 msg.msg_flags |= MSG_EOR;
911
912 res = sock_sendmsg(sock, &msg);
913 *from = msg.msg_iter;
914 return res;
915 }
916
917 /*
918 * Atomic setting of ioctl hooks to avoid race
919 * with module unload.
920 */
921
922 static DEFINE_MUTEX(br_ioctl_mutex);
923 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
924
925 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
926 {
927 mutex_lock(&br_ioctl_mutex);
928 br_ioctl_hook = hook;
929 mutex_unlock(&br_ioctl_mutex);
930 }
931 EXPORT_SYMBOL(brioctl_set);
932
933 static DEFINE_MUTEX(vlan_ioctl_mutex);
934 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
935
936 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
937 {
938 mutex_lock(&vlan_ioctl_mutex);
939 vlan_ioctl_hook = hook;
940 mutex_unlock(&vlan_ioctl_mutex);
941 }
942 EXPORT_SYMBOL(vlan_ioctl_set);
943
944 static DEFINE_MUTEX(dlci_ioctl_mutex);
945 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
946
947 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
948 {
949 mutex_lock(&dlci_ioctl_mutex);
950 dlci_ioctl_hook = hook;
951 mutex_unlock(&dlci_ioctl_mutex);
952 }
953 EXPORT_SYMBOL(dlci_ioctl_set);
954
955 static long sock_do_ioctl(struct net *net, struct socket *sock,
956 unsigned int cmd, unsigned long arg)
957 {
958 int err;
959 void __user *argp = (void __user *)arg;
960
961 err = sock->ops->ioctl(sock, cmd, arg);
962
963 /*
964 * If this ioctl is unknown try to hand it down
965 * to the NIC driver.
966 */
967 if (err != -ENOIOCTLCMD)
968 return err;
969
970 if (cmd == SIOCGIFCONF) {
971 struct ifconf ifc;
972 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
973 return -EFAULT;
974 rtnl_lock();
975 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
976 rtnl_unlock();
977 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
978 err = -EFAULT;
979 } else {
980 struct ifreq ifr;
981 bool need_copyout;
982 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
983 return -EFAULT;
984 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
985 if (!err && need_copyout)
986 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
987 return -EFAULT;
988 }
989 return err;
990 }
991
992 /*
993 * With an ioctl, arg may well be a user mode pointer, but we don't know
994 * what to do with it - that's up to the protocol still.
995 */
996
997 struct ns_common *get_net_ns(struct ns_common *ns)
998 {
999 return &get_net(container_of(ns, struct net, ns))->ns;
1000 }
1001 EXPORT_SYMBOL_GPL(get_net_ns);
1002
1003 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1004 {
1005 struct socket *sock;
1006 struct sock *sk;
1007 void __user *argp = (void __user *)arg;
1008 int pid, err;
1009 struct net *net;
1010
1011 sock = file->private_data;
1012 sk = sock->sk;
1013 net = sock_net(sk);
1014 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1015 struct ifreq ifr;
1016 bool need_copyout;
1017 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1018 return -EFAULT;
1019 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1020 if (!err && need_copyout)
1021 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1022 return -EFAULT;
1023 } else
1024 #ifdef CONFIG_WEXT_CORE
1025 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1026 err = wext_handle_ioctl(net, cmd, argp);
1027 } else
1028 #endif
1029 switch (cmd) {
1030 case FIOSETOWN:
1031 case SIOCSPGRP:
1032 err = -EFAULT;
1033 if (get_user(pid, (int __user *)argp))
1034 break;
1035 err = f_setown(sock->file, pid, 1);
1036 break;
1037 case FIOGETOWN:
1038 case SIOCGPGRP:
1039 err = put_user(f_getown(sock->file),
1040 (int __user *)argp);
1041 break;
1042 case SIOCGIFBR:
1043 case SIOCSIFBR:
1044 case SIOCBRADDBR:
1045 case SIOCBRDELBR:
1046 err = -ENOPKG;
1047 if (!br_ioctl_hook)
1048 request_module("bridge");
1049
1050 mutex_lock(&br_ioctl_mutex);
1051 if (br_ioctl_hook)
1052 err = br_ioctl_hook(net, cmd, argp);
1053 mutex_unlock(&br_ioctl_mutex);
1054 break;
1055 case SIOCGIFVLAN:
1056 case SIOCSIFVLAN:
1057 err = -ENOPKG;
1058 if (!vlan_ioctl_hook)
1059 request_module("8021q");
1060
1061 mutex_lock(&vlan_ioctl_mutex);
1062 if (vlan_ioctl_hook)
1063 err = vlan_ioctl_hook(net, argp);
1064 mutex_unlock(&vlan_ioctl_mutex);
1065 break;
1066 case SIOCADDDLCI:
1067 case SIOCDELDLCI:
1068 err = -ENOPKG;
1069 if (!dlci_ioctl_hook)
1070 request_module("dlci");
1071
1072 mutex_lock(&dlci_ioctl_mutex);
1073 if (dlci_ioctl_hook)
1074 err = dlci_ioctl_hook(cmd, argp);
1075 mutex_unlock(&dlci_ioctl_mutex);
1076 break;
1077 case SIOCGSKNS:
1078 err = -EPERM;
1079 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1080 break;
1081
1082 err = open_related_ns(&net->ns, get_net_ns);
1083 break;
1084 default:
1085 err = sock_do_ioctl(net, sock, cmd, arg);
1086 break;
1087 }
1088 return err;
1089 }
1090
1091 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1092 {
1093 int err;
1094 struct socket *sock = NULL;
1095
1096 err = security_socket_create(family, type, protocol, 1);
1097 if (err)
1098 goto out;
1099
1100 sock = sock_alloc();
1101 if (!sock) {
1102 err = -ENOMEM;
1103 goto out;
1104 }
1105
1106 sock->type = type;
1107 err = security_socket_post_create(sock, family, type, protocol, 1);
1108 if (err)
1109 goto out_release;
1110
1111 out:
1112 *res = sock;
1113 return err;
1114 out_release:
1115 sock_release(sock);
1116 sock = NULL;
1117 goto out;
1118 }
1119 EXPORT_SYMBOL(sock_create_lite);
1120
1121 static struct wait_queue_head *sock_get_poll_head(struct file *file,
1122 __poll_t events)
1123 {
1124 struct socket *sock = file->private_data;
1125
1126 if (!sock->ops->poll_mask)
1127 return NULL;
1128 sock_poll_busy_loop(sock, events);
1129 return sk_sleep(sock->sk);
1130 }
1131
1132 static __poll_t sock_poll_mask(struct file *file, __poll_t events)
1133 {
1134 struct socket *sock = file->private_data;
1135
1136 /*
1137 * We need to be sure we are in sync with the socket flags modification.
1138 *
1139 * This memory barrier is paired in the wq_has_sleeper.
1140 */
1141 smp_mb();
1142
1143 /* this socket can poll_ll so tell the system call */
1144 return sock->ops->poll_mask(sock, events) |
1145 (sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0);
1146 }
1147
1148 /* No kernel lock held - perfect */
1149 static __poll_t sock_poll(struct file *file, poll_table *wait)
1150 {
1151 struct socket *sock = file->private_data;
1152 __poll_t events = poll_requested_events(wait), mask = 0;
1153
1154 if (sock->ops->poll) {
1155 sock_poll_busy_loop(sock, events);
1156 mask = sock->ops->poll(file, sock, wait);
1157 } else if (sock->ops->poll_mask) {
1158 sock_poll_wait(file, sock_get_poll_head(file, events), wait);
1159 mask = sock->ops->poll_mask(sock, events);
1160 }
1161
1162 return mask | sock_poll_busy_flag(sock);
1163 }
1164
1165 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166 {
1167 struct socket *sock = file->private_data;
1168
1169 return sock->ops->mmap(file, sock, vma);
1170 }
1171
1172 static int sock_close(struct inode *inode, struct file *filp)
1173 {
1174 sock_release(SOCKET_I(inode));
1175 return 0;
1176 }
1177
1178 /*
1179 * Update the socket async list
1180 *
1181 * Fasync_list locking strategy.
1182 *
1183 * 1. fasync_list is modified only under process context socket lock
1184 * i.e. under semaphore.
1185 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186 * or under socket lock
1187 */
1188
1189 static int sock_fasync(int fd, struct file *filp, int on)
1190 {
1191 struct socket *sock = filp->private_data;
1192 struct sock *sk = sock->sk;
1193 struct socket_wq *wq;
1194
1195 if (sk == NULL)
1196 return -EINVAL;
1197
1198 lock_sock(sk);
1199 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1200 fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202 if (!wq->fasync_list)
1203 sock_reset_flag(sk, SOCK_FASYNC);
1204 else
1205 sock_set_flag(sk, SOCK_FASYNC);
1206
1207 release_sock(sk);
1208 return 0;
1209 }
1210
1211 /* This function may be called only under rcu_lock */
1212
1213 int sock_wake_async(struct socket_wq *wq, int how, int band)
1214 {
1215 if (!wq || !wq->fasync_list)
1216 return -1;
1217
1218 switch (how) {
1219 case SOCK_WAKE_WAITD:
1220 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1221 break;
1222 goto call_kill;
1223 case SOCK_WAKE_SPACE:
1224 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1225 break;
1226 /* fall through */
1227 case SOCK_WAKE_IO:
1228 call_kill:
1229 kill_fasync(&wq->fasync_list, SIGIO, band);
1230 break;
1231 case SOCK_WAKE_URG:
1232 kill_fasync(&wq->fasync_list, SIGURG, band);
1233 }
1234
1235 return 0;
1236 }
1237 EXPORT_SYMBOL(sock_wake_async);
1238
1239 int __sock_create(struct net *net, int family, int type, int protocol,
1240 struct socket **res, int kern)
1241 {
1242 int err;
1243 struct socket *sock;
1244 const struct net_proto_family *pf;
1245
1246 /*
1247 * Check protocol is in range
1248 */
1249 if (family < 0 || family >= NPROTO)
1250 return -EAFNOSUPPORT;
1251 if (type < 0 || type >= SOCK_MAX)
1252 return -EINVAL;
1253
1254 /* Compatibility.
1255
1256 This uglymoron is moved from INET layer to here to avoid
1257 deadlock in module load.
1258 */
1259 if (family == PF_INET && type == SOCK_PACKET) {
1260 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1261 current->comm);
1262 family = PF_PACKET;
1263 }
1264
1265 err = security_socket_create(family, type, protocol, kern);
1266 if (err)
1267 return err;
1268
1269 /*
1270 * Allocate the socket and allow the family to set things up. if
1271 * the protocol is 0, the family is instructed to select an appropriate
1272 * default.
1273 */
1274 sock = sock_alloc();
1275 if (!sock) {
1276 net_warn_ratelimited("socket: no more sockets\n");
1277 return -ENFILE; /* Not exactly a match, but its the
1278 closest posix thing */
1279 }
1280
1281 sock->type = type;
1282
1283 #ifdef CONFIG_MODULES
1284 /* Attempt to load a protocol module if the find failed.
1285 *
1286 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1287 * requested real, full-featured networking support upon configuration.
1288 * Otherwise module support will break!
1289 */
1290 if (rcu_access_pointer(net_families[family]) == NULL)
1291 request_module("net-pf-%d", family);
1292 #endif
1293
1294 rcu_read_lock();
1295 pf = rcu_dereference(net_families[family]);
1296 err = -EAFNOSUPPORT;
1297 if (!pf)
1298 goto out_release;
1299
1300 /*
1301 * We will call the ->create function, that possibly is in a loadable
1302 * module, so we have to bump that loadable module refcnt first.
1303 */
1304 if (!try_module_get(pf->owner))
1305 goto out_release;
1306
1307 /* Now protected by module ref count */
1308 rcu_read_unlock();
1309
1310 err = pf->create(net, sock, protocol, kern);
1311 if (err < 0)
1312 goto out_module_put;
1313
1314 /*
1315 * Now to bump the refcnt of the [loadable] module that owns this
1316 * socket at sock_release time we decrement its refcnt.
1317 */
1318 if (!try_module_get(sock->ops->owner))
1319 goto out_module_busy;
1320
1321 /*
1322 * Now that we're done with the ->create function, the [loadable]
1323 * module can have its refcnt decremented
1324 */
1325 module_put(pf->owner);
1326 err = security_socket_post_create(sock, family, type, protocol, kern);
1327 if (err)
1328 goto out_sock_release;
1329 *res = sock;
1330
1331 return 0;
1332
1333 out_module_busy:
1334 err = -EAFNOSUPPORT;
1335 out_module_put:
1336 sock->ops = NULL;
1337 module_put(pf->owner);
1338 out_sock_release:
1339 sock_release(sock);
1340 return err;
1341
1342 out_release:
1343 rcu_read_unlock();
1344 goto out_sock_release;
1345 }
1346 EXPORT_SYMBOL(__sock_create);
1347
1348 int sock_create(int family, int type, int protocol, struct socket **res)
1349 {
1350 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1351 }
1352 EXPORT_SYMBOL(sock_create);
1353
1354 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1355 {
1356 return __sock_create(net, family, type, protocol, res, 1);
1357 }
1358 EXPORT_SYMBOL(sock_create_kern);
1359
1360 int __sys_socket(int family, int type, int protocol)
1361 {
1362 int retval;
1363 struct socket *sock;
1364 int flags;
1365
1366 /* Check the SOCK_* constants for consistency. */
1367 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1368 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1369 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1370 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1371
1372 flags = type & ~SOCK_TYPE_MASK;
1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 return -EINVAL;
1375 type &= SOCK_TYPE_MASK;
1376
1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379
1380 retval = sock_create(family, type, protocol, &sock);
1381 if (retval < 0)
1382 return retval;
1383
1384 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1385 }
1386
1387 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1388 {
1389 return __sys_socket(family, type, protocol);
1390 }
1391
1392 /*
1393 * Create a pair of connected sockets.
1394 */
1395
1396 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1397 {
1398 struct socket *sock1, *sock2;
1399 int fd1, fd2, err;
1400 struct file *newfile1, *newfile2;
1401 int flags;
1402
1403 flags = type & ~SOCK_TYPE_MASK;
1404 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1405 return -EINVAL;
1406 type &= SOCK_TYPE_MASK;
1407
1408 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1409 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1410
1411 /*
1412 * reserve descriptors and make sure we won't fail
1413 * to return them to userland.
1414 */
1415 fd1 = get_unused_fd_flags(flags);
1416 if (unlikely(fd1 < 0))
1417 return fd1;
1418
1419 fd2 = get_unused_fd_flags(flags);
1420 if (unlikely(fd2 < 0)) {
1421 put_unused_fd(fd1);
1422 return fd2;
1423 }
1424
1425 err = put_user(fd1, &usockvec[0]);
1426 if (err)
1427 goto out;
1428
1429 err = put_user(fd2, &usockvec[1]);
1430 if (err)
1431 goto out;
1432
1433 /*
1434 * Obtain the first socket and check if the underlying protocol
1435 * supports the socketpair call.
1436 */
1437
1438 err = sock_create(family, type, protocol, &sock1);
1439 if (unlikely(err < 0))
1440 goto out;
1441
1442 err = sock_create(family, type, protocol, &sock2);
1443 if (unlikely(err < 0)) {
1444 sock_release(sock1);
1445 goto out;
1446 }
1447
1448 err = sock1->ops->socketpair(sock1, sock2);
1449 if (unlikely(err < 0)) {
1450 sock_release(sock2);
1451 sock_release(sock1);
1452 goto out;
1453 }
1454
1455 newfile1 = sock_alloc_file(sock1, flags, NULL);
1456 if (IS_ERR(newfile1)) {
1457 err = PTR_ERR(newfile1);
1458 sock_release(sock2);
1459 goto out;
1460 }
1461
1462 newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 if (IS_ERR(newfile2)) {
1464 err = PTR_ERR(newfile2);
1465 fput(newfile1);
1466 goto out;
1467 }
1468
1469 audit_fd_pair(fd1, fd2);
1470
1471 fd_install(fd1, newfile1);
1472 fd_install(fd2, newfile2);
1473 return 0;
1474
1475 out:
1476 put_unused_fd(fd2);
1477 put_unused_fd(fd1);
1478 return err;
1479 }
1480
1481 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1482 int __user *, usockvec)
1483 {
1484 return __sys_socketpair(family, type, protocol, usockvec);
1485 }
1486
1487 /*
1488 * Bind a name to a socket. Nothing much to do here since it's
1489 * the protocol's responsibility to handle the local address.
1490 *
1491 * We move the socket address to kernel space before we call
1492 * the protocol layer (having also checked the address is ok).
1493 */
1494
1495 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1496 {
1497 struct socket *sock;
1498 struct sockaddr_storage address;
1499 int err, fput_needed;
1500
1501 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1502 if (sock) {
1503 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1504 if (err >= 0) {
1505 err = security_socket_bind(sock,
1506 (struct sockaddr *)&address,
1507 addrlen);
1508 if (!err)
1509 err = sock->ops->bind(sock,
1510 (struct sockaddr *)
1511 &address, addrlen);
1512 }
1513 fput_light(sock->file, fput_needed);
1514 }
1515 return err;
1516 }
1517
1518 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1519 {
1520 return __sys_bind(fd, umyaddr, addrlen);
1521 }
1522
1523 /*
1524 * Perform a listen. Basically, we allow the protocol to do anything
1525 * necessary for a listen, and if that works, we mark the socket as
1526 * ready for listening.
1527 */
1528
1529 int __sys_listen(int fd, int backlog)
1530 {
1531 struct socket *sock;
1532 int err, fput_needed;
1533 int somaxconn;
1534
1535 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1536 if (sock) {
1537 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1538 if ((unsigned int)backlog > somaxconn)
1539 backlog = somaxconn;
1540
1541 err = security_socket_listen(sock, backlog);
1542 if (!err)
1543 err = sock->ops->listen(sock, backlog);
1544
1545 fput_light(sock->file, fput_needed);
1546 }
1547 return err;
1548 }
1549
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551 {
1552 return __sys_listen(fd, backlog);
1553 }
1554
1555 /*
1556 * For accept, we attempt to create a new socket, set up the link
1557 * with the client, wake up the client, then return the new
1558 * connected fd. We collect the address of the connector in kernel
1559 * space and move it to user at the very end. This is unclean because
1560 * we open the socket then return an error.
1561 *
1562 * 1003.1g adds the ability to recvmsg() to query connection pending
1563 * status to recvmsg. We need to add that support in a way thats
1564 * clean when we restructure accept also.
1565 */
1566
1567 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1568 int __user *upeer_addrlen, int flags)
1569 {
1570 struct socket *sock, *newsock;
1571 struct file *newfile;
1572 int err, len, newfd, fput_needed;
1573 struct sockaddr_storage address;
1574
1575 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1576 return -EINVAL;
1577
1578 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1579 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1580
1581 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1582 if (!sock)
1583 goto out;
1584
1585 err = -ENFILE;
1586 newsock = sock_alloc();
1587 if (!newsock)
1588 goto out_put;
1589
1590 newsock->type = sock->type;
1591 newsock->ops = sock->ops;
1592
1593 /*
1594 * We don't need try_module_get here, as the listening socket (sock)
1595 * has the protocol module (sock->ops->owner) held.
1596 */
1597 __module_get(newsock->ops->owner);
1598
1599 newfd = get_unused_fd_flags(flags);
1600 if (unlikely(newfd < 0)) {
1601 err = newfd;
1602 sock_release(newsock);
1603 goto out_put;
1604 }
1605 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1606 if (IS_ERR(newfile)) {
1607 err = PTR_ERR(newfile);
1608 put_unused_fd(newfd);
1609 goto out_put;
1610 }
1611
1612 err = security_socket_accept(sock, newsock);
1613 if (err)
1614 goto out_fd;
1615
1616 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1617 if (err < 0)
1618 goto out_fd;
1619
1620 if (upeer_sockaddr) {
1621 len = newsock->ops->getname(newsock,
1622 (struct sockaddr *)&address, 2);
1623 if (len < 0) {
1624 err = -ECONNABORTED;
1625 goto out_fd;
1626 }
1627 err = move_addr_to_user(&address,
1628 len, upeer_sockaddr, upeer_addrlen);
1629 if (err < 0)
1630 goto out_fd;
1631 }
1632
1633 /* File flags are not inherited via accept() unlike another OSes. */
1634
1635 fd_install(newfd, newfile);
1636 err = newfd;
1637
1638 out_put:
1639 fput_light(sock->file, fput_needed);
1640 out:
1641 return err;
1642 out_fd:
1643 fput(newfile);
1644 put_unused_fd(newfd);
1645 goto out_put;
1646 }
1647
1648 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1649 int __user *, upeer_addrlen, int, flags)
1650 {
1651 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1652 }
1653
1654 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1655 int __user *, upeer_addrlen)
1656 {
1657 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1658 }
1659
1660 /*
1661 * Attempt to connect to a socket with the server address. The address
1662 * is in user space so we verify it is OK and move it to kernel space.
1663 *
1664 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1665 * break bindings
1666 *
1667 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1668 * other SEQPACKET protocols that take time to connect() as it doesn't
1669 * include the -EINPROGRESS status for such sockets.
1670 */
1671
1672 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1673 {
1674 struct socket *sock;
1675 struct sockaddr_storage address;
1676 int err, fput_needed;
1677
1678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 if (!sock)
1680 goto out;
1681 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1682 if (err < 0)
1683 goto out_put;
1684
1685 err =
1686 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1687 if (err)
1688 goto out_put;
1689
1690 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1691 sock->file->f_flags);
1692 out_put:
1693 fput_light(sock->file, fput_needed);
1694 out:
1695 return err;
1696 }
1697
1698 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1699 int, addrlen)
1700 {
1701 return __sys_connect(fd, uservaddr, addrlen);
1702 }
1703
1704 /*
1705 * Get the local address ('name') of a socket object. Move the obtained
1706 * name to user space.
1707 */
1708
1709 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1710 int __user *usockaddr_len)
1711 {
1712 struct socket *sock;
1713 struct sockaddr_storage address;
1714 int err, fput_needed;
1715
1716 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1717 if (!sock)
1718 goto out;
1719
1720 err = security_socket_getsockname(sock);
1721 if (err)
1722 goto out_put;
1723
1724 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1725 if (err < 0)
1726 goto out_put;
1727 /* "err" is actually length in this case */
1728 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1729
1730 out_put:
1731 fput_light(sock->file, fput_needed);
1732 out:
1733 return err;
1734 }
1735
1736 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1737 int __user *, usockaddr_len)
1738 {
1739 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1740 }
1741
1742 /*
1743 * Get the remote address ('name') of a socket object. Move the obtained
1744 * name to user space.
1745 */
1746
1747 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1748 int __user *usockaddr_len)
1749 {
1750 struct socket *sock;
1751 struct sockaddr_storage address;
1752 int err, fput_needed;
1753
1754 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1755 if (sock != NULL) {
1756 err = security_socket_getpeername(sock);
1757 if (err) {
1758 fput_light(sock->file, fput_needed);
1759 return err;
1760 }
1761
1762 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1763 if (err >= 0)
1764 /* "err" is actually length in this case */
1765 err = move_addr_to_user(&address, err, usockaddr,
1766 usockaddr_len);
1767 fput_light(sock->file, fput_needed);
1768 }
1769 return err;
1770 }
1771
1772 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1773 int __user *, usockaddr_len)
1774 {
1775 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1776 }
1777
1778 /*
1779 * Send a datagram to a given address. We move the address into kernel
1780 * space and check the user space data area is readable before invoking
1781 * the protocol.
1782 */
1783 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1784 struct sockaddr __user *addr, int addr_len)
1785 {
1786 struct socket *sock;
1787 struct sockaddr_storage address;
1788 int err;
1789 struct msghdr msg;
1790 struct iovec iov;
1791 int fput_needed;
1792
1793 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1794 if (unlikely(err))
1795 return err;
1796 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797 if (!sock)
1798 goto out;
1799
1800 msg.msg_name = NULL;
1801 msg.msg_control = NULL;
1802 msg.msg_controllen = 0;
1803 msg.msg_namelen = 0;
1804 if (addr) {
1805 err = move_addr_to_kernel(addr, addr_len, &address);
1806 if (err < 0)
1807 goto out_put;
1808 msg.msg_name = (struct sockaddr *)&address;
1809 msg.msg_namelen = addr_len;
1810 }
1811 if (sock->file->f_flags & O_NONBLOCK)
1812 flags |= MSG_DONTWAIT;
1813 msg.msg_flags = flags;
1814 err = sock_sendmsg(sock, &msg);
1815
1816 out_put:
1817 fput_light(sock->file, fput_needed);
1818 out:
1819 return err;
1820 }
1821
1822 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1823 unsigned int, flags, struct sockaddr __user *, addr,
1824 int, addr_len)
1825 {
1826 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1827 }
1828
1829 /*
1830 * Send a datagram down a socket.
1831 */
1832
1833 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1834 unsigned int, flags)
1835 {
1836 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1837 }
1838
1839 /*
1840 * Receive a frame from the socket and optionally record the address of the
1841 * sender. We verify the buffers are writable and if needed move the
1842 * sender address from kernel to user space.
1843 */
1844 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1845 struct sockaddr __user *addr, int __user *addr_len)
1846 {
1847 struct socket *sock;
1848 struct iovec iov;
1849 struct msghdr msg;
1850 struct sockaddr_storage address;
1851 int err, err2;
1852 int fput_needed;
1853
1854 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1855 if (unlikely(err))
1856 return err;
1857 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 if (!sock)
1859 goto out;
1860
1861 msg.msg_control = NULL;
1862 msg.msg_controllen = 0;
1863 /* Save some cycles and don't copy the address if not needed */
1864 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1865 /* We assume all kernel code knows the size of sockaddr_storage */
1866 msg.msg_namelen = 0;
1867 msg.msg_iocb = NULL;
1868 msg.msg_flags = 0;
1869 if (sock->file->f_flags & O_NONBLOCK)
1870 flags |= MSG_DONTWAIT;
1871 err = sock_recvmsg(sock, &msg, flags);
1872
1873 if (err >= 0 && addr != NULL) {
1874 err2 = move_addr_to_user(&address,
1875 msg.msg_namelen, addr, addr_len);
1876 if (err2 < 0)
1877 err = err2;
1878 }
1879
1880 fput_light(sock->file, fput_needed);
1881 out:
1882 return err;
1883 }
1884
1885 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1886 unsigned int, flags, struct sockaddr __user *, addr,
1887 int __user *, addr_len)
1888 {
1889 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1890 }
1891
1892 /*
1893 * Receive a datagram from a socket.
1894 */
1895
1896 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1897 unsigned int, flags)
1898 {
1899 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1900 }
1901
1902 /*
1903 * Set a socket option. Because we don't know the option lengths we have
1904 * to pass the user mode parameter for the protocols to sort out.
1905 */
1906
1907 static int __sys_setsockopt(int fd, int level, int optname,
1908 char __user *optval, int optlen)
1909 {
1910 int err, fput_needed;
1911 struct socket *sock;
1912
1913 if (optlen < 0)
1914 return -EINVAL;
1915
1916 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917 if (sock != NULL) {
1918 err = security_socket_setsockopt(sock, level, optname);
1919 if (err)
1920 goto out_put;
1921
1922 if (level == SOL_SOCKET)
1923 err =
1924 sock_setsockopt(sock, level, optname, optval,
1925 optlen);
1926 else
1927 err =
1928 sock->ops->setsockopt(sock, level, optname, optval,
1929 optlen);
1930 out_put:
1931 fput_light(sock->file, fput_needed);
1932 }
1933 return err;
1934 }
1935
1936 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1937 char __user *, optval, int, optlen)
1938 {
1939 return __sys_setsockopt(fd, level, optname, optval, optlen);
1940 }
1941
1942 /*
1943 * Get a socket option. Because we don't know the option lengths we have
1944 * to pass a user mode parameter for the protocols to sort out.
1945 */
1946
1947 static int __sys_getsockopt(int fd, int level, int optname,
1948 char __user *optval, int __user *optlen)
1949 {
1950 int err, fput_needed;
1951 struct socket *sock;
1952
1953 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1954 if (sock != NULL) {
1955 err = security_socket_getsockopt(sock, level, optname);
1956 if (err)
1957 goto out_put;
1958
1959 if (level == SOL_SOCKET)
1960 err =
1961 sock_getsockopt(sock, level, optname, optval,
1962 optlen);
1963 else
1964 err =
1965 sock->ops->getsockopt(sock, level, optname, optval,
1966 optlen);
1967 out_put:
1968 fput_light(sock->file, fput_needed);
1969 }
1970 return err;
1971 }
1972
1973 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1974 char __user *, optval, int __user *, optlen)
1975 {
1976 return __sys_getsockopt(fd, level, optname, optval, optlen);
1977 }
1978
1979 /*
1980 * Shutdown a socket.
1981 */
1982
1983 int __sys_shutdown(int fd, int how)
1984 {
1985 int err, fput_needed;
1986 struct socket *sock;
1987
1988 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1989 if (sock != NULL) {
1990 err = security_socket_shutdown(sock, how);
1991 if (!err)
1992 err = sock->ops->shutdown(sock, how);
1993 fput_light(sock->file, fput_needed);
1994 }
1995 return err;
1996 }
1997
1998 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1999 {
2000 return __sys_shutdown(fd, how);
2001 }
2002
2003 /* A couple of helpful macros for getting the address of the 32/64 bit
2004 * fields which are the same type (int / unsigned) on our platforms.
2005 */
2006 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2007 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2008 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2009
2010 struct used_address {
2011 struct sockaddr_storage name;
2012 unsigned int name_len;
2013 };
2014
2015 static int copy_msghdr_from_user(struct msghdr *kmsg,
2016 struct user_msghdr __user *umsg,
2017 struct sockaddr __user **save_addr,
2018 struct iovec **iov)
2019 {
2020 struct user_msghdr msg;
2021 ssize_t err;
2022
2023 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2024 return -EFAULT;
2025
2026 kmsg->msg_control = (void __force *)msg.msg_control;
2027 kmsg->msg_controllen = msg.msg_controllen;
2028 kmsg->msg_flags = msg.msg_flags;
2029
2030 kmsg->msg_namelen = msg.msg_namelen;
2031 if (!msg.msg_name)
2032 kmsg->msg_namelen = 0;
2033
2034 if (kmsg->msg_namelen < 0)
2035 return -EINVAL;
2036
2037 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2038 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2039
2040 if (save_addr)
2041 *save_addr = msg.msg_name;
2042
2043 if (msg.msg_name && kmsg->msg_namelen) {
2044 if (!save_addr) {
2045 err = move_addr_to_kernel(msg.msg_name,
2046 kmsg->msg_namelen,
2047 kmsg->msg_name);
2048 if (err < 0)
2049 return err;
2050 }
2051 } else {
2052 kmsg->msg_name = NULL;
2053 kmsg->msg_namelen = 0;
2054 }
2055
2056 if (msg.msg_iovlen > UIO_MAXIOV)
2057 return -EMSGSIZE;
2058
2059 kmsg->msg_iocb = NULL;
2060
2061 return import_iovec(save_addr ? READ : WRITE,
2062 msg.msg_iov, msg.msg_iovlen,
2063 UIO_FASTIOV, iov, &kmsg->msg_iter);
2064 }
2065
2066 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2067 struct msghdr *msg_sys, unsigned int flags,
2068 struct used_address *used_address,
2069 unsigned int allowed_msghdr_flags)
2070 {
2071 struct compat_msghdr __user *msg_compat =
2072 (struct compat_msghdr __user *)msg;
2073 struct sockaddr_storage address;
2074 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2075 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2076 __aligned(sizeof(__kernel_size_t));
2077 /* 20 is size of ipv6_pktinfo */
2078 unsigned char *ctl_buf = ctl;
2079 int ctl_len;
2080 ssize_t err;
2081
2082 msg_sys->msg_name = &address;
2083
2084 if (MSG_CMSG_COMPAT & flags)
2085 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2086 else
2087 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2088 if (err < 0)
2089 return err;
2090
2091 err = -ENOBUFS;
2092
2093 if (msg_sys->msg_controllen > INT_MAX)
2094 goto out_freeiov;
2095 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2096 ctl_len = msg_sys->msg_controllen;
2097 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2098 err =
2099 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2100 sizeof(ctl));
2101 if (err)
2102 goto out_freeiov;
2103 ctl_buf = msg_sys->msg_control;
2104 ctl_len = msg_sys->msg_controllen;
2105 } else if (ctl_len) {
2106 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2107 CMSG_ALIGN(sizeof(struct cmsghdr)));
2108 if (ctl_len > sizeof(ctl)) {
2109 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2110 if (ctl_buf == NULL)
2111 goto out_freeiov;
2112 }
2113 err = -EFAULT;
2114 /*
2115 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2116 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2117 * checking falls down on this.
2118 */
2119 if (copy_from_user(ctl_buf,
2120 (void __user __force *)msg_sys->msg_control,
2121 ctl_len))
2122 goto out_freectl;
2123 msg_sys->msg_control = ctl_buf;
2124 }
2125 msg_sys->msg_flags = flags;
2126
2127 if (sock->file->f_flags & O_NONBLOCK)
2128 msg_sys->msg_flags |= MSG_DONTWAIT;
2129 /*
2130 * If this is sendmmsg() and current destination address is same as
2131 * previously succeeded address, omit asking LSM's decision.
2132 * used_address->name_len is initialized to UINT_MAX so that the first
2133 * destination address never matches.
2134 */
2135 if (used_address && msg_sys->msg_name &&
2136 used_address->name_len == msg_sys->msg_namelen &&
2137 !memcmp(&used_address->name, msg_sys->msg_name,
2138 used_address->name_len)) {
2139 err = sock_sendmsg_nosec(sock, msg_sys);
2140 goto out_freectl;
2141 }
2142 err = sock_sendmsg(sock, msg_sys);
2143 /*
2144 * If this is sendmmsg() and sending to current destination address was
2145 * successful, remember it.
2146 */
2147 if (used_address && err >= 0) {
2148 used_address->name_len = msg_sys->msg_namelen;
2149 if (msg_sys->msg_name)
2150 memcpy(&used_address->name, msg_sys->msg_name,
2151 used_address->name_len);
2152 }
2153
2154 out_freectl:
2155 if (ctl_buf != ctl)
2156 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2157 out_freeiov:
2158 kfree(iov);
2159 return err;
2160 }
2161
2162 /*
2163 * BSD sendmsg interface
2164 */
2165
2166 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2167 bool forbid_cmsg_compat)
2168 {
2169 int fput_needed, err;
2170 struct msghdr msg_sys;
2171 struct socket *sock;
2172
2173 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2174 return -EINVAL;
2175
2176 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2177 if (!sock)
2178 goto out;
2179
2180 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2181
2182 fput_light(sock->file, fput_needed);
2183 out:
2184 return err;
2185 }
2186
2187 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2188 {
2189 return __sys_sendmsg(fd, msg, flags, true);
2190 }
2191
2192 /*
2193 * Linux sendmmsg interface
2194 */
2195
2196 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2197 unsigned int flags, bool forbid_cmsg_compat)
2198 {
2199 int fput_needed, err, datagrams;
2200 struct socket *sock;
2201 struct mmsghdr __user *entry;
2202 struct compat_mmsghdr __user *compat_entry;
2203 struct msghdr msg_sys;
2204 struct used_address used_address;
2205 unsigned int oflags = flags;
2206
2207 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2208 return -EINVAL;
2209
2210 if (vlen > UIO_MAXIOV)
2211 vlen = UIO_MAXIOV;
2212
2213 datagrams = 0;
2214
2215 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2216 if (!sock)
2217 return err;
2218
2219 used_address.name_len = UINT_MAX;
2220 entry = mmsg;
2221 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2222 err = 0;
2223 flags |= MSG_BATCH;
2224
2225 while (datagrams < vlen) {
2226 if (datagrams == vlen - 1)
2227 flags = oflags;
2228
2229 if (MSG_CMSG_COMPAT & flags) {
2230 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2231 &msg_sys, flags, &used_address, MSG_EOR);
2232 if (err < 0)
2233 break;
2234 err = __put_user(err, &compat_entry->msg_len);
2235 ++compat_entry;
2236 } else {
2237 err = ___sys_sendmsg(sock,
2238 (struct user_msghdr __user *)entry,
2239 &msg_sys, flags, &used_address, MSG_EOR);
2240 if (err < 0)
2241 break;
2242 err = put_user(err, &entry->msg_len);
2243 ++entry;
2244 }
2245
2246 if (err)
2247 break;
2248 ++datagrams;
2249 if (msg_data_left(&msg_sys))
2250 break;
2251 cond_resched();
2252 }
2253
2254 fput_light(sock->file, fput_needed);
2255
2256 /* We only return an error if no datagrams were able to be sent */
2257 if (datagrams != 0)
2258 return datagrams;
2259
2260 return err;
2261 }
2262
2263 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2264 unsigned int, vlen, unsigned int, flags)
2265 {
2266 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2267 }
2268
2269 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2270 struct msghdr *msg_sys, unsigned int flags, int nosec)
2271 {
2272 struct compat_msghdr __user *msg_compat =
2273 (struct compat_msghdr __user *)msg;
2274 struct iovec iovstack[UIO_FASTIOV];
2275 struct iovec *iov = iovstack;
2276 unsigned long cmsg_ptr;
2277 int len;
2278 ssize_t err;
2279
2280 /* kernel mode address */
2281 struct sockaddr_storage addr;
2282
2283 /* user mode address pointers */
2284 struct sockaddr __user *uaddr;
2285 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2286
2287 msg_sys->msg_name = &addr;
2288
2289 if (MSG_CMSG_COMPAT & flags)
2290 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2291 else
2292 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2293 if (err < 0)
2294 return err;
2295
2296 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2297 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2298
2299 /* We assume all kernel code knows the size of sockaddr_storage */
2300 msg_sys->msg_namelen = 0;
2301
2302 if (sock->file->f_flags & O_NONBLOCK)
2303 flags |= MSG_DONTWAIT;
2304 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2305 if (err < 0)
2306 goto out_freeiov;
2307 len = err;
2308
2309 if (uaddr != NULL) {
2310 err = move_addr_to_user(&addr,
2311 msg_sys->msg_namelen, uaddr,
2312 uaddr_len);
2313 if (err < 0)
2314 goto out_freeiov;
2315 }
2316 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2317 COMPAT_FLAGS(msg));
2318 if (err)
2319 goto out_freeiov;
2320 if (MSG_CMSG_COMPAT & flags)
2321 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2322 &msg_compat->msg_controllen);
2323 else
2324 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2325 &msg->msg_controllen);
2326 if (err)
2327 goto out_freeiov;
2328 err = len;
2329
2330 out_freeiov:
2331 kfree(iov);
2332 return err;
2333 }
2334
2335 /*
2336 * BSD recvmsg interface
2337 */
2338
2339 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2340 bool forbid_cmsg_compat)
2341 {
2342 int fput_needed, err;
2343 struct msghdr msg_sys;
2344 struct socket *sock;
2345
2346 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2347 return -EINVAL;
2348
2349 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2350 if (!sock)
2351 goto out;
2352
2353 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2354
2355 fput_light(sock->file, fput_needed);
2356 out:
2357 return err;
2358 }
2359
2360 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2361 unsigned int, flags)
2362 {
2363 return __sys_recvmsg(fd, msg, flags, true);
2364 }
2365
2366 /*
2367 * Linux recvmmsg interface
2368 */
2369
2370 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2371 unsigned int flags, struct timespec *timeout)
2372 {
2373 int fput_needed, err, datagrams;
2374 struct socket *sock;
2375 struct mmsghdr __user *entry;
2376 struct compat_mmsghdr __user *compat_entry;
2377 struct msghdr msg_sys;
2378 struct timespec64 end_time;
2379 struct timespec64 timeout64;
2380
2381 if (timeout &&
2382 poll_select_set_timeout(&end_time, timeout->tv_sec,
2383 timeout->tv_nsec))
2384 return -EINVAL;
2385
2386 datagrams = 0;
2387
2388 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2389 if (!sock)
2390 return err;
2391
2392 if (likely(!(flags & MSG_ERRQUEUE))) {
2393 err = sock_error(sock->sk);
2394 if (err) {
2395 datagrams = err;
2396 goto out_put;
2397 }
2398 }
2399
2400 entry = mmsg;
2401 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2402
2403 while (datagrams < vlen) {
2404 /*
2405 * No need to ask LSM for more than the first datagram.
2406 */
2407 if (MSG_CMSG_COMPAT & flags) {
2408 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2409 &msg_sys, flags & ~MSG_WAITFORONE,
2410 datagrams);
2411 if (err < 0)
2412 break;
2413 err = __put_user(err, &compat_entry->msg_len);
2414 ++compat_entry;
2415 } else {
2416 err = ___sys_recvmsg(sock,
2417 (struct user_msghdr __user *)entry,
2418 &msg_sys, flags & ~MSG_WAITFORONE,
2419 datagrams);
2420 if (err < 0)
2421 break;
2422 err = put_user(err, &entry->msg_len);
2423 ++entry;
2424 }
2425
2426 if (err)
2427 break;
2428 ++datagrams;
2429
2430 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2431 if (flags & MSG_WAITFORONE)
2432 flags |= MSG_DONTWAIT;
2433
2434 if (timeout) {
2435 ktime_get_ts64(&timeout64);
2436 *timeout = timespec64_to_timespec(
2437 timespec64_sub(end_time, timeout64));
2438 if (timeout->tv_sec < 0) {
2439 timeout->tv_sec = timeout->tv_nsec = 0;
2440 break;
2441 }
2442
2443 /* Timeout, return less than vlen datagrams */
2444 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2445 break;
2446 }
2447
2448 /* Out of band data, return right away */
2449 if (msg_sys.msg_flags & MSG_OOB)
2450 break;
2451 cond_resched();
2452 }
2453
2454 if (err == 0)
2455 goto out_put;
2456
2457 if (datagrams == 0) {
2458 datagrams = err;
2459 goto out_put;
2460 }
2461
2462 /*
2463 * We may return less entries than requested (vlen) if the
2464 * sock is non block and there aren't enough datagrams...
2465 */
2466 if (err != -EAGAIN) {
2467 /*
2468 * ... or if recvmsg returns an error after we
2469 * received some datagrams, where we record the
2470 * error to return on the next call or if the
2471 * app asks about it using getsockopt(SO_ERROR).
2472 */
2473 sock->sk->sk_err = -err;
2474 }
2475 out_put:
2476 fput_light(sock->file, fput_needed);
2477
2478 return datagrams;
2479 }
2480
2481 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2482 unsigned int vlen, unsigned int flags,
2483 struct timespec __user *timeout)
2484 {
2485 int datagrams;
2486 struct timespec timeout_sys;
2487
2488 if (flags & MSG_CMSG_COMPAT)
2489 return -EINVAL;
2490
2491 if (!timeout)
2492 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2493
2494 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2495 return -EFAULT;
2496
2497 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2498
2499 if (datagrams > 0 &&
2500 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2501 datagrams = -EFAULT;
2502
2503 return datagrams;
2504 }
2505
2506 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2507 unsigned int, vlen, unsigned int, flags,
2508 struct timespec __user *, timeout)
2509 {
2510 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2511 }
2512
2513 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2514 /* Argument list sizes for sys_socketcall */
2515 #define AL(x) ((x) * sizeof(unsigned long))
2516 static const unsigned char nargs[21] = {
2517 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2518 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2519 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2520 AL(4), AL(5), AL(4)
2521 };
2522
2523 #undef AL
2524
2525 /*
2526 * System call vectors.
2527 *
2528 * Argument checking cleaned up. Saved 20% in size.
2529 * This function doesn't need to set the kernel lock because
2530 * it is set by the callees.
2531 */
2532
2533 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2534 {
2535 unsigned long a[AUDITSC_ARGS];
2536 unsigned long a0, a1;
2537 int err;
2538 unsigned int len;
2539
2540 if (call < 1 || call > SYS_SENDMMSG)
2541 return -EINVAL;
2542
2543 len = nargs[call];
2544 if (len > sizeof(a))
2545 return -EINVAL;
2546
2547 /* copy_from_user should be SMP safe. */
2548 if (copy_from_user(a, args, len))
2549 return -EFAULT;
2550
2551 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2552 if (err)
2553 return err;
2554
2555 a0 = a[0];
2556 a1 = a[1];
2557
2558 switch (call) {
2559 case SYS_SOCKET:
2560 err = __sys_socket(a0, a1, a[2]);
2561 break;
2562 case SYS_BIND:
2563 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2564 break;
2565 case SYS_CONNECT:
2566 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2567 break;
2568 case SYS_LISTEN:
2569 err = __sys_listen(a0, a1);
2570 break;
2571 case SYS_ACCEPT:
2572 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2573 (int __user *)a[2], 0);
2574 break;
2575 case SYS_GETSOCKNAME:
2576 err =
2577 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2578 (int __user *)a[2]);
2579 break;
2580 case SYS_GETPEERNAME:
2581 err =
2582 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2583 (int __user *)a[2]);
2584 break;
2585 case SYS_SOCKETPAIR:
2586 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2587 break;
2588 case SYS_SEND:
2589 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2590 NULL, 0);
2591 break;
2592 case SYS_SENDTO:
2593 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2594 (struct sockaddr __user *)a[4], a[5]);
2595 break;
2596 case SYS_RECV:
2597 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2598 NULL, NULL);
2599 break;
2600 case SYS_RECVFROM:
2601 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2602 (struct sockaddr __user *)a[4],
2603 (int __user *)a[5]);
2604 break;
2605 case SYS_SHUTDOWN:
2606 err = __sys_shutdown(a0, a1);
2607 break;
2608 case SYS_SETSOCKOPT:
2609 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2610 a[4]);
2611 break;
2612 case SYS_GETSOCKOPT:
2613 err =
2614 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2615 (int __user *)a[4]);
2616 break;
2617 case SYS_SENDMSG:
2618 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2619 a[2], true);
2620 break;
2621 case SYS_SENDMMSG:
2622 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2623 a[3], true);
2624 break;
2625 case SYS_RECVMSG:
2626 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2627 a[2], true);
2628 break;
2629 case SYS_RECVMMSG:
2630 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2631 a[3], (struct timespec __user *)a[4]);
2632 break;
2633 case SYS_ACCEPT4:
2634 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2635 (int __user *)a[2], a[3]);
2636 break;
2637 default:
2638 err = -EINVAL;
2639 break;
2640 }
2641 return err;
2642 }
2643
2644 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2645
2646 /**
2647 * sock_register - add a socket protocol handler
2648 * @ops: description of protocol
2649 *
2650 * This function is called by a protocol handler that wants to
2651 * advertise its address family, and have it linked into the
2652 * socket interface. The value ops->family corresponds to the
2653 * socket system call protocol family.
2654 */
2655 int sock_register(const struct net_proto_family *ops)
2656 {
2657 int err;
2658
2659 if (ops->family >= NPROTO) {
2660 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2661 return -ENOBUFS;
2662 }
2663
2664 spin_lock(&net_family_lock);
2665 if (rcu_dereference_protected(net_families[ops->family],
2666 lockdep_is_held(&net_family_lock)))
2667 err = -EEXIST;
2668 else {
2669 rcu_assign_pointer(net_families[ops->family], ops);
2670 err = 0;
2671 }
2672 spin_unlock(&net_family_lock);
2673
2674 pr_info("NET: Registered protocol family %d\n", ops->family);
2675 return err;
2676 }
2677 EXPORT_SYMBOL(sock_register);
2678
2679 /**
2680 * sock_unregister - remove a protocol handler
2681 * @family: protocol family to remove
2682 *
2683 * This function is called by a protocol handler that wants to
2684 * remove its address family, and have it unlinked from the
2685 * new socket creation.
2686 *
2687 * If protocol handler is a module, then it can use module reference
2688 * counts to protect against new references. If protocol handler is not
2689 * a module then it needs to provide its own protection in
2690 * the ops->create routine.
2691 */
2692 void sock_unregister(int family)
2693 {
2694 BUG_ON(family < 0 || family >= NPROTO);
2695
2696 spin_lock(&net_family_lock);
2697 RCU_INIT_POINTER(net_families[family], NULL);
2698 spin_unlock(&net_family_lock);
2699
2700 synchronize_rcu();
2701
2702 pr_info("NET: Unregistered protocol family %d\n", family);
2703 }
2704 EXPORT_SYMBOL(sock_unregister);
2705
2706 bool sock_is_registered(int family)
2707 {
2708 return family < NPROTO && rcu_access_pointer(net_families[family]);
2709 }
2710
2711 static int __init sock_init(void)
2712 {
2713 int err;
2714 /*
2715 * Initialize the network sysctl infrastructure.
2716 */
2717 err = net_sysctl_init();
2718 if (err)
2719 goto out;
2720
2721 /*
2722 * Initialize skbuff SLAB cache
2723 */
2724 skb_init();
2725
2726 /*
2727 * Initialize the protocols module.
2728 */
2729
2730 init_inodecache();
2731
2732 err = register_filesystem(&sock_fs_type);
2733 if (err)
2734 goto out_fs;
2735 sock_mnt = kern_mount(&sock_fs_type);
2736 if (IS_ERR(sock_mnt)) {
2737 err = PTR_ERR(sock_mnt);
2738 goto out_mount;
2739 }
2740
2741 /* The real protocol initialization is performed in later initcalls.
2742 */
2743
2744 #ifdef CONFIG_NETFILTER
2745 err = netfilter_init();
2746 if (err)
2747 goto out;
2748 #endif
2749
2750 ptp_classifier_init();
2751
2752 out:
2753 return err;
2754
2755 out_mount:
2756 unregister_filesystem(&sock_fs_type);
2757 out_fs:
2758 goto out;
2759 }
2760
2761 core_initcall(sock_init); /* early initcall */
2762
2763 #ifdef CONFIG_PROC_FS
2764 void socket_seq_show(struct seq_file *seq)
2765 {
2766 seq_printf(seq, "sockets: used %d\n",
2767 sock_inuse_get(seq->private));
2768 }
2769 #endif /* CONFIG_PROC_FS */
2770
2771 #ifdef CONFIG_COMPAT
2772 static int do_siocgstamp(struct net *net, struct socket *sock,
2773 unsigned int cmd, void __user *up)
2774 {
2775 mm_segment_t old_fs = get_fs();
2776 struct timeval ktv;
2777 int err;
2778
2779 set_fs(KERNEL_DS);
2780 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2781 set_fs(old_fs);
2782 if (!err)
2783 err = compat_put_timeval(&ktv, up);
2784
2785 return err;
2786 }
2787
2788 static int do_siocgstampns(struct net *net, struct socket *sock,
2789 unsigned int cmd, void __user *up)
2790 {
2791 mm_segment_t old_fs = get_fs();
2792 struct timespec kts;
2793 int err;
2794
2795 set_fs(KERNEL_DS);
2796 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2797 set_fs(old_fs);
2798 if (!err)
2799 err = compat_put_timespec(&kts, up);
2800
2801 return err;
2802 }
2803
2804 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2805 {
2806 struct compat_ifconf ifc32;
2807 struct ifconf ifc;
2808 int err;
2809
2810 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2811 return -EFAULT;
2812
2813 ifc.ifc_len = ifc32.ifc_len;
2814 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2815
2816 rtnl_lock();
2817 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2818 rtnl_unlock();
2819 if (err)
2820 return err;
2821
2822 ifc32.ifc_len = ifc.ifc_len;
2823 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2824 return -EFAULT;
2825
2826 return 0;
2827 }
2828
2829 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2830 {
2831 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2832 bool convert_in = false, convert_out = false;
2833 size_t buf_size = 0;
2834 struct ethtool_rxnfc __user *rxnfc = NULL;
2835 struct ifreq ifr;
2836 u32 rule_cnt = 0, actual_rule_cnt;
2837 u32 ethcmd;
2838 u32 data;
2839 int ret;
2840
2841 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2842 return -EFAULT;
2843
2844 compat_rxnfc = compat_ptr(data);
2845
2846 if (get_user(ethcmd, &compat_rxnfc->cmd))
2847 return -EFAULT;
2848
2849 /* Most ethtool structures are defined without padding.
2850 * Unfortunately struct ethtool_rxnfc is an exception.
2851 */
2852 switch (ethcmd) {
2853 default:
2854 break;
2855 case ETHTOOL_GRXCLSRLALL:
2856 /* Buffer size is variable */
2857 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2858 return -EFAULT;
2859 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2860 return -ENOMEM;
2861 buf_size += rule_cnt * sizeof(u32);
2862 /* fall through */
2863 case ETHTOOL_GRXRINGS:
2864 case ETHTOOL_GRXCLSRLCNT:
2865 case ETHTOOL_GRXCLSRULE:
2866 case ETHTOOL_SRXCLSRLINS:
2867 convert_out = true;
2868 /* fall through */
2869 case ETHTOOL_SRXCLSRLDEL:
2870 buf_size += sizeof(struct ethtool_rxnfc);
2871 convert_in = true;
2872 rxnfc = compat_alloc_user_space(buf_size);
2873 break;
2874 }
2875
2876 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2877 return -EFAULT;
2878
2879 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2880
2881 if (convert_in) {
2882 /* We expect there to be holes between fs.m_ext and
2883 * fs.ring_cookie and at the end of fs, but nowhere else.
2884 */
2885 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2886 sizeof(compat_rxnfc->fs.m_ext) !=
2887 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2888 sizeof(rxnfc->fs.m_ext));
2889 BUILD_BUG_ON(
2890 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2891 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2892 offsetof(struct ethtool_rxnfc, fs.location) -
2893 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2894
2895 if (copy_in_user(rxnfc, compat_rxnfc,
2896 (void __user *)(&rxnfc->fs.m_ext + 1) -
2897 (void __user *)rxnfc) ||
2898 copy_in_user(&rxnfc->fs.ring_cookie,
2899 &compat_rxnfc->fs.ring_cookie,
2900 (void __user *)(&rxnfc->fs.location + 1) -
2901 (void __user *)&rxnfc->fs.ring_cookie) ||
2902 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2903 sizeof(rxnfc->rule_cnt)))
2904 return -EFAULT;
2905 }
2906
2907 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2908 if (ret)
2909 return ret;
2910
2911 if (convert_out) {
2912 if (copy_in_user(compat_rxnfc, rxnfc,
2913 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2914 (const void __user *)rxnfc) ||
2915 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2916 &rxnfc->fs.ring_cookie,
2917 (const void __user *)(&rxnfc->fs.location + 1) -
2918 (const void __user *)&rxnfc->fs.ring_cookie) ||
2919 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2920 sizeof(rxnfc->rule_cnt)))
2921 return -EFAULT;
2922
2923 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2924 /* As an optimisation, we only copy the actual
2925 * number of rules that the underlying
2926 * function returned. Since Mallory might
2927 * change the rule count in user memory, we
2928 * check that it is less than the rule count
2929 * originally given (as the user buffer size),
2930 * which has been range-checked.
2931 */
2932 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2933 return -EFAULT;
2934 if (actual_rule_cnt < rule_cnt)
2935 rule_cnt = actual_rule_cnt;
2936 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2937 &rxnfc->rule_locs[0],
2938 rule_cnt * sizeof(u32)))
2939 return -EFAULT;
2940 }
2941 }
2942
2943 return 0;
2944 }
2945
2946 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2947 {
2948 compat_uptr_t uptr32;
2949 struct ifreq ifr;
2950 void __user *saved;
2951 int err;
2952
2953 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2954 return -EFAULT;
2955
2956 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2957 return -EFAULT;
2958
2959 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2960 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2961
2962 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2963 if (!err) {
2964 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2965 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2966 err = -EFAULT;
2967 }
2968 return err;
2969 }
2970
2971 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2972 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2973 struct compat_ifreq __user *u_ifreq32)
2974 {
2975 struct ifreq ifreq;
2976 u32 data32;
2977
2978 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2979 return -EFAULT;
2980 if (get_user(data32, &u_ifreq32->ifr_data))
2981 return -EFAULT;
2982 ifreq.ifr_data = compat_ptr(data32);
2983
2984 return dev_ioctl(net, cmd, &ifreq, NULL);
2985 }
2986
2987 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2988 struct compat_ifreq __user *uifr32)
2989 {
2990 struct ifreq ifr;
2991 struct compat_ifmap __user *uifmap32;
2992 int err;
2993
2994 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2995 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2996 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2997 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2998 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2999 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3000 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3001 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3002 if (err)
3003 return -EFAULT;
3004
3005 err = dev_ioctl(net, cmd, &ifr, NULL);
3006
3007 if (cmd == SIOCGIFMAP && !err) {
3008 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3009 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3010 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3011 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3012 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3013 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3014 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3015 if (err)
3016 err = -EFAULT;
3017 }
3018 return err;
3019 }
3020
3021 struct rtentry32 {
3022 u32 rt_pad1;
3023 struct sockaddr rt_dst; /* target address */
3024 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3025 struct sockaddr rt_genmask; /* target network mask (IP) */
3026 unsigned short rt_flags;
3027 short rt_pad2;
3028 u32 rt_pad3;
3029 unsigned char rt_tos;
3030 unsigned char rt_class;
3031 short rt_pad4;
3032 short rt_metric; /* +1 for binary compatibility! */
3033 /* char * */ u32 rt_dev; /* forcing the device at add */
3034 u32 rt_mtu; /* per route MTU/Window */
3035 u32 rt_window; /* Window clamping */
3036 unsigned short rt_irtt; /* Initial RTT */
3037 };
3038
3039 struct in6_rtmsg32 {
3040 struct in6_addr rtmsg_dst;
3041 struct in6_addr rtmsg_src;
3042 struct in6_addr rtmsg_gateway;
3043 u32 rtmsg_type;
3044 u16 rtmsg_dst_len;
3045 u16 rtmsg_src_len;
3046 u32 rtmsg_metric;
3047 u32 rtmsg_info;
3048 u32 rtmsg_flags;
3049 s32 rtmsg_ifindex;
3050 };
3051
3052 static int routing_ioctl(struct net *net, struct socket *sock,
3053 unsigned int cmd, void __user *argp)
3054 {
3055 int ret;
3056 void *r = NULL;
3057 struct in6_rtmsg r6;
3058 struct rtentry r4;
3059 char devname[16];
3060 u32 rtdev;
3061 mm_segment_t old_fs = get_fs();
3062
3063 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3064 struct in6_rtmsg32 __user *ur6 = argp;
3065 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3066 3 * sizeof(struct in6_addr));
3067 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3068 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3069 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3070 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3071 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3072 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3073 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3074
3075 r = (void *) &r6;
3076 } else { /* ipv4 */
3077 struct rtentry32 __user *ur4 = argp;
3078 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3079 3 * sizeof(struct sockaddr));
3080 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3081 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3082 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3083 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3084 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3085 ret |= get_user(rtdev, &(ur4->rt_dev));
3086 if (rtdev) {
3087 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3088 r4.rt_dev = (char __user __force *)devname;
3089 devname[15] = 0;
3090 } else
3091 r4.rt_dev = NULL;
3092
3093 r = (void *) &r4;
3094 }
3095
3096 if (ret) {
3097 ret = -EFAULT;
3098 goto out;
3099 }
3100
3101 set_fs(KERNEL_DS);
3102 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3103 set_fs(old_fs);
3104
3105 out:
3106 return ret;
3107 }
3108
3109 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3110 * for some operations; this forces use of the newer bridge-utils that
3111 * use compatible ioctls
3112 */
3113 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3114 {
3115 compat_ulong_t tmp;
3116
3117 if (get_user(tmp, argp))
3118 return -EFAULT;
3119 if (tmp == BRCTL_GET_VERSION)
3120 return BRCTL_VERSION + 1;
3121 return -EINVAL;
3122 }
3123
3124 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3125 unsigned int cmd, unsigned long arg)
3126 {
3127 void __user *argp = compat_ptr(arg);
3128 struct sock *sk = sock->sk;
3129 struct net *net = sock_net(sk);
3130
3131 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3132 return compat_ifr_data_ioctl(net, cmd, argp);
3133
3134 switch (cmd) {
3135 case SIOCSIFBR:
3136 case SIOCGIFBR:
3137 return old_bridge_ioctl(argp);
3138 case SIOCGIFCONF:
3139 return compat_dev_ifconf(net, argp);
3140 case SIOCETHTOOL:
3141 return ethtool_ioctl(net, argp);
3142 case SIOCWANDEV:
3143 return compat_siocwandev(net, argp);
3144 case SIOCGIFMAP:
3145 case SIOCSIFMAP:
3146 return compat_sioc_ifmap(net, cmd, argp);
3147 case SIOCADDRT:
3148 case SIOCDELRT:
3149 return routing_ioctl(net, sock, cmd, argp);
3150 case SIOCGSTAMP:
3151 return do_siocgstamp(net, sock, cmd, argp);
3152 case SIOCGSTAMPNS:
3153 return do_siocgstampns(net, sock, cmd, argp);
3154 case SIOCBONDSLAVEINFOQUERY:
3155 case SIOCBONDINFOQUERY:
3156 case SIOCSHWTSTAMP:
3157 case SIOCGHWTSTAMP:
3158 return compat_ifr_data_ioctl(net, cmd, argp);
3159
3160 case FIOSETOWN:
3161 case SIOCSPGRP:
3162 case FIOGETOWN:
3163 case SIOCGPGRP:
3164 case SIOCBRADDBR:
3165 case SIOCBRDELBR:
3166 case SIOCGIFVLAN:
3167 case SIOCSIFVLAN:
3168 case SIOCADDDLCI:
3169 case SIOCDELDLCI:
3170 case SIOCGSKNS:
3171 return sock_ioctl(file, cmd, arg);
3172
3173 case SIOCGIFFLAGS:
3174 case SIOCSIFFLAGS:
3175 case SIOCGIFMETRIC:
3176 case SIOCSIFMETRIC:
3177 case SIOCGIFMTU:
3178 case SIOCSIFMTU:
3179 case SIOCGIFMEM:
3180 case SIOCSIFMEM:
3181 case SIOCGIFHWADDR:
3182 case SIOCSIFHWADDR:
3183 case SIOCADDMULTI:
3184 case SIOCDELMULTI:
3185 case SIOCGIFINDEX:
3186 case SIOCGIFADDR:
3187 case SIOCSIFADDR:
3188 case SIOCSIFHWBROADCAST:
3189 case SIOCDIFADDR:
3190 case SIOCGIFBRDADDR:
3191 case SIOCSIFBRDADDR:
3192 case SIOCGIFDSTADDR:
3193 case SIOCSIFDSTADDR:
3194 case SIOCGIFNETMASK:
3195 case SIOCSIFNETMASK:
3196 case SIOCSIFPFLAGS:
3197 case SIOCGIFPFLAGS:
3198 case SIOCGIFTXQLEN:
3199 case SIOCSIFTXQLEN:
3200 case SIOCBRADDIF:
3201 case SIOCBRDELIF:
3202 case SIOCSIFNAME:
3203 case SIOCGMIIPHY:
3204 case SIOCGMIIREG:
3205 case SIOCSMIIREG:
3206 case SIOCSARP:
3207 case SIOCGARP:
3208 case SIOCDARP:
3209 case SIOCATMARK:
3210 case SIOCBONDENSLAVE:
3211 case SIOCBONDRELEASE:
3212 case SIOCBONDSETHWADDR:
3213 case SIOCBONDCHANGEACTIVE:
3214 case SIOCGIFNAME:
3215 return sock_do_ioctl(net, sock, cmd, arg);
3216 }
3217
3218 return -ENOIOCTLCMD;
3219 }
3220
3221 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3222 unsigned long arg)
3223 {
3224 struct socket *sock = file->private_data;
3225 int ret = -ENOIOCTLCMD;
3226 struct sock *sk;
3227 struct net *net;
3228
3229 sk = sock->sk;
3230 net = sock_net(sk);
3231
3232 if (sock->ops->compat_ioctl)
3233 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3234
3235 if (ret == -ENOIOCTLCMD &&
3236 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3237 ret = compat_wext_handle_ioctl(net, cmd, arg);
3238
3239 if (ret == -ENOIOCTLCMD)
3240 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3241
3242 return ret;
3243 }
3244 #endif
3245
3246 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3247 {
3248 return sock->ops->bind(sock, addr, addrlen);
3249 }
3250 EXPORT_SYMBOL(kernel_bind);
3251
3252 int kernel_listen(struct socket *sock, int backlog)
3253 {
3254 return sock->ops->listen(sock, backlog);
3255 }
3256 EXPORT_SYMBOL(kernel_listen);
3257
3258 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3259 {
3260 struct sock *sk = sock->sk;
3261 int err;
3262
3263 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3264 newsock);
3265 if (err < 0)
3266 goto done;
3267
3268 err = sock->ops->accept(sock, *newsock, flags, true);
3269 if (err < 0) {
3270 sock_release(*newsock);
3271 *newsock = NULL;
3272 goto done;
3273 }
3274
3275 (*newsock)->ops = sock->ops;
3276 __module_get((*newsock)->ops->owner);
3277
3278 done:
3279 return err;
3280 }
3281 EXPORT_SYMBOL(kernel_accept);
3282
3283 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3284 int flags)
3285 {
3286 return sock->ops->connect(sock, addr, addrlen, flags);
3287 }
3288 EXPORT_SYMBOL(kernel_connect);
3289
3290 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3291 {
3292 return sock->ops->getname(sock, addr, 0);
3293 }
3294 EXPORT_SYMBOL(kernel_getsockname);
3295
3296 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3297 {
3298 return sock->ops->getname(sock, addr, 1);
3299 }
3300 EXPORT_SYMBOL(kernel_getpeername);
3301
3302 int kernel_getsockopt(struct socket *sock, int level, int optname,
3303 char *optval, int *optlen)
3304 {
3305 mm_segment_t oldfs = get_fs();
3306 char __user *uoptval;
3307 int __user *uoptlen;
3308 int err;
3309
3310 uoptval = (char __user __force *) optval;
3311 uoptlen = (int __user __force *) optlen;
3312
3313 set_fs(KERNEL_DS);
3314 if (level == SOL_SOCKET)
3315 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3316 else
3317 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3318 uoptlen);
3319 set_fs(oldfs);
3320 return err;
3321 }
3322 EXPORT_SYMBOL(kernel_getsockopt);
3323
3324 int kernel_setsockopt(struct socket *sock, int level, int optname,
3325 char *optval, unsigned int optlen)
3326 {
3327 mm_segment_t oldfs = get_fs();
3328 char __user *uoptval;
3329 int err;
3330
3331 uoptval = (char __user __force *) optval;
3332
3333 set_fs(KERNEL_DS);
3334 if (level == SOL_SOCKET)
3335 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3336 else
3337 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3338 optlen);
3339 set_fs(oldfs);
3340 return err;
3341 }
3342 EXPORT_SYMBOL(kernel_setsockopt);
3343
3344 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3345 size_t size, int flags)
3346 {
3347 if (sock->ops->sendpage)
3348 return sock->ops->sendpage(sock, page, offset, size, flags);
3349
3350 return sock_no_sendpage(sock, page, offset, size, flags);
3351 }
3352 EXPORT_SYMBOL(kernel_sendpage);
3353
3354 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3355 size_t size, int flags)
3356 {
3357 struct socket *sock = sk->sk_socket;
3358
3359 if (sock->ops->sendpage_locked)
3360 return sock->ops->sendpage_locked(sk, page, offset, size,
3361 flags);
3362
3363 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3364 }
3365 EXPORT_SYMBOL(kernel_sendpage_locked);
3366
3367 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3368 {
3369 return sock->ops->shutdown(sock, how);
3370 }
3371 EXPORT_SYMBOL(kernel_sock_shutdown);
3372
3373 /* This routine returns the IP overhead imposed by a socket i.e.
3374 * the length of the underlying IP header, depending on whether
3375 * this is an IPv4 or IPv6 socket and the length from IP options turned
3376 * on at the socket. Assumes that the caller has a lock on the socket.
3377 */
3378 u32 kernel_sock_ip_overhead(struct sock *sk)
3379 {
3380 struct inet_sock *inet;
3381 struct ip_options_rcu *opt;
3382 u32 overhead = 0;
3383 #if IS_ENABLED(CONFIG_IPV6)
3384 struct ipv6_pinfo *np;
3385 struct ipv6_txoptions *optv6 = NULL;
3386 #endif /* IS_ENABLED(CONFIG_IPV6) */
3387
3388 if (!sk)
3389 return overhead;
3390
3391 switch (sk->sk_family) {
3392 case AF_INET:
3393 inet = inet_sk(sk);
3394 overhead += sizeof(struct iphdr);
3395 opt = rcu_dereference_protected(inet->inet_opt,
3396 sock_owned_by_user(sk));
3397 if (opt)
3398 overhead += opt->opt.optlen;
3399 return overhead;
3400 #if IS_ENABLED(CONFIG_IPV6)
3401 case AF_INET6:
3402 np = inet6_sk(sk);
3403 overhead += sizeof(struct ipv6hdr);
3404 if (np)
3405 optv6 = rcu_dereference_protected(np->opt,
3406 sock_owned_by_user(sk));
3407 if (optv6)
3408 overhead += (optv6->opt_flen + optv6->opt_nflen);
3409 return overhead;
3410 #endif /* IS_ENABLED(CONFIG_IPV6) */
3411 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3412 return overhead;
3413 }
3414 }
3415 EXPORT_SYMBOL(kernel_sock_ip_overhead);