]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/socket.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266
267
268 static void wq_free_rcu(struct rcu_head *head)
269 {
270 struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
271
272 kfree(wq);
273 }
274
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 struct socket_alloc *ei;
278 struct socket_wq *wq;
279
280 ei = container_of(inode, struct socket_alloc, vfs_inode);
281 wq = rcu_dereference_protected(ei->socket.wq, 1);
282 call_rcu(&wq->rcu, wq_free_rcu);
283 kmem_cache_free(sock_inode_cachep, ei);
284 }
285
286 static void init_once(void *foo)
287 {
288 struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290 inode_init_once(&ei->vfs_inode);
291 }
292
293 static int init_inodecache(void)
294 {
295 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 sizeof(struct socket_alloc),
297 0,
298 (SLAB_HWCACHE_ALIGN |
299 SLAB_RECLAIM_ACCOUNT |
300 SLAB_MEM_SPREAD),
301 init_once);
302 if (sock_inode_cachep == NULL)
303 return -ENOMEM;
304 return 0;
305 }
306
307 static const struct super_operations sockfs_ops = {
308 .alloc_inode = sock_alloc_inode,
309 .destroy_inode = sock_destroy_inode,
310 .statfs = simple_statfs,
311 };
312
313 /*
314 * sockfs_dname() is called from d_path().
315 */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 dentry->d_inode->i_ino);
320 }
321
322 static const struct dentry_operations sockfs_dentry_operations = {
323 .d_dname = sockfs_dname,
324 };
325
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name, void *data)
328 {
329 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332
333 static struct vfsmount *sock_mnt __read_mostly;
334
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .mount = sockfs_mount,
338 .kill_sb = kill_anon_super,
339 };
340
341 /*
342 * Obtains the first available file descriptor and sets it up for use.
343 *
344 * These functions create file structures and maps them to fd space
345 * of the current process. On success it returns file descriptor
346 * and file struct implicitly stored in sock->file.
347 * Note that another thread may close file descriptor before we return
348 * from this function. We use the fact that now we do not refer
349 * to socket after mapping. If one day we will need it, this
350 * function will increment ref. count on file by 1.
351 *
352 * In any case returned fd MAY BE not valid!
353 * This race condition is unavoidable
354 * with shared fd spaces, we cannot solve it inside kernel,
355 * but we take care of internal coherence yet.
356 */
357
358 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
359 {
360 struct qstr name = { .name = "" };
361 struct path path;
362 struct file *file;
363 int fd;
364
365 fd = get_unused_fd_flags(flags);
366 if (unlikely(fd < 0))
367 return fd;
368
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry)) {
371 put_unused_fd(fd);
372 return -ENOMEM;
373 }
374 path.mnt = mntget(sock_mnt);
375
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 &socket_file_ops);
381 if (unlikely(!file)) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
384 path_put(&path);
385 put_unused_fd(fd);
386 return -ENFILE;
387 }
388
389 sock->file = file;
390 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
391 file->f_pos = 0;
392 file->private_data = sock;
393
394 *f = file;
395 return fd;
396 }
397
398 int sock_map_fd(struct socket *sock, int flags)
399 {
400 struct file *newfile;
401 int fd = sock_alloc_file(sock, &newfile, flags);
402
403 if (likely(fd >= 0))
404 fd_install(fd, newfile);
405
406 return fd;
407 }
408 EXPORT_SYMBOL(sock_map_fd);
409
410 static struct socket *sock_from_file(struct file *file, int *err)
411 {
412 if (file->f_op == &socket_file_ops)
413 return file->private_data; /* set in sock_map_fd */
414
415 *err = -ENOTSOCK;
416 return NULL;
417 }
418
419 /**
420 * sockfd_lookup - Go from a file number to its socket slot
421 * @fd: file handle
422 * @err: pointer to an error code return
423 *
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
428 *
429 * On a success the socket object pointer is returned.
430 */
431
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 struct file *file;
435 struct socket *sock;
436
437 file = fget(fd);
438 if (!file) {
439 *err = -EBADF;
440 return NULL;
441 }
442
443 sock = sock_from_file(file, err);
444 if (!sock)
445 fput(file);
446 return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 struct file *file;
453 struct socket *sock;
454
455 *err = -EBADF;
456 file = fget_light(fd, fput_needed);
457 if (file) {
458 sock = sock_from_file(file, err);
459 if (sock)
460 return sock;
461 fput_light(file, *fput_needed);
462 }
463 return NULL;
464 }
465
466 /**
467 * sock_alloc - allocate a socket
468 *
469 * Allocate a new inode and socket object. The two are bound together
470 * and initialised. The socket is then returned. If we are out of inodes
471 * NULL is returned.
472 */
473
474 static struct socket *sock_alloc(void)
475 {
476 struct inode *inode;
477 struct socket *sock;
478
479 inode = new_inode(sock_mnt->mnt_sb);
480 if (!inode)
481 return NULL;
482
483 sock = SOCKET_I(inode);
484
485 kmemcheck_annotate_bitfield(sock, type);
486 inode->i_ino = get_next_ino();
487 inode->i_mode = S_IFSOCK | S_IRWXUGO;
488 inode->i_uid = current_fsuid();
489 inode->i_gid = current_fsgid();
490
491 percpu_add(sockets_in_use, 1);
492 return sock;
493 }
494
495 /*
496 * In theory you can't get an open on this inode, but /proc provides
497 * a back door. Remember to keep it shut otherwise you'll let the
498 * creepy crawlies in.
499 */
500
501 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
502 {
503 return -ENXIO;
504 }
505
506 const struct file_operations bad_sock_fops = {
507 .owner = THIS_MODULE,
508 .open = sock_no_open,
509 .llseek = noop_llseek,
510 };
511
512 /**
513 * sock_release - close a socket
514 * @sock: socket to close
515 *
516 * The socket is released from the protocol stack if it has a release
517 * callback, and the inode is then released if the socket is bound to
518 * an inode not a file.
519 */
520
521 void sock_release(struct socket *sock)
522 {
523 if (sock->ops) {
524 struct module *owner = sock->ops->owner;
525
526 sock->ops->release(sock);
527 sock->ops = NULL;
528 module_put(owner);
529 }
530
531 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
532 printk(KERN_ERR "sock_release: fasync list not empty!\n");
533
534 percpu_sub(sockets_in_use, 1);
535 if (!sock->file) {
536 iput(SOCK_INODE(sock));
537 return;
538 }
539 sock->file = NULL;
540 }
541 EXPORT_SYMBOL(sock_release);
542
543 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
544 {
545 *tx_flags = 0;
546 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
547 *tx_flags |= SKBTX_HW_TSTAMP;
548 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
549 *tx_flags |= SKBTX_SW_TSTAMP;
550 return 0;
551 }
552 EXPORT_SYMBOL(sock_tx_timestamp);
553
554 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
555 struct msghdr *msg, size_t size)
556 {
557 struct sock_iocb *si = kiocb_to_siocb(iocb);
558 int err;
559
560 sock_update_classid(sock->sk);
561
562 si->sock = sock;
563 si->scm = NULL;
564 si->msg = msg;
565 si->size = size;
566
567 err = security_socket_sendmsg(sock, msg, size);
568 if (err)
569 return err;
570
571 return sock->ops->sendmsg(iocb, sock, msg, size);
572 }
573
574 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
575 {
576 struct kiocb iocb;
577 struct sock_iocb siocb;
578 int ret;
579
580 init_sync_kiocb(&iocb, NULL);
581 iocb.private = &siocb;
582 ret = __sock_sendmsg(&iocb, sock, msg, size);
583 if (-EIOCBQUEUED == ret)
584 ret = wait_on_sync_kiocb(&iocb);
585 return ret;
586 }
587 EXPORT_SYMBOL(sock_sendmsg);
588
589 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
590 struct kvec *vec, size_t num, size_t size)
591 {
592 mm_segment_t oldfs = get_fs();
593 int result;
594
595 set_fs(KERNEL_DS);
596 /*
597 * the following is safe, since for compiler definitions of kvec and
598 * iovec are identical, yielding the same in-core layout and alignment
599 */
600 msg->msg_iov = (struct iovec *)vec;
601 msg->msg_iovlen = num;
602 result = sock_sendmsg(sock, msg, size);
603 set_fs(oldfs);
604 return result;
605 }
606 EXPORT_SYMBOL(kernel_sendmsg);
607
608 static int ktime2ts(ktime_t kt, struct timespec *ts)
609 {
610 if (kt.tv64) {
611 *ts = ktime_to_timespec(kt);
612 return 1;
613 } else {
614 return 0;
615 }
616 }
617
618 /*
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
620 */
621 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
622 struct sk_buff *skb)
623 {
624 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
625 struct timespec ts[3];
626 int empty = 1;
627 struct skb_shared_hwtstamps *shhwtstamps =
628 skb_hwtstamps(skb);
629
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp && skb->tstamp.tv64 == 0)
633 __net_timestamp(skb);
634
635 if (need_software_tstamp) {
636 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
637 struct timeval tv;
638 skb_get_timestamp(skb, &tv);
639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
640 sizeof(tv), &tv);
641 } else {
642 skb_get_timestampns(skb, &ts[0]);
643 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
644 sizeof(ts[0]), &ts[0]);
645 }
646 }
647
648
649 memset(ts, 0, sizeof(ts));
650 if (skb->tstamp.tv64 &&
651 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
652 skb_get_timestampns(skb, ts + 0);
653 empty = 0;
654 }
655 if (shhwtstamps) {
656 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
657 ktime2ts(shhwtstamps->syststamp, ts + 1))
658 empty = 0;
659 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
660 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
661 empty = 0;
662 }
663 if (!empty)
664 put_cmsg(msg, SOL_SOCKET,
665 SCM_TIMESTAMPING, sizeof(ts), &ts);
666 }
667 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
668
669 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
670 struct sk_buff *skb)
671 {
672 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
673 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
674 sizeof(__u32), &skb->dropcount);
675 }
676
677 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
678 struct sk_buff *skb)
679 {
680 sock_recv_timestamp(msg, sk, skb);
681 sock_recv_drops(msg, sk, skb);
682 }
683 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
684
685 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
686 struct msghdr *msg, size_t size, int flags)
687 {
688 struct sock_iocb *si = kiocb_to_siocb(iocb);
689
690 sock_update_classid(sock->sk);
691
692 si->sock = sock;
693 si->scm = NULL;
694 si->msg = msg;
695 si->size = size;
696 si->flags = flags;
697
698 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
699 }
700
701 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
702 struct msghdr *msg, size_t size, int flags)
703 {
704 int err = security_socket_recvmsg(sock, msg, size, flags);
705
706 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
707 }
708
709 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
710 size_t size, int flags)
711 {
712 struct kiocb iocb;
713 struct sock_iocb siocb;
714 int ret;
715
716 init_sync_kiocb(&iocb, NULL);
717 iocb.private = &siocb;
718 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
719 if (-EIOCBQUEUED == ret)
720 ret = wait_on_sync_kiocb(&iocb);
721 return ret;
722 }
723 EXPORT_SYMBOL(sock_recvmsg);
724
725 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
726 size_t size, int flags)
727 {
728 struct kiocb iocb;
729 struct sock_iocb siocb;
730 int ret;
731
732 init_sync_kiocb(&iocb, NULL);
733 iocb.private = &siocb;
734 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
735 if (-EIOCBQUEUED == ret)
736 ret = wait_on_sync_kiocb(&iocb);
737 return ret;
738 }
739
740 /**
741 * kernel_recvmsg - Receive a message from a socket (kernel space)
742 * @sock: The socket to receive the message from
743 * @msg: Received message
744 * @vec: Input s/g array for message data
745 * @num: Size of input s/g array
746 * @size: Number of bytes to read
747 * @flags: Message flags (MSG_DONTWAIT, etc...)
748 *
749 * On return the msg structure contains the scatter/gather array passed in the
750 * vec argument. The array is modified so that it consists of the unfilled
751 * portion of the original array.
752 *
753 * The returned value is the total number of bytes received, or an error.
754 */
755 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
756 struct kvec *vec, size_t num, size_t size, int flags)
757 {
758 mm_segment_t oldfs = get_fs();
759 int result;
760
761 set_fs(KERNEL_DS);
762 /*
763 * the following is safe, since for compiler definitions of kvec and
764 * iovec are identical, yielding the same in-core layout and alignment
765 */
766 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
767 result = sock_recvmsg(sock, msg, size, flags);
768 set_fs(oldfs);
769 return result;
770 }
771 EXPORT_SYMBOL(kernel_recvmsg);
772
773 static void sock_aio_dtor(struct kiocb *iocb)
774 {
775 kfree(iocb->private);
776 }
777
778 static ssize_t sock_sendpage(struct file *file, struct page *page,
779 int offset, size_t size, loff_t *ppos, int more)
780 {
781 struct socket *sock;
782 int flags;
783
784 sock = file->private_data;
785
786 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
787 if (more)
788 flags |= MSG_MORE;
789
790 return kernel_sendpage(sock, page, offset, size, flags);
791 }
792
793 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
794 struct pipe_inode_info *pipe, size_t len,
795 unsigned int flags)
796 {
797 struct socket *sock = file->private_data;
798
799 if (unlikely(!sock->ops->splice_read))
800 return -EINVAL;
801
802 sock_update_classid(sock->sk);
803
804 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
805 }
806
807 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
808 struct sock_iocb *siocb)
809 {
810 if (!is_sync_kiocb(iocb)) {
811 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
812 if (!siocb)
813 return NULL;
814 iocb->ki_dtor = sock_aio_dtor;
815 }
816
817 siocb->kiocb = iocb;
818 iocb->private = siocb;
819 return siocb;
820 }
821
822 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
823 struct file *file, const struct iovec *iov,
824 unsigned long nr_segs)
825 {
826 struct socket *sock = file->private_data;
827 size_t size = 0;
828 int i;
829
830 for (i = 0; i < nr_segs; i++)
831 size += iov[i].iov_len;
832
833 msg->msg_name = NULL;
834 msg->msg_namelen = 0;
835 msg->msg_control = NULL;
836 msg->msg_controllen = 0;
837 msg->msg_iov = (struct iovec *)iov;
838 msg->msg_iovlen = nr_segs;
839 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
840
841 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
842 }
843
844 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
845 unsigned long nr_segs, loff_t pos)
846 {
847 struct sock_iocb siocb, *x;
848
849 if (pos != 0)
850 return -ESPIPE;
851
852 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
853 return 0;
854
855
856 x = alloc_sock_iocb(iocb, &siocb);
857 if (!x)
858 return -ENOMEM;
859 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
860 }
861
862 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
863 struct file *file, const struct iovec *iov,
864 unsigned long nr_segs)
865 {
866 struct socket *sock = file->private_data;
867 size_t size = 0;
868 int i;
869
870 for (i = 0; i < nr_segs; i++)
871 size += iov[i].iov_len;
872
873 msg->msg_name = NULL;
874 msg->msg_namelen = 0;
875 msg->msg_control = NULL;
876 msg->msg_controllen = 0;
877 msg->msg_iov = (struct iovec *)iov;
878 msg->msg_iovlen = nr_segs;
879 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
880 if (sock->type == SOCK_SEQPACKET)
881 msg->msg_flags |= MSG_EOR;
882
883 return __sock_sendmsg(iocb, sock, msg, size);
884 }
885
886 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
887 unsigned long nr_segs, loff_t pos)
888 {
889 struct sock_iocb siocb, *x;
890
891 if (pos != 0)
892 return -ESPIPE;
893
894 x = alloc_sock_iocb(iocb, &siocb);
895 if (!x)
896 return -ENOMEM;
897
898 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
899 }
900
901 /*
902 * Atomic setting of ioctl hooks to avoid race
903 * with module unload.
904 */
905
906 static DEFINE_MUTEX(br_ioctl_mutex);
907 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
908
909 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
910 {
911 mutex_lock(&br_ioctl_mutex);
912 br_ioctl_hook = hook;
913 mutex_unlock(&br_ioctl_mutex);
914 }
915 EXPORT_SYMBOL(brioctl_set);
916
917 static DEFINE_MUTEX(vlan_ioctl_mutex);
918 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
919
920 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
921 {
922 mutex_lock(&vlan_ioctl_mutex);
923 vlan_ioctl_hook = hook;
924 mutex_unlock(&vlan_ioctl_mutex);
925 }
926 EXPORT_SYMBOL(vlan_ioctl_set);
927
928 static DEFINE_MUTEX(dlci_ioctl_mutex);
929 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
930
931 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
932 {
933 mutex_lock(&dlci_ioctl_mutex);
934 dlci_ioctl_hook = hook;
935 mutex_unlock(&dlci_ioctl_mutex);
936 }
937 EXPORT_SYMBOL(dlci_ioctl_set);
938
939 static long sock_do_ioctl(struct net *net, struct socket *sock,
940 unsigned int cmd, unsigned long arg)
941 {
942 int err;
943 void __user *argp = (void __user *)arg;
944
945 err = sock->ops->ioctl(sock, cmd, arg);
946
947 /*
948 * If this ioctl is unknown try to hand it down
949 * to the NIC driver.
950 */
951 if (err == -ENOIOCTLCMD)
952 err = dev_ioctl(net, cmd, argp);
953
954 return err;
955 }
956
957 /*
958 * With an ioctl, arg may well be a user mode pointer, but we don't know
959 * what to do with it - that's up to the protocol still.
960 */
961
962 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
963 {
964 struct socket *sock;
965 struct sock *sk;
966 void __user *argp = (void __user *)arg;
967 int pid, err;
968 struct net *net;
969
970 sock = file->private_data;
971 sk = sock->sk;
972 net = sock_net(sk);
973 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
974 err = dev_ioctl(net, cmd, argp);
975 } else
976 #ifdef CONFIG_WEXT_CORE
977 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
978 err = dev_ioctl(net, cmd, argp);
979 } else
980 #endif
981 switch (cmd) {
982 case FIOSETOWN:
983 case SIOCSPGRP:
984 err = -EFAULT;
985 if (get_user(pid, (int __user *)argp))
986 break;
987 err = f_setown(sock->file, pid, 1);
988 break;
989 case FIOGETOWN:
990 case SIOCGPGRP:
991 err = put_user(f_getown(sock->file),
992 (int __user *)argp);
993 break;
994 case SIOCGIFBR:
995 case SIOCSIFBR:
996 case SIOCBRADDBR:
997 case SIOCBRDELBR:
998 err = -ENOPKG;
999 if (!br_ioctl_hook)
1000 request_module("bridge");
1001
1002 mutex_lock(&br_ioctl_mutex);
1003 if (br_ioctl_hook)
1004 err = br_ioctl_hook(net, cmd, argp);
1005 mutex_unlock(&br_ioctl_mutex);
1006 break;
1007 case SIOCGIFVLAN:
1008 case SIOCSIFVLAN:
1009 err = -ENOPKG;
1010 if (!vlan_ioctl_hook)
1011 request_module("8021q");
1012
1013 mutex_lock(&vlan_ioctl_mutex);
1014 if (vlan_ioctl_hook)
1015 err = vlan_ioctl_hook(net, argp);
1016 mutex_unlock(&vlan_ioctl_mutex);
1017 break;
1018 case SIOCADDDLCI:
1019 case SIOCDELDLCI:
1020 err = -ENOPKG;
1021 if (!dlci_ioctl_hook)
1022 request_module("dlci");
1023
1024 mutex_lock(&dlci_ioctl_mutex);
1025 if (dlci_ioctl_hook)
1026 err = dlci_ioctl_hook(cmd, argp);
1027 mutex_unlock(&dlci_ioctl_mutex);
1028 break;
1029 default:
1030 err = sock_do_ioctl(net, sock, cmd, arg);
1031 break;
1032 }
1033 return err;
1034 }
1035
1036 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1037 {
1038 int err;
1039 struct socket *sock = NULL;
1040
1041 err = security_socket_create(family, type, protocol, 1);
1042 if (err)
1043 goto out;
1044
1045 sock = sock_alloc();
1046 if (!sock) {
1047 err = -ENOMEM;
1048 goto out;
1049 }
1050
1051 sock->type = type;
1052 err = security_socket_post_create(sock, family, type, protocol, 1);
1053 if (err)
1054 goto out_release;
1055
1056 out:
1057 *res = sock;
1058 return err;
1059 out_release:
1060 sock_release(sock);
1061 sock = NULL;
1062 goto out;
1063 }
1064 EXPORT_SYMBOL(sock_create_lite);
1065
1066 /* No kernel lock held - perfect */
1067 static unsigned int sock_poll(struct file *file, poll_table *wait)
1068 {
1069 struct socket *sock;
1070
1071 /*
1072 * We can't return errors to poll, so it's either yes or no.
1073 */
1074 sock = file->private_data;
1075 return sock->ops->poll(file, sock, wait);
1076 }
1077
1078 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1079 {
1080 struct socket *sock = file->private_data;
1081
1082 return sock->ops->mmap(file, sock, vma);
1083 }
1084
1085 static int sock_close(struct inode *inode, struct file *filp)
1086 {
1087 /*
1088 * It was possible the inode is NULL we were
1089 * closing an unfinished socket.
1090 */
1091
1092 if (!inode) {
1093 printk(KERN_DEBUG "sock_close: NULL inode\n");
1094 return 0;
1095 }
1096 sock_release(SOCKET_I(inode));
1097 return 0;
1098 }
1099
1100 /*
1101 * Update the socket async list
1102 *
1103 * Fasync_list locking strategy.
1104 *
1105 * 1. fasync_list is modified only under process context socket lock
1106 * i.e. under semaphore.
1107 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1108 * or under socket lock
1109 */
1110
1111 static int sock_fasync(int fd, struct file *filp, int on)
1112 {
1113 struct socket *sock = filp->private_data;
1114 struct sock *sk = sock->sk;
1115 struct socket_wq *wq;
1116
1117 if (sk == NULL)
1118 return -EINVAL;
1119
1120 lock_sock(sk);
1121 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1122 fasync_helper(fd, filp, on, &wq->fasync_list);
1123
1124 if (!wq->fasync_list)
1125 sock_reset_flag(sk, SOCK_FASYNC);
1126 else
1127 sock_set_flag(sk, SOCK_FASYNC);
1128
1129 release_sock(sk);
1130 return 0;
1131 }
1132
1133 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1134
1135 int sock_wake_async(struct socket *sock, int how, int band)
1136 {
1137 struct socket_wq *wq;
1138
1139 if (!sock)
1140 return -1;
1141 rcu_read_lock();
1142 wq = rcu_dereference(sock->wq);
1143 if (!wq || !wq->fasync_list) {
1144 rcu_read_unlock();
1145 return -1;
1146 }
1147 switch (how) {
1148 case SOCK_WAKE_WAITD:
1149 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1150 break;
1151 goto call_kill;
1152 case SOCK_WAKE_SPACE:
1153 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1154 break;
1155 /* fall through */
1156 case SOCK_WAKE_IO:
1157 call_kill:
1158 kill_fasync(&wq->fasync_list, SIGIO, band);
1159 break;
1160 case SOCK_WAKE_URG:
1161 kill_fasync(&wq->fasync_list, SIGURG, band);
1162 }
1163 rcu_read_unlock();
1164 return 0;
1165 }
1166 EXPORT_SYMBOL(sock_wake_async);
1167
1168 int __sock_create(struct net *net, int family, int type, int protocol,
1169 struct socket **res, int kern)
1170 {
1171 int err;
1172 struct socket *sock;
1173 const struct net_proto_family *pf;
1174
1175 /*
1176 * Check protocol is in range
1177 */
1178 if (family < 0 || family >= NPROTO)
1179 return -EAFNOSUPPORT;
1180 if (type < 0 || type >= SOCK_MAX)
1181 return -EINVAL;
1182
1183 /* Compatibility.
1184
1185 This uglymoron is moved from INET layer to here to avoid
1186 deadlock in module load.
1187 */
1188 if (family == PF_INET && type == SOCK_PACKET) {
1189 static int warned;
1190 if (!warned) {
1191 warned = 1;
1192 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1193 current->comm);
1194 }
1195 family = PF_PACKET;
1196 }
1197
1198 err = security_socket_create(family, type, protocol, kern);
1199 if (err)
1200 return err;
1201
1202 /*
1203 * Allocate the socket and allow the family to set things up. if
1204 * the protocol is 0, the family is instructed to select an appropriate
1205 * default.
1206 */
1207 sock = sock_alloc();
1208 if (!sock) {
1209 if (net_ratelimit())
1210 printk(KERN_WARNING "socket: no more sockets\n");
1211 return -ENFILE; /* Not exactly a match, but its the
1212 closest posix thing */
1213 }
1214
1215 sock->type = type;
1216
1217 #ifdef CONFIG_MODULES
1218 /* Attempt to load a protocol module if the find failed.
1219 *
1220 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1221 * requested real, full-featured networking support upon configuration.
1222 * Otherwise module support will break!
1223 */
1224 if (rcu_access_pointer(net_families[family]) == NULL)
1225 request_module("net-pf-%d", family);
1226 #endif
1227
1228 rcu_read_lock();
1229 pf = rcu_dereference(net_families[family]);
1230 err = -EAFNOSUPPORT;
1231 if (!pf)
1232 goto out_release;
1233
1234 /*
1235 * We will call the ->create function, that possibly is in a loadable
1236 * module, so we have to bump that loadable module refcnt first.
1237 */
1238 if (!try_module_get(pf->owner))
1239 goto out_release;
1240
1241 /* Now protected by module ref count */
1242 rcu_read_unlock();
1243
1244 err = pf->create(net, sock, protocol, kern);
1245 if (err < 0)
1246 goto out_module_put;
1247
1248 /*
1249 * Now to bump the refcnt of the [loadable] module that owns this
1250 * socket at sock_release time we decrement its refcnt.
1251 */
1252 if (!try_module_get(sock->ops->owner))
1253 goto out_module_busy;
1254
1255 /*
1256 * Now that we're done with the ->create function, the [loadable]
1257 * module can have its refcnt decremented
1258 */
1259 module_put(pf->owner);
1260 err = security_socket_post_create(sock, family, type, protocol, kern);
1261 if (err)
1262 goto out_sock_release;
1263 *res = sock;
1264
1265 return 0;
1266
1267 out_module_busy:
1268 err = -EAFNOSUPPORT;
1269 out_module_put:
1270 sock->ops = NULL;
1271 module_put(pf->owner);
1272 out_sock_release:
1273 sock_release(sock);
1274 return err;
1275
1276 out_release:
1277 rcu_read_unlock();
1278 goto out_sock_release;
1279 }
1280 EXPORT_SYMBOL(__sock_create);
1281
1282 int sock_create(int family, int type, int protocol, struct socket **res)
1283 {
1284 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1285 }
1286 EXPORT_SYMBOL(sock_create);
1287
1288 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1289 {
1290 return __sock_create(&init_net, family, type, protocol, res, 1);
1291 }
1292 EXPORT_SYMBOL(sock_create_kern);
1293
1294 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1295 {
1296 int retval;
1297 struct socket *sock;
1298 int flags;
1299
1300 /* Check the SOCK_* constants for consistency. */
1301 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1302 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1303 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1304 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1305
1306 flags = type & ~SOCK_TYPE_MASK;
1307 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1308 return -EINVAL;
1309 type &= SOCK_TYPE_MASK;
1310
1311 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1312 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1313
1314 retval = sock_create(family, type, protocol, &sock);
1315 if (retval < 0)
1316 goto out;
1317
1318 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1319 if (retval < 0)
1320 goto out_release;
1321
1322 out:
1323 /* It may be already another descriptor 8) Not kernel problem. */
1324 return retval;
1325
1326 out_release:
1327 sock_release(sock);
1328 return retval;
1329 }
1330
1331 /*
1332 * Create a pair of connected sockets.
1333 */
1334
1335 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1336 int __user *, usockvec)
1337 {
1338 struct socket *sock1, *sock2;
1339 int fd1, fd2, err;
1340 struct file *newfile1, *newfile2;
1341 int flags;
1342
1343 flags = type & ~SOCK_TYPE_MASK;
1344 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1345 return -EINVAL;
1346 type &= SOCK_TYPE_MASK;
1347
1348 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1349 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1350
1351 /*
1352 * Obtain the first socket and check if the underlying protocol
1353 * supports the socketpair call.
1354 */
1355
1356 err = sock_create(family, type, protocol, &sock1);
1357 if (err < 0)
1358 goto out;
1359
1360 err = sock_create(family, type, protocol, &sock2);
1361 if (err < 0)
1362 goto out_release_1;
1363
1364 err = sock1->ops->socketpair(sock1, sock2);
1365 if (err < 0)
1366 goto out_release_both;
1367
1368 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1369 if (unlikely(fd1 < 0)) {
1370 err = fd1;
1371 goto out_release_both;
1372 }
1373
1374 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1375 if (unlikely(fd2 < 0)) {
1376 err = fd2;
1377 fput(newfile1);
1378 put_unused_fd(fd1);
1379 sock_release(sock2);
1380 goto out;
1381 }
1382
1383 audit_fd_pair(fd1, fd2);
1384 fd_install(fd1, newfile1);
1385 fd_install(fd2, newfile2);
1386 /* fd1 and fd2 may be already another descriptors.
1387 * Not kernel problem.
1388 */
1389
1390 err = put_user(fd1, &usockvec[0]);
1391 if (!err)
1392 err = put_user(fd2, &usockvec[1]);
1393 if (!err)
1394 return 0;
1395
1396 sys_close(fd2);
1397 sys_close(fd1);
1398 return err;
1399
1400 out_release_both:
1401 sock_release(sock2);
1402 out_release_1:
1403 sock_release(sock1);
1404 out:
1405 return err;
1406 }
1407
1408 /*
1409 * Bind a name to a socket. Nothing much to do here since it's
1410 * the protocol's responsibility to handle the local address.
1411 *
1412 * We move the socket address to kernel space before we call
1413 * the protocol layer (having also checked the address is ok).
1414 */
1415
1416 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1417 {
1418 struct socket *sock;
1419 struct sockaddr_storage address;
1420 int err, fput_needed;
1421
1422 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1423 if (sock) {
1424 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1425 if (err >= 0) {
1426 err = security_socket_bind(sock,
1427 (struct sockaddr *)&address,
1428 addrlen);
1429 if (!err)
1430 err = sock->ops->bind(sock,
1431 (struct sockaddr *)
1432 &address, addrlen);
1433 }
1434 fput_light(sock->file, fput_needed);
1435 }
1436 return err;
1437 }
1438
1439 /*
1440 * Perform a listen. Basically, we allow the protocol to do anything
1441 * necessary for a listen, and if that works, we mark the socket as
1442 * ready for listening.
1443 */
1444
1445 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1446 {
1447 struct socket *sock;
1448 int err, fput_needed;
1449 int somaxconn;
1450
1451 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452 if (sock) {
1453 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1454 if ((unsigned)backlog > somaxconn)
1455 backlog = somaxconn;
1456
1457 err = security_socket_listen(sock, backlog);
1458 if (!err)
1459 err = sock->ops->listen(sock, backlog);
1460
1461 fput_light(sock->file, fput_needed);
1462 }
1463 return err;
1464 }
1465
1466 /*
1467 * For accept, we attempt to create a new socket, set up the link
1468 * with the client, wake up the client, then return the new
1469 * connected fd. We collect the address of the connector in kernel
1470 * space and move it to user at the very end. This is unclean because
1471 * we open the socket then return an error.
1472 *
1473 * 1003.1g adds the ability to recvmsg() to query connection pending
1474 * status to recvmsg. We need to add that support in a way thats
1475 * clean when we restucture accept also.
1476 */
1477
1478 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1479 int __user *, upeer_addrlen, int, flags)
1480 {
1481 struct socket *sock, *newsock;
1482 struct file *newfile;
1483 int err, len, newfd, fput_needed;
1484 struct sockaddr_storage address;
1485
1486 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1487 return -EINVAL;
1488
1489 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1490 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1491
1492 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1493 if (!sock)
1494 goto out;
1495
1496 err = -ENFILE;
1497 newsock = sock_alloc();
1498 if (!newsock)
1499 goto out_put;
1500
1501 newsock->type = sock->type;
1502 newsock->ops = sock->ops;
1503
1504 /*
1505 * We don't need try_module_get here, as the listening socket (sock)
1506 * has the protocol module (sock->ops->owner) held.
1507 */
1508 __module_get(newsock->ops->owner);
1509
1510 newfd = sock_alloc_file(newsock, &newfile, flags);
1511 if (unlikely(newfd < 0)) {
1512 err = newfd;
1513 sock_release(newsock);
1514 goto out_put;
1515 }
1516
1517 err = security_socket_accept(sock, newsock);
1518 if (err)
1519 goto out_fd;
1520
1521 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1522 if (err < 0)
1523 goto out_fd;
1524
1525 if (upeer_sockaddr) {
1526 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1527 &len, 2) < 0) {
1528 err = -ECONNABORTED;
1529 goto out_fd;
1530 }
1531 err = move_addr_to_user((struct sockaddr *)&address,
1532 len, upeer_sockaddr, upeer_addrlen);
1533 if (err < 0)
1534 goto out_fd;
1535 }
1536
1537 /* File flags are not inherited via accept() unlike another OSes. */
1538
1539 fd_install(newfd, newfile);
1540 err = newfd;
1541
1542 out_put:
1543 fput_light(sock->file, fput_needed);
1544 out:
1545 return err;
1546 out_fd:
1547 fput(newfile);
1548 put_unused_fd(newfd);
1549 goto out_put;
1550 }
1551
1552 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1553 int __user *, upeer_addrlen)
1554 {
1555 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1556 }
1557
1558 /*
1559 * Attempt to connect to a socket with the server address. The address
1560 * is in user space so we verify it is OK and move it to kernel space.
1561 *
1562 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1563 * break bindings
1564 *
1565 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1566 * other SEQPACKET protocols that take time to connect() as it doesn't
1567 * include the -EINPROGRESS status for such sockets.
1568 */
1569
1570 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1571 int, addrlen)
1572 {
1573 struct socket *sock;
1574 struct sockaddr_storage address;
1575 int err, fput_needed;
1576
1577 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1578 if (!sock)
1579 goto out;
1580 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1581 if (err < 0)
1582 goto out_put;
1583
1584 err =
1585 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1586 if (err)
1587 goto out_put;
1588
1589 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1590 sock->file->f_flags);
1591 out_put:
1592 fput_light(sock->file, fput_needed);
1593 out:
1594 return err;
1595 }
1596
1597 /*
1598 * Get the local address ('name') of a socket object. Move the obtained
1599 * name to user space.
1600 */
1601
1602 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1603 int __user *, usockaddr_len)
1604 {
1605 struct socket *sock;
1606 struct sockaddr_storage address;
1607 int len, err, fput_needed;
1608
1609 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1610 if (!sock)
1611 goto out;
1612
1613 err = security_socket_getsockname(sock);
1614 if (err)
1615 goto out_put;
1616
1617 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1618 if (err)
1619 goto out_put;
1620 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1621
1622 out_put:
1623 fput_light(sock->file, fput_needed);
1624 out:
1625 return err;
1626 }
1627
1628 /*
1629 * Get the remote address ('name') of a socket object. Move the obtained
1630 * name to user space.
1631 */
1632
1633 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1634 int __user *, usockaddr_len)
1635 {
1636 struct socket *sock;
1637 struct sockaddr_storage address;
1638 int len, err, fput_needed;
1639
1640 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1641 if (sock != NULL) {
1642 err = security_socket_getpeername(sock);
1643 if (err) {
1644 fput_light(sock->file, fput_needed);
1645 return err;
1646 }
1647
1648 err =
1649 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1650 1);
1651 if (!err)
1652 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1653 usockaddr_len);
1654 fput_light(sock->file, fput_needed);
1655 }
1656 return err;
1657 }
1658
1659 /*
1660 * Send a datagram to a given address. We move the address into kernel
1661 * space and check the user space data area is readable before invoking
1662 * the protocol.
1663 */
1664
1665 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1666 unsigned, flags, struct sockaddr __user *, addr,
1667 int, addr_len)
1668 {
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int err;
1672 struct msghdr msg;
1673 struct iovec iov;
1674 int fput_needed;
1675
1676 if (len > INT_MAX)
1677 len = INT_MAX;
1678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 if (!sock)
1680 goto out;
1681
1682 iov.iov_base = buff;
1683 iov.iov_len = len;
1684 msg.msg_name = NULL;
1685 msg.msg_iov = &iov;
1686 msg.msg_iovlen = 1;
1687 msg.msg_control = NULL;
1688 msg.msg_controllen = 0;
1689 msg.msg_namelen = 0;
1690 if (addr) {
1691 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1692 if (err < 0)
1693 goto out_put;
1694 msg.msg_name = (struct sockaddr *)&address;
1695 msg.msg_namelen = addr_len;
1696 }
1697 if (sock->file->f_flags & O_NONBLOCK)
1698 flags |= MSG_DONTWAIT;
1699 msg.msg_flags = flags;
1700 err = sock_sendmsg(sock, &msg, len);
1701
1702 out_put:
1703 fput_light(sock->file, fput_needed);
1704 out:
1705 return err;
1706 }
1707
1708 /*
1709 * Send a datagram down a socket.
1710 */
1711
1712 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1713 unsigned, flags)
1714 {
1715 return sys_sendto(fd, buff, len, flags, NULL, 0);
1716 }
1717
1718 /*
1719 * Receive a frame from the socket and optionally record the address of the
1720 * sender. We verify the buffers are writable and if needed move the
1721 * sender address from kernel to user space.
1722 */
1723
1724 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1725 unsigned, flags, struct sockaddr __user *, addr,
1726 int __user *, addr_len)
1727 {
1728 struct socket *sock;
1729 struct iovec iov;
1730 struct msghdr msg;
1731 struct sockaddr_storage address;
1732 int err, err2;
1733 int fput_needed;
1734
1735 if (size > INT_MAX)
1736 size = INT_MAX;
1737 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738 if (!sock)
1739 goto out;
1740
1741 msg.msg_control = NULL;
1742 msg.msg_controllen = 0;
1743 msg.msg_iovlen = 1;
1744 msg.msg_iov = &iov;
1745 iov.iov_len = size;
1746 iov.iov_base = ubuf;
1747 msg.msg_name = (struct sockaddr *)&address;
1748 msg.msg_namelen = sizeof(address);
1749 if (sock->file->f_flags & O_NONBLOCK)
1750 flags |= MSG_DONTWAIT;
1751 err = sock_recvmsg(sock, &msg, size, flags);
1752
1753 if (err >= 0 && addr != NULL) {
1754 err2 = move_addr_to_user((struct sockaddr *)&address,
1755 msg.msg_namelen, addr, addr_len);
1756 if (err2 < 0)
1757 err = err2;
1758 }
1759
1760 fput_light(sock->file, fput_needed);
1761 out:
1762 return err;
1763 }
1764
1765 /*
1766 * Receive a datagram from a socket.
1767 */
1768
1769 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1770 unsigned flags)
1771 {
1772 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1773 }
1774
1775 /*
1776 * Set a socket option. Because we don't know the option lengths we have
1777 * to pass the user mode parameter for the protocols to sort out.
1778 */
1779
1780 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1781 char __user *, optval, int, optlen)
1782 {
1783 int err, fput_needed;
1784 struct socket *sock;
1785
1786 if (optlen < 0)
1787 return -EINVAL;
1788
1789 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 if (sock != NULL) {
1791 err = security_socket_setsockopt(sock, level, optname);
1792 if (err)
1793 goto out_put;
1794
1795 if (level == SOL_SOCKET)
1796 err =
1797 sock_setsockopt(sock, level, optname, optval,
1798 optlen);
1799 else
1800 err =
1801 sock->ops->setsockopt(sock, level, optname, optval,
1802 optlen);
1803 out_put:
1804 fput_light(sock->file, fput_needed);
1805 }
1806 return err;
1807 }
1808
1809 /*
1810 * Get a socket option. Because we don't know the option lengths we have
1811 * to pass a user mode parameter for the protocols to sort out.
1812 */
1813
1814 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1815 char __user *, optval, int __user *, optlen)
1816 {
1817 int err, fput_needed;
1818 struct socket *sock;
1819
1820 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1821 if (sock != NULL) {
1822 err = security_socket_getsockopt(sock, level, optname);
1823 if (err)
1824 goto out_put;
1825
1826 if (level == SOL_SOCKET)
1827 err =
1828 sock_getsockopt(sock, level, optname, optval,
1829 optlen);
1830 else
1831 err =
1832 sock->ops->getsockopt(sock, level, optname, optval,
1833 optlen);
1834 out_put:
1835 fput_light(sock->file, fput_needed);
1836 }
1837 return err;
1838 }
1839
1840 /*
1841 * Shutdown a socket.
1842 */
1843
1844 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1845 {
1846 int err, fput_needed;
1847 struct socket *sock;
1848
1849 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 if (sock != NULL) {
1851 err = security_socket_shutdown(sock, how);
1852 if (!err)
1853 err = sock->ops->shutdown(sock, how);
1854 fput_light(sock->file, fput_needed);
1855 }
1856 return err;
1857 }
1858
1859 /* A couple of helpful macros for getting the address of the 32/64 bit
1860 * fields which are the same type (int / unsigned) on our platforms.
1861 */
1862 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1863 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1864 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1865
1866 /*
1867 * BSD sendmsg interface
1868 */
1869
1870 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1871 {
1872 struct compat_msghdr __user *msg_compat =
1873 (struct compat_msghdr __user *)msg;
1874 struct socket *sock;
1875 struct sockaddr_storage address;
1876 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1877 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1878 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1879 /* 20 is size of ipv6_pktinfo */
1880 unsigned char *ctl_buf = ctl;
1881 struct msghdr msg_sys;
1882 int err, ctl_len, iov_size, total_len;
1883 int fput_needed;
1884
1885 err = -EFAULT;
1886 if (MSG_CMSG_COMPAT & flags) {
1887 if (get_compat_msghdr(&msg_sys, msg_compat))
1888 return -EFAULT;
1889 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1890 return -EFAULT;
1891
1892 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 if (!sock)
1894 goto out;
1895
1896 /* do not move before msg_sys is valid */
1897 err = -EMSGSIZE;
1898 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1899 goto out_put;
1900
1901 /* Check whether to allocate the iovec area */
1902 err = -ENOMEM;
1903 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1904 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1905 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1906 if (!iov)
1907 goto out_put;
1908 }
1909
1910 /* This will also move the address data into kernel space */
1911 if (MSG_CMSG_COMPAT & flags) {
1912 err = verify_compat_iovec(&msg_sys, iov,
1913 (struct sockaddr *)&address,
1914 VERIFY_READ);
1915 } else
1916 err = verify_iovec(&msg_sys, iov,
1917 (struct sockaddr *)&address,
1918 VERIFY_READ);
1919 if (err < 0)
1920 goto out_freeiov;
1921 total_len = err;
1922
1923 err = -ENOBUFS;
1924
1925 if (msg_sys.msg_controllen > INT_MAX)
1926 goto out_freeiov;
1927 ctl_len = msg_sys.msg_controllen;
1928 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1929 err =
1930 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1931 sizeof(ctl));
1932 if (err)
1933 goto out_freeiov;
1934 ctl_buf = msg_sys.msg_control;
1935 ctl_len = msg_sys.msg_controllen;
1936 } else if (ctl_len) {
1937 if (ctl_len > sizeof(ctl)) {
1938 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1939 if (ctl_buf == NULL)
1940 goto out_freeiov;
1941 }
1942 err = -EFAULT;
1943 /*
1944 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1945 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1946 * checking falls down on this.
1947 */
1948 if (copy_from_user(ctl_buf,
1949 (void __user __force *)msg_sys.msg_control,
1950 ctl_len))
1951 goto out_freectl;
1952 msg_sys.msg_control = ctl_buf;
1953 }
1954 msg_sys.msg_flags = flags;
1955
1956 if (sock->file->f_flags & O_NONBLOCK)
1957 msg_sys.msg_flags |= MSG_DONTWAIT;
1958 err = sock_sendmsg(sock, &msg_sys, total_len);
1959
1960 out_freectl:
1961 if (ctl_buf != ctl)
1962 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1963 out_freeiov:
1964 if (iov != iovstack)
1965 sock_kfree_s(sock->sk, iov, iov_size);
1966 out_put:
1967 fput_light(sock->file, fput_needed);
1968 out:
1969 return err;
1970 }
1971
1972 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1973 struct msghdr *msg_sys, unsigned flags, int nosec)
1974 {
1975 struct compat_msghdr __user *msg_compat =
1976 (struct compat_msghdr __user *)msg;
1977 struct iovec iovstack[UIO_FASTIOV];
1978 struct iovec *iov = iovstack;
1979 unsigned long cmsg_ptr;
1980 int err, iov_size, total_len, len;
1981
1982 /* kernel mode address */
1983 struct sockaddr_storage addr;
1984
1985 /* user mode address pointers */
1986 struct sockaddr __user *uaddr;
1987 int __user *uaddr_len;
1988
1989 if (MSG_CMSG_COMPAT & flags) {
1990 if (get_compat_msghdr(msg_sys, msg_compat))
1991 return -EFAULT;
1992 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1993 return -EFAULT;
1994
1995 err = -EMSGSIZE;
1996 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1997 goto out;
1998
1999 /* Check whether to allocate the iovec area */
2000 err = -ENOMEM;
2001 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2002 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2003 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2004 if (!iov)
2005 goto out;
2006 }
2007
2008 /*
2009 * Save the user-mode address (verify_iovec will change the
2010 * kernel msghdr to use the kernel address space)
2011 */
2012
2013 uaddr = (__force void __user *)msg_sys->msg_name;
2014 uaddr_len = COMPAT_NAMELEN(msg);
2015 if (MSG_CMSG_COMPAT & flags) {
2016 err = verify_compat_iovec(msg_sys, iov,
2017 (struct sockaddr *)&addr,
2018 VERIFY_WRITE);
2019 } else
2020 err = verify_iovec(msg_sys, iov,
2021 (struct sockaddr *)&addr,
2022 VERIFY_WRITE);
2023 if (err < 0)
2024 goto out_freeiov;
2025 total_len = err;
2026
2027 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2028 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2029
2030 if (sock->file->f_flags & O_NONBLOCK)
2031 flags |= MSG_DONTWAIT;
2032 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2033 total_len, flags);
2034 if (err < 0)
2035 goto out_freeiov;
2036 len = err;
2037
2038 if (uaddr != NULL) {
2039 err = move_addr_to_user((struct sockaddr *)&addr,
2040 msg_sys->msg_namelen, uaddr,
2041 uaddr_len);
2042 if (err < 0)
2043 goto out_freeiov;
2044 }
2045 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2046 COMPAT_FLAGS(msg));
2047 if (err)
2048 goto out_freeiov;
2049 if (MSG_CMSG_COMPAT & flags)
2050 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2051 &msg_compat->msg_controllen);
2052 else
2053 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2054 &msg->msg_controllen);
2055 if (err)
2056 goto out_freeiov;
2057 err = len;
2058
2059 out_freeiov:
2060 if (iov != iovstack)
2061 sock_kfree_s(sock->sk, iov, iov_size);
2062 out:
2063 return err;
2064 }
2065
2066 /*
2067 * BSD recvmsg interface
2068 */
2069
2070 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2071 unsigned int, flags)
2072 {
2073 int fput_needed, err;
2074 struct msghdr msg_sys;
2075 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2076
2077 if (!sock)
2078 goto out;
2079
2080 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2081
2082 fput_light(sock->file, fput_needed);
2083 out:
2084 return err;
2085 }
2086
2087 /*
2088 * Linux recvmmsg interface
2089 */
2090
2091 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2092 unsigned int flags, struct timespec *timeout)
2093 {
2094 int fput_needed, err, datagrams;
2095 struct socket *sock;
2096 struct mmsghdr __user *entry;
2097 struct compat_mmsghdr __user *compat_entry;
2098 struct msghdr msg_sys;
2099 struct timespec end_time;
2100
2101 if (timeout &&
2102 poll_select_set_timeout(&end_time, timeout->tv_sec,
2103 timeout->tv_nsec))
2104 return -EINVAL;
2105
2106 datagrams = 0;
2107
2108 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2109 if (!sock)
2110 return err;
2111
2112 err = sock_error(sock->sk);
2113 if (err)
2114 goto out_put;
2115
2116 entry = mmsg;
2117 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2118
2119 while (datagrams < vlen) {
2120 /*
2121 * No need to ask LSM for more than the first datagram.
2122 */
2123 if (MSG_CMSG_COMPAT & flags) {
2124 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2125 &msg_sys, flags, datagrams);
2126 if (err < 0)
2127 break;
2128 err = __put_user(err, &compat_entry->msg_len);
2129 ++compat_entry;
2130 } else {
2131 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2132 &msg_sys, flags, datagrams);
2133 if (err < 0)
2134 break;
2135 err = put_user(err, &entry->msg_len);
2136 ++entry;
2137 }
2138
2139 if (err)
2140 break;
2141 ++datagrams;
2142
2143 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2144 if (flags & MSG_WAITFORONE)
2145 flags |= MSG_DONTWAIT;
2146
2147 if (timeout) {
2148 ktime_get_ts(timeout);
2149 *timeout = timespec_sub(end_time, *timeout);
2150 if (timeout->tv_sec < 0) {
2151 timeout->tv_sec = timeout->tv_nsec = 0;
2152 break;
2153 }
2154
2155 /* Timeout, return less than vlen datagrams */
2156 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2157 break;
2158 }
2159
2160 /* Out of band data, return right away */
2161 if (msg_sys.msg_flags & MSG_OOB)
2162 break;
2163 }
2164
2165 out_put:
2166 fput_light(sock->file, fput_needed);
2167
2168 if (err == 0)
2169 return datagrams;
2170
2171 if (datagrams != 0) {
2172 /*
2173 * We may return less entries than requested (vlen) if the
2174 * sock is non block and there aren't enough datagrams...
2175 */
2176 if (err != -EAGAIN) {
2177 /*
2178 * ... or if recvmsg returns an error after we
2179 * received some datagrams, where we record the
2180 * error to return on the next call or if the
2181 * app asks about it using getsockopt(SO_ERROR).
2182 */
2183 sock->sk->sk_err = -err;
2184 }
2185
2186 return datagrams;
2187 }
2188
2189 return err;
2190 }
2191
2192 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2193 unsigned int, vlen, unsigned int, flags,
2194 struct timespec __user *, timeout)
2195 {
2196 int datagrams;
2197 struct timespec timeout_sys;
2198
2199 if (!timeout)
2200 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2201
2202 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2203 return -EFAULT;
2204
2205 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2206
2207 if (datagrams > 0 &&
2208 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2209 datagrams = -EFAULT;
2210
2211 return datagrams;
2212 }
2213
2214 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2215 /* Argument list sizes for sys_socketcall */
2216 #define AL(x) ((x) * sizeof(unsigned long))
2217 static const unsigned char nargs[20] = {
2218 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2219 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2220 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2221 AL(4), AL(5)
2222 };
2223
2224 #undef AL
2225
2226 /*
2227 * System call vectors.
2228 *
2229 * Argument checking cleaned up. Saved 20% in size.
2230 * This function doesn't need to set the kernel lock because
2231 * it is set by the callees.
2232 */
2233
2234 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2235 {
2236 unsigned long a[6];
2237 unsigned long a0, a1;
2238 int err;
2239 unsigned int len;
2240
2241 if (call < 1 || call > SYS_RECVMMSG)
2242 return -EINVAL;
2243
2244 len = nargs[call];
2245 if (len > sizeof(a))
2246 return -EINVAL;
2247
2248 /* copy_from_user should be SMP safe. */
2249 if (copy_from_user(a, args, len))
2250 return -EFAULT;
2251
2252 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2253
2254 a0 = a[0];
2255 a1 = a[1];
2256
2257 switch (call) {
2258 case SYS_SOCKET:
2259 err = sys_socket(a0, a1, a[2]);
2260 break;
2261 case SYS_BIND:
2262 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2263 break;
2264 case SYS_CONNECT:
2265 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2266 break;
2267 case SYS_LISTEN:
2268 err = sys_listen(a0, a1);
2269 break;
2270 case SYS_ACCEPT:
2271 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2272 (int __user *)a[2], 0);
2273 break;
2274 case SYS_GETSOCKNAME:
2275 err =
2276 sys_getsockname(a0, (struct sockaddr __user *)a1,
2277 (int __user *)a[2]);
2278 break;
2279 case SYS_GETPEERNAME:
2280 err =
2281 sys_getpeername(a0, (struct sockaddr __user *)a1,
2282 (int __user *)a[2]);
2283 break;
2284 case SYS_SOCKETPAIR:
2285 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2286 break;
2287 case SYS_SEND:
2288 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2289 break;
2290 case SYS_SENDTO:
2291 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2292 (struct sockaddr __user *)a[4], a[5]);
2293 break;
2294 case SYS_RECV:
2295 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2296 break;
2297 case SYS_RECVFROM:
2298 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2299 (struct sockaddr __user *)a[4],
2300 (int __user *)a[5]);
2301 break;
2302 case SYS_SHUTDOWN:
2303 err = sys_shutdown(a0, a1);
2304 break;
2305 case SYS_SETSOCKOPT:
2306 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2307 break;
2308 case SYS_GETSOCKOPT:
2309 err =
2310 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2311 (int __user *)a[4]);
2312 break;
2313 case SYS_SENDMSG:
2314 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2315 break;
2316 case SYS_RECVMSG:
2317 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2318 break;
2319 case SYS_RECVMMSG:
2320 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2321 (struct timespec __user *)a[4]);
2322 break;
2323 case SYS_ACCEPT4:
2324 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2325 (int __user *)a[2], a[3]);
2326 break;
2327 default:
2328 err = -EINVAL;
2329 break;
2330 }
2331 return err;
2332 }
2333
2334 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2335
2336 /**
2337 * sock_register - add a socket protocol handler
2338 * @ops: description of protocol
2339 *
2340 * This function is called by a protocol handler that wants to
2341 * advertise its address family, and have it linked into the
2342 * socket interface. The value ops->family coresponds to the
2343 * socket system call protocol family.
2344 */
2345 int sock_register(const struct net_proto_family *ops)
2346 {
2347 int err;
2348
2349 if (ops->family >= NPROTO) {
2350 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2351 NPROTO);
2352 return -ENOBUFS;
2353 }
2354
2355 spin_lock(&net_family_lock);
2356 if (rcu_dereference_protected(net_families[ops->family],
2357 lockdep_is_held(&net_family_lock)))
2358 err = -EEXIST;
2359 else {
2360 rcu_assign_pointer(net_families[ops->family], ops);
2361 err = 0;
2362 }
2363 spin_unlock(&net_family_lock);
2364
2365 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2366 return err;
2367 }
2368 EXPORT_SYMBOL(sock_register);
2369
2370 /**
2371 * sock_unregister - remove a protocol handler
2372 * @family: protocol family to remove
2373 *
2374 * This function is called by a protocol handler that wants to
2375 * remove its address family, and have it unlinked from the
2376 * new socket creation.
2377 *
2378 * If protocol handler is a module, then it can use module reference
2379 * counts to protect against new references. If protocol handler is not
2380 * a module then it needs to provide its own protection in
2381 * the ops->create routine.
2382 */
2383 void sock_unregister(int family)
2384 {
2385 BUG_ON(family < 0 || family >= NPROTO);
2386
2387 spin_lock(&net_family_lock);
2388 rcu_assign_pointer(net_families[family], NULL);
2389 spin_unlock(&net_family_lock);
2390
2391 synchronize_rcu();
2392
2393 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2394 }
2395 EXPORT_SYMBOL(sock_unregister);
2396
2397 static int __init sock_init(void)
2398 {
2399 int err;
2400
2401 /*
2402 * Initialize sock SLAB cache.
2403 */
2404
2405 sk_init();
2406
2407 /*
2408 * Initialize skbuff SLAB cache
2409 */
2410 skb_init();
2411
2412 /*
2413 * Initialize the protocols module.
2414 */
2415
2416 init_inodecache();
2417
2418 err = register_filesystem(&sock_fs_type);
2419 if (err)
2420 goto out_fs;
2421 sock_mnt = kern_mount(&sock_fs_type);
2422 if (IS_ERR(sock_mnt)) {
2423 err = PTR_ERR(sock_mnt);
2424 goto out_mount;
2425 }
2426
2427 /* The real protocol initialization is performed in later initcalls.
2428 */
2429
2430 #ifdef CONFIG_NETFILTER
2431 netfilter_init();
2432 #endif
2433
2434 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2435 skb_timestamping_init();
2436 #endif
2437
2438 out:
2439 return err;
2440
2441 out_mount:
2442 unregister_filesystem(&sock_fs_type);
2443 out_fs:
2444 goto out;
2445 }
2446
2447 core_initcall(sock_init); /* early initcall */
2448
2449 #ifdef CONFIG_PROC_FS
2450 void socket_seq_show(struct seq_file *seq)
2451 {
2452 int cpu;
2453 int counter = 0;
2454
2455 for_each_possible_cpu(cpu)
2456 counter += per_cpu(sockets_in_use, cpu);
2457
2458 /* It can be negative, by the way. 8) */
2459 if (counter < 0)
2460 counter = 0;
2461
2462 seq_printf(seq, "sockets: used %d\n", counter);
2463 }
2464 #endif /* CONFIG_PROC_FS */
2465
2466 #ifdef CONFIG_COMPAT
2467 static int do_siocgstamp(struct net *net, struct socket *sock,
2468 unsigned int cmd, struct compat_timeval __user *up)
2469 {
2470 mm_segment_t old_fs = get_fs();
2471 struct timeval ktv;
2472 int err;
2473
2474 set_fs(KERNEL_DS);
2475 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2476 set_fs(old_fs);
2477 if (!err) {
2478 err = put_user(ktv.tv_sec, &up->tv_sec);
2479 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2480 }
2481 return err;
2482 }
2483
2484 static int do_siocgstampns(struct net *net, struct socket *sock,
2485 unsigned int cmd, struct compat_timespec __user *up)
2486 {
2487 mm_segment_t old_fs = get_fs();
2488 struct timespec kts;
2489 int err;
2490
2491 set_fs(KERNEL_DS);
2492 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2493 set_fs(old_fs);
2494 if (!err) {
2495 err = put_user(kts.tv_sec, &up->tv_sec);
2496 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2497 }
2498 return err;
2499 }
2500
2501 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2502 {
2503 struct ifreq __user *uifr;
2504 int err;
2505
2506 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2507 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2508 return -EFAULT;
2509
2510 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2511 if (err)
2512 return err;
2513
2514 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2515 return -EFAULT;
2516
2517 return 0;
2518 }
2519
2520 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2521 {
2522 struct compat_ifconf ifc32;
2523 struct ifconf ifc;
2524 struct ifconf __user *uifc;
2525 struct compat_ifreq __user *ifr32;
2526 struct ifreq __user *ifr;
2527 unsigned int i, j;
2528 int err;
2529
2530 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2531 return -EFAULT;
2532
2533 if (ifc32.ifcbuf == 0) {
2534 ifc32.ifc_len = 0;
2535 ifc.ifc_len = 0;
2536 ifc.ifc_req = NULL;
2537 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2538 } else {
2539 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2540 sizeof(struct ifreq);
2541 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2542 ifc.ifc_len = len;
2543 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2544 ifr32 = compat_ptr(ifc32.ifcbuf);
2545 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2546 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2547 return -EFAULT;
2548 ifr++;
2549 ifr32++;
2550 }
2551 }
2552 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2553 return -EFAULT;
2554
2555 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2556 if (err)
2557 return err;
2558
2559 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2560 return -EFAULT;
2561
2562 ifr = ifc.ifc_req;
2563 ifr32 = compat_ptr(ifc32.ifcbuf);
2564 for (i = 0, j = 0;
2565 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2566 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2567 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2568 return -EFAULT;
2569 ifr32++;
2570 ifr++;
2571 }
2572
2573 if (ifc32.ifcbuf == 0) {
2574 /* Translate from 64-bit structure multiple to
2575 * a 32-bit one.
2576 */
2577 i = ifc.ifc_len;
2578 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2579 ifc32.ifc_len = i;
2580 } else {
2581 ifc32.ifc_len = i;
2582 }
2583 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2584 return -EFAULT;
2585
2586 return 0;
2587 }
2588
2589 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2590 {
2591 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2592 bool convert_in = false, convert_out = false;
2593 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2594 struct ethtool_rxnfc __user *rxnfc;
2595 struct ifreq __user *ifr;
2596 u32 rule_cnt = 0, actual_rule_cnt;
2597 u32 ethcmd;
2598 u32 data;
2599 int ret;
2600
2601 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2602 return -EFAULT;
2603
2604 compat_rxnfc = compat_ptr(data);
2605
2606 if (get_user(ethcmd, &compat_rxnfc->cmd))
2607 return -EFAULT;
2608
2609 /* Most ethtool structures are defined without padding.
2610 * Unfortunately struct ethtool_rxnfc is an exception.
2611 */
2612 switch (ethcmd) {
2613 default:
2614 break;
2615 case ETHTOOL_GRXCLSRLALL:
2616 /* Buffer size is variable */
2617 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2618 return -EFAULT;
2619 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2620 return -ENOMEM;
2621 buf_size += rule_cnt * sizeof(u32);
2622 /* fall through */
2623 case ETHTOOL_GRXRINGS:
2624 case ETHTOOL_GRXCLSRLCNT:
2625 case ETHTOOL_GRXCLSRULE:
2626 convert_out = true;
2627 /* fall through */
2628 case ETHTOOL_SRXCLSRLDEL:
2629 case ETHTOOL_SRXCLSRLINS:
2630 buf_size += sizeof(struct ethtool_rxnfc);
2631 convert_in = true;
2632 break;
2633 }
2634
2635 ifr = compat_alloc_user_space(buf_size);
2636 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2637
2638 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2639 return -EFAULT;
2640
2641 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2642 &ifr->ifr_ifru.ifru_data))
2643 return -EFAULT;
2644
2645 if (convert_in) {
2646 /* We expect there to be holes between fs.m_u and
2647 * fs.ring_cookie and at the end of fs, but nowhere else.
2648 */
2649 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_u) +
2650 sizeof(compat_rxnfc->fs.m_u) !=
2651 offsetof(struct ethtool_rxnfc, fs.m_u) +
2652 sizeof(rxnfc->fs.m_u));
2653 BUILD_BUG_ON(
2654 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2655 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2656 offsetof(struct ethtool_rxnfc, fs.location) -
2657 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2658
2659 if (copy_in_user(rxnfc, compat_rxnfc,
2660 (void *)(&rxnfc->fs.m_u + 1) -
2661 (void *)rxnfc) ||
2662 copy_in_user(&rxnfc->fs.ring_cookie,
2663 &compat_rxnfc->fs.ring_cookie,
2664 (void *)(&rxnfc->fs.location + 1) -
2665 (void *)&rxnfc->fs.ring_cookie) ||
2666 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2667 sizeof(rxnfc->rule_cnt)))
2668 return -EFAULT;
2669 }
2670
2671 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2672 if (ret)
2673 return ret;
2674
2675 if (convert_out) {
2676 if (copy_in_user(compat_rxnfc, rxnfc,
2677 (const void *)(&rxnfc->fs.m_u + 1) -
2678 (const void *)rxnfc) ||
2679 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2680 &rxnfc->fs.ring_cookie,
2681 (const void *)(&rxnfc->fs.location + 1) -
2682 (const void *)&rxnfc->fs.ring_cookie) ||
2683 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2684 sizeof(rxnfc->rule_cnt)))
2685 return -EFAULT;
2686
2687 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2688 /* As an optimisation, we only copy the actual
2689 * number of rules that the underlying
2690 * function returned. Since Mallory might
2691 * change the rule count in user memory, we
2692 * check that it is less than the rule count
2693 * originally given (as the user buffer size),
2694 * which has been range-checked.
2695 */
2696 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2697 return -EFAULT;
2698 if (actual_rule_cnt < rule_cnt)
2699 rule_cnt = actual_rule_cnt;
2700 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2701 &rxnfc->rule_locs[0],
2702 rule_cnt * sizeof(u32)))
2703 return -EFAULT;
2704 }
2705 }
2706
2707 return 0;
2708 }
2709
2710 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2711 {
2712 void __user *uptr;
2713 compat_uptr_t uptr32;
2714 struct ifreq __user *uifr;
2715
2716 uifr = compat_alloc_user_space(sizeof(*uifr));
2717 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2718 return -EFAULT;
2719
2720 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2721 return -EFAULT;
2722
2723 uptr = compat_ptr(uptr32);
2724
2725 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2726 return -EFAULT;
2727
2728 return dev_ioctl(net, SIOCWANDEV, uifr);
2729 }
2730
2731 static int bond_ioctl(struct net *net, unsigned int cmd,
2732 struct compat_ifreq __user *ifr32)
2733 {
2734 struct ifreq kifr;
2735 struct ifreq __user *uifr;
2736 mm_segment_t old_fs;
2737 int err;
2738 u32 data;
2739 void __user *datap;
2740
2741 switch (cmd) {
2742 case SIOCBONDENSLAVE:
2743 case SIOCBONDRELEASE:
2744 case SIOCBONDSETHWADDR:
2745 case SIOCBONDCHANGEACTIVE:
2746 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2747 return -EFAULT;
2748
2749 old_fs = get_fs();
2750 set_fs(KERNEL_DS);
2751 err = dev_ioctl(net, cmd,
2752 (struct ifreq __user __force *) &kifr);
2753 set_fs(old_fs);
2754
2755 return err;
2756 case SIOCBONDSLAVEINFOQUERY:
2757 case SIOCBONDINFOQUERY:
2758 uifr = compat_alloc_user_space(sizeof(*uifr));
2759 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2760 return -EFAULT;
2761
2762 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2763 return -EFAULT;
2764
2765 datap = compat_ptr(data);
2766 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2767 return -EFAULT;
2768
2769 return dev_ioctl(net, cmd, uifr);
2770 default:
2771 return -EINVAL;
2772 }
2773 }
2774
2775 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2776 struct compat_ifreq __user *u_ifreq32)
2777 {
2778 struct ifreq __user *u_ifreq64;
2779 char tmp_buf[IFNAMSIZ];
2780 void __user *data64;
2781 u32 data32;
2782
2783 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2784 IFNAMSIZ))
2785 return -EFAULT;
2786 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2787 return -EFAULT;
2788 data64 = compat_ptr(data32);
2789
2790 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2791
2792 /* Don't check these user accesses, just let that get trapped
2793 * in the ioctl handler instead.
2794 */
2795 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2796 IFNAMSIZ))
2797 return -EFAULT;
2798 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2799 return -EFAULT;
2800
2801 return dev_ioctl(net, cmd, u_ifreq64);
2802 }
2803
2804 static int dev_ifsioc(struct net *net, struct socket *sock,
2805 unsigned int cmd, struct compat_ifreq __user *uifr32)
2806 {
2807 struct ifreq __user *uifr;
2808 int err;
2809
2810 uifr = compat_alloc_user_space(sizeof(*uifr));
2811 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2812 return -EFAULT;
2813
2814 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2815
2816 if (!err) {
2817 switch (cmd) {
2818 case SIOCGIFFLAGS:
2819 case SIOCGIFMETRIC:
2820 case SIOCGIFMTU:
2821 case SIOCGIFMEM:
2822 case SIOCGIFHWADDR:
2823 case SIOCGIFINDEX:
2824 case SIOCGIFADDR:
2825 case SIOCGIFBRDADDR:
2826 case SIOCGIFDSTADDR:
2827 case SIOCGIFNETMASK:
2828 case SIOCGIFPFLAGS:
2829 case SIOCGIFTXQLEN:
2830 case SIOCGMIIPHY:
2831 case SIOCGMIIREG:
2832 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2833 err = -EFAULT;
2834 break;
2835 }
2836 }
2837 return err;
2838 }
2839
2840 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2841 struct compat_ifreq __user *uifr32)
2842 {
2843 struct ifreq ifr;
2844 struct compat_ifmap __user *uifmap32;
2845 mm_segment_t old_fs;
2846 int err;
2847
2848 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2849 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2850 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2851 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2852 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2853 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2854 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2855 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2856 if (err)
2857 return -EFAULT;
2858
2859 old_fs = get_fs();
2860 set_fs(KERNEL_DS);
2861 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2862 set_fs(old_fs);
2863
2864 if (cmd == SIOCGIFMAP && !err) {
2865 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2866 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2867 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2868 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2869 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2870 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2871 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2872 if (err)
2873 err = -EFAULT;
2874 }
2875 return err;
2876 }
2877
2878 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2879 {
2880 void __user *uptr;
2881 compat_uptr_t uptr32;
2882 struct ifreq __user *uifr;
2883
2884 uifr = compat_alloc_user_space(sizeof(*uifr));
2885 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2886 return -EFAULT;
2887
2888 if (get_user(uptr32, &uifr32->ifr_data))
2889 return -EFAULT;
2890
2891 uptr = compat_ptr(uptr32);
2892
2893 if (put_user(uptr, &uifr->ifr_data))
2894 return -EFAULT;
2895
2896 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2897 }
2898
2899 struct rtentry32 {
2900 u32 rt_pad1;
2901 struct sockaddr rt_dst; /* target address */
2902 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2903 struct sockaddr rt_genmask; /* target network mask (IP) */
2904 unsigned short rt_flags;
2905 short rt_pad2;
2906 u32 rt_pad3;
2907 unsigned char rt_tos;
2908 unsigned char rt_class;
2909 short rt_pad4;
2910 short rt_metric; /* +1 for binary compatibility! */
2911 /* char * */ u32 rt_dev; /* forcing the device at add */
2912 u32 rt_mtu; /* per route MTU/Window */
2913 u32 rt_window; /* Window clamping */
2914 unsigned short rt_irtt; /* Initial RTT */
2915 };
2916
2917 struct in6_rtmsg32 {
2918 struct in6_addr rtmsg_dst;
2919 struct in6_addr rtmsg_src;
2920 struct in6_addr rtmsg_gateway;
2921 u32 rtmsg_type;
2922 u16 rtmsg_dst_len;
2923 u16 rtmsg_src_len;
2924 u32 rtmsg_metric;
2925 u32 rtmsg_info;
2926 u32 rtmsg_flags;
2927 s32 rtmsg_ifindex;
2928 };
2929
2930 static int routing_ioctl(struct net *net, struct socket *sock,
2931 unsigned int cmd, void __user *argp)
2932 {
2933 int ret;
2934 void *r = NULL;
2935 struct in6_rtmsg r6;
2936 struct rtentry r4;
2937 char devname[16];
2938 u32 rtdev;
2939 mm_segment_t old_fs = get_fs();
2940
2941 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2942 struct in6_rtmsg32 __user *ur6 = argp;
2943 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2944 3 * sizeof(struct in6_addr));
2945 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2946 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2947 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2948 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2949 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2950 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2951 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2952
2953 r = (void *) &r6;
2954 } else { /* ipv4 */
2955 struct rtentry32 __user *ur4 = argp;
2956 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2957 3 * sizeof(struct sockaddr));
2958 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2959 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2960 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2961 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2962 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2963 ret |= __get_user(rtdev, &(ur4->rt_dev));
2964 if (rtdev) {
2965 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2966 r4.rt_dev = (char __user __force *)devname;
2967 devname[15] = 0;
2968 } else
2969 r4.rt_dev = NULL;
2970
2971 r = (void *) &r4;
2972 }
2973
2974 if (ret) {
2975 ret = -EFAULT;
2976 goto out;
2977 }
2978
2979 set_fs(KERNEL_DS);
2980 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2981 set_fs(old_fs);
2982
2983 out:
2984 return ret;
2985 }
2986
2987 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2988 * for some operations; this forces use of the newer bridge-utils that
2989 * use compatible ioctls
2990 */
2991 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2992 {
2993 compat_ulong_t tmp;
2994
2995 if (get_user(tmp, argp))
2996 return -EFAULT;
2997 if (tmp == BRCTL_GET_VERSION)
2998 return BRCTL_VERSION + 1;
2999 return -EINVAL;
3000 }
3001
3002 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3003 unsigned int cmd, unsigned long arg)
3004 {
3005 void __user *argp = compat_ptr(arg);
3006 struct sock *sk = sock->sk;
3007 struct net *net = sock_net(sk);
3008
3009 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3010 return siocdevprivate_ioctl(net, cmd, argp);
3011
3012 switch (cmd) {
3013 case SIOCSIFBR:
3014 case SIOCGIFBR:
3015 return old_bridge_ioctl(argp);
3016 case SIOCGIFNAME:
3017 return dev_ifname32(net, argp);
3018 case SIOCGIFCONF:
3019 return dev_ifconf(net, argp);
3020 case SIOCETHTOOL:
3021 return ethtool_ioctl(net, argp);
3022 case SIOCWANDEV:
3023 return compat_siocwandev(net, argp);
3024 case SIOCGIFMAP:
3025 case SIOCSIFMAP:
3026 return compat_sioc_ifmap(net, cmd, argp);
3027 case SIOCBONDENSLAVE:
3028 case SIOCBONDRELEASE:
3029 case SIOCBONDSETHWADDR:
3030 case SIOCBONDSLAVEINFOQUERY:
3031 case SIOCBONDINFOQUERY:
3032 case SIOCBONDCHANGEACTIVE:
3033 return bond_ioctl(net, cmd, argp);
3034 case SIOCADDRT:
3035 case SIOCDELRT:
3036 return routing_ioctl(net, sock, cmd, argp);
3037 case SIOCGSTAMP:
3038 return do_siocgstamp(net, sock, cmd, argp);
3039 case SIOCGSTAMPNS:
3040 return do_siocgstampns(net, sock, cmd, argp);
3041 case SIOCSHWTSTAMP:
3042 return compat_siocshwtstamp(net, argp);
3043
3044 case FIOSETOWN:
3045 case SIOCSPGRP:
3046 case FIOGETOWN:
3047 case SIOCGPGRP:
3048 case SIOCBRADDBR:
3049 case SIOCBRDELBR:
3050 case SIOCGIFVLAN:
3051 case SIOCSIFVLAN:
3052 case SIOCADDDLCI:
3053 case SIOCDELDLCI:
3054 return sock_ioctl(file, cmd, arg);
3055
3056 case SIOCGIFFLAGS:
3057 case SIOCSIFFLAGS:
3058 case SIOCGIFMETRIC:
3059 case SIOCSIFMETRIC:
3060 case SIOCGIFMTU:
3061 case SIOCSIFMTU:
3062 case SIOCGIFMEM:
3063 case SIOCSIFMEM:
3064 case SIOCGIFHWADDR:
3065 case SIOCSIFHWADDR:
3066 case SIOCADDMULTI:
3067 case SIOCDELMULTI:
3068 case SIOCGIFINDEX:
3069 case SIOCGIFADDR:
3070 case SIOCSIFADDR:
3071 case SIOCSIFHWBROADCAST:
3072 case SIOCDIFADDR:
3073 case SIOCGIFBRDADDR:
3074 case SIOCSIFBRDADDR:
3075 case SIOCGIFDSTADDR:
3076 case SIOCSIFDSTADDR:
3077 case SIOCGIFNETMASK:
3078 case SIOCSIFNETMASK:
3079 case SIOCSIFPFLAGS:
3080 case SIOCGIFPFLAGS:
3081 case SIOCGIFTXQLEN:
3082 case SIOCSIFTXQLEN:
3083 case SIOCBRADDIF:
3084 case SIOCBRDELIF:
3085 case SIOCSIFNAME:
3086 case SIOCGMIIPHY:
3087 case SIOCGMIIREG:
3088 case SIOCSMIIREG:
3089 return dev_ifsioc(net, sock, cmd, argp);
3090
3091 case SIOCSARP:
3092 case SIOCGARP:
3093 case SIOCDARP:
3094 case SIOCATMARK:
3095 return sock_do_ioctl(net, sock, cmd, arg);
3096 }
3097
3098 /* Prevent warning from compat_sys_ioctl, these always
3099 * result in -EINVAL in the native case anyway. */
3100 switch (cmd) {
3101 case SIOCRTMSG:
3102 case SIOCGIFCOUNT:
3103 case SIOCSRARP:
3104 case SIOCGRARP:
3105 case SIOCDRARP:
3106 case SIOCSIFLINK:
3107 case SIOCGIFSLAVE:
3108 case SIOCSIFSLAVE:
3109 return -EINVAL;
3110 }
3111
3112 return -ENOIOCTLCMD;
3113 }
3114
3115 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3116 unsigned long arg)
3117 {
3118 struct socket *sock = file->private_data;
3119 int ret = -ENOIOCTLCMD;
3120 struct sock *sk;
3121 struct net *net;
3122
3123 sk = sock->sk;
3124 net = sock_net(sk);
3125
3126 if (sock->ops->compat_ioctl)
3127 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3128
3129 if (ret == -ENOIOCTLCMD &&
3130 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3131 ret = compat_wext_handle_ioctl(net, cmd, arg);
3132
3133 if (ret == -ENOIOCTLCMD)
3134 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3135
3136 return ret;
3137 }
3138 #endif
3139
3140 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3141 {
3142 return sock->ops->bind(sock, addr, addrlen);
3143 }
3144 EXPORT_SYMBOL(kernel_bind);
3145
3146 int kernel_listen(struct socket *sock, int backlog)
3147 {
3148 return sock->ops->listen(sock, backlog);
3149 }
3150 EXPORT_SYMBOL(kernel_listen);
3151
3152 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3153 {
3154 struct sock *sk = sock->sk;
3155 int err;
3156
3157 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3158 newsock);
3159 if (err < 0)
3160 goto done;
3161
3162 err = sock->ops->accept(sock, *newsock, flags);
3163 if (err < 0) {
3164 sock_release(*newsock);
3165 *newsock = NULL;
3166 goto done;
3167 }
3168
3169 (*newsock)->ops = sock->ops;
3170 __module_get((*newsock)->ops->owner);
3171
3172 done:
3173 return err;
3174 }
3175 EXPORT_SYMBOL(kernel_accept);
3176
3177 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3178 int flags)
3179 {
3180 return sock->ops->connect(sock, addr, addrlen, flags);
3181 }
3182 EXPORT_SYMBOL(kernel_connect);
3183
3184 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3185 int *addrlen)
3186 {
3187 return sock->ops->getname(sock, addr, addrlen, 0);
3188 }
3189 EXPORT_SYMBOL(kernel_getsockname);
3190
3191 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3192 int *addrlen)
3193 {
3194 return sock->ops->getname(sock, addr, addrlen, 1);
3195 }
3196 EXPORT_SYMBOL(kernel_getpeername);
3197
3198 int kernel_getsockopt(struct socket *sock, int level, int optname,
3199 char *optval, int *optlen)
3200 {
3201 mm_segment_t oldfs = get_fs();
3202 char __user *uoptval;
3203 int __user *uoptlen;
3204 int err;
3205
3206 uoptval = (char __user __force *) optval;
3207 uoptlen = (int __user __force *) optlen;
3208
3209 set_fs(KERNEL_DS);
3210 if (level == SOL_SOCKET)
3211 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3212 else
3213 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3214 uoptlen);
3215 set_fs(oldfs);
3216 return err;
3217 }
3218 EXPORT_SYMBOL(kernel_getsockopt);
3219
3220 int kernel_setsockopt(struct socket *sock, int level, int optname,
3221 char *optval, unsigned int optlen)
3222 {
3223 mm_segment_t oldfs = get_fs();
3224 char __user *uoptval;
3225 int err;
3226
3227 uoptval = (char __user __force *) optval;
3228
3229 set_fs(KERNEL_DS);
3230 if (level == SOL_SOCKET)
3231 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3232 else
3233 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3234 optlen);
3235 set_fs(oldfs);
3236 return err;
3237 }
3238 EXPORT_SYMBOL(kernel_setsockopt);
3239
3240 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3241 size_t size, int flags)
3242 {
3243 sock_update_classid(sock->sk);
3244
3245 if (sock->ops->sendpage)
3246 return sock->ops->sendpage(sock, page, offset, size, flags);
3247
3248 return sock_no_sendpage(sock, page, offset, size, flags);
3249 }
3250 EXPORT_SYMBOL(kernel_sendpage);
3251
3252 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3253 {
3254 mm_segment_t oldfs = get_fs();
3255 int err;
3256
3257 set_fs(KERNEL_DS);
3258 err = sock->ops->ioctl(sock, cmd, arg);
3259 set_fs(oldfs);
3260
3261 return err;
3262 }
3263 EXPORT_SYMBOL(kernel_sock_ioctl);
3264
3265 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3266 {
3267 return sock->ops->shutdown(sock, how);
3268 }
3269 EXPORT_SYMBOL(kernel_sock_shutdown);