]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 struct pipe_inode_info *pipe, size_t len,
128 unsigned int flags);
129
130 /*
131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132 * in the operation structures but are done directly via the socketcall() multiplexor.
133 */
134
135 static const struct file_operations socket_file_ops = {
136 .owner = THIS_MODULE,
137 .llseek = no_llseek,
138 .aio_read = sock_aio_read,
139 .aio_write = sock_aio_write,
140 .poll = sock_poll,
141 .unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 .compat_ioctl = compat_sock_ioctl,
144 #endif
145 .mmap = sock_mmap,
146 .open = sock_no_open, /* special open code to disallow open via /proc */
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Statistics counters of the socket lists
163 */
164
165 static DEFINE_PER_CPU(int, sockets_in_use);
166
167 /*
168 * Support routines.
169 * Move socket addresses back and forth across the kernel/user
170 * divide and look after the messy bits.
171 */
172
173 /**
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
178 *
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 */
183
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 return -EINVAL;
188 if (ulen == 0)
189 return 0;
190 if (copy_from_user(kaddr, uaddr, ulen))
191 return -EFAULT;
192 return audit_sockaddr(ulen, kaddr);
193 }
194
195 /**
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
201 *
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
206 * accessible.
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
210 */
211
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 void __user *uaddr, int __user *ulen)
214 {
215 int err;
216 int len;
217
218 err = get_user(len, ulen);
219 if (err)
220 return err;
221 if (len > klen)
222 len = klen;
223 if (len < 0 || len > sizeof(struct sockaddr_storage))
224 return -EINVAL;
225 if (len) {
226 if (audit_sockaddr(klen, kaddr))
227 return -ENOMEM;
228 if (copy_to_user(uaddr, kaddr, len))
229 return -EFAULT;
230 }
231 /*
232 * "fromlen shall refer to the value before truncation.."
233 * 1003.1g
234 */
235 return __put_user(klen, ulen);
236 }
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 struct socket_alloc *ei;
243 struct socket_wq *wq;
244
245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 if (!ei)
247 return NULL;
248 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 if (!wq) {
250 kmem_cache_free(sock_inode_cachep, ei);
251 return NULL;
252 }
253 init_waitqueue_head(&wq->wait);
254 wq->fasync_list = NULL;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
256
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
262
263 return &ei->vfs_inode;
264 }
265
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
270
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
275 }
276
277 static void init_once(void *foo)
278 {
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282 }
283
284 static int init_inodecache(void)
285 {
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD),
292 init_once);
293 if (sock_inode_cachep == NULL)
294 return -ENOMEM;
295 return 0;
296 }
297
298 static const struct super_operations sockfs_ops = {
299 .alloc_inode = sock_alloc_inode,
300 .destroy_inode = sock_destroy_inode,
301 .statfs = simple_statfs,
302 };
303
304 /*
305 * sockfs_dname() is called from d_path().
306 */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 dentry->d_inode->i_ino);
311 }
312
313 static const struct dentry_operations sockfs_dentry_operations = {
314 .d_dname = sockfs_dname,
315 };
316
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 int flags, const char *dev_name, void *data)
319 {
320 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 &sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323
324 static struct vfsmount *sock_mnt __read_mostly;
325
326 static struct file_system_type sock_fs_type = {
327 .name = "sockfs",
328 .mount = sockfs_mount,
329 .kill_sb = kill_anon_super,
330 };
331
332 /*
333 * Obtains the first available file descriptor and sets it up for use.
334 *
335 * These functions create file structures and maps them to fd space
336 * of the current process. On success it returns file descriptor
337 * and file struct implicitly stored in sock->file.
338 * Note that another thread may close file descriptor before we return
339 * from this function. We use the fact that now we do not refer
340 * to socket after mapping. If one day we will need it, this
341 * function will increment ref. count on file by 1.
342 *
343 * In any case returned fd MAY BE not valid!
344 * This race condition is unavoidable
345 * with shared fd spaces, we cannot solve it inside kernel,
346 * but we take care of internal coherence yet.
347 */
348
349 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
350 {
351 struct qstr name = { .name = "" };
352 struct path path;
353 struct file *file;
354 int fd;
355
356 fd = get_unused_fd_flags(flags);
357 if (unlikely(fd < 0))
358 return fd;
359
360 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
361 if (unlikely(!path.dentry)) {
362 put_unused_fd(fd);
363 return -ENOMEM;
364 }
365 path.mnt = mntget(sock_mnt);
366
367 d_instantiate(path.dentry, SOCK_INODE(sock));
368 SOCK_INODE(sock)->i_fop = &socket_file_ops;
369
370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 &socket_file_ops);
372 if (unlikely(!file)) {
373 /* drop dentry, keep inode */
374 ihold(path.dentry->d_inode);
375 path_put(&path);
376 put_unused_fd(fd);
377 return -ENFILE;
378 }
379
380 sock->file = file;
381 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
382 file->f_pos = 0;
383 file->private_data = sock;
384
385 *f = file;
386 return fd;
387 }
388
389 int sock_map_fd(struct socket *sock, int flags)
390 {
391 struct file *newfile;
392 int fd = sock_alloc_file(sock, &newfile, flags);
393
394 if (likely(fd >= 0))
395 fd_install(fd, newfile);
396
397 return fd;
398 }
399 EXPORT_SYMBOL(sock_map_fd);
400
401 static struct socket *sock_from_file(struct file *file, int *err)
402 {
403 if (file->f_op == &socket_file_ops)
404 return file->private_data; /* set in sock_map_fd */
405
406 *err = -ENOTSOCK;
407 return NULL;
408 }
409
410 /**
411 * sockfd_lookup - Go from a file number to its socket slot
412 * @fd: file handle
413 * @err: pointer to an error code return
414 *
415 * The file handle passed in is locked and the socket it is bound
416 * too is returned. If an error occurs the err pointer is overwritten
417 * with a negative errno code and NULL is returned. The function checks
418 * for both invalid handles and passing a handle which is not a socket.
419 *
420 * On a success the socket object pointer is returned.
421 */
422
423 struct socket *sockfd_lookup(int fd, int *err)
424 {
425 struct file *file;
426 struct socket *sock;
427
428 file = fget(fd);
429 if (!file) {
430 *err = -EBADF;
431 return NULL;
432 }
433
434 sock = sock_from_file(file, err);
435 if (!sock)
436 fput(file);
437 return sock;
438 }
439 EXPORT_SYMBOL(sockfd_lookup);
440
441 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
442 {
443 struct file *file;
444 struct socket *sock;
445
446 *err = -EBADF;
447 file = fget_light(fd, fput_needed);
448 if (file) {
449 sock = sock_from_file(file, err);
450 if (sock)
451 return sock;
452 fput_light(file, *fput_needed);
453 }
454 return NULL;
455 }
456
457 /**
458 * sock_alloc - allocate a socket
459 *
460 * Allocate a new inode and socket object. The two are bound together
461 * and initialised. The socket is then returned. If we are out of inodes
462 * NULL is returned.
463 */
464
465 static struct socket *sock_alloc(void)
466 {
467 struct inode *inode;
468 struct socket *sock;
469
470 inode = new_inode_pseudo(sock_mnt->mnt_sb);
471 if (!inode)
472 return NULL;
473
474 sock = SOCKET_I(inode);
475
476 kmemcheck_annotate_bitfield(sock, type);
477 inode->i_ino = get_next_ino();
478 inode->i_mode = S_IFSOCK | S_IRWXUGO;
479 inode->i_uid = current_fsuid();
480 inode->i_gid = current_fsgid();
481
482 percpu_add(sockets_in_use, 1);
483 return sock;
484 }
485
486 /*
487 * In theory you can't get an open on this inode, but /proc provides
488 * a back door. Remember to keep it shut otherwise you'll let the
489 * creepy crawlies in.
490 */
491
492 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
493 {
494 return -ENXIO;
495 }
496
497 const struct file_operations bad_sock_fops = {
498 .owner = THIS_MODULE,
499 .open = sock_no_open,
500 .llseek = noop_llseek,
501 };
502
503 /**
504 * sock_release - close a socket
505 * @sock: socket to close
506 *
507 * The socket is released from the protocol stack if it has a release
508 * callback, and the inode is then released if the socket is bound to
509 * an inode not a file.
510 */
511
512 void sock_release(struct socket *sock)
513 {
514 if (sock->ops) {
515 struct module *owner = sock->ops->owner;
516
517 sock->ops->release(sock);
518 sock->ops = NULL;
519 module_put(owner);
520 }
521
522 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
523 printk(KERN_ERR "sock_release: fasync list not empty!\n");
524
525 percpu_sub(sockets_in_use, 1);
526 if (!sock->file) {
527 iput(SOCK_INODE(sock));
528 return;
529 }
530 sock->file = NULL;
531 }
532 EXPORT_SYMBOL(sock_release);
533
534 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
535 {
536 *tx_flags = 0;
537 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
538 *tx_flags |= SKBTX_HW_TSTAMP;
539 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
540 *tx_flags |= SKBTX_SW_TSTAMP;
541 if (sock_flag(sk, SOCK_WIFI_STATUS))
542 *tx_flags |= SKBTX_WIFI_STATUS;
543 return 0;
544 }
545 EXPORT_SYMBOL(sock_tx_timestamp);
546
547 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
548 struct msghdr *msg, size_t size)
549 {
550 struct sock_iocb *si = kiocb_to_siocb(iocb);
551
552 sock_update_classid(sock->sk);
553
554 si->sock = sock;
555 si->scm = NULL;
556 si->msg = msg;
557 si->size = size;
558
559 return sock->ops->sendmsg(iocb, sock, msg, size);
560 }
561
562 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
563 struct msghdr *msg, size_t size)
564 {
565 int err = security_socket_sendmsg(sock, msg, size);
566
567 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
568 }
569
570 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571 {
572 struct kiocb iocb;
573 struct sock_iocb siocb;
574 int ret;
575
576 init_sync_kiocb(&iocb, NULL);
577 iocb.private = &siocb;
578 ret = __sock_sendmsg(&iocb, sock, msg, size);
579 if (-EIOCBQUEUED == ret)
580 ret = wait_on_sync_kiocb(&iocb);
581 return ret;
582 }
583 EXPORT_SYMBOL(sock_sendmsg);
584
585 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
586 {
587 struct kiocb iocb;
588 struct sock_iocb siocb;
589 int ret;
590
591 init_sync_kiocb(&iocb, NULL);
592 iocb.private = &siocb;
593 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
594 if (-EIOCBQUEUED == ret)
595 ret = wait_on_sync_kiocb(&iocb);
596 return ret;
597 }
598
599 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
600 struct kvec *vec, size_t num, size_t size)
601 {
602 mm_segment_t oldfs = get_fs();
603 int result;
604
605 set_fs(KERNEL_DS);
606 /*
607 * the following is safe, since for compiler definitions of kvec and
608 * iovec are identical, yielding the same in-core layout and alignment
609 */
610 msg->msg_iov = (struct iovec *)vec;
611 msg->msg_iovlen = num;
612 result = sock_sendmsg(sock, msg, size);
613 set_fs(oldfs);
614 return result;
615 }
616 EXPORT_SYMBOL(kernel_sendmsg);
617
618 static int ktime2ts(ktime_t kt, struct timespec *ts)
619 {
620 if (kt.tv64) {
621 *ts = ktime_to_timespec(kt);
622 return 1;
623 } else {
624 return 0;
625 }
626 }
627
628 /*
629 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
630 */
631 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
632 struct sk_buff *skb)
633 {
634 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
635 struct timespec ts[3];
636 int empty = 1;
637 struct skb_shared_hwtstamps *shhwtstamps =
638 skb_hwtstamps(skb);
639
640 /* Race occurred between timestamp enabling and packet
641 receiving. Fill in the current time for now. */
642 if (need_software_tstamp && skb->tstamp.tv64 == 0)
643 __net_timestamp(skb);
644
645 if (need_software_tstamp) {
646 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
647 struct timeval tv;
648 skb_get_timestamp(skb, &tv);
649 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
650 sizeof(tv), &tv);
651 } else {
652 skb_get_timestampns(skb, &ts[0]);
653 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
654 sizeof(ts[0]), &ts[0]);
655 }
656 }
657
658
659 memset(ts, 0, sizeof(ts));
660 if (skb->tstamp.tv64 &&
661 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
662 skb_get_timestampns(skb, ts + 0);
663 empty = 0;
664 }
665 if (shhwtstamps) {
666 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
667 ktime2ts(shhwtstamps->syststamp, ts + 1))
668 empty = 0;
669 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
670 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
671 empty = 0;
672 }
673 if (!empty)
674 put_cmsg(msg, SOL_SOCKET,
675 SCM_TIMESTAMPING, sizeof(ts), &ts);
676 }
677 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
678
679 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
680 struct sk_buff *skb)
681 {
682 int ack;
683
684 if (!sock_flag(sk, SOCK_WIFI_STATUS))
685 return;
686 if (!skb->wifi_acked_valid)
687 return;
688
689 ack = skb->wifi_acked;
690
691 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
692 }
693 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
694
695 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
696 struct sk_buff *skb)
697 {
698 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
699 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
700 sizeof(__u32), &skb->dropcount);
701 }
702
703 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
704 struct sk_buff *skb)
705 {
706 sock_recv_timestamp(msg, sk, skb);
707 sock_recv_drops(msg, sk, skb);
708 }
709 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
710
711 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
712 struct msghdr *msg, size_t size, int flags)
713 {
714 struct sock_iocb *si = kiocb_to_siocb(iocb);
715
716 sock_update_classid(sock->sk);
717
718 si->sock = sock;
719 si->scm = NULL;
720 si->msg = msg;
721 si->size = size;
722 si->flags = flags;
723
724 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
725 }
726
727 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
728 struct msghdr *msg, size_t size, int flags)
729 {
730 int err = security_socket_recvmsg(sock, msg, size, flags);
731
732 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
733 }
734
735 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
736 size_t size, int flags)
737 {
738 struct kiocb iocb;
739 struct sock_iocb siocb;
740 int ret;
741
742 init_sync_kiocb(&iocb, NULL);
743 iocb.private = &siocb;
744 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
745 if (-EIOCBQUEUED == ret)
746 ret = wait_on_sync_kiocb(&iocb);
747 return ret;
748 }
749 EXPORT_SYMBOL(sock_recvmsg);
750
751 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
752 size_t size, int flags)
753 {
754 struct kiocb iocb;
755 struct sock_iocb siocb;
756 int ret;
757
758 init_sync_kiocb(&iocb, NULL);
759 iocb.private = &siocb;
760 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
761 if (-EIOCBQUEUED == ret)
762 ret = wait_on_sync_kiocb(&iocb);
763 return ret;
764 }
765
766 /**
767 * kernel_recvmsg - Receive a message from a socket (kernel space)
768 * @sock: The socket to receive the message from
769 * @msg: Received message
770 * @vec: Input s/g array for message data
771 * @num: Size of input s/g array
772 * @size: Number of bytes to read
773 * @flags: Message flags (MSG_DONTWAIT, etc...)
774 *
775 * On return the msg structure contains the scatter/gather array passed in the
776 * vec argument. The array is modified so that it consists of the unfilled
777 * portion of the original array.
778 *
779 * The returned value is the total number of bytes received, or an error.
780 */
781 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
782 struct kvec *vec, size_t num, size_t size, int flags)
783 {
784 mm_segment_t oldfs = get_fs();
785 int result;
786
787 set_fs(KERNEL_DS);
788 /*
789 * the following is safe, since for compiler definitions of kvec and
790 * iovec are identical, yielding the same in-core layout and alignment
791 */
792 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
793 result = sock_recvmsg(sock, msg, size, flags);
794 set_fs(oldfs);
795 return result;
796 }
797 EXPORT_SYMBOL(kernel_recvmsg);
798
799 static void sock_aio_dtor(struct kiocb *iocb)
800 {
801 kfree(iocb->private);
802 }
803
804 static ssize_t sock_sendpage(struct file *file, struct page *page,
805 int offset, size_t size, loff_t *ppos, int more)
806 {
807 struct socket *sock;
808 int flags;
809
810 sock = file->private_data;
811
812 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
813 if (more)
814 flags |= MSG_MORE;
815
816 return kernel_sendpage(sock, page, offset, size, flags);
817 }
818
819 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
820 struct pipe_inode_info *pipe, size_t len,
821 unsigned int flags)
822 {
823 struct socket *sock = file->private_data;
824
825 if (unlikely(!sock->ops->splice_read))
826 return -EINVAL;
827
828 sock_update_classid(sock->sk);
829
830 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
831 }
832
833 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
834 struct sock_iocb *siocb)
835 {
836 if (!is_sync_kiocb(iocb)) {
837 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
838 if (!siocb)
839 return NULL;
840 iocb->ki_dtor = sock_aio_dtor;
841 }
842
843 siocb->kiocb = iocb;
844 iocb->private = siocb;
845 return siocb;
846 }
847
848 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
849 struct file *file, const struct iovec *iov,
850 unsigned long nr_segs)
851 {
852 struct socket *sock = file->private_data;
853 size_t size = 0;
854 int i;
855
856 for (i = 0; i < nr_segs; i++)
857 size += iov[i].iov_len;
858
859 msg->msg_name = NULL;
860 msg->msg_namelen = 0;
861 msg->msg_control = NULL;
862 msg->msg_controllen = 0;
863 msg->msg_iov = (struct iovec *)iov;
864 msg->msg_iovlen = nr_segs;
865 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866
867 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
868 }
869
870 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
871 unsigned long nr_segs, loff_t pos)
872 {
873 struct sock_iocb siocb, *x;
874
875 if (pos != 0)
876 return -ESPIPE;
877
878 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
879 return 0;
880
881
882 x = alloc_sock_iocb(iocb, &siocb);
883 if (!x)
884 return -ENOMEM;
885 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
886 }
887
888 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
889 struct file *file, const struct iovec *iov,
890 unsigned long nr_segs)
891 {
892 struct socket *sock = file->private_data;
893 size_t size = 0;
894 int i;
895
896 for (i = 0; i < nr_segs; i++)
897 size += iov[i].iov_len;
898
899 msg->msg_name = NULL;
900 msg->msg_namelen = 0;
901 msg->msg_control = NULL;
902 msg->msg_controllen = 0;
903 msg->msg_iov = (struct iovec *)iov;
904 msg->msg_iovlen = nr_segs;
905 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
906 if (sock->type == SOCK_SEQPACKET)
907 msg->msg_flags |= MSG_EOR;
908
909 return __sock_sendmsg(iocb, sock, msg, size);
910 }
911
912 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
913 unsigned long nr_segs, loff_t pos)
914 {
915 struct sock_iocb siocb, *x;
916
917 if (pos != 0)
918 return -ESPIPE;
919
920 x = alloc_sock_iocb(iocb, &siocb);
921 if (!x)
922 return -ENOMEM;
923
924 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
925 }
926
927 /*
928 * Atomic setting of ioctl hooks to avoid race
929 * with module unload.
930 */
931
932 static DEFINE_MUTEX(br_ioctl_mutex);
933 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
934
935 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
936 {
937 mutex_lock(&br_ioctl_mutex);
938 br_ioctl_hook = hook;
939 mutex_unlock(&br_ioctl_mutex);
940 }
941 EXPORT_SYMBOL(brioctl_set);
942
943 static DEFINE_MUTEX(vlan_ioctl_mutex);
944 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
945
946 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
947 {
948 mutex_lock(&vlan_ioctl_mutex);
949 vlan_ioctl_hook = hook;
950 mutex_unlock(&vlan_ioctl_mutex);
951 }
952 EXPORT_SYMBOL(vlan_ioctl_set);
953
954 static DEFINE_MUTEX(dlci_ioctl_mutex);
955 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
956
957 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
958 {
959 mutex_lock(&dlci_ioctl_mutex);
960 dlci_ioctl_hook = hook;
961 mutex_unlock(&dlci_ioctl_mutex);
962 }
963 EXPORT_SYMBOL(dlci_ioctl_set);
964
965 static long sock_do_ioctl(struct net *net, struct socket *sock,
966 unsigned int cmd, unsigned long arg)
967 {
968 int err;
969 void __user *argp = (void __user *)arg;
970
971 err = sock->ops->ioctl(sock, cmd, arg);
972
973 /*
974 * If this ioctl is unknown try to hand it down
975 * to the NIC driver.
976 */
977 if (err == -ENOIOCTLCMD)
978 err = dev_ioctl(net, cmd, argp);
979
980 return err;
981 }
982
983 /*
984 * With an ioctl, arg may well be a user mode pointer, but we don't know
985 * what to do with it - that's up to the protocol still.
986 */
987
988 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
989 {
990 struct socket *sock;
991 struct sock *sk;
992 void __user *argp = (void __user *)arg;
993 int pid, err;
994 struct net *net;
995
996 sock = file->private_data;
997 sk = sock->sk;
998 net = sock_net(sk);
999 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1000 err = dev_ioctl(net, cmd, argp);
1001 } else
1002 #ifdef CONFIG_WEXT_CORE
1003 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1004 err = dev_ioctl(net, cmd, argp);
1005 } else
1006 #endif
1007 switch (cmd) {
1008 case FIOSETOWN:
1009 case SIOCSPGRP:
1010 err = -EFAULT;
1011 if (get_user(pid, (int __user *)argp))
1012 break;
1013 err = f_setown(sock->file, pid, 1);
1014 break;
1015 case FIOGETOWN:
1016 case SIOCGPGRP:
1017 err = put_user(f_getown(sock->file),
1018 (int __user *)argp);
1019 break;
1020 case SIOCGIFBR:
1021 case SIOCSIFBR:
1022 case SIOCBRADDBR:
1023 case SIOCBRDELBR:
1024 err = -ENOPKG;
1025 if (!br_ioctl_hook)
1026 request_module("bridge");
1027
1028 mutex_lock(&br_ioctl_mutex);
1029 if (br_ioctl_hook)
1030 err = br_ioctl_hook(net, cmd, argp);
1031 mutex_unlock(&br_ioctl_mutex);
1032 break;
1033 case SIOCGIFVLAN:
1034 case SIOCSIFVLAN:
1035 err = -ENOPKG;
1036 if (!vlan_ioctl_hook)
1037 request_module("8021q");
1038
1039 mutex_lock(&vlan_ioctl_mutex);
1040 if (vlan_ioctl_hook)
1041 err = vlan_ioctl_hook(net, argp);
1042 mutex_unlock(&vlan_ioctl_mutex);
1043 break;
1044 case SIOCADDDLCI:
1045 case SIOCDELDLCI:
1046 err = -ENOPKG;
1047 if (!dlci_ioctl_hook)
1048 request_module("dlci");
1049
1050 mutex_lock(&dlci_ioctl_mutex);
1051 if (dlci_ioctl_hook)
1052 err = dlci_ioctl_hook(cmd, argp);
1053 mutex_unlock(&dlci_ioctl_mutex);
1054 break;
1055 default:
1056 err = sock_do_ioctl(net, sock, cmd, arg);
1057 break;
1058 }
1059 return err;
1060 }
1061
1062 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1063 {
1064 int err;
1065 struct socket *sock = NULL;
1066
1067 err = security_socket_create(family, type, protocol, 1);
1068 if (err)
1069 goto out;
1070
1071 sock = sock_alloc();
1072 if (!sock) {
1073 err = -ENOMEM;
1074 goto out;
1075 }
1076
1077 sock->type = type;
1078 err = security_socket_post_create(sock, family, type, protocol, 1);
1079 if (err)
1080 goto out_release;
1081
1082 out:
1083 *res = sock;
1084 return err;
1085 out_release:
1086 sock_release(sock);
1087 sock = NULL;
1088 goto out;
1089 }
1090 EXPORT_SYMBOL(sock_create_lite);
1091
1092 /* No kernel lock held - perfect */
1093 static unsigned int sock_poll(struct file *file, poll_table *wait)
1094 {
1095 struct socket *sock;
1096
1097 /*
1098 * We can't return errors to poll, so it's either yes or no.
1099 */
1100 sock = file->private_data;
1101 return sock->ops->poll(file, sock, wait);
1102 }
1103
1104 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1105 {
1106 struct socket *sock = file->private_data;
1107
1108 return sock->ops->mmap(file, sock, vma);
1109 }
1110
1111 static int sock_close(struct inode *inode, struct file *filp)
1112 {
1113 /*
1114 * It was possible the inode is NULL we were
1115 * closing an unfinished socket.
1116 */
1117
1118 if (!inode) {
1119 printk(KERN_DEBUG "sock_close: NULL inode\n");
1120 return 0;
1121 }
1122 sock_release(SOCKET_I(inode));
1123 return 0;
1124 }
1125
1126 /*
1127 * Update the socket async list
1128 *
1129 * Fasync_list locking strategy.
1130 *
1131 * 1. fasync_list is modified only under process context socket lock
1132 * i.e. under semaphore.
1133 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1134 * or under socket lock
1135 */
1136
1137 static int sock_fasync(int fd, struct file *filp, int on)
1138 {
1139 struct socket *sock = filp->private_data;
1140 struct sock *sk = sock->sk;
1141 struct socket_wq *wq;
1142
1143 if (sk == NULL)
1144 return -EINVAL;
1145
1146 lock_sock(sk);
1147 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1148 fasync_helper(fd, filp, on, &wq->fasync_list);
1149
1150 if (!wq->fasync_list)
1151 sock_reset_flag(sk, SOCK_FASYNC);
1152 else
1153 sock_set_flag(sk, SOCK_FASYNC);
1154
1155 release_sock(sk);
1156 return 0;
1157 }
1158
1159 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1160
1161 int sock_wake_async(struct socket *sock, int how, int band)
1162 {
1163 struct socket_wq *wq;
1164
1165 if (!sock)
1166 return -1;
1167 rcu_read_lock();
1168 wq = rcu_dereference(sock->wq);
1169 if (!wq || !wq->fasync_list) {
1170 rcu_read_unlock();
1171 return -1;
1172 }
1173 switch (how) {
1174 case SOCK_WAKE_WAITD:
1175 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1176 break;
1177 goto call_kill;
1178 case SOCK_WAKE_SPACE:
1179 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1180 break;
1181 /* fall through */
1182 case SOCK_WAKE_IO:
1183 call_kill:
1184 kill_fasync(&wq->fasync_list, SIGIO, band);
1185 break;
1186 case SOCK_WAKE_URG:
1187 kill_fasync(&wq->fasync_list, SIGURG, band);
1188 }
1189 rcu_read_unlock();
1190 return 0;
1191 }
1192 EXPORT_SYMBOL(sock_wake_async);
1193
1194 int __sock_create(struct net *net, int family, int type, int protocol,
1195 struct socket **res, int kern)
1196 {
1197 int err;
1198 struct socket *sock;
1199 const struct net_proto_family *pf;
1200
1201 /*
1202 * Check protocol is in range
1203 */
1204 if (family < 0 || family >= NPROTO)
1205 return -EAFNOSUPPORT;
1206 if (type < 0 || type >= SOCK_MAX)
1207 return -EINVAL;
1208
1209 /* Compatibility.
1210
1211 This uglymoron is moved from INET layer to here to avoid
1212 deadlock in module load.
1213 */
1214 if (family == PF_INET && type == SOCK_PACKET) {
1215 static int warned;
1216 if (!warned) {
1217 warned = 1;
1218 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1219 current->comm);
1220 }
1221 family = PF_PACKET;
1222 }
1223
1224 err = security_socket_create(family, type, protocol, kern);
1225 if (err)
1226 return err;
1227
1228 /*
1229 * Allocate the socket and allow the family to set things up. if
1230 * the protocol is 0, the family is instructed to select an appropriate
1231 * default.
1232 */
1233 sock = sock_alloc();
1234 if (!sock) {
1235 if (net_ratelimit())
1236 printk(KERN_WARNING "socket: no more sockets\n");
1237 return -ENFILE; /* Not exactly a match, but its the
1238 closest posix thing */
1239 }
1240
1241 sock->type = type;
1242
1243 #ifdef CONFIG_MODULES
1244 /* Attempt to load a protocol module if the find failed.
1245 *
1246 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1247 * requested real, full-featured networking support upon configuration.
1248 * Otherwise module support will break!
1249 */
1250 if (rcu_access_pointer(net_families[family]) == NULL)
1251 request_module("net-pf-%d", family);
1252 #endif
1253
1254 rcu_read_lock();
1255 pf = rcu_dereference(net_families[family]);
1256 err = -EAFNOSUPPORT;
1257 if (!pf)
1258 goto out_release;
1259
1260 /*
1261 * We will call the ->create function, that possibly is in a loadable
1262 * module, so we have to bump that loadable module refcnt first.
1263 */
1264 if (!try_module_get(pf->owner))
1265 goto out_release;
1266
1267 /* Now protected by module ref count */
1268 rcu_read_unlock();
1269
1270 err = pf->create(net, sock, protocol, kern);
1271 if (err < 0)
1272 goto out_module_put;
1273
1274 /*
1275 * Now to bump the refcnt of the [loadable] module that owns this
1276 * socket at sock_release time we decrement its refcnt.
1277 */
1278 if (!try_module_get(sock->ops->owner))
1279 goto out_module_busy;
1280
1281 /*
1282 * Now that we're done with the ->create function, the [loadable]
1283 * module can have its refcnt decremented
1284 */
1285 module_put(pf->owner);
1286 err = security_socket_post_create(sock, family, type, protocol, kern);
1287 if (err)
1288 goto out_sock_release;
1289 *res = sock;
1290
1291 return 0;
1292
1293 out_module_busy:
1294 err = -EAFNOSUPPORT;
1295 out_module_put:
1296 sock->ops = NULL;
1297 module_put(pf->owner);
1298 out_sock_release:
1299 sock_release(sock);
1300 return err;
1301
1302 out_release:
1303 rcu_read_unlock();
1304 goto out_sock_release;
1305 }
1306 EXPORT_SYMBOL(__sock_create);
1307
1308 int sock_create(int family, int type, int protocol, struct socket **res)
1309 {
1310 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1311 }
1312 EXPORT_SYMBOL(sock_create);
1313
1314 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1315 {
1316 return __sock_create(&init_net, family, type, protocol, res, 1);
1317 }
1318 EXPORT_SYMBOL(sock_create_kern);
1319
1320 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1321 {
1322 int retval;
1323 struct socket *sock;
1324 int flags;
1325
1326 /* Check the SOCK_* constants for consistency. */
1327 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1328 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1329 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1330 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1331
1332 flags = type & ~SOCK_TYPE_MASK;
1333 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1334 return -EINVAL;
1335 type &= SOCK_TYPE_MASK;
1336
1337 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1338 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1339
1340 retval = sock_create(family, type, protocol, &sock);
1341 if (retval < 0)
1342 goto out;
1343
1344 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1345 if (retval < 0)
1346 goto out_release;
1347
1348 out:
1349 /* It may be already another descriptor 8) Not kernel problem. */
1350 return retval;
1351
1352 out_release:
1353 sock_release(sock);
1354 return retval;
1355 }
1356
1357 /*
1358 * Create a pair of connected sockets.
1359 */
1360
1361 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1362 int __user *, usockvec)
1363 {
1364 struct socket *sock1, *sock2;
1365 int fd1, fd2, err;
1366 struct file *newfile1, *newfile2;
1367 int flags;
1368
1369 flags = type & ~SOCK_TYPE_MASK;
1370 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1371 return -EINVAL;
1372 type &= SOCK_TYPE_MASK;
1373
1374 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1375 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1376
1377 /*
1378 * Obtain the first socket and check if the underlying protocol
1379 * supports the socketpair call.
1380 */
1381
1382 err = sock_create(family, type, protocol, &sock1);
1383 if (err < 0)
1384 goto out;
1385
1386 err = sock_create(family, type, protocol, &sock2);
1387 if (err < 0)
1388 goto out_release_1;
1389
1390 err = sock1->ops->socketpair(sock1, sock2);
1391 if (err < 0)
1392 goto out_release_both;
1393
1394 fd1 = sock_alloc_file(sock1, &newfile1, flags);
1395 if (unlikely(fd1 < 0)) {
1396 err = fd1;
1397 goto out_release_both;
1398 }
1399
1400 fd2 = sock_alloc_file(sock2, &newfile2, flags);
1401 if (unlikely(fd2 < 0)) {
1402 err = fd2;
1403 fput(newfile1);
1404 put_unused_fd(fd1);
1405 sock_release(sock2);
1406 goto out;
1407 }
1408
1409 audit_fd_pair(fd1, fd2);
1410 fd_install(fd1, newfile1);
1411 fd_install(fd2, newfile2);
1412 /* fd1 and fd2 may be already another descriptors.
1413 * Not kernel problem.
1414 */
1415
1416 err = put_user(fd1, &usockvec[0]);
1417 if (!err)
1418 err = put_user(fd2, &usockvec[1]);
1419 if (!err)
1420 return 0;
1421
1422 sys_close(fd2);
1423 sys_close(fd1);
1424 return err;
1425
1426 out_release_both:
1427 sock_release(sock2);
1428 out_release_1:
1429 sock_release(sock1);
1430 out:
1431 return err;
1432 }
1433
1434 /*
1435 * Bind a name to a socket. Nothing much to do here since it's
1436 * the protocol's responsibility to handle the local address.
1437 *
1438 * We move the socket address to kernel space before we call
1439 * the protocol layer (having also checked the address is ok).
1440 */
1441
1442 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1443 {
1444 struct socket *sock;
1445 struct sockaddr_storage address;
1446 int err, fput_needed;
1447
1448 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1449 if (sock) {
1450 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1451 if (err >= 0) {
1452 err = security_socket_bind(sock,
1453 (struct sockaddr *)&address,
1454 addrlen);
1455 if (!err)
1456 err = sock->ops->bind(sock,
1457 (struct sockaddr *)
1458 &address, addrlen);
1459 }
1460 fput_light(sock->file, fput_needed);
1461 }
1462 return err;
1463 }
1464
1465 /*
1466 * Perform a listen. Basically, we allow the protocol to do anything
1467 * necessary for a listen, and if that works, we mark the socket as
1468 * ready for listening.
1469 */
1470
1471 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1472 {
1473 struct socket *sock;
1474 int err, fput_needed;
1475 int somaxconn;
1476
1477 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1478 if (sock) {
1479 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1480 if ((unsigned)backlog > somaxconn)
1481 backlog = somaxconn;
1482
1483 err = security_socket_listen(sock, backlog);
1484 if (!err)
1485 err = sock->ops->listen(sock, backlog);
1486
1487 fput_light(sock->file, fput_needed);
1488 }
1489 return err;
1490 }
1491
1492 /*
1493 * For accept, we attempt to create a new socket, set up the link
1494 * with the client, wake up the client, then return the new
1495 * connected fd. We collect the address of the connector in kernel
1496 * space and move it to user at the very end. This is unclean because
1497 * we open the socket then return an error.
1498 *
1499 * 1003.1g adds the ability to recvmsg() to query connection pending
1500 * status to recvmsg. We need to add that support in a way thats
1501 * clean when we restucture accept also.
1502 */
1503
1504 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1505 int __user *, upeer_addrlen, int, flags)
1506 {
1507 struct socket *sock, *newsock;
1508 struct file *newfile;
1509 int err, len, newfd, fput_needed;
1510 struct sockaddr_storage address;
1511
1512 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1513 return -EINVAL;
1514
1515 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1516 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1517
1518 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1519 if (!sock)
1520 goto out;
1521
1522 err = -ENFILE;
1523 newsock = sock_alloc();
1524 if (!newsock)
1525 goto out_put;
1526
1527 newsock->type = sock->type;
1528 newsock->ops = sock->ops;
1529
1530 /*
1531 * We don't need try_module_get here, as the listening socket (sock)
1532 * has the protocol module (sock->ops->owner) held.
1533 */
1534 __module_get(newsock->ops->owner);
1535
1536 newfd = sock_alloc_file(newsock, &newfile, flags);
1537 if (unlikely(newfd < 0)) {
1538 err = newfd;
1539 sock_release(newsock);
1540 goto out_put;
1541 }
1542
1543 err = security_socket_accept(sock, newsock);
1544 if (err)
1545 goto out_fd;
1546
1547 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1548 if (err < 0)
1549 goto out_fd;
1550
1551 if (upeer_sockaddr) {
1552 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1553 &len, 2) < 0) {
1554 err = -ECONNABORTED;
1555 goto out_fd;
1556 }
1557 err = move_addr_to_user((struct sockaddr *)&address,
1558 len, upeer_sockaddr, upeer_addrlen);
1559 if (err < 0)
1560 goto out_fd;
1561 }
1562
1563 /* File flags are not inherited via accept() unlike another OSes. */
1564
1565 fd_install(newfd, newfile);
1566 err = newfd;
1567
1568 out_put:
1569 fput_light(sock->file, fput_needed);
1570 out:
1571 return err;
1572 out_fd:
1573 fput(newfile);
1574 put_unused_fd(newfd);
1575 goto out_put;
1576 }
1577
1578 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1579 int __user *, upeer_addrlen)
1580 {
1581 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1582 }
1583
1584 /*
1585 * Attempt to connect to a socket with the server address. The address
1586 * is in user space so we verify it is OK and move it to kernel space.
1587 *
1588 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1589 * break bindings
1590 *
1591 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1592 * other SEQPACKET protocols that take time to connect() as it doesn't
1593 * include the -EINPROGRESS status for such sockets.
1594 */
1595
1596 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1597 int, addrlen)
1598 {
1599 struct socket *sock;
1600 struct sockaddr_storage address;
1601 int err, fput_needed;
1602
1603 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604 if (!sock)
1605 goto out;
1606 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1607 if (err < 0)
1608 goto out_put;
1609
1610 err =
1611 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1612 if (err)
1613 goto out_put;
1614
1615 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1616 sock->file->f_flags);
1617 out_put:
1618 fput_light(sock->file, fput_needed);
1619 out:
1620 return err;
1621 }
1622
1623 /*
1624 * Get the local address ('name') of a socket object. Move the obtained
1625 * name to user space.
1626 */
1627
1628 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1629 int __user *, usockaddr_len)
1630 {
1631 struct socket *sock;
1632 struct sockaddr_storage address;
1633 int len, err, fput_needed;
1634
1635 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1636 if (!sock)
1637 goto out;
1638
1639 err = security_socket_getsockname(sock);
1640 if (err)
1641 goto out_put;
1642
1643 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1644 if (err)
1645 goto out_put;
1646 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1647
1648 out_put:
1649 fput_light(sock->file, fput_needed);
1650 out:
1651 return err;
1652 }
1653
1654 /*
1655 * Get the remote address ('name') of a socket object. Move the obtained
1656 * name to user space.
1657 */
1658
1659 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1660 int __user *, usockaddr_len)
1661 {
1662 struct socket *sock;
1663 struct sockaddr_storage address;
1664 int len, err, fput_needed;
1665
1666 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1667 if (sock != NULL) {
1668 err = security_socket_getpeername(sock);
1669 if (err) {
1670 fput_light(sock->file, fput_needed);
1671 return err;
1672 }
1673
1674 err =
1675 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1676 1);
1677 if (!err)
1678 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1679 usockaddr_len);
1680 fput_light(sock->file, fput_needed);
1681 }
1682 return err;
1683 }
1684
1685 /*
1686 * Send a datagram to a given address. We move the address into kernel
1687 * space and check the user space data area is readable before invoking
1688 * the protocol.
1689 */
1690
1691 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1692 unsigned, flags, struct sockaddr __user *, addr,
1693 int, addr_len)
1694 {
1695 struct socket *sock;
1696 struct sockaddr_storage address;
1697 int err;
1698 struct msghdr msg;
1699 struct iovec iov;
1700 int fput_needed;
1701
1702 if (len > INT_MAX)
1703 len = INT_MAX;
1704 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1705 if (!sock)
1706 goto out;
1707
1708 iov.iov_base = buff;
1709 iov.iov_len = len;
1710 msg.msg_name = NULL;
1711 msg.msg_iov = &iov;
1712 msg.msg_iovlen = 1;
1713 msg.msg_control = NULL;
1714 msg.msg_controllen = 0;
1715 msg.msg_namelen = 0;
1716 if (addr) {
1717 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1718 if (err < 0)
1719 goto out_put;
1720 msg.msg_name = (struct sockaddr *)&address;
1721 msg.msg_namelen = addr_len;
1722 }
1723 if (sock->file->f_flags & O_NONBLOCK)
1724 flags |= MSG_DONTWAIT;
1725 msg.msg_flags = flags;
1726 err = sock_sendmsg(sock, &msg, len);
1727
1728 out_put:
1729 fput_light(sock->file, fput_needed);
1730 out:
1731 return err;
1732 }
1733
1734 /*
1735 * Send a datagram down a socket.
1736 */
1737
1738 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1739 unsigned, flags)
1740 {
1741 return sys_sendto(fd, buff, len, flags, NULL, 0);
1742 }
1743
1744 /*
1745 * Receive a frame from the socket and optionally record the address of the
1746 * sender. We verify the buffers are writable and if needed move the
1747 * sender address from kernel to user space.
1748 */
1749
1750 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1751 unsigned, flags, struct sockaddr __user *, addr,
1752 int __user *, addr_len)
1753 {
1754 struct socket *sock;
1755 struct iovec iov;
1756 struct msghdr msg;
1757 struct sockaddr_storage address;
1758 int err, err2;
1759 int fput_needed;
1760
1761 if (size > INT_MAX)
1762 size = INT_MAX;
1763 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1764 if (!sock)
1765 goto out;
1766
1767 msg.msg_control = NULL;
1768 msg.msg_controllen = 0;
1769 msg.msg_iovlen = 1;
1770 msg.msg_iov = &iov;
1771 iov.iov_len = size;
1772 iov.iov_base = ubuf;
1773 msg.msg_name = (struct sockaddr *)&address;
1774 msg.msg_namelen = sizeof(address);
1775 if (sock->file->f_flags & O_NONBLOCK)
1776 flags |= MSG_DONTWAIT;
1777 err = sock_recvmsg(sock, &msg, size, flags);
1778
1779 if (err >= 0 && addr != NULL) {
1780 err2 = move_addr_to_user((struct sockaddr *)&address,
1781 msg.msg_namelen, addr, addr_len);
1782 if (err2 < 0)
1783 err = err2;
1784 }
1785
1786 fput_light(sock->file, fput_needed);
1787 out:
1788 return err;
1789 }
1790
1791 /*
1792 * Receive a datagram from a socket.
1793 */
1794
1795 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1796 unsigned flags)
1797 {
1798 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1799 }
1800
1801 /*
1802 * Set a socket option. Because we don't know the option lengths we have
1803 * to pass the user mode parameter for the protocols to sort out.
1804 */
1805
1806 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1807 char __user *, optval, int, optlen)
1808 {
1809 int err, fput_needed;
1810 struct socket *sock;
1811
1812 if (optlen < 0)
1813 return -EINVAL;
1814
1815 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1816 if (sock != NULL) {
1817 err = security_socket_setsockopt(sock, level, optname);
1818 if (err)
1819 goto out_put;
1820
1821 if (level == SOL_SOCKET)
1822 err =
1823 sock_setsockopt(sock, level, optname, optval,
1824 optlen);
1825 else
1826 err =
1827 sock->ops->setsockopt(sock, level, optname, optval,
1828 optlen);
1829 out_put:
1830 fput_light(sock->file, fput_needed);
1831 }
1832 return err;
1833 }
1834
1835 /*
1836 * Get a socket option. Because we don't know the option lengths we have
1837 * to pass a user mode parameter for the protocols to sort out.
1838 */
1839
1840 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1841 char __user *, optval, int __user *, optlen)
1842 {
1843 int err, fput_needed;
1844 struct socket *sock;
1845
1846 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1847 if (sock != NULL) {
1848 err = security_socket_getsockopt(sock, level, optname);
1849 if (err)
1850 goto out_put;
1851
1852 if (level == SOL_SOCKET)
1853 err =
1854 sock_getsockopt(sock, level, optname, optval,
1855 optlen);
1856 else
1857 err =
1858 sock->ops->getsockopt(sock, level, optname, optval,
1859 optlen);
1860 out_put:
1861 fput_light(sock->file, fput_needed);
1862 }
1863 return err;
1864 }
1865
1866 /*
1867 * Shutdown a socket.
1868 */
1869
1870 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1871 {
1872 int err, fput_needed;
1873 struct socket *sock;
1874
1875 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1876 if (sock != NULL) {
1877 err = security_socket_shutdown(sock, how);
1878 if (!err)
1879 err = sock->ops->shutdown(sock, how);
1880 fput_light(sock->file, fput_needed);
1881 }
1882 return err;
1883 }
1884
1885 /* A couple of helpful macros for getting the address of the 32/64 bit
1886 * fields which are the same type (int / unsigned) on our platforms.
1887 */
1888 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1889 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1890 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1891
1892 struct used_address {
1893 struct sockaddr_storage name;
1894 unsigned int name_len;
1895 };
1896
1897 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1898 struct msghdr *msg_sys, unsigned flags,
1899 struct used_address *used_address)
1900 {
1901 struct compat_msghdr __user *msg_compat =
1902 (struct compat_msghdr __user *)msg;
1903 struct sockaddr_storage address;
1904 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1905 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1906 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1907 /* 20 is size of ipv6_pktinfo */
1908 unsigned char *ctl_buf = ctl;
1909 int err, ctl_len, iov_size, total_len;
1910
1911 err = -EFAULT;
1912 if (MSG_CMSG_COMPAT & flags) {
1913 if (get_compat_msghdr(msg_sys, msg_compat))
1914 return -EFAULT;
1915 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1916 return -EFAULT;
1917
1918 /* do not move before msg_sys is valid */
1919 err = -EMSGSIZE;
1920 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1921 goto out;
1922
1923 /* Check whether to allocate the iovec area */
1924 err = -ENOMEM;
1925 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1926 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1927 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1928 if (!iov)
1929 goto out;
1930 }
1931
1932 /* This will also move the address data into kernel space */
1933 if (MSG_CMSG_COMPAT & flags) {
1934 err = verify_compat_iovec(msg_sys, iov,
1935 (struct sockaddr *)&address,
1936 VERIFY_READ);
1937 } else
1938 err = verify_iovec(msg_sys, iov,
1939 (struct sockaddr *)&address,
1940 VERIFY_READ);
1941 if (err < 0)
1942 goto out_freeiov;
1943 total_len = err;
1944
1945 err = -ENOBUFS;
1946
1947 if (msg_sys->msg_controllen > INT_MAX)
1948 goto out_freeiov;
1949 ctl_len = msg_sys->msg_controllen;
1950 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1951 err =
1952 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1953 sizeof(ctl));
1954 if (err)
1955 goto out_freeiov;
1956 ctl_buf = msg_sys->msg_control;
1957 ctl_len = msg_sys->msg_controllen;
1958 } else if (ctl_len) {
1959 if (ctl_len > sizeof(ctl)) {
1960 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1961 if (ctl_buf == NULL)
1962 goto out_freeiov;
1963 }
1964 err = -EFAULT;
1965 /*
1966 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1967 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1968 * checking falls down on this.
1969 */
1970 if (copy_from_user(ctl_buf,
1971 (void __user __force *)msg_sys->msg_control,
1972 ctl_len))
1973 goto out_freectl;
1974 msg_sys->msg_control = ctl_buf;
1975 }
1976 msg_sys->msg_flags = flags;
1977
1978 if (sock->file->f_flags & O_NONBLOCK)
1979 msg_sys->msg_flags |= MSG_DONTWAIT;
1980 /*
1981 * If this is sendmmsg() and current destination address is same as
1982 * previously succeeded address, omit asking LSM's decision.
1983 * used_address->name_len is initialized to UINT_MAX so that the first
1984 * destination address never matches.
1985 */
1986 if (used_address && msg_sys->msg_name &&
1987 used_address->name_len == msg_sys->msg_namelen &&
1988 !memcmp(&used_address->name, msg_sys->msg_name,
1989 used_address->name_len)) {
1990 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
1991 goto out_freectl;
1992 }
1993 err = sock_sendmsg(sock, msg_sys, total_len);
1994 /*
1995 * If this is sendmmsg() and sending to current destination address was
1996 * successful, remember it.
1997 */
1998 if (used_address && err >= 0) {
1999 used_address->name_len = msg_sys->msg_namelen;
2000 if (msg_sys->msg_name)
2001 memcpy(&used_address->name, msg_sys->msg_name,
2002 used_address->name_len);
2003 }
2004
2005 out_freectl:
2006 if (ctl_buf != ctl)
2007 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2008 out_freeiov:
2009 if (iov != iovstack)
2010 sock_kfree_s(sock->sk, iov, iov_size);
2011 out:
2012 return err;
2013 }
2014
2015 /*
2016 * BSD sendmsg interface
2017 */
2018
2019 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
2020 {
2021 int fput_needed, err;
2022 struct msghdr msg_sys;
2023 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2024
2025 if (!sock)
2026 goto out;
2027
2028 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2029
2030 fput_light(sock->file, fput_needed);
2031 out:
2032 return err;
2033 }
2034
2035 /*
2036 * Linux sendmmsg interface
2037 */
2038
2039 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2040 unsigned int flags)
2041 {
2042 int fput_needed, err, datagrams;
2043 struct socket *sock;
2044 struct mmsghdr __user *entry;
2045 struct compat_mmsghdr __user *compat_entry;
2046 struct msghdr msg_sys;
2047 struct used_address used_address;
2048
2049 if (vlen > UIO_MAXIOV)
2050 vlen = UIO_MAXIOV;
2051
2052 datagrams = 0;
2053
2054 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2055 if (!sock)
2056 return err;
2057
2058 used_address.name_len = UINT_MAX;
2059 entry = mmsg;
2060 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2061 err = 0;
2062
2063 while (datagrams < vlen) {
2064 if (MSG_CMSG_COMPAT & flags) {
2065 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2066 &msg_sys, flags, &used_address);
2067 if (err < 0)
2068 break;
2069 err = __put_user(err, &compat_entry->msg_len);
2070 ++compat_entry;
2071 } else {
2072 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2073 &msg_sys, flags, &used_address);
2074 if (err < 0)
2075 break;
2076 err = put_user(err, &entry->msg_len);
2077 ++entry;
2078 }
2079
2080 if (err)
2081 break;
2082 ++datagrams;
2083 }
2084
2085 fput_light(sock->file, fput_needed);
2086
2087 /* We only return an error if no datagrams were able to be sent */
2088 if (datagrams != 0)
2089 return datagrams;
2090
2091 return err;
2092 }
2093
2094 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2095 unsigned int, vlen, unsigned int, flags)
2096 {
2097 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2098 }
2099
2100 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2101 struct msghdr *msg_sys, unsigned flags, int nosec)
2102 {
2103 struct compat_msghdr __user *msg_compat =
2104 (struct compat_msghdr __user *)msg;
2105 struct iovec iovstack[UIO_FASTIOV];
2106 struct iovec *iov = iovstack;
2107 unsigned long cmsg_ptr;
2108 int err, iov_size, total_len, len;
2109
2110 /* kernel mode address */
2111 struct sockaddr_storage addr;
2112
2113 /* user mode address pointers */
2114 struct sockaddr __user *uaddr;
2115 int __user *uaddr_len;
2116
2117 if (MSG_CMSG_COMPAT & flags) {
2118 if (get_compat_msghdr(msg_sys, msg_compat))
2119 return -EFAULT;
2120 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2121 return -EFAULT;
2122
2123 err = -EMSGSIZE;
2124 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2125 goto out;
2126
2127 /* Check whether to allocate the iovec area */
2128 err = -ENOMEM;
2129 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
2130 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2131 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
2132 if (!iov)
2133 goto out;
2134 }
2135
2136 /*
2137 * Save the user-mode address (verify_iovec will change the
2138 * kernel msghdr to use the kernel address space)
2139 */
2140
2141 uaddr = (__force void __user *)msg_sys->msg_name;
2142 uaddr_len = COMPAT_NAMELEN(msg);
2143 if (MSG_CMSG_COMPAT & flags) {
2144 err = verify_compat_iovec(msg_sys, iov,
2145 (struct sockaddr *)&addr,
2146 VERIFY_WRITE);
2147 } else
2148 err = verify_iovec(msg_sys, iov,
2149 (struct sockaddr *)&addr,
2150 VERIFY_WRITE);
2151 if (err < 0)
2152 goto out_freeiov;
2153 total_len = err;
2154
2155 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2156 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2157
2158 if (sock->file->f_flags & O_NONBLOCK)
2159 flags |= MSG_DONTWAIT;
2160 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2161 total_len, flags);
2162 if (err < 0)
2163 goto out_freeiov;
2164 len = err;
2165
2166 if (uaddr != NULL) {
2167 err = move_addr_to_user((struct sockaddr *)&addr,
2168 msg_sys->msg_namelen, uaddr,
2169 uaddr_len);
2170 if (err < 0)
2171 goto out_freeiov;
2172 }
2173 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2174 COMPAT_FLAGS(msg));
2175 if (err)
2176 goto out_freeiov;
2177 if (MSG_CMSG_COMPAT & flags)
2178 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2179 &msg_compat->msg_controllen);
2180 else
2181 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2182 &msg->msg_controllen);
2183 if (err)
2184 goto out_freeiov;
2185 err = len;
2186
2187 out_freeiov:
2188 if (iov != iovstack)
2189 sock_kfree_s(sock->sk, iov, iov_size);
2190 out:
2191 return err;
2192 }
2193
2194 /*
2195 * BSD recvmsg interface
2196 */
2197
2198 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2199 unsigned int, flags)
2200 {
2201 int fput_needed, err;
2202 struct msghdr msg_sys;
2203 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2204
2205 if (!sock)
2206 goto out;
2207
2208 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2209
2210 fput_light(sock->file, fput_needed);
2211 out:
2212 return err;
2213 }
2214
2215 /*
2216 * Linux recvmmsg interface
2217 */
2218
2219 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2220 unsigned int flags, struct timespec *timeout)
2221 {
2222 int fput_needed, err, datagrams;
2223 struct socket *sock;
2224 struct mmsghdr __user *entry;
2225 struct compat_mmsghdr __user *compat_entry;
2226 struct msghdr msg_sys;
2227 struct timespec end_time;
2228
2229 if (timeout &&
2230 poll_select_set_timeout(&end_time, timeout->tv_sec,
2231 timeout->tv_nsec))
2232 return -EINVAL;
2233
2234 datagrams = 0;
2235
2236 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2237 if (!sock)
2238 return err;
2239
2240 err = sock_error(sock->sk);
2241 if (err)
2242 goto out_put;
2243
2244 entry = mmsg;
2245 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2246
2247 while (datagrams < vlen) {
2248 /*
2249 * No need to ask LSM for more than the first datagram.
2250 */
2251 if (MSG_CMSG_COMPAT & flags) {
2252 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2253 &msg_sys, flags & ~MSG_WAITFORONE,
2254 datagrams);
2255 if (err < 0)
2256 break;
2257 err = __put_user(err, &compat_entry->msg_len);
2258 ++compat_entry;
2259 } else {
2260 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2261 &msg_sys, flags & ~MSG_WAITFORONE,
2262 datagrams);
2263 if (err < 0)
2264 break;
2265 err = put_user(err, &entry->msg_len);
2266 ++entry;
2267 }
2268
2269 if (err)
2270 break;
2271 ++datagrams;
2272
2273 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2274 if (flags & MSG_WAITFORONE)
2275 flags |= MSG_DONTWAIT;
2276
2277 if (timeout) {
2278 ktime_get_ts(timeout);
2279 *timeout = timespec_sub(end_time, *timeout);
2280 if (timeout->tv_sec < 0) {
2281 timeout->tv_sec = timeout->tv_nsec = 0;
2282 break;
2283 }
2284
2285 /* Timeout, return less than vlen datagrams */
2286 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2287 break;
2288 }
2289
2290 /* Out of band data, return right away */
2291 if (msg_sys.msg_flags & MSG_OOB)
2292 break;
2293 }
2294
2295 out_put:
2296 fput_light(sock->file, fput_needed);
2297
2298 if (err == 0)
2299 return datagrams;
2300
2301 if (datagrams != 0) {
2302 /*
2303 * We may return less entries than requested (vlen) if the
2304 * sock is non block and there aren't enough datagrams...
2305 */
2306 if (err != -EAGAIN) {
2307 /*
2308 * ... or if recvmsg returns an error after we
2309 * received some datagrams, where we record the
2310 * error to return on the next call or if the
2311 * app asks about it using getsockopt(SO_ERROR).
2312 */
2313 sock->sk->sk_err = -err;
2314 }
2315
2316 return datagrams;
2317 }
2318
2319 return err;
2320 }
2321
2322 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2323 unsigned int, vlen, unsigned int, flags,
2324 struct timespec __user *, timeout)
2325 {
2326 int datagrams;
2327 struct timespec timeout_sys;
2328
2329 if (!timeout)
2330 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2331
2332 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2333 return -EFAULT;
2334
2335 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2336
2337 if (datagrams > 0 &&
2338 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2339 datagrams = -EFAULT;
2340
2341 return datagrams;
2342 }
2343
2344 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2345 /* Argument list sizes for sys_socketcall */
2346 #define AL(x) ((x) * sizeof(unsigned long))
2347 static const unsigned char nargs[21] = {
2348 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2349 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2350 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2351 AL(4), AL(5), AL(4)
2352 };
2353
2354 #undef AL
2355
2356 /*
2357 * System call vectors.
2358 *
2359 * Argument checking cleaned up. Saved 20% in size.
2360 * This function doesn't need to set the kernel lock because
2361 * it is set by the callees.
2362 */
2363
2364 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2365 {
2366 unsigned long a[6];
2367 unsigned long a0, a1;
2368 int err;
2369 unsigned int len;
2370
2371 if (call < 1 || call > SYS_SENDMMSG)
2372 return -EINVAL;
2373
2374 len = nargs[call];
2375 if (len > sizeof(a))
2376 return -EINVAL;
2377
2378 /* copy_from_user should be SMP safe. */
2379 if (copy_from_user(a, args, len))
2380 return -EFAULT;
2381
2382 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2383
2384 a0 = a[0];
2385 a1 = a[1];
2386
2387 switch (call) {
2388 case SYS_SOCKET:
2389 err = sys_socket(a0, a1, a[2]);
2390 break;
2391 case SYS_BIND:
2392 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2393 break;
2394 case SYS_CONNECT:
2395 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2396 break;
2397 case SYS_LISTEN:
2398 err = sys_listen(a0, a1);
2399 break;
2400 case SYS_ACCEPT:
2401 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2402 (int __user *)a[2], 0);
2403 break;
2404 case SYS_GETSOCKNAME:
2405 err =
2406 sys_getsockname(a0, (struct sockaddr __user *)a1,
2407 (int __user *)a[2]);
2408 break;
2409 case SYS_GETPEERNAME:
2410 err =
2411 sys_getpeername(a0, (struct sockaddr __user *)a1,
2412 (int __user *)a[2]);
2413 break;
2414 case SYS_SOCKETPAIR:
2415 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2416 break;
2417 case SYS_SEND:
2418 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2419 break;
2420 case SYS_SENDTO:
2421 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2422 (struct sockaddr __user *)a[4], a[5]);
2423 break;
2424 case SYS_RECV:
2425 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2426 break;
2427 case SYS_RECVFROM:
2428 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2429 (struct sockaddr __user *)a[4],
2430 (int __user *)a[5]);
2431 break;
2432 case SYS_SHUTDOWN:
2433 err = sys_shutdown(a0, a1);
2434 break;
2435 case SYS_SETSOCKOPT:
2436 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2437 break;
2438 case SYS_GETSOCKOPT:
2439 err =
2440 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2441 (int __user *)a[4]);
2442 break;
2443 case SYS_SENDMSG:
2444 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2445 break;
2446 case SYS_SENDMMSG:
2447 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2448 break;
2449 case SYS_RECVMSG:
2450 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2451 break;
2452 case SYS_RECVMMSG:
2453 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2454 (struct timespec __user *)a[4]);
2455 break;
2456 case SYS_ACCEPT4:
2457 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2458 (int __user *)a[2], a[3]);
2459 break;
2460 default:
2461 err = -EINVAL;
2462 break;
2463 }
2464 return err;
2465 }
2466
2467 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2468
2469 /**
2470 * sock_register - add a socket protocol handler
2471 * @ops: description of protocol
2472 *
2473 * This function is called by a protocol handler that wants to
2474 * advertise its address family, and have it linked into the
2475 * socket interface. The value ops->family coresponds to the
2476 * socket system call protocol family.
2477 */
2478 int sock_register(const struct net_proto_family *ops)
2479 {
2480 int err;
2481
2482 if (ops->family >= NPROTO) {
2483 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2484 NPROTO);
2485 return -ENOBUFS;
2486 }
2487
2488 spin_lock(&net_family_lock);
2489 if (rcu_dereference_protected(net_families[ops->family],
2490 lockdep_is_held(&net_family_lock)))
2491 err = -EEXIST;
2492 else {
2493 RCU_INIT_POINTER(net_families[ops->family], ops);
2494 err = 0;
2495 }
2496 spin_unlock(&net_family_lock);
2497
2498 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2499 return err;
2500 }
2501 EXPORT_SYMBOL(sock_register);
2502
2503 /**
2504 * sock_unregister - remove a protocol handler
2505 * @family: protocol family to remove
2506 *
2507 * This function is called by a protocol handler that wants to
2508 * remove its address family, and have it unlinked from the
2509 * new socket creation.
2510 *
2511 * If protocol handler is a module, then it can use module reference
2512 * counts to protect against new references. If protocol handler is not
2513 * a module then it needs to provide its own protection in
2514 * the ops->create routine.
2515 */
2516 void sock_unregister(int family)
2517 {
2518 BUG_ON(family < 0 || family >= NPROTO);
2519
2520 spin_lock(&net_family_lock);
2521 RCU_INIT_POINTER(net_families[family], NULL);
2522 spin_unlock(&net_family_lock);
2523
2524 synchronize_rcu();
2525
2526 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2527 }
2528 EXPORT_SYMBOL(sock_unregister);
2529
2530 static int __init sock_init(void)
2531 {
2532 int err;
2533
2534 /*
2535 * Initialize sock SLAB cache.
2536 */
2537
2538 sk_init();
2539
2540 /*
2541 * Initialize skbuff SLAB cache
2542 */
2543 skb_init();
2544
2545 /*
2546 * Initialize the protocols module.
2547 */
2548
2549 init_inodecache();
2550
2551 err = register_filesystem(&sock_fs_type);
2552 if (err)
2553 goto out_fs;
2554 sock_mnt = kern_mount(&sock_fs_type);
2555 if (IS_ERR(sock_mnt)) {
2556 err = PTR_ERR(sock_mnt);
2557 goto out_mount;
2558 }
2559
2560 /* The real protocol initialization is performed in later initcalls.
2561 */
2562
2563 #ifdef CONFIG_NETFILTER
2564 netfilter_init();
2565 #endif
2566
2567 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2568 skb_timestamping_init();
2569 #endif
2570
2571 out:
2572 return err;
2573
2574 out_mount:
2575 unregister_filesystem(&sock_fs_type);
2576 out_fs:
2577 goto out;
2578 }
2579
2580 core_initcall(sock_init); /* early initcall */
2581
2582 #ifdef CONFIG_PROC_FS
2583 void socket_seq_show(struct seq_file *seq)
2584 {
2585 int cpu;
2586 int counter = 0;
2587
2588 for_each_possible_cpu(cpu)
2589 counter += per_cpu(sockets_in_use, cpu);
2590
2591 /* It can be negative, by the way. 8) */
2592 if (counter < 0)
2593 counter = 0;
2594
2595 seq_printf(seq, "sockets: used %d\n", counter);
2596 }
2597 #endif /* CONFIG_PROC_FS */
2598
2599 #ifdef CONFIG_COMPAT
2600 static int do_siocgstamp(struct net *net, struct socket *sock,
2601 unsigned int cmd, struct compat_timeval __user *up)
2602 {
2603 mm_segment_t old_fs = get_fs();
2604 struct timeval ktv;
2605 int err;
2606
2607 set_fs(KERNEL_DS);
2608 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2609 set_fs(old_fs);
2610 if (!err) {
2611 err = put_user(ktv.tv_sec, &up->tv_sec);
2612 err |= __put_user(ktv.tv_usec, &up->tv_usec);
2613 }
2614 return err;
2615 }
2616
2617 static int do_siocgstampns(struct net *net, struct socket *sock,
2618 unsigned int cmd, struct compat_timespec __user *up)
2619 {
2620 mm_segment_t old_fs = get_fs();
2621 struct timespec kts;
2622 int err;
2623
2624 set_fs(KERNEL_DS);
2625 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2626 set_fs(old_fs);
2627 if (!err) {
2628 err = put_user(kts.tv_sec, &up->tv_sec);
2629 err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2630 }
2631 return err;
2632 }
2633
2634 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2635 {
2636 struct ifreq __user *uifr;
2637 int err;
2638
2639 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2640 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2641 return -EFAULT;
2642
2643 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2644 if (err)
2645 return err;
2646
2647 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2648 return -EFAULT;
2649
2650 return 0;
2651 }
2652
2653 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2654 {
2655 struct compat_ifconf ifc32;
2656 struct ifconf ifc;
2657 struct ifconf __user *uifc;
2658 struct compat_ifreq __user *ifr32;
2659 struct ifreq __user *ifr;
2660 unsigned int i, j;
2661 int err;
2662
2663 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2664 return -EFAULT;
2665
2666 if (ifc32.ifcbuf == 0) {
2667 ifc32.ifc_len = 0;
2668 ifc.ifc_len = 0;
2669 ifc.ifc_req = NULL;
2670 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2671 } else {
2672 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2673 sizeof(struct ifreq);
2674 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2675 ifc.ifc_len = len;
2676 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2677 ifr32 = compat_ptr(ifc32.ifcbuf);
2678 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2679 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2680 return -EFAULT;
2681 ifr++;
2682 ifr32++;
2683 }
2684 }
2685 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2686 return -EFAULT;
2687
2688 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2689 if (err)
2690 return err;
2691
2692 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2693 return -EFAULT;
2694
2695 ifr = ifc.ifc_req;
2696 ifr32 = compat_ptr(ifc32.ifcbuf);
2697 for (i = 0, j = 0;
2698 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2699 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2700 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2701 return -EFAULT;
2702 ifr32++;
2703 ifr++;
2704 }
2705
2706 if (ifc32.ifcbuf == 0) {
2707 /* Translate from 64-bit structure multiple to
2708 * a 32-bit one.
2709 */
2710 i = ifc.ifc_len;
2711 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2712 ifc32.ifc_len = i;
2713 } else {
2714 ifc32.ifc_len = i;
2715 }
2716 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2717 return -EFAULT;
2718
2719 return 0;
2720 }
2721
2722 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2723 {
2724 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2725 bool convert_in = false, convert_out = false;
2726 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2727 struct ethtool_rxnfc __user *rxnfc;
2728 struct ifreq __user *ifr;
2729 u32 rule_cnt = 0, actual_rule_cnt;
2730 u32 ethcmd;
2731 u32 data;
2732 int ret;
2733
2734 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2735 return -EFAULT;
2736
2737 compat_rxnfc = compat_ptr(data);
2738
2739 if (get_user(ethcmd, &compat_rxnfc->cmd))
2740 return -EFAULT;
2741
2742 /* Most ethtool structures are defined without padding.
2743 * Unfortunately struct ethtool_rxnfc is an exception.
2744 */
2745 switch (ethcmd) {
2746 default:
2747 break;
2748 case ETHTOOL_GRXCLSRLALL:
2749 /* Buffer size is variable */
2750 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2751 return -EFAULT;
2752 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2753 return -ENOMEM;
2754 buf_size += rule_cnt * sizeof(u32);
2755 /* fall through */
2756 case ETHTOOL_GRXRINGS:
2757 case ETHTOOL_GRXCLSRLCNT:
2758 case ETHTOOL_GRXCLSRULE:
2759 convert_out = true;
2760 /* fall through */
2761 case ETHTOOL_SRXCLSRLDEL:
2762 case ETHTOOL_SRXCLSRLINS:
2763 buf_size += sizeof(struct ethtool_rxnfc);
2764 convert_in = true;
2765 break;
2766 }
2767
2768 ifr = compat_alloc_user_space(buf_size);
2769 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2770
2771 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2772 return -EFAULT;
2773
2774 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2775 &ifr->ifr_ifru.ifru_data))
2776 return -EFAULT;
2777
2778 if (convert_in) {
2779 /* We expect there to be holes between fs.m_ext and
2780 * fs.ring_cookie and at the end of fs, but nowhere else.
2781 */
2782 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2783 sizeof(compat_rxnfc->fs.m_ext) !=
2784 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2785 sizeof(rxnfc->fs.m_ext));
2786 BUILD_BUG_ON(
2787 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2788 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2789 offsetof(struct ethtool_rxnfc, fs.location) -
2790 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2791
2792 if (copy_in_user(rxnfc, compat_rxnfc,
2793 (void *)(&rxnfc->fs.m_ext + 1) -
2794 (void *)rxnfc) ||
2795 copy_in_user(&rxnfc->fs.ring_cookie,
2796 &compat_rxnfc->fs.ring_cookie,
2797 (void *)(&rxnfc->fs.location + 1) -
2798 (void *)&rxnfc->fs.ring_cookie) ||
2799 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2800 sizeof(rxnfc->rule_cnt)))
2801 return -EFAULT;
2802 }
2803
2804 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2805 if (ret)
2806 return ret;
2807
2808 if (convert_out) {
2809 if (copy_in_user(compat_rxnfc, rxnfc,
2810 (const void *)(&rxnfc->fs.m_ext + 1) -
2811 (const void *)rxnfc) ||
2812 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2813 &rxnfc->fs.ring_cookie,
2814 (const void *)(&rxnfc->fs.location + 1) -
2815 (const void *)&rxnfc->fs.ring_cookie) ||
2816 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2817 sizeof(rxnfc->rule_cnt)))
2818 return -EFAULT;
2819
2820 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2821 /* As an optimisation, we only copy the actual
2822 * number of rules that the underlying
2823 * function returned. Since Mallory might
2824 * change the rule count in user memory, we
2825 * check that it is less than the rule count
2826 * originally given (as the user buffer size),
2827 * which has been range-checked.
2828 */
2829 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2830 return -EFAULT;
2831 if (actual_rule_cnt < rule_cnt)
2832 rule_cnt = actual_rule_cnt;
2833 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2834 &rxnfc->rule_locs[0],
2835 rule_cnt * sizeof(u32)))
2836 return -EFAULT;
2837 }
2838 }
2839
2840 return 0;
2841 }
2842
2843 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2844 {
2845 void __user *uptr;
2846 compat_uptr_t uptr32;
2847 struct ifreq __user *uifr;
2848
2849 uifr = compat_alloc_user_space(sizeof(*uifr));
2850 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2851 return -EFAULT;
2852
2853 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2854 return -EFAULT;
2855
2856 uptr = compat_ptr(uptr32);
2857
2858 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2859 return -EFAULT;
2860
2861 return dev_ioctl(net, SIOCWANDEV, uifr);
2862 }
2863
2864 static int bond_ioctl(struct net *net, unsigned int cmd,
2865 struct compat_ifreq __user *ifr32)
2866 {
2867 struct ifreq kifr;
2868 struct ifreq __user *uifr;
2869 mm_segment_t old_fs;
2870 int err;
2871 u32 data;
2872 void __user *datap;
2873
2874 switch (cmd) {
2875 case SIOCBONDENSLAVE:
2876 case SIOCBONDRELEASE:
2877 case SIOCBONDSETHWADDR:
2878 case SIOCBONDCHANGEACTIVE:
2879 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2880 return -EFAULT;
2881
2882 old_fs = get_fs();
2883 set_fs(KERNEL_DS);
2884 err = dev_ioctl(net, cmd,
2885 (struct ifreq __user __force *) &kifr);
2886 set_fs(old_fs);
2887
2888 return err;
2889 case SIOCBONDSLAVEINFOQUERY:
2890 case SIOCBONDINFOQUERY:
2891 uifr = compat_alloc_user_space(sizeof(*uifr));
2892 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2893 return -EFAULT;
2894
2895 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2896 return -EFAULT;
2897
2898 datap = compat_ptr(data);
2899 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2900 return -EFAULT;
2901
2902 return dev_ioctl(net, cmd, uifr);
2903 default:
2904 return -EINVAL;
2905 }
2906 }
2907
2908 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2909 struct compat_ifreq __user *u_ifreq32)
2910 {
2911 struct ifreq __user *u_ifreq64;
2912 char tmp_buf[IFNAMSIZ];
2913 void __user *data64;
2914 u32 data32;
2915
2916 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2917 IFNAMSIZ))
2918 return -EFAULT;
2919 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2920 return -EFAULT;
2921 data64 = compat_ptr(data32);
2922
2923 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2924
2925 /* Don't check these user accesses, just let that get trapped
2926 * in the ioctl handler instead.
2927 */
2928 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2929 IFNAMSIZ))
2930 return -EFAULT;
2931 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2932 return -EFAULT;
2933
2934 return dev_ioctl(net, cmd, u_ifreq64);
2935 }
2936
2937 static int dev_ifsioc(struct net *net, struct socket *sock,
2938 unsigned int cmd, struct compat_ifreq __user *uifr32)
2939 {
2940 struct ifreq __user *uifr;
2941 int err;
2942
2943 uifr = compat_alloc_user_space(sizeof(*uifr));
2944 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2945 return -EFAULT;
2946
2947 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2948
2949 if (!err) {
2950 switch (cmd) {
2951 case SIOCGIFFLAGS:
2952 case SIOCGIFMETRIC:
2953 case SIOCGIFMTU:
2954 case SIOCGIFMEM:
2955 case SIOCGIFHWADDR:
2956 case SIOCGIFINDEX:
2957 case SIOCGIFADDR:
2958 case SIOCGIFBRDADDR:
2959 case SIOCGIFDSTADDR:
2960 case SIOCGIFNETMASK:
2961 case SIOCGIFPFLAGS:
2962 case SIOCGIFTXQLEN:
2963 case SIOCGMIIPHY:
2964 case SIOCGMIIREG:
2965 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2966 err = -EFAULT;
2967 break;
2968 }
2969 }
2970 return err;
2971 }
2972
2973 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2974 struct compat_ifreq __user *uifr32)
2975 {
2976 struct ifreq ifr;
2977 struct compat_ifmap __user *uifmap32;
2978 mm_segment_t old_fs;
2979 int err;
2980
2981 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2982 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2983 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2984 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2985 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2986 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2987 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2988 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2989 if (err)
2990 return -EFAULT;
2991
2992 old_fs = get_fs();
2993 set_fs(KERNEL_DS);
2994 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2995 set_fs(old_fs);
2996
2997 if (cmd == SIOCGIFMAP && !err) {
2998 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2999 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3000 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3001 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3002 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3003 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3004 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3005 if (err)
3006 err = -EFAULT;
3007 }
3008 return err;
3009 }
3010
3011 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3012 {
3013 void __user *uptr;
3014 compat_uptr_t uptr32;
3015 struct ifreq __user *uifr;
3016
3017 uifr = compat_alloc_user_space(sizeof(*uifr));
3018 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3019 return -EFAULT;
3020
3021 if (get_user(uptr32, &uifr32->ifr_data))
3022 return -EFAULT;
3023
3024 uptr = compat_ptr(uptr32);
3025
3026 if (put_user(uptr, &uifr->ifr_data))
3027 return -EFAULT;
3028
3029 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3030 }
3031
3032 struct rtentry32 {
3033 u32 rt_pad1;
3034 struct sockaddr rt_dst; /* target address */
3035 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3036 struct sockaddr rt_genmask; /* target network mask (IP) */
3037 unsigned short rt_flags;
3038 short rt_pad2;
3039 u32 rt_pad3;
3040 unsigned char rt_tos;
3041 unsigned char rt_class;
3042 short rt_pad4;
3043 short rt_metric; /* +1 for binary compatibility! */
3044 /* char * */ u32 rt_dev; /* forcing the device at add */
3045 u32 rt_mtu; /* per route MTU/Window */
3046 u32 rt_window; /* Window clamping */
3047 unsigned short rt_irtt; /* Initial RTT */
3048 };
3049
3050 struct in6_rtmsg32 {
3051 struct in6_addr rtmsg_dst;
3052 struct in6_addr rtmsg_src;
3053 struct in6_addr rtmsg_gateway;
3054 u32 rtmsg_type;
3055 u16 rtmsg_dst_len;
3056 u16 rtmsg_src_len;
3057 u32 rtmsg_metric;
3058 u32 rtmsg_info;
3059 u32 rtmsg_flags;
3060 s32 rtmsg_ifindex;
3061 };
3062
3063 static int routing_ioctl(struct net *net, struct socket *sock,
3064 unsigned int cmd, void __user *argp)
3065 {
3066 int ret;
3067 void *r = NULL;
3068 struct in6_rtmsg r6;
3069 struct rtentry r4;
3070 char devname[16];
3071 u32 rtdev;
3072 mm_segment_t old_fs = get_fs();
3073
3074 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3075 struct in6_rtmsg32 __user *ur6 = argp;
3076 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3077 3 * sizeof(struct in6_addr));
3078 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3079 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3080 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3081 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3082 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3083 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3084 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3085
3086 r = (void *) &r6;
3087 } else { /* ipv4 */
3088 struct rtentry32 __user *ur4 = argp;
3089 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3090 3 * sizeof(struct sockaddr));
3091 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3092 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3093 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3094 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3095 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3096 ret |= __get_user(rtdev, &(ur4->rt_dev));
3097 if (rtdev) {
3098 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3099 r4.rt_dev = (char __user __force *)devname;
3100 devname[15] = 0;
3101 } else
3102 r4.rt_dev = NULL;
3103
3104 r = (void *) &r4;
3105 }
3106
3107 if (ret) {
3108 ret = -EFAULT;
3109 goto out;
3110 }
3111
3112 set_fs(KERNEL_DS);
3113 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3114 set_fs(old_fs);
3115
3116 out:
3117 return ret;
3118 }
3119
3120 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3121 * for some operations; this forces use of the newer bridge-utils that
3122 * use compatible ioctls
3123 */
3124 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3125 {
3126 compat_ulong_t tmp;
3127
3128 if (get_user(tmp, argp))
3129 return -EFAULT;
3130 if (tmp == BRCTL_GET_VERSION)
3131 return BRCTL_VERSION + 1;
3132 return -EINVAL;
3133 }
3134
3135 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3136 unsigned int cmd, unsigned long arg)
3137 {
3138 void __user *argp = compat_ptr(arg);
3139 struct sock *sk = sock->sk;
3140 struct net *net = sock_net(sk);
3141
3142 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3143 return siocdevprivate_ioctl(net, cmd, argp);
3144
3145 switch (cmd) {
3146 case SIOCSIFBR:
3147 case SIOCGIFBR:
3148 return old_bridge_ioctl(argp);
3149 case SIOCGIFNAME:
3150 return dev_ifname32(net, argp);
3151 case SIOCGIFCONF:
3152 return dev_ifconf(net, argp);
3153 case SIOCETHTOOL:
3154 return ethtool_ioctl(net, argp);
3155 case SIOCWANDEV:
3156 return compat_siocwandev(net, argp);
3157 case SIOCGIFMAP:
3158 case SIOCSIFMAP:
3159 return compat_sioc_ifmap(net, cmd, argp);
3160 case SIOCBONDENSLAVE:
3161 case SIOCBONDRELEASE:
3162 case SIOCBONDSETHWADDR:
3163 case SIOCBONDSLAVEINFOQUERY:
3164 case SIOCBONDINFOQUERY:
3165 case SIOCBONDCHANGEACTIVE:
3166 return bond_ioctl(net, cmd, argp);
3167 case SIOCADDRT:
3168 case SIOCDELRT:
3169 return routing_ioctl(net, sock, cmd, argp);
3170 case SIOCGSTAMP:
3171 return do_siocgstamp(net, sock, cmd, argp);
3172 case SIOCGSTAMPNS:
3173 return do_siocgstampns(net, sock, cmd, argp);
3174 case SIOCSHWTSTAMP:
3175 return compat_siocshwtstamp(net, argp);
3176
3177 case FIOSETOWN:
3178 case SIOCSPGRP:
3179 case FIOGETOWN:
3180 case SIOCGPGRP:
3181 case SIOCBRADDBR:
3182 case SIOCBRDELBR:
3183 case SIOCGIFVLAN:
3184 case SIOCSIFVLAN:
3185 case SIOCADDDLCI:
3186 case SIOCDELDLCI:
3187 return sock_ioctl(file, cmd, arg);
3188
3189 case SIOCGIFFLAGS:
3190 case SIOCSIFFLAGS:
3191 case SIOCGIFMETRIC:
3192 case SIOCSIFMETRIC:
3193 case SIOCGIFMTU:
3194 case SIOCSIFMTU:
3195 case SIOCGIFMEM:
3196 case SIOCSIFMEM:
3197 case SIOCGIFHWADDR:
3198 case SIOCSIFHWADDR:
3199 case SIOCADDMULTI:
3200 case SIOCDELMULTI:
3201 case SIOCGIFINDEX:
3202 case SIOCGIFADDR:
3203 case SIOCSIFADDR:
3204 case SIOCSIFHWBROADCAST:
3205 case SIOCDIFADDR:
3206 case SIOCGIFBRDADDR:
3207 case SIOCSIFBRDADDR:
3208 case SIOCGIFDSTADDR:
3209 case SIOCSIFDSTADDR:
3210 case SIOCGIFNETMASK:
3211 case SIOCSIFNETMASK:
3212 case SIOCSIFPFLAGS:
3213 case SIOCGIFPFLAGS:
3214 case SIOCGIFTXQLEN:
3215 case SIOCSIFTXQLEN:
3216 case SIOCBRADDIF:
3217 case SIOCBRDELIF:
3218 case SIOCSIFNAME:
3219 case SIOCGMIIPHY:
3220 case SIOCGMIIREG:
3221 case SIOCSMIIREG:
3222 return dev_ifsioc(net, sock, cmd, argp);
3223
3224 case SIOCSARP:
3225 case SIOCGARP:
3226 case SIOCDARP:
3227 case SIOCATMARK:
3228 return sock_do_ioctl(net, sock, cmd, arg);
3229 }
3230
3231 /* Prevent warning from compat_sys_ioctl, these always
3232 * result in -EINVAL in the native case anyway. */
3233 switch (cmd) {
3234 case SIOCRTMSG:
3235 case SIOCGIFCOUNT:
3236 case SIOCSRARP:
3237 case SIOCGRARP:
3238 case SIOCDRARP:
3239 case SIOCSIFLINK:
3240 case SIOCGIFSLAVE:
3241 case SIOCSIFSLAVE:
3242 return -EINVAL;
3243 }
3244
3245 return -ENOIOCTLCMD;
3246 }
3247
3248 static long compat_sock_ioctl(struct file *file, unsigned cmd,
3249 unsigned long arg)
3250 {
3251 struct socket *sock = file->private_data;
3252 int ret = -ENOIOCTLCMD;
3253 struct sock *sk;
3254 struct net *net;
3255
3256 sk = sock->sk;
3257 net = sock_net(sk);
3258
3259 if (sock->ops->compat_ioctl)
3260 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3261
3262 if (ret == -ENOIOCTLCMD &&
3263 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3264 ret = compat_wext_handle_ioctl(net, cmd, arg);
3265
3266 if (ret == -ENOIOCTLCMD)
3267 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3268
3269 return ret;
3270 }
3271 #endif
3272
3273 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3274 {
3275 return sock->ops->bind(sock, addr, addrlen);
3276 }
3277 EXPORT_SYMBOL(kernel_bind);
3278
3279 int kernel_listen(struct socket *sock, int backlog)
3280 {
3281 return sock->ops->listen(sock, backlog);
3282 }
3283 EXPORT_SYMBOL(kernel_listen);
3284
3285 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3286 {
3287 struct sock *sk = sock->sk;
3288 int err;
3289
3290 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3291 newsock);
3292 if (err < 0)
3293 goto done;
3294
3295 err = sock->ops->accept(sock, *newsock, flags);
3296 if (err < 0) {
3297 sock_release(*newsock);
3298 *newsock = NULL;
3299 goto done;
3300 }
3301
3302 (*newsock)->ops = sock->ops;
3303 __module_get((*newsock)->ops->owner);
3304
3305 done:
3306 return err;
3307 }
3308 EXPORT_SYMBOL(kernel_accept);
3309
3310 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3311 int flags)
3312 {
3313 return sock->ops->connect(sock, addr, addrlen, flags);
3314 }
3315 EXPORT_SYMBOL(kernel_connect);
3316
3317 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3318 int *addrlen)
3319 {
3320 return sock->ops->getname(sock, addr, addrlen, 0);
3321 }
3322 EXPORT_SYMBOL(kernel_getsockname);
3323
3324 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3325 int *addrlen)
3326 {
3327 return sock->ops->getname(sock, addr, addrlen, 1);
3328 }
3329 EXPORT_SYMBOL(kernel_getpeername);
3330
3331 int kernel_getsockopt(struct socket *sock, int level, int optname,
3332 char *optval, int *optlen)
3333 {
3334 mm_segment_t oldfs = get_fs();
3335 char __user *uoptval;
3336 int __user *uoptlen;
3337 int err;
3338
3339 uoptval = (char __user __force *) optval;
3340 uoptlen = (int __user __force *) optlen;
3341
3342 set_fs(KERNEL_DS);
3343 if (level == SOL_SOCKET)
3344 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3345 else
3346 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3347 uoptlen);
3348 set_fs(oldfs);
3349 return err;
3350 }
3351 EXPORT_SYMBOL(kernel_getsockopt);
3352
3353 int kernel_setsockopt(struct socket *sock, int level, int optname,
3354 char *optval, unsigned int optlen)
3355 {
3356 mm_segment_t oldfs = get_fs();
3357 char __user *uoptval;
3358 int err;
3359
3360 uoptval = (char __user __force *) optval;
3361
3362 set_fs(KERNEL_DS);
3363 if (level == SOL_SOCKET)
3364 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3365 else
3366 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3367 optlen);
3368 set_fs(oldfs);
3369 return err;
3370 }
3371 EXPORT_SYMBOL(kernel_setsockopt);
3372
3373 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3374 size_t size, int flags)
3375 {
3376 sock_update_classid(sock->sk);
3377
3378 if (sock->ops->sendpage)
3379 return sock->ops->sendpage(sock, page, offset, size, flags);
3380
3381 return sock_no_sendpage(sock, page, offset, size, flags);
3382 }
3383 EXPORT_SYMBOL(kernel_sendpage);
3384
3385 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3386 {
3387 mm_segment_t oldfs = get_fs();
3388 int err;
3389
3390 set_fs(KERNEL_DS);
3391 err = sock->ops->ioctl(sock, cmd, arg);
3392 set_fs(oldfs);
3393
3394 return err;
3395 }
3396 EXPORT_SYMBOL(kernel_sock_ioctl);
3397
3398 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3399 {
3400 return sock->ops->shutdown(sock, how);
3401 }
3402 EXPORT_SYMBOL(kernel_sock_shutdown);