]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/socket.c
PCI: aardvark: Enable MSI-X support
[mirror_ubuntu-jammy-kernel.git] / net / socket.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
108
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
117
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
122 #ifdef CONFIG_COMPAT
123 static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
125 #endif
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
131 unsigned int flags);
132
133 #ifdef CONFIG_PROC_FS
134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
135 {
136 struct socket *sock = f->private_data;
137
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
140 }
141 #else
142 #define sock_show_fdinfo NULL
143 #endif
144
145 /*
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
148 */
149
150 static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
152 .llseek = no_llseek,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
155 .poll = sock_poll,
156 .unlocked_ioctl = sock_ioctl,
157 #ifdef CONFIG_COMPAT
158 .compat_ioctl = compat_sock_ioctl,
159 #endif
160 .mmap = sock_mmap,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
167 };
168
169 static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
174 [PF_IPX] = "PF_IPX",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
179 [PF_X25] = "PF_X25",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
185 [PF_KEY] = "PF_KEY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
188 [PF_ASH] = "PF_ASH",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
191 [PF_RDS] = "PF_RDS",
192 [PF_SNA] = "PF_SNA",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
196 [PF_LLC] = "PF_LLC",
197 [PF_IB] = "PF_IB",
198 [PF_MPLS] = "PF_MPLS",
199 [PF_CAN] = "PF_CAN",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
208 [PF_ALG] = "PF_ALG",
209 [PF_NFC] = "PF_NFC",
210 [PF_VSOCK] = "PF_VSOCK",
211 [PF_KCM] = "PF_KCM",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
213 [PF_SMC] = "PF_SMC",
214 [PF_XDP] = "PF_XDP",
215 [PF_MCTP] = "PF_MCTP",
216 };
217
218 /*
219 * The protocol list. Each protocol is registered in here.
220 */
221
222 static DEFINE_SPINLOCK(net_family_lock);
223 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
224
225 /*
226 * Support routines.
227 * Move socket addresses back and forth across the kernel/user
228 * divide and look after the messy bits.
229 */
230
231 /**
232 * move_addr_to_kernel - copy a socket address into kernel space
233 * @uaddr: Address in user space
234 * @kaddr: Address in kernel space
235 * @ulen: Length in user space
236 *
237 * The address is copied into kernel space. If the provided address is
238 * too long an error code of -EINVAL is returned. If the copy gives
239 * invalid addresses -EFAULT is returned. On a success 0 is returned.
240 */
241
242 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
243 {
244 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
245 return -EINVAL;
246 if (ulen == 0)
247 return 0;
248 if (copy_from_user(kaddr, uaddr, ulen))
249 return -EFAULT;
250 return audit_sockaddr(ulen, kaddr);
251 }
252
253 /**
254 * move_addr_to_user - copy an address to user space
255 * @kaddr: kernel space address
256 * @klen: length of address in kernel
257 * @uaddr: user space address
258 * @ulen: pointer to user length field
259 *
260 * The value pointed to by ulen on entry is the buffer length available.
261 * This is overwritten with the buffer space used. -EINVAL is returned
262 * if an overlong buffer is specified or a negative buffer size. -EFAULT
263 * is returned if either the buffer or the length field are not
264 * accessible.
265 * After copying the data up to the limit the user specifies, the true
266 * length of the data is written over the length limit the user
267 * specified. Zero is returned for a success.
268 */
269
270 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
271 void __user *uaddr, int __user *ulen)
272 {
273 int err;
274 int len;
275
276 BUG_ON(klen > sizeof(struct sockaddr_storage));
277 err = get_user(len, ulen);
278 if (err)
279 return err;
280 if (len > klen)
281 len = klen;
282 if (len < 0)
283 return -EINVAL;
284 if (len) {
285 if (audit_sockaddr(klen, kaddr))
286 return -ENOMEM;
287 if (copy_to_user(uaddr, kaddr, len))
288 return -EFAULT;
289 }
290 /*
291 * "fromlen shall refer to the value before truncation.."
292 * 1003.1g
293 */
294 return __put_user(klen, ulen);
295 }
296
297 static struct kmem_cache *sock_inode_cachep __ro_after_init;
298
299 static struct inode *sock_alloc_inode(struct super_block *sb)
300 {
301 struct socket_alloc *ei;
302
303 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
304 if (!ei)
305 return NULL;
306 init_waitqueue_head(&ei->socket.wq.wait);
307 ei->socket.wq.fasync_list = NULL;
308 ei->socket.wq.flags = 0;
309
310 ei->socket.state = SS_UNCONNECTED;
311 ei->socket.flags = 0;
312 ei->socket.ops = NULL;
313 ei->socket.sk = NULL;
314 ei->socket.file = NULL;
315
316 return &ei->vfs_inode;
317 }
318
319 static void sock_free_inode(struct inode *inode)
320 {
321 struct socket_alloc *ei;
322
323 ei = container_of(inode, struct socket_alloc, vfs_inode);
324 kmem_cache_free(sock_inode_cachep, ei);
325 }
326
327 static void init_once(void *foo)
328 {
329 struct socket_alloc *ei = (struct socket_alloc *)foo;
330
331 inode_init_once(&ei->vfs_inode);
332 }
333
334 static void init_inodecache(void)
335 {
336 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
337 sizeof(struct socket_alloc),
338 0,
339 (SLAB_HWCACHE_ALIGN |
340 SLAB_RECLAIM_ACCOUNT |
341 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
342 init_once);
343 BUG_ON(sock_inode_cachep == NULL);
344 }
345
346 static const struct super_operations sockfs_ops = {
347 .alloc_inode = sock_alloc_inode,
348 .free_inode = sock_free_inode,
349 .statfs = simple_statfs,
350 };
351
352 /*
353 * sockfs_dname() is called from d_path().
354 */
355 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
356 {
357 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
358 d_inode(dentry)->i_ino);
359 }
360
361 static const struct dentry_operations sockfs_dentry_operations = {
362 .d_dname = sockfs_dname,
363 };
364
365 static int sockfs_xattr_get(const struct xattr_handler *handler,
366 struct dentry *dentry, struct inode *inode,
367 const char *suffix, void *value, size_t size)
368 {
369 if (value) {
370 if (dentry->d_name.len + 1 > size)
371 return -ERANGE;
372 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
373 }
374 return dentry->d_name.len + 1;
375 }
376
377 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
378 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
379 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
380
381 static const struct xattr_handler sockfs_xattr_handler = {
382 .name = XATTR_NAME_SOCKPROTONAME,
383 .get = sockfs_xattr_get,
384 };
385
386 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
387 struct user_namespace *mnt_userns,
388 struct dentry *dentry, struct inode *inode,
389 const char *suffix, const void *value,
390 size_t size, int flags)
391 {
392 /* Handled by LSM. */
393 return -EAGAIN;
394 }
395
396 static const struct xattr_handler sockfs_security_xattr_handler = {
397 .prefix = XATTR_SECURITY_PREFIX,
398 .set = sockfs_security_xattr_set,
399 };
400
401 static const struct xattr_handler *sockfs_xattr_handlers[] = {
402 &sockfs_xattr_handler,
403 &sockfs_security_xattr_handler,
404 NULL
405 };
406
407 static int sockfs_init_fs_context(struct fs_context *fc)
408 {
409 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
410 if (!ctx)
411 return -ENOMEM;
412 ctx->ops = &sockfs_ops;
413 ctx->dops = &sockfs_dentry_operations;
414 ctx->xattr = sockfs_xattr_handlers;
415 return 0;
416 }
417
418 static struct vfsmount *sock_mnt __read_mostly;
419
420 static struct file_system_type sock_fs_type = {
421 .name = "sockfs",
422 .init_fs_context = sockfs_init_fs_context,
423 .kill_sb = kill_anon_super,
424 };
425
426 /*
427 * Obtains the first available file descriptor and sets it up for use.
428 *
429 * These functions create file structures and maps them to fd space
430 * of the current process. On success it returns file descriptor
431 * and file struct implicitly stored in sock->file.
432 * Note that another thread may close file descriptor before we return
433 * from this function. We use the fact that now we do not refer
434 * to socket after mapping. If one day we will need it, this
435 * function will increment ref. count on file by 1.
436 *
437 * In any case returned fd MAY BE not valid!
438 * This race condition is unavoidable
439 * with shared fd spaces, we cannot solve it inside kernel,
440 * but we take care of internal coherence yet.
441 */
442
443 /**
444 * sock_alloc_file - Bind a &socket to a &file
445 * @sock: socket
446 * @flags: file status flags
447 * @dname: protocol name
448 *
449 * Returns the &file bound with @sock, implicitly storing it
450 * in sock->file. If dname is %NULL, sets to "".
451 * On failure the return is a ERR pointer (see linux/err.h).
452 * This function uses GFP_KERNEL internally.
453 */
454
455 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
456 {
457 struct file *file;
458
459 if (!dname)
460 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
461
462 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
463 O_RDWR | (flags & O_NONBLOCK),
464 &socket_file_ops);
465 if (IS_ERR(file)) {
466 sock_release(sock);
467 return file;
468 }
469
470 sock->file = file;
471 file->private_data = sock;
472 stream_open(SOCK_INODE(sock), file);
473 return file;
474 }
475 EXPORT_SYMBOL(sock_alloc_file);
476
477 static int sock_map_fd(struct socket *sock, int flags)
478 {
479 struct file *newfile;
480 int fd = get_unused_fd_flags(flags);
481 if (unlikely(fd < 0)) {
482 sock_release(sock);
483 return fd;
484 }
485
486 newfile = sock_alloc_file(sock, flags, NULL);
487 if (!IS_ERR(newfile)) {
488 fd_install(fd, newfile);
489 return fd;
490 }
491
492 put_unused_fd(fd);
493 return PTR_ERR(newfile);
494 }
495
496 /**
497 * sock_from_file - Return the &socket bounded to @file.
498 * @file: file
499 *
500 * On failure returns %NULL.
501 */
502
503 struct socket *sock_from_file(struct file *file)
504 {
505 if (file->f_op == &socket_file_ops)
506 return file->private_data; /* set in sock_map_fd */
507
508 return NULL;
509 }
510 EXPORT_SYMBOL(sock_from_file);
511
512 /**
513 * sockfd_lookup - Go from a file number to its socket slot
514 * @fd: file handle
515 * @err: pointer to an error code return
516 *
517 * The file handle passed in is locked and the socket it is bound
518 * to is returned. If an error occurs the err pointer is overwritten
519 * with a negative errno code and NULL is returned. The function checks
520 * for both invalid handles and passing a handle which is not a socket.
521 *
522 * On a success the socket object pointer is returned.
523 */
524
525 struct socket *sockfd_lookup(int fd, int *err)
526 {
527 struct file *file;
528 struct socket *sock;
529
530 file = fget(fd);
531 if (!file) {
532 *err = -EBADF;
533 return NULL;
534 }
535
536 sock = sock_from_file(file);
537 if (!sock) {
538 *err = -ENOTSOCK;
539 fput(file);
540 }
541 return sock;
542 }
543 EXPORT_SYMBOL(sockfd_lookup);
544
545 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
546 {
547 struct fd f = fdget(fd);
548 struct socket *sock;
549
550 *err = -EBADF;
551 if (f.file) {
552 sock = sock_from_file(f.file);
553 if (likely(sock)) {
554 *fput_needed = f.flags & FDPUT_FPUT;
555 return sock;
556 }
557 *err = -ENOTSOCK;
558 fdput(f);
559 }
560 return NULL;
561 }
562
563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
564 size_t size)
565 {
566 ssize_t len;
567 ssize_t used = 0;
568
569 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
570 if (len < 0)
571 return len;
572 used += len;
573 if (buffer) {
574 if (size < used)
575 return -ERANGE;
576 buffer += len;
577 }
578
579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
585 buffer += len;
586 }
587
588 return used;
589 }
590
591 static int sockfs_setattr(struct user_namespace *mnt_userns,
592 struct dentry *dentry, struct iattr *iattr)
593 {
594 int err = simple_setattr(&init_user_ns, dentry, iattr);
595
596 if (!err && (iattr->ia_valid & ATTR_UID)) {
597 struct socket *sock = SOCKET_I(d_inode(dentry));
598
599 if (sock->sk)
600 sock->sk->sk_uid = iattr->ia_uid;
601 else
602 err = -ENOENT;
603 }
604
605 return err;
606 }
607
608 static const struct inode_operations sockfs_inode_ops = {
609 .listxattr = sockfs_listxattr,
610 .setattr = sockfs_setattr,
611 };
612
613 /**
614 * sock_alloc - allocate a socket
615 *
616 * Allocate a new inode and socket object. The two are bound together
617 * and initialised. The socket is then returned. If we are out of inodes
618 * NULL is returned. This functions uses GFP_KERNEL internally.
619 */
620
621 struct socket *sock_alloc(void)
622 {
623 struct inode *inode;
624 struct socket *sock;
625
626 inode = new_inode_pseudo(sock_mnt->mnt_sb);
627 if (!inode)
628 return NULL;
629
630 sock = SOCKET_I(inode);
631
632 inode->i_ino = get_next_ino();
633 inode->i_mode = S_IFSOCK | S_IRWXUGO;
634 inode->i_uid = current_fsuid();
635 inode->i_gid = current_fsgid();
636 inode->i_op = &sockfs_inode_ops;
637
638 return sock;
639 }
640 EXPORT_SYMBOL(sock_alloc);
641
642 static void __sock_release(struct socket *sock, struct inode *inode)
643 {
644 if (sock->ops) {
645 struct module *owner = sock->ops->owner;
646
647 if (inode)
648 inode_lock(inode);
649 sock->ops->release(sock);
650 sock->sk = NULL;
651 if (inode)
652 inode_unlock(inode);
653 sock->ops = NULL;
654 module_put(owner);
655 }
656
657 if (sock->wq.fasync_list)
658 pr_err("%s: fasync list not empty!\n", __func__);
659
660 if (!sock->file) {
661 iput(SOCK_INODE(sock));
662 return;
663 }
664 sock->file = NULL;
665 }
666
667 /**
668 * sock_release - close a socket
669 * @sock: socket to close
670 *
671 * The socket is released from the protocol stack if it has a release
672 * callback, and the inode is then released if the socket is bound to
673 * an inode not a file.
674 */
675 void sock_release(struct socket *sock)
676 {
677 __sock_release(sock, NULL);
678 }
679 EXPORT_SYMBOL(sock_release);
680
681 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
682 {
683 u8 flags = *tx_flags;
684
685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
686 flags |= SKBTX_HW_TSTAMP;
687
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
690
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
693
694 *tx_flags = flags;
695 }
696 EXPORT_SYMBOL(__sock_tx_timestamp);
697
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 size_t));
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 size_t));
702 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
703 {
704 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
705 inet_sendmsg, sock, msg,
706 msg_data_left(msg));
707 BUG_ON(ret == -EIOCBQUEUED);
708 return ret;
709 }
710
711 /**
712 * sock_sendmsg - send a message through @sock
713 * @sock: socket
714 * @msg: message to send
715 *
716 * Sends @msg through @sock, passing through LSM.
717 * Returns the number of bytes sent, or an error code.
718 */
719 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
720 {
721 int err = security_socket_sendmsg(sock, msg,
722 msg_data_left(msg));
723
724 return err ?: sock_sendmsg_nosec(sock, msg);
725 }
726 EXPORT_SYMBOL(sock_sendmsg);
727
728 /**
729 * kernel_sendmsg - send a message through @sock (kernel-space)
730 * @sock: socket
731 * @msg: message header
732 * @vec: kernel vec
733 * @num: vec array length
734 * @size: total message data size
735 *
736 * Builds the message data with @vec and sends it through @sock.
737 * Returns the number of bytes sent, or an error code.
738 */
739
740 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
741 struct kvec *vec, size_t num, size_t size)
742 {
743 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
744 return sock_sendmsg(sock, msg);
745 }
746 EXPORT_SYMBOL(kernel_sendmsg);
747
748 /**
749 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
750 * @sk: sock
751 * @msg: message header
752 * @vec: output s/g array
753 * @num: output s/g array length
754 * @size: total message data size
755 *
756 * Builds the message data with @vec and sends it through @sock.
757 * Returns the number of bytes sent, or an error code.
758 * Caller must hold @sk.
759 */
760
761 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
762 struct kvec *vec, size_t num, size_t size)
763 {
764 struct socket *sock = sk->sk_socket;
765
766 if (!sock->ops->sendmsg_locked)
767 return sock_no_sendmsg_locked(sk, msg, size);
768
769 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
770
771 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
772 }
773 EXPORT_SYMBOL(kernel_sendmsg_locked);
774
775 static bool skb_is_err_queue(const struct sk_buff *skb)
776 {
777 /* pkt_type of skbs enqueued on the error queue are set to
778 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
779 * in recvmsg, since skbs received on a local socket will never
780 * have a pkt_type of PACKET_OUTGOING.
781 */
782 return skb->pkt_type == PACKET_OUTGOING;
783 }
784
785 /* On transmit, software and hardware timestamps are returned independently.
786 * As the two skb clones share the hardware timestamp, which may be updated
787 * before the software timestamp is received, a hardware TX timestamp may be
788 * returned only if there is no software TX timestamp. Ignore false software
789 * timestamps, which may be made in the __sock_recv_timestamp() call when the
790 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
791 * hardware timestamp.
792 */
793 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
794 {
795 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
796 }
797
798 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
799 {
800 struct scm_ts_pktinfo ts_pktinfo;
801 struct net_device *orig_dev;
802
803 if (!skb_mac_header_was_set(skb))
804 return;
805
806 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
807
808 rcu_read_lock();
809 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
810 if (orig_dev)
811 ts_pktinfo.if_index = orig_dev->ifindex;
812 rcu_read_unlock();
813
814 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
815 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
816 sizeof(ts_pktinfo), &ts_pktinfo);
817 }
818
819 /*
820 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
821 */
822 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
823 struct sk_buff *skb)
824 {
825 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
826 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
827 struct scm_timestamping_internal tss;
828
829 int empty = 1, false_tstamp = 0;
830 struct skb_shared_hwtstamps *shhwtstamps =
831 skb_hwtstamps(skb);
832 ktime_t hwtstamp;
833
834 /* Race occurred between timestamp enabling and packet
835 receiving. Fill in the current time for now. */
836 if (need_software_tstamp && skb->tstamp == 0) {
837 __net_timestamp(skb);
838 false_tstamp = 1;
839 }
840
841 if (need_software_tstamp) {
842 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
843 if (new_tstamp) {
844 struct __kernel_sock_timeval tv;
845
846 skb_get_new_timestamp(skb, &tv);
847 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
848 sizeof(tv), &tv);
849 } else {
850 struct __kernel_old_timeval tv;
851
852 skb_get_timestamp(skb, &tv);
853 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
854 sizeof(tv), &tv);
855 }
856 } else {
857 if (new_tstamp) {
858 struct __kernel_timespec ts;
859
860 skb_get_new_timestampns(skb, &ts);
861 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
862 sizeof(ts), &ts);
863 } else {
864 struct __kernel_old_timespec ts;
865
866 skb_get_timestampns(skb, &ts);
867 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
868 sizeof(ts), &ts);
869 }
870 }
871 }
872
873 memset(&tss, 0, sizeof(tss));
874 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
875 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
876 empty = 0;
877 if (shhwtstamps &&
878 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
879 !skb_is_swtx_tstamp(skb, false_tstamp)) {
880 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
881 hwtstamp = ptp_convert_timestamp(shhwtstamps,
882 sk->sk_bind_phc);
883 else
884 hwtstamp = shhwtstamps->hwtstamp;
885
886 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
887 empty = 0;
888
889 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
890 !skb_is_err_queue(skb))
891 put_ts_pktinfo(msg, skb);
892 }
893 }
894 if (!empty) {
895 if (sock_flag(sk, SOCK_TSTAMP_NEW))
896 put_cmsg_scm_timestamping64(msg, &tss);
897 else
898 put_cmsg_scm_timestamping(msg, &tss);
899
900 if (skb_is_err_queue(skb) && skb->len &&
901 SKB_EXT_ERR(skb)->opt_stats)
902 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
903 skb->len, skb->data);
904 }
905 }
906 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
907
908 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
909 struct sk_buff *skb)
910 {
911 int ack;
912
913 if (!sock_flag(sk, SOCK_WIFI_STATUS))
914 return;
915 if (!skb->wifi_acked_valid)
916 return;
917
918 ack = skb->wifi_acked;
919
920 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
921 }
922 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
923
924 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
925 struct sk_buff *skb)
926 {
927 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
928 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
929 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
930 }
931
932 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
933 struct sk_buff *skb)
934 {
935 sock_recv_timestamp(msg, sk, skb);
936 sock_recv_drops(msg, sk, skb);
937 }
938 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
939
940 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
941 size_t, int));
942 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
943 size_t, int));
944 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
945 int flags)
946 {
947 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
948 inet_recvmsg, sock, msg, msg_data_left(msg),
949 flags);
950 }
951
952 /**
953 * sock_recvmsg - receive a message from @sock
954 * @sock: socket
955 * @msg: message to receive
956 * @flags: message flags
957 *
958 * Receives @msg from @sock, passing through LSM. Returns the total number
959 * of bytes received, or an error.
960 */
961 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
962 {
963 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
964
965 return err ?: sock_recvmsg_nosec(sock, msg, flags);
966 }
967 EXPORT_SYMBOL(sock_recvmsg);
968
969 /**
970 * kernel_recvmsg - Receive a message from a socket (kernel space)
971 * @sock: The socket to receive the message from
972 * @msg: Received message
973 * @vec: Input s/g array for message data
974 * @num: Size of input s/g array
975 * @size: Number of bytes to read
976 * @flags: Message flags (MSG_DONTWAIT, etc...)
977 *
978 * On return the msg structure contains the scatter/gather array passed in the
979 * vec argument. The array is modified so that it consists of the unfilled
980 * portion of the original array.
981 *
982 * The returned value is the total number of bytes received, or an error.
983 */
984
985 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
986 struct kvec *vec, size_t num, size_t size, int flags)
987 {
988 msg->msg_control_is_user = false;
989 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
990 return sock_recvmsg(sock, msg, flags);
991 }
992 EXPORT_SYMBOL(kernel_recvmsg);
993
994 static ssize_t sock_sendpage(struct file *file, struct page *page,
995 int offset, size_t size, loff_t *ppos, int more)
996 {
997 struct socket *sock;
998 int flags;
999
1000 sock = file->private_data;
1001
1002 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1003 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1004 flags |= more;
1005
1006 return kernel_sendpage(sock, page, offset, size, flags);
1007 }
1008
1009 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1010 struct pipe_inode_info *pipe, size_t len,
1011 unsigned int flags)
1012 {
1013 struct socket *sock = file->private_data;
1014
1015 if (unlikely(!sock->ops->splice_read))
1016 return generic_file_splice_read(file, ppos, pipe, len, flags);
1017
1018 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1019 }
1020
1021 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1022 {
1023 struct file *file = iocb->ki_filp;
1024 struct socket *sock = file->private_data;
1025 struct msghdr msg = {.msg_iter = *to,
1026 .msg_iocb = iocb};
1027 ssize_t res;
1028
1029 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1030 msg.msg_flags = MSG_DONTWAIT;
1031
1032 if (iocb->ki_pos != 0)
1033 return -ESPIPE;
1034
1035 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1036 return 0;
1037
1038 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1039 *to = msg.msg_iter;
1040 return res;
1041 }
1042
1043 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1044 {
1045 struct file *file = iocb->ki_filp;
1046 struct socket *sock = file->private_data;
1047 struct msghdr msg = {.msg_iter = *from,
1048 .msg_iocb = iocb};
1049 ssize_t res;
1050
1051 if (iocb->ki_pos != 0)
1052 return -ESPIPE;
1053
1054 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1055 msg.msg_flags = MSG_DONTWAIT;
1056
1057 if (sock->type == SOCK_SEQPACKET)
1058 msg.msg_flags |= MSG_EOR;
1059
1060 res = sock_sendmsg(sock, &msg);
1061 *from = msg.msg_iter;
1062 return res;
1063 }
1064
1065 /*
1066 * Atomic setting of ioctl hooks to avoid race
1067 * with module unload.
1068 */
1069
1070 static DEFINE_MUTEX(br_ioctl_mutex);
1071 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1072 unsigned int cmd, struct ifreq *ifr,
1073 void __user *uarg);
1074
1075 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1076 unsigned int cmd, struct ifreq *ifr,
1077 void __user *uarg))
1078 {
1079 mutex_lock(&br_ioctl_mutex);
1080 br_ioctl_hook = hook;
1081 mutex_unlock(&br_ioctl_mutex);
1082 }
1083 EXPORT_SYMBOL(brioctl_set);
1084
1085 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1086 struct ifreq *ifr, void __user *uarg)
1087 {
1088 int err = -ENOPKG;
1089
1090 if (!br_ioctl_hook)
1091 request_module("bridge");
1092
1093 mutex_lock(&br_ioctl_mutex);
1094 if (br_ioctl_hook)
1095 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1096 mutex_unlock(&br_ioctl_mutex);
1097
1098 return err;
1099 }
1100
1101 static DEFINE_MUTEX(vlan_ioctl_mutex);
1102 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1103
1104 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1105 {
1106 mutex_lock(&vlan_ioctl_mutex);
1107 vlan_ioctl_hook = hook;
1108 mutex_unlock(&vlan_ioctl_mutex);
1109 }
1110 EXPORT_SYMBOL(vlan_ioctl_set);
1111
1112 static long sock_do_ioctl(struct net *net, struct socket *sock,
1113 unsigned int cmd, unsigned long arg)
1114 {
1115 struct ifreq ifr;
1116 bool need_copyout;
1117 int err;
1118 void __user *argp = (void __user *)arg;
1119 void __user *data;
1120
1121 err = sock->ops->ioctl(sock, cmd, arg);
1122
1123 /*
1124 * If this ioctl is unknown try to hand it down
1125 * to the NIC driver.
1126 */
1127 if (err != -ENOIOCTLCMD)
1128 return err;
1129
1130 if (!is_socket_ioctl_cmd(cmd))
1131 return -ENOTTY;
1132
1133 if (get_user_ifreq(&ifr, &data, argp))
1134 return -EFAULT;
1135 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1136 if (!err && need_copyout)
1137 if (put_user_ifreq(&ifr, argp))
1138 return -EFAULT;
1139
1140 return err;
1141 }
1142
1143 /*
1144 * With an ioctl, arg may well be a user mode pointer, but we don't know
1145 * what to do with it - that's up to the protocol still.
1146 */
1147
1148 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1149 {
1150 struct socket *sock;
1151 struct sock *sk;
1152 void __user *argp = (void __user *)arg;
1153 int pid, err;
1154 struct net *net;
1155
1156 sock = file->private_data;
1157 sk = sock->sk;
1158 net = sock_net(sk);
1159 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1160 struct ifreq ifr;
1161 void __user *data;
1162 bool need_copyout;
1163 if (get_user_ifreq(&ifr, &data, argp))
1164 return -EFAULT;
1165 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1166 if (!err && need_copyout)
1167 if (put_user_ifreq(&ifr, argp))
1168 return -EFAULT;
1169 } else
1170 #ifdef CONFIG_WEXT_CORE
1171 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1172 err = wext_handle_ioctl(net, cmd, argp);
1173 } else
1174 #endif
1175 switch (cmd) {
1176 case FIOSETOWN:
1177 case SIOCSPGRP:
1178 err = -EFAULT;
1179 if (get_user(pid, (int __user *)argp))
1180 break;
1181 err = f_setown(sock->file, pid, 1);
1182 break;
1183 case FIOGETOWN:
1184 case SIOCGPGRP:
1185 err = put_user(f_getown(sock->file),
1186 (int __user *)argp);
1187 break;
1188 case SIOCGIFBR:
1189 case SIOCSIFBR:
1190 case SIOCBRADDBR:
1191 case SIOCBRDELBR:
1192 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1193 break;
1194 case SIOCGIFVLAN:
1195 case SIOCSIFVLAN:
1196 err = -ENOPKG;
1197 if (!vlan_ioctl_hook)
1198 request_module("8021q");
1199
1200 mutex_lock(&vlan_ioctl_mutex);
1201 if (vlan_ioctl_hook)
1202 err = vlan_ioctl_hook(net, argp);
1203 mutex_unlock(&vlan_ioctl_mutex);
1204 break;
1205 case SIOCGSKNS:
1206 err = -EPERM;
1207 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1208 break;
1209
1210 err = open_related_ns(&net->ns, get_net_ns);
1211 break;
1212 case SIOCGSTAMP_OLD:
1213 case SIOCGSTAMPNS_OLD:
1214 if (!sock->ops->gettstamp) {
1215 err = -ENOIOCTLCMD;
1216 break;
1217 }
1218 err = sock->ops->gettstamp(sock, argp,
1219 cmd == SIOCGSTAMP_OLD,
1220 !IS_ENABLED(CONFIG_64BIT));
1221 break;
1222 case SIOCGSTAMP_NEW:
1223 case SIOCGSTAMPNS_NEW:
1224 if (!sock->ops->gettstamp) {
1225 err = -ENOIOCTLCMD;
1226 break;
1227 }
1228 err = sock->ops->gettstamp(sock, argp,
1229 cmd == SIOCGSTAMP_NEW,
1230 false);
1231 break;
1232
1233 case SIOCGIFCONF:
1234 err = dev_ifconf(net, argp);
1235 break;
1236
1237 default:
1238 err = sock_do_ioctl(net, sock, cmd, arg);
1239 break;
1240 }
1241 return err;
1242 }
1243
1244 /**
1245 * sock_create_lite - creates a socket
1246 * @family: protocol family (AF_INET, ...)
1247 * @type: communication type (SOCK_STREAM, ...)
1248 * @protocol: protocol (0, ...)
1249 * @res: new socket
1250 *
1251 * Creates a new socket and assigns it to @res, passing through LSM.
1252 * The new socket initialization is not complete, see kernel_accept().
1253 * Returns 0 or an error. On failure @res is set to %NULL.
1254 * This function internally uses GFP_KERNEL.
1255 */
1256
1257 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1258 {
1259 int err;
1260 struct socket *sock = NULL;
1261
1262 err = security_socket_create(family, type, protocol, 1);
1263 if (err)
1264 goto out;
1265
1266 sock = sock_alloc();
1267 if (!sock) {
1268 err = -ENOMEM;
1269 goto out;
1270 }
1271
1272 sock->type = type;
1273 err = security_socket_post_create(sock, family, type, protocol, 1);
1274 if (err)
1275 goto out_release;
1276
1277 out:
1278 *res = sock;
1279 return err;
1280 out_release:
1281 sock_release(sock);
1282 sock = NULL;
1283 goto out;
1284 }
1285 EXPORT_SYMBOL(sock_create_lite);
1286
1287 /* No kernel lock held - perfect */
1288 static __poll_t sock_poll(struct file *file, poll_table *wait)
1289 {
1290 struct socket *sock = file->private_data;
1291 __poll_t events = poll_requested_events(wait), flag = 0;
1292
1293 if (!sock->ops->poll)
1294 return 0;
1295
1296 if (sk_can_busy_loop(sock->sk)) {
1297 /* poll once if requested by the syscall */
1298 if (events & POLL_BUSY_LOOP)
1299 sk_busy_loop(sock->sk, 1);
1300
1301 /* if this socket can poll_ll, tell the system call */
1302 flag = POLL_BUSY_LOOP;
1303 }
1304
1305 return sock->ops->poll(file, sock, wait) | flag;
1306 }
1307
1308 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1309 {
1310 struct socket *sock = file->private_data;
1311
1312 return sock->ops->mmap(file, sock, vma);
1313 }
1314
1315 static int sock_close(struct inode *inode, struct file *filp)
1316 {
1317 __sock_release(SOCKET_I(inode), inode);
1318 return 0;
1319 }
1320
1321 /*
1322 * Update the socket async list
1323 *
1324 * Fasync_list locking strategy.
1325 *
1326 * 1. fasync_list is modified only under process context socket lock
1327 * i.e. under semaphore.
1328 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1329 * or under socket lock
1330 */
1331
1332 static int sock_fasync(int fd, struct file *filp, int on)
1333 {
1334 struct socket *sock = filp->private_data;
1335 struct sock *sk = sock->sk;
1336 struct socket_wq *wq = &sock->wq;
1337
1338 if (sk == NULL)
1339 return -EINVAL;
1340
1341 lock_sock(sk);
1342 fasync_helper(fd, filp, on, &wq->fasync_list);
1343
1344 if (!wq->fasync_list)
1345 sock_reset_flag(sk, SOCK_FASYNC);
1346 else
1347 sock_set_flag(sk, SOCK_FASYNC);
1348
1349 release_sock(sk);
1350 return 0;
1351 }
1352
1353 /* This function may be called only under rcu_lock */
1354
1355 int sock_wake_async(struct socket_wq *wq, int how, int band)
1356 {
1357 if (!wq || !wq->fasync_list)
1358 return -1;
1359
1360 switch (how) {
1361 case SOCK_WAKE_WAITD:
1362 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1363 break;
1364 goto call_kill;
1365 case SOCK_WAKE_SPACE:
1366 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1367 break;
1368 fallthrough;
1369 case SOCK_WAKE_IO:
1370 call_kill:
1371 kill_fasync(&wq->fasync_list, SIGIO, band);
1372 break;
1373 case SOCK_WAKE_URG:
1374 kill_fasync(&wq->fasync_list, SIGURG, band);
1375 }
1376
1377 return 0;
1378 }
1379 EXPORT_SYMBOL(sock_wake_async);
1380
1381 /**
1382 * __sock_create - creates a socket
1383 * @net: net namespace
1384 * @family: protocol family (AF_INET, ...)
1385 * @type: communication type (SOCK_STREAM, ...)
1386 * @protocol: protocol (0, ...)
1387 * @res: new socket
1388 * @kern: boolean for kernel space sockets
1389 *
1390 * Creates a new socket and assigns it to @res, passing through LSM.
1391 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1392 * be set to true if the socket resides in kernel space.
1393 * This function internally uses GFP_KERNEL.
1394 */
1395
1396 int __sock_create(struct net *net, int family, int type, int protocol,
1397 struct socket **res, int kern)
1398 {
1399 int err;
1400 struct socket *sock;
1401 const struct net_proto_family *pf;
1402
1403 /*
1404 * Check protocol is in range
1405 */
1406 if (family < 0 || family >= NPROTO)
1407 return -EAFNOSUPPORT;
1408 if (type < 0 || type >= SOCK_MAX)
1409 return -EINVAL;
1410
1411 /* Compatibility.
1412
1413 This uglymoron is moved from INET layer to here to avoid
1414 deadlock in module load.
1415 */
1416 if (family == PF_INET && type == SOCK_PACKET) {
1417 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1418 current->comm);
1419 family = PF_PACKET;
1420 }
1421
1422 err = security_socket_create(family, type, protocol, kern);
1423 if (err)
1424 return err;
1425
1426 /*
1427 * Allocate the socket and allow the family to set things up. if
1428 * the protocol is 0, the family is instructed to select an appropriate
1429 * default.
1430 */
1431 sock = sock_alloc();
1432 if (!sock) {
1433 net_warn_ratelimited("socket: no more sockets\n");
1434 return -ENFILE; /* Not exactly a match, but its the
1435 closest posix thing */
1436 }
1437
1438 sock->type = type;
1439
1440 #ifdef CONFIG_MODULES
1441 /* Attempt to load a protocol module if the find failed.
1442 *
1443 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1444 * requested real, full-featured networking support upon configuration.
1445 * Otherwise module support will break!
1446 */
1447 if (rcu_access_pointer(net_families[family]) == NULL)
1448 request_module("net-pf-%d", family);
1449 #endif
1450
1451 rcu_read_lock();
1452 pf = rcu_dereference(net_families[family]);
1453 err = -EAFNOSUPPORT;
1454 if (!pf)
1455 goto out_release;
1456
1457 /*
1458 * We will call the ->create function, that possibly is in a loadable
1459 * module, so we have to bump that loadable module refcnt first.
1460 */
1461 if (!try_module_get(pf->owner))
1462 goto out_release;
1463
1464 /* Now protected by module ref count */
1465 rcu_read_unlock();
1466
1467 err = pf->create(net, sock, protocol, kern);
1468 if (err < 0)
1469 goto out_module_put;
1470
1471 /*
1472 * Now to bump the refcnt of the [loadable] module that owns this
1473 * socket at sock_release time we decrement its refcnt.
1474 */
1475 if (!try_module_get(sock->ops->owner))
1476 goto out_module_busy;
1477
1478 /*
1479 * Now that we're done with the ->create function, the [loadable]
1480 * module can have its refcnt decremented
1481 */
1482 module_put(pf->owner);
1483 err = security_socket_post_create(sock, family, type, protocol, kern);
1484 if (err)
1485 goto out_sock_release;
1486 *res = sock;
1487
1488 return 0;
1489
1490 out_module_busy:
1491 err = -EAFNOSUPPORT;
1492 out_module_put:
1493 sock->ops = NULL;
1494 module_put(pf->owner);
1495 out_sock_release:
1496 sock_release(sock);
1497 return err;
1498
1499 out_release:
1500 rcu_read_unlock();
1501 goto out_sock_release;
1502 }
1503 EXPORT_SYMBOL(__sock_create);
1504
1505 /**
1506 * sock_create - creates a socket
1507 * @family: protocol family (AF_INET, ...)
1508 * @type: communication type (SOCK_STREAM, ...)
1509 * @protocol: protocol (0, ...)
1510 * @res: new socket
1511 *
1512 * A wrapper around __sock_create().
1513 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1514 */
1515
1516 int sock_create(int family, int type, int protocol, struct socket **res)
1517 {
1518 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1519 }
1520 EXPORT_SYMBOL(sock_create);
1521
1522 /**
1523 * sock_create_kern - creates a socket (kernel space)
1524 * @net: net namespace
1525 * @family: protocol family (AF_INET, ...)
1526 * @type: communication type (SOCK_STREAM, ...)
1527 * @protocol: protocol (0, ...)
1528 * @res: new socket
1529 *
1530 * A wrapper around __sock_create().
1531 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1532 */
1533
1534 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1535 {
1536 return __sock_create(net, family, type, protocol, res, 1);
1537 }
1538 EXPORT_SYMBOL(sock_create_kern);
1539
1540 int __sys_socket(int family, int type, int protocol)
1541 {
1542 int retval;
1543 struct socket *sock;
1544 int flags;
1545
1546 /* Check the SOCK_* constants for consistency. */
1547 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1548 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1549 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1550 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1551
1552 flags = type & ~SOCK_TYPE_MASK;
1553 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1554 return -EINVAL;
1555 type &= SOCK_TYPE_MASK;
1556
1557 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1558 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1559
1560 retval = sock_create(family, type, protocol, &sock);
1561 if (retval < 0)
1562 return retval;
1563
1564 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1565 }
1566
1567 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1568 {
1569 return __sys_socket(family, type, protocol);
1570 }
1571
1572 /*
1573 * Create a pair of connected sockets.
1574 */
1575
1576 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1577 {
1578 struct socket *sock1, *sock2;
1579 int fd1, fd2, err;
1580 struct file *newfile1, *newfile2;
1581 int flags;
1582
1583 flags = type & ~SOCK_TYPE_MASK;
1584 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1585 return -EINVAL;
1586 type &= SOCK_TYPE_MASK;
1587
1588 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1589 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1590
1591 /*
1592 * reserve descriptors and make sure we won't fail
1593 * to return them to userland.
1594 */
1595 fd1 = get_unused_fd_flags(flags);
1596 if (unlikely(fd1 < 0))
1597 return fd1;
1598
1599 fd2 = get_unused_fd_flags(flags);
1600 if (unlikely(fd2 < 0)) {
1601 put_unused_fd(fd1);
1602 return fd2;
1603 }
1604
1605 err = put_user(fd1, &usockvec[0]);
1606 if (err)
1607 goto out;
1608
1609 err = put_user(fd2, &usockvec[1]);
1610 if (err)
1611 goto out;
1612
1613 /*
1614 * Obtain the first socket and check if the underlying protocol
1615 * supports the socketpair call.
1616 */
1617
1618 err = sock_create(family, type, protocol, &sock1);
1619 if (unlikely(err < 0))
1620 goto out;
1621
1622 err = sock_create(family, type, protocol, &sock2);
1623 if (unlikely(err < 0)) {
1624 sock_release(sock1);
1625 goto out;
1626 }
1627
1628 err = security_socket_socketpair(sock1, sock2);
1629 if (unlikely(err)) {
1630 sock_release(sock2);
1631 sock_release(sock1);
1632 goto out;
1633 }
1634
1635 err = sock1->ops->socketpair(sock1, sock2);
1636 if (unlikely(err < 0)) {
1637 sock_release(sock2);
1638 sock_release(sock1);
1639 goto out;
1640 }
1641
1642 newfile1 = sock_alloc_file(sock1, flags, NULL);
1643 if (IS_ERR(newfile1)) {
1644 err = PTR_ERR(newfile1);
1645 sock_release(sock2);
1646 goto out;
1647 }
1648
1649 newfile2 = sock_alloc_file(sock2, flags, NULL);
1650 if (IS_ERR(newfile2)) {
1651 err = PTR_ERR(newfile2);
1652 fput(newfile1);
1653 goto out;
1654 }
1655
1656 audit_fd_pair(fd1, fd2);
1657
1658 fd_install(fd1, newfile1);
1659 fd_install(fd2, newfile2);
1660 return 0;
1661
1662 out:
1663 put_unused_fd(fd2);
1664 put_unused_fd(fd1);
1665 return err;
1666 }
1667
1668 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1669 int __user *, usockvec)
1670 {
1671 return __sys_socketpair(family, type, protocol, usockvec);
1672 }
1673
1674 /*
1675 * Bind a name to a socket. Nothing much to do here since it's
1676 * the protocol's responsibility to handle the local address.
1677 *
1678 * We move the socket address to kernel space before we call
1679 * the protocol layer (having also checked the address is ok).
1680 */
1681
1682 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1683 {
1684 struct socket *sock;
1685 struct sockaddr_storage address;
1686 int err, fput_needed;
1687
1688 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 if (sock) {
1690 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1691 if (!err) {
1692 err = security_socket_bind(sock,
1693 (struct sockaddr *)&address,
1694 addrlen);
1695 if (!err)
1696 err = sock->ops->bind(sock,
1697 (struct sockaddr *)
1698 &address, addrlen);
1699 }
1700 fput_light(sock->file, fput_needed);
1701 }
1702 return err;
1703 }
1704
1705 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1706 {
1707 return __sys_bind(fd, umyaddr, addrlen);
1708 }
1709
1710 /*
1711 * Perform a listen. Basically, we allow the protocol to do anything
1712 * necessary for a listen, and if that works, we mark the socket as
1713 * ready for listening.
1714 */
1715
1716 int __sys_listen(int fd, int backlog)
1717 {
1718 struct socket *sock;
1719 int err, fput_needed;
1720 int somaxconn;
1721
1722 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1723 if (sock) {
1724 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1725 if ((unsigned int)backlog > somaxconn)
1726 backlog = somaxconn;
1727
1728 err = security_socket_listen(sock, backlog);
1729 if (!err)
1730 err = sock->ops->listen(sock, backlog);
1731
1732 fput_light(sock->file, fput_needed);
1733 }
1734 return err;
1735 }
1736
1737 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1738 {
1739 return __sys_listen(fd, backlog);
1740 }
1741
1742 struct file *do_accept(struct file *file, unsigned file_flags,
1743 struct sockaddr __user *upeer_sockaddr,
1744 int __user *upeer_addrlen, int flags)
1745 {
1746 struct socket *sock, *newsock;
1747 struct file *newfile;
1748 int err, len;
1749 struct sockaddr_storage address;
1750
1751 sock = sock_from_file(file);
1752 if (!sock)
1753 return ERR_PTR(-ENOTSOCK);
1754
1755 newsock = sock_alloc();
1756 if (!newsock)
1757 return ERR_PTR(-ENFILE);
1758
1759 newsock->type = sock->type;
1760 newsock->ops = sock->ops;
1761
1762 /*
1763 * We don't need try_module_get here, as the listening socket (sock)
1764 * has the protocol module (sock->ops->owner) held.
1765 */
1766 __module_get(newsock->ops->owner);
1767
1768 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1769 if (IS_ERR(newfile))
1770 return newfile;
1771
1772 err = security_socket_accept(sock, newsock);
1773 if (err)
1774 goto out_fd;
1775
1776 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1777 false);
1778 if (err < 0)
1779 goto out_fd;
1780
1781 if (upeer_sockaddr) {
1782 len = newsock->ops->getname(newsock,
1783 (struct sockaddr *)&address, 2);
1784 if (len < 0) {
1785 err = -ECONNABORTED;
1786 goto out_fd;
1787 }
1788 err = move_addr_to_user(&address,
1789 len, upeer_sockaddr, upeer_addrlen);
1790 if (err < 0)
1791 goto out_fd;
1792 }
1793
1794 /* File flags are not inherited via accept() unlike another OSes. */
1795 return newfile;
1796 out_fd:
1797 fput(newfile);
1798 return ERR_PTR(err);
1799 }
1800
1801 int __sys_accept4_file(struct file *file, unsigned file_flags,
1802 struct sockaddr __user *upeer_sockaddr,
1803 int __user *upeer_addrlen, int flags,
1804 unsigned long nofile)
1805 {
1806 struct file *newfile;
1807 int newfd;
1808
1809 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1810 return -EINVAL;
1811
1812 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1813 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1814
1815 newfd = __get_unused_fd_flags(flags, nofile);
1816 if (unlikely(newfd < 0))
1817 return newfd;
1818
1819 newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen,
1820 flags);
1821 if (IS_ERR(newfile)) {
1822 put_unused_fd(newfd);
1823 return PTR_ERR(newfile);
1824 }
1825 fd_install(newfd, newfile);
1826 return newfd;
1827 }
1828
1829 /*
1830 * For accept, we attempt to create a new socket, set up the link
1831 * with the client, wake up the client, then return the new
1832 * connected fd. We collect the address of the connector in kernel
1833 * space and move it to user at the very end. This is unclean because
1834 * we open the socket then return an error.
1835 *
1836 * 1003.1g adds the ability to recvmsg() to query connection pending
1837 * status to recvmsg. We need to add that support in a way thats
1838 * clean when we restructure accept also.
1839 */
1840
1841 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1842 int __user *upeer_addrlen, int flags)
1843 {
1844 int ret = -EBADF;
1845 struct fd f;
1846
1847 f = fdget(fd);
1848 if (f.file) {
1849 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1850 upeer_addrlen, flags,
1851 rlimit(RLIMIT_NOFILE));
1852 fdput(f);
1853 }
1854
1855 return ret;
1856 }
1857
1858 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1859 int __user *, upeer_addrlen, int, flags)
1860 {
1861 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1862 }
1863
1864 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1865 int __user *, upeer_addrlen)
1866 {
1867 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1868 }
1869
1870 /*
1871 * Attempt to connect to a socket with the server address. The address
1872 * is in user space so we verify it is OK and move it to kernel space.
1873 *
1874 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1875 * break bindings
1876 *
1877 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1878 * other SEQPACKET protocols that take time to connect() as it doesn't
1879 * include the -EINPROGRESS status for such sockets.
1880 */
1881
1882 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1883 int addrlen, int file_flags)
1884 {
1885 struct socket *sock;
1886 int err;
1887
1888 sock = sock_from_file(file);
1889 if (!sock) {
1890 err = -ENOTSOCK;
1891 goto out;
1892 }
1893
1894 err =
1895 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1896 if (err)
1897 goto out;
1898
1899 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1900 sock->file->f_flags | file_flags);
1901 out:
1902 return err;
1903 }
1904
1905 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1906 {
1907 int ret = -EBADF;
1908 struct fd f;
1909
1910 f = fdget(fd);
1911 if (f.file) {
1912 struct sockaddr_storage address;
1913
1914 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1915 if (!ret)
1916 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1917 fdput(f);
1918 }
1919
1920 return ret;
1921 }
1922
1923 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1924 int, addrlen)
1925 {
1926 return __sys_connect(fd, uservaddr, addrlen);
1927 }
1928
1929 /*
1930 * Get the local address ('name') of a socket object. Move the obtained
1931 * name to user space.
1932 */
1933
1934 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1935 int __user *usockaddr_len)
1936 {
1937 struct socket *sock;
1938 struct sockaddr_storage address;
1939 int err, fput_needed;
1940
1941 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1942 if (!sock)
1943 goto out;
1944
1945 err = security_socket_getsockname(sock);
1946 if (err)
1947 goto out_put;
1948
1949 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1950 if (err < 0)
1951 goto out_put;
1952 /* "err" is actually length in this case */
1953 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1954
1955 out_put:
1956 fput_light(sock->file, fput_needed);
1957 out:
1958 return err;
1959 }
1960
1961 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1962 int __user *, usockaddr_len)
1963 {
1964 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1965 }
1966
1967 /*
1968 * Get the remote address ('name') of a socket object. Move the obtained
1969 * name to user space.
1970 */
1971
1972 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1973 int __user *usockaddr_len)
1974 {
1975 struct socket *sock;
1976 struct sockaddr_storage address;
1977 int err, fput_needed;
1978
1979 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1980 if (sock != NULL) {
1981 err = security_socket_getpeername(sock);
1982 if (err) {
1983 fput_light(sock->file, fput_needed);
1984 return err;
1985 }
1986
1987 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1988 if (err >= 0)
1989 /* "err" is actually length in this case */
1990 err = move_addr_to_user(&address, err, usockaddr,
1991 usockaddr_len);
1992 fput_light(sock->file, fput_needed);
1993 }
1994 return err;
1995 }
1996
1997 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1998 int __user *, usockaddr_len)
1999 {
2000 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2001 }
2002
2003 /*
2004 * Send a datagram to a given address. We move the address into kernel
2005 * space and check the user space data area is readable before invoking
2006 * the protocol.
2007 */
2008 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2009 struct sockaddr __user *addr, int addr_len)
2010 {
2011 struct socket *sock;
2012 struct sockaddr_storage address;
2013 int err;
2014 struct msghdr msg;
2015 struct iovec iov;
2016 int fput_needed;
2017
2018 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2019 if (unlikely(err))
2020 return err;
2021 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022 if (!sock)
2023 goto out;
2024
2025 msg.msg_name = NULL;
2026 msg.msg_control = NULL;
2027 msg.msg_controllen = 0;
2028 msg.msg_namelen = 0;
2029 if (addr) {
2030 err = move_addr_to_kernel(addr, addr_len, &address);
2031 if (err < 0)
2032 goto out_put;
2033 msg.msg_name = (struct sockaddr *)&address;
2034 msg.msg_namelen = addr_len;
2035 }
2036 if (sock->file->f_flags & O_NONBLOCK)
2037 flags |= MSG_DONTWAIT;
2038 msg.msg_flags = flags;
2039 err = sock_sendmsg(sock, &msg);
2040
2041 out_put:
2042 fput_light(sock->file, fput_needed);
2043 out:
2044 return err;
2045 }
2046
2047 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2048 unsigned int, flags, struct sockaddr __user *, addr,
2049 int, addr_len)
2050 {
2051 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2052 }
2053
2054 /*
2055 * Send a datagram down a socket.
2056 */
2057
2058 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2059 unsigned int, flags)
2060 {
2061 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2062 }
2063
2064 /*
2065 * Receive a frame from the socket and optionally record the address of the
2066 * sender. We verify the buffers are writable and if needed move the
2067 * sender address from kernel to user space.
2068 */
2069 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2070 struct sockaddr __user *addr, int __user *addr_len)
2071 {
2072 struct socket *sock;
2073 struct iovec iov;
2074 struct msghdr msg;
2075 struct sockaddr_storage address;
2076 int err, err2;
2077 int fput_needed;
2078
2079 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2080 if (unlikely(err))
2081 return err;
2082 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2083 if (!sock)
2084 goto out;
2085
2086 msg.msg_control = NULL;
2087 msg.msg_controllen = 0;
2088 /* Save some cycles and don't copy the address if not needed */
2089 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2090 /* We assume all kernel code knows the size of sockaddr_storage */
2091 msg.msg_namelen = 0;
2092 msg.msg_iocb = NULL;
2093 msg.msg_flags = 0;
2094 if (sock->file->f_flags & O_NONBLOCK)
2095 flags |= MSG_DONTWAIT;
2096 err = sock_recvmsg(sock, &msg, flags);
2097
2098 if (err >= 0 && addr != NULL) {
2099 err2 = move_addr_to_user(&address,
2100 msg.msg_namelen, addr, addr_len);
2101 if (err2 < 0)
2102 err = err2;
2103 }
2104
2105 fput_light(sock->file, fput_needed);
2106 out:
2107 return err;
2108 }
2109
2110 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2111 unsigned int, flags, struct sockaddr __user *, addr,
2112 int __user *, addr_len)
2113 {
2114 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2115 }
2116
2117 /*
2118 * Receive a datagram from a socket.
2119 */
2120
2121 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2122 unsigned int, flags)
2123 {
2124 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2125 }
2126
2127 static bool sock_use_custom_sol_socket(const struct socket *sock)
2128 {
2129 const struct sock *sk = sock->sk;
2130
2131 /* Use sock->ops->setsockopt() for MPTCP */
2132 return IS_ENABLED(CONFIG_MPTCP) &&
2133 sk->sk_protocol == IPPROTO_MPTCP &&
2134 sk->sk_type == SOCK_STREAM &&
2135 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2136 }
2137
2138 /*
2139 * Set a socket option. Because we don't know the option lengths we have
2140 * to pass the user mode parameter for the protocols to sort out.
2141 */
2142 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2143 int optlen)
2144 {
2145 sockptr_t optval = USER_SOCKPTR(user_optval);
2146 char *kernel_optval = NULL;
2147 int err, fput_needed;
2148 struct socket *sock;
2149
2150 if (optlen < 0)
2151 return -EINVAL;
2152
2153 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2154 if (!sock)
2155 return err;
2156
2157 err = security_socket_setsockopt(sock, level, optname);
2158 if (err)
2159 goto out_put;
2160
2161 if (!in_compat_syscall())
2162 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2163 user_optval, &optlen,
2164 &kernel_optval);
2165 if (err < 0)
2166 goto out_put;
2167 if (err > 0) {
2168 err = 0;
2169 goto out_put;
2170 }
2171
2172 if (kernel_optval)
2173 optval = KERNEL_SOCKPTR(kernel_optval);
2174 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2175 err = sock_setsockopt(sock, level, optname, optval, optlen);
2176 else if (unlikely(!sock->ops->setsockopt))
2177 err = -EOPNOTSUPP;
2178 else
2179 err = sock->ops->setsockopt(sock, level, optname, optval,
2180 optlen);
2181 kfree(kernel_optval);
2182 out_put:
2183 fput_light(sock->file, fput_needed);
2184 return err;
2185 }
2186
2187 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2188 char __user *, optval, int, optlen)
2189 {
2190 return __sys_setsockopt(fd, level, optname, optval, optlen);
2191 }
2192
2193 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2194 int optname));
2195
2196 /*
2197 * Get a socket option. Because we don't know the option lengths we have
2198 * to pass a user mode parameter for the protocols to sort out.
2199 */
2200 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2201 int __user *optlen)
2202 {
2203 int err, fput_needed;
2204 struct socket *sock;
2205 int max_optlen;
2206
2207 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2208 if (!sock)
2209 return err;
2210
2211 err = security_socket_getsockopt(sock, level, optname);
2212 if (err)
2213 goto out_put;
2214
2215 if (!in_compat_syscall())
2216 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2217
2218 if (level == SOL_SOCKET)
2219 err = sock_getsockopt(sock, level, optname, optval, optlen);
2220 else if (unlikely(!sock->ops->getsockopt))
2221 err = -EOPNOTSUPP;
2222 else
2223 err = sock->ops->getsockopt(sock, level, optname, optval,
2224 optlen);
2225
2226 if (!in_compat_syscall())
2227 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2228 optval, optlen, max_optlen,
2229 err);
2230 out_put:
2231 fput_light(sock->file, fput_needed);
2232 return err;
2233 }
2234
2235 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2236 char __user *, optval, int __user *, optlen)
2237 {
2238 return __sys_getsockopt(fd, level, optname, optval, optlen);
2239 }
2240
2241 /*
2242 * Shutdown a socket.
2243 */
2244
2245 int __sys_shutdown_sock(struct socket *sock, int how)
2246 {
2247 int err;
2248
2249 err = security_socket_shutdown(sock, how);
2250 if (!err)
2251 err = sock->ops->shutdown(sock, how);
2252
2253 return err;
2254 }
2255
2256 int __sys_shutdown(int fd, int how)
2257 {
2258 int err, fput_needed;
2259 struct socket *sock;
2260
2261 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2262 if (sock != NULL) {
2263 err = __sys_shutdown_sock(sock, how);
2264 fput_light(sock->file, fput_needed);
2265 }
2266 return err;
2267 }
2268
2269 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2270 {
2271 return __sys_shutdown(fd, how);
2272 }
2273
2274 /* A couple of helpful macros for getting the address of the 32/64 bit
2275 * fields which are the same type (int / unsigned) on our platforms.
2276 */
2277 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2278 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2279 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2280
2281 struct used_address {
2282 struct sockaddr_storage name;
2283 unsigned int name_len;
2284 };
2285
2286 int __copy_msghdr_from_user(struct msghdr *kmsg,
2287 struct user_msghdr __user *umsg,
2288 struct sockaddr __user **save_addr,
2289 struct iovec __user **uiov, size_t *nsegs)
2290 {
2291 struct user_msghdr msg;
2292 ssize_t err;
2293
2294 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2295 return -EFAULT;
2296
2297 kmsg->msg_control_is_user = true;
2298 kmsg->msg_control_user = msg.msg_control;
2299 kmsg->msg_controllen = msg.msg_controllen;
2300 kmsg->msg_flags = msg.msg_flags;
2301
2302 kmsg->msg_namelen = msg.msg_namelen;
2303 if (!msg.msg_name)
2304 kmsg->msg_namelen = 0;
2305
2306 if (kmsg->msg_namelen < 0)
2307 return -EINVAL;
2308
2309 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2310 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2311
2312 if (save_addr)
2313 *save_addr = msg.msg_name;
2314
2315 if (msg.msg_name && kmsg->msg_namelen) {
2316 if (!save_addr) {
2317 err = move_addr_to_kernel(msg.msg_name,
2318 kmsg->msg_namelen,
2319 kmsg->msg_name);
2320 if (err < 0)
2321 return err;
2322 }
2323 } else {
2324 kmsg->msg_name = NULL;
2325 kmsg->msg_namelen = 0;
2326 }
2327
2328 if (msg.msg_iovlen > UIO_MAXIOV)
2329 return -EMSGSIZE;
2330
2331 kmsg->msg_iocb = NULL;
2332 *uiov = msg.msg_iov;
2333 *nsegs = msg.msg_iovlen;
2334 return 0;
2335 }
2336
2337 static int copy_msghdr_from_user(struct msghdr *kmsg,
2338 struct user_msghdr __user *umsg,
2339 struct sockaddr __user **save_addr,
2340 struct iovec **iov)
2341 {
2342 struct user_msghdr msg;
2343 ssize_t err;
2344
2345 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2346 &msg.msg_iovlen);
2347 if (err)
2348 return err;
2349
2350 err = import_iovec(save_addr ? READ : WRITE,
2351 msg.msg_iov, msg.msg_iovlen,
2352 UIO_FASTIOV, iov, &kmsg->msg_iter);
2353 return err < 0 ? err : 0;
2354 }
2355
2356 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2357 unsigned int flags, struct used_address *used_address,
2358 unsigned int allowed_msghdr_flags)
2359 {
2360 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2361 __aligned(sizeof(__kernel_size_t));
2362 /* 20 is size of ipv6_pktinfo */
2363 unsigned char *ctl_buf = ctl;
2364 int ctl_len;
2365 ssize_t err;
2366
2367 err = -ENOBUFS;
2368
2369 if (msg_sys->msg_controllen > INT_MAX)
2370 goto out;
2371 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2372 ctl_len = msg_sys->msg_controllen;
2373 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2374 err =
2375 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2376 sizeof(ctl));
2377 if (err)
2378 goto out;
2379 ctl_buf = msg_sys->msg_control;
2380 ctl_len = msg_sys->msg_controllen;
2381 } else if (ctl_len) {
2382 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2383 CMSG_ALIGN(sizeof(struct cmsghdr)));
2384 if (ctl_len > sizeof(ctl)) {
2385 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2386 if (ctl_buf == NULL)
2387 goto out;
2388 }
2389 err = -EFAULT;
2390 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2391 goto out_freectl;
2392 msg_sys->msg_control = ctl_buf;
2393 msg_sys->msg_control_is_user = false;
2394 }
2395 msg_sys->msg_flags = flags;
2396
2397 if (sock->file->f_flags & O_NONBLOCK)
2398 msg_sys->msg_flags |= MSG_DONTWAIT;
2399 /*
2400 * If this is sendmmsg() and current destination address is same as
2401 * previously succeeded address, omit asking LSM's decision.
2402 * used_address->name_len is initialized to UINT_MAX so that the first
2403 * destination address never matches.
2404 */
2405 if (used_address && msg_sys->msg_name &&
2406 used_address->name_len == msg_sys->msg_namelen &&
2407 !memcmp(&used_address->name, msg_sys->msg_name,
2408 used_address->name_len)) {
2409 err = sock_sendmsg_nosec(sock, msg_sys);
2410 goto out_freectl;
2411 }
2412 err = sock_sendmsg(sock, msg_sys);
2413 /*
2414 * If this is sendmmsg() and sending to current destination address was
2415 * successful, remember it.
2416 */
2417 if (used_address && err >= 0) {
2418 used_address->name_len = msg_sys->msg_namelen;
2419 if (msg_sys->msg_name)
2420 memcpy(&used_address->name, msg_sys->msg_name,
2421 used_address->name_len);
2422 }
2423
2424 out_freectl:
2425 if (ctl_buf != ctl)
2426 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2427 out:
2428 return err;
2429 }
2430
2431 int sendmsg_copy_msghdr(struct msghdr *msg,
2432 struct user_msghdr __user *umsg, unsigned flags,
2433 struct iovec **iov)
2434 {
2435 int err;
2436
2437 if (flags & MSG_CMSG_COMPAT) {
2438 struct compat_msghdr __user *msg_compat;
2439
2440 msg_compat = (struct compat_msghdr __user *) umsg;
2441 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2442 } else {
2443 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2444 }
2445 if (err < 0)
2446 return err;
2447
2448 return 0;
2449 }
2450
2451 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2452 struct msghdr *msg_sys, unsigned int flags,
2453 struct used_address *used_address,
2454 unsigned int allowed_msghdr_flags)
2455 {
2456 struct sockaddr_storage address;
2457 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2458 ssize_t err;
2459
2460 msg_sys->msg_name = &address;
2461
2462 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2463 if (err < 0)
2464 return err;
2465
2466 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2467 allowed_msghdr_flags);
2468 kfree(iov);
2469 return err;
2470 }
2471
2472 /*
2473 * BSD sendmsg interface
2474 */
2475 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2476 unsigned int flags)
2477 {
2478 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2479 }
2480
2481 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2482 bool forbid_cmsg_compat)
2483 {
2484 int fput_needed, err;
2485 struct msghdr msg_sys;
2486 struct socket *sock;
2487
2488 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2489 return -EINVAL;
2490
2491 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2492 if (!sock)
2493 goto out;
2494
2495 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2496
2497 fput_light(sock->file, fput_needed);
2498 out:
2499 return err;
2500 }
2501
2502 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2503 {
2504 return __sys_sendmsg(fd, msg, flags, true);
2505 }
2506
2507 /*
2508 * Linux sendmmsg interface
2509 */
2510
2511 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2512 unsigned int flags, bool forbid_cmsg_compat)
2513 {
2514 int fput_needed, err, datagrams;
2515 struct socket *sock;
2516 struct mmsghdr __user *entry;
2517 struct compat_mmsghdr __user *compat_entry;
2518 struct msghdr msg_sys;
2519 struct used_address used_address;
2520 unsigned int oflags = flags;
2521
2522 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2523 return -EINVAL;
2524
2525 if (vlen > UIO_MAXIOV)
2526 vlen = UIO_MAXIOV;
2527
2528 datagrams = 0;
2529
2530 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2531 if (!sock)
2532 return err;
2533
2534 used_address.name_len = UINT_MAX;
2535 entry = mmsg;
2536 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2537 err = 0;
2538 flags |= MSG_BATCH;
2539
2540 while (datagrams < vlen) {
2541 if (datagrams == vlen - 1)
2542 flags = oflags;
2543
2544 if (MSG_CMSG_COMPAT & flags) {
2545 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2546 &msg_sys, flags, &used_address, MSG_EOR);
2547 if (err < 0)
2548 break;
2549 err = __put_user(err, &compat_entry->msg_len);
2550 ++compat_entry;
2551 } else {
2552 err = ___sys_sendmsg(sock,
2553 (struct user_msghdr __user *)entry,
2554 &msg_sys, flags, &used_address, MSG_EOR);
2555 if (err < 0)
2556 break;
2557 err = put_user(err, &entry->msg_len);
2558 ++entry;
2559 }
2560
2561 if (err)
2562 break;
2563 ++datagrams;
2564 if (msg_data_left(&msg_sys))
2565 break;
2566 cond_resched();
2567 }
2568
2569 fput_light(sock->file, fput_needed);
2570
2571 /* We only return an error if no datagrams were able to be sent */
2572 if (datagrams != 0)
2573 return datagrams;
2574
2575 return err;
2576 }
2577
2578 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2579 unsigned int, vlen, unsigned int, flags)
2580 {
2581 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2582 }
2583
2584 int recvmsg_copy_msghdr(struct msghdr *msg,
2585 struct user_msghdr __user *umsg, unsigned flags,
2586 struct sockaddr __user **uaddr,
2587 struct iovec **iov)
2588 {
2589 ssize_t err;
2590
2591 if (MSG_CMSG_COMPAT & flags) {
2592 struct compat_msghdr __user *msg_compat;
2593
2594 msg_compat = (struct compat_msghdr __user *) umsg;
2595 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2596 } else {
2597 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2598 }
2599 if (err < 0)
2600 return err;
2601
2602 return 0;
2603 }
2604
2605 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2606 struct user_msghdr __user *msg,
2607 struct sockaddr __user *uaddr,
2608 unsigned int flags, int nosec)
2609 {
2610 struct compat_msghdr __user *msg_compat =
2611 (struct compat_msghdr __user *) msg;
2612 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2613 struct sockaddr_storage addr;
2614 unsigned long cmsg_ptr;
2615 int len;
2616 ssize_t err;
2617
2618 msg_sys->msg_name = &addr;
2619 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2620 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2621
2622 /* We assume all kernel code knows the size of sockaddr_storage */
2623 msg_sys->msg_namelen = 0;
2624
2625 if (sock->file->f_flags & O_NONBLOCK)
2626 flags |= MSG_DONTWAIT;
2627
2628 if (unlikely(nosec))
2629 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2630 else
2631 err = sock_recvmsg(sock, msg_sys, flags);
2632
2633 if (err < 0)
2634 goto out;
2635 len = err;
2636
2637 if (uaddr != NULL) {
2638 err = move_addr_to_user(&addr,
2639 msg_sys->msg_namelen, uaddr,
2640 uaddr_len);
2641 if (err < 0)
2642 goto out;
2643 }
2644 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2645 COMPAT_FLAGS(msg));
2646 if (err)
2647 goto out;
2648 if (MSG_CMSG_COMPAT & flags)
2649 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2650 &msg_compat->msg_controllen);
2651 else
2652 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2653 &msg->msg_controllen);
2654 if (err)
2655 goto out;
2656 err = len;
2657 out:
2658 return err;
2659 }
2660
2661 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2662 struct msghdr *msg_sys, unsigned int flags, int nosec)
2663 {
2664 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2665 /* user mode address pointers */
2666 struct sockaddr __user *uaddr;
2667 ssize_t err;
2668
2669 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2670 if (err < 0)
2671 return err;
2672
2673 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2674 kfree(iov);
2675 return err;
2676 }
2677
2678 /*
2679 * BSD recvmsg interface
2680 */
2681
2682 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2683 struct user_msghdr __user *umsg,
2684 struct sockaddr __user *uaddr, unsigned int flags)
2685 {
2686 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2687 }
2688
2689 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2690 bool forbid_cmsg_compat)
2691 {
2692 int fput_needed, err;
2693 struct msghdr msg_sys;
2694 struct socket *sock;
2695
2696 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2697 return -EINVAL;
2698
2699 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2700 if (!sock)
2701 goto out;
2702
2703 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2704
2705 fput_light(sock->file, fput_needed);
2706 out:
2707 return err;
2708 }
2709
2710 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2711 unsigned int, flags)
2712 {
2713 return __sys_recvmsg(fd, msg, flags, true);
2714 }
2715
2716 /*
2717 * Linux recvmmsg interface
2718 */
2719
2720 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2721 unsigned int vlen, unsigned int flags,
2722 struct timespec64 *timeout)
2723 {
2724 int fput_needed, err, datagrams;
2725 struct socket *sock;
2726 struct mmsghdr __user *entry;
2727 struct compat_mmsghdr __user *compat_entry;
2728 struct msghdr msg_sys;
2729 struct timespec64 end_time;
2730 struct timespec64 timeout64;
2731
2732 if (timeout &&
2733 poll_select_set_timeout(&end_time, timeout->tv_sec,
2734 timeout->tv_nsec))
2735 return -EINVAL;
2736
2737 datagrams = 0;
2738
2739 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2740 if (!sock)
2741 return err;
2742
2743 if (likely(!(flags & MSG_ERRQUEUE))) {
2744 err = sock_error(sock->sk);
2745 if (err) {
2746 datagrams = err;
2747 goto out_put;
2748 }
2749 }
2750
2751 entry = mmsg;
2752 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2753
2754 while (datagrams < vlen) {
2755 /*
2756 * No need to ask LSM for more than the first datagram.
2757 */
2758 if (MSG_CMSG_COMPAT & flags) {
2759 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2760 &msg_sys, flags & ~MSG_WAITFORONE,
2761 datagrams);
2762 if (err < 0)
2763 break;
2764 err = __put_user(err, &compat_entry->msg_len);
2765 ++compat_entry;
2766 } else {
2767 err = ___sys_recvmsg(sock,
2768 (struct user_msghdr __user *)entry,
2769 &msg_sys, flags & ~MSG_WAITFORONE,
2770 datagrams);
2771 if (err < 0)
2772 break;
2773 err = put_user(err, &entry->msg_len);
2774 ++entry;
2775 }
2776
2777 if (err)
2778 break;
2779 ++datagrams;
2780
2781 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2782 if (flags & MSG_WAITFORONE)
2783 flags |= MSG_DONTWAIT;
2784
2785 if (timeout) {
2786 ktime_get_ts64(&timeout64);
2787 *timeout = timespec64_sub(end_time, timeout64);
2788 if (timeout->tv_sec < 0) {
2789 timeout->tv_sec = timeout->tv_nsec = 0;
2790 break;
2791 }
2792
2793 /* Timeout, return less than vlen datagrams */
2794 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2795 break;
2796 }
2797
2798 /* Out of band data, return right away */
2799 if (msg_sys.msg_flags & MSG_OOB)
2800 break;
2801 cond_resched();
2802 }
2803
2804 if (err == 0)
2805 goto out_put;
2806
2807 if (datagrams == 0) {
2808 datagrams = err;
2809 goto out_put;
2810 }
2811
2812 /*
2813 * We may return less entries than requested (vlen) if the
2814 * sock is non block and there aren't enough datagrams...
2815 */
2816 if (err != -EAGAIN) {
2817 /*
2818 * ... or if recvmsg returns an error after we
2819 * received some datagrams, where we record the
2820 * error to return on the next call or if the
2821 * app asks about it using getsockopt(SO_ERROR).
2822 */
2823 sock->sk->sk_err = -err;
2824 }
2825 out_put:
2826 fput_light(sock->file, fput_needed);
2827
2828 return datagrams;
2829 }
2830
2831 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2832 unsigned int vlen, unsigned int flags,
2833 struct __kernel_timespec __user *timeout,
2834 struct old_timespec32 __user *timeout32)
2835 {
2836 int datagrams;
2837 struct timespec64 timeout_sys;
2838
2839 if (timeout && get_timespec64(&timeout_sys, timeout))
2840 return -EFAULT;
2841
2842 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2843 return -EFAULT;
2844
2845 if (!timeout && !timeout32)
2846 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2847
2848 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2849
2850 if (datagrams <= 0)
2851 return datagrams;
2852
2853 if (timeout && put_timespec64(&timeout_sys, timeout))
2854 datagrams = -EFAULT;
2855
2856 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2857 datagrams = -EFAULT;
2858
2859 return datagrams;
2860 }
2861
2862 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2863 unsigned int, vlen, unsigned int, flags,
2864 struct __kernel_timespec __user *, timeout)
2865 {
2866 if (flags & MSG_CMSG_COMPAT)
2867 return -EINVAL;
2868
2869 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2870 }
2871
2872 #ifdef CONFIG_COMPAT_32BIT_TIME
2873 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2874 unsigned int, vlen, unsigned int, flags,
2875 struct old_timespec32 __user *, timeout)
2876 {
2877 if (flags & MSG_CMSG_COMPAT)
2878 return -EINVAL;
2879
2880 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2881 }
2882 #endif
2883
2884 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2885 /* Argument list sizes for sys_socketcall */
2886 #define AL(x) ((x) * sizeof(unsigned long))
2887 static const unsigned char nargs[21] = {
2888 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2889 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2890 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2891 AL(4), AL(5), AL(4)
2892 };
2893
2894 #undef AL
2895
2896 /*
2897 * System call vectors.
2898 *
2899 * Argument checking cleaned up. Saved 20% in size.
2900 * This function doesn't need to set the kernel lock because
2901 * it is set by the callees.
2902 */
2903
2904 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2905 {
2906 unsigned long a[AUDITSC_ARGS];
2907 unsigned long a0, a1;
2908 int err;
2909 unsigned int len;
2910
2911 if (call < 1 || call > SYS_SENDMMSG)
2912 return -EINVAL;
2913 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2914
2915 len = nargs[call];
2916 if (len > sizeof(a))
2917 return -EINVAL;
2918
2919 /* copy_from_user should be SMP safe. */
2920 if (copy_from_user(a, args, len))
2921 return -EFAULT;
2922
2923 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2924 if (err)
2925 return err;
2926
2927 a0 = a[0];
2928 a1 = a[1];
2929
2930 switch (call) {
2931 case SYS_SOCKET:
2932 err = __sys_socket(a0, a1, a[2]);
2933 break;
2934 case SYS_BIND:
2935 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2936 break;
2937 case SYS_CONNECT:
2938 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2939 break;
2940 case SYS_LISTEN:
2941 err = __sys_listen(a0, a1);
2942 break;
2943 case SYS_ACCEPT:
2944 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2945 (int __user *)a[2], 0);
2946 break;
2947 case SYS_GETSOCKNAME:
2948 err =
2949 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2950 (int __user *)a[2]);
2951 break;
2952 case SYS_GETPEERNAME:
2953 err =
2954 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2955 (int __user *)a[2]);
2956 break;
2957 case SYS_SOCKETPAIR:
2958 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2959 break;
2960 case SYS_SEND:
2961 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2962 NULL, 0);
2963 break;
2964 case SYS_SENDTO:
2965 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2966 (struct sockaddr __user *)a[4], a[5]);
2967 break;
2968 case SYS_RECV:
2969 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2970 NULL, NULL);
2971 break;
2972 case SYS_RECVFROM:
2973 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2974 (struct sockaddr __user *)a[4],
2975 (int __user *)a[5]);
2976 break;
2977 case SYS_SHUTDOWN:
2978 err = __sys_shutdown(a0, a1);
2979 break;
2980 case SYS_SETSOCKOPT:
2981 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2982 a[4]);
2983 break;
2984 case SYS_GETSOCKOPT:
2985 err =
2986 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2987 (int __user *)a[4]);
2988 break;
2989 case SYS_SENDMSG:
2990 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2991 a[2], true);
2992 break;
2993 case SYS_SENDMMSG:
2994 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2995 a[3], true);
2996 break;
2997 case SYS_RECVMSG:
2998 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2999 a[2], true);
3000 break;
3001 case SYS_RECVMMSG:
3002 if (IS_ENABLED(CONFIG_64BIT))
3003 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3004 a[2], a[3],
3005 (struct __kernel_timespec __user *)a[4],
3006 NULL);
3007 else
3008 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3009 a[2], a[3], NULL,
3010 (struct old_timespec32 __user *)a[4]);
3011 break;
3012 case SYS_ACCEPT4:
3013 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3014 (int __user *)a[2], a[3]);
3015 break;
3016 default:
3017 err = -EINVAL;
3018 break;
3019 }
3020 return err;
3021 }
3022
3023 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3024
3025 /**
3026 * sock_register - add a socket protocol handler
3027 * @ops: description of protocol
3028 *
3029 * This function is called by a protocol handler that wants to
3030 * advertise its address family, and have it linked into the
3031 * socket interface. The value ops->family corresponds to the
3032 * socket system call protocol family.
3033 */
3034 int sock_register(const struct net_proto_family *ops)
3035 {
3036 int err;
3037
3038 if (ops->family >= NPROTO) {
3039 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3040 return -ENOBUFS;
3041 }
3042
3043 spin_lock(&net_family_lock);
3044 if (rcu_dereference_protected(net_families[ops->family],
3045 lockdep_is_held(&net_family_lock)))
3046 err = -EEXIST;
3047 else {
3048 rcu_assign_pointer(net_families[ops->family], ops);
3049 err = 0;
3050 }
3051 spin_unlock(&net_family_lock);
3052
3053 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3054 return err;
3055 }
3056 EXPORT_SYMBOL(sock_register);
3057
3058 /**
3059 * sock_unregister - remove a protocol handler
3060 * @family: protocol family to remove
3061 *
3062 * This function is called by a protocol handler that wants to
3063 * remove its address family, and have it unlinked from the
3064 * new socket creation.
3065 *
3066 * If protocol handler is a module, then it can use module reference
3067 * counts to protect against new references. If protocol handler is not
3068 * a module then it needs to provide its own protection in
3069 * the ops->create routine.
3070 */
3071 void sock_unregister(int family)
3072 {
3073 BUG_ON(family < 0 || family >= NPROTO);
3074
3075 spin_lock(&net_family_lock);
3076 RCU_INIT_POINTER(net_families[family], NULL);
3077 spin_unlock(&net_family_lock);
3078
3079 synchronize_rcu();
3080
3081 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3082 }
3083 EXPORT_SYMBOL(sock_unregister);
3084
3085 bool sock_is_registered(int family)
3086 {
3087 return family < NPROTO && rcu_access_pointer(net_families[family]);
3088 }
3089
3090 static int __init sock_init(void)
3091 {
3092 int err;
3093 /*
3094 * Initialize the network sysctl infrastructure.
3095 */
3096 err = net_sysctl_init();
3097 if (err)
3098 goto out;
3099
3100 /*
3101 * Initialize skbuff SLAB cache
3102 */
3103 skb_init();
3104
3105 /*
3106 * Initialize the protocols module.
3107 */
3108
3109 init_inodecache();
3110
3111 err = register_filesystem(&sock_fs_type);
3112 if (err)
3113 goto out;
3114 sock_mnt = kern_mount(&sock_fs_type);
3115 if (IS_ERR(sock_mnt)) {
3116 err = PTR_ERR(sock_mnt);
3117 goto out_mount;
3118 }
3119
3120 /* The real protocol initialization is performed in later initcalls.
3121 */
3122
3123 #ifdef CONFIG_NETFILTER
3124 err = netfilter_init();
3125 if (err)
3126 goto out;
3127 #endif
3128
3129 ptp_classifier_init();
3130
3131 out:
3132 return err;
3133
3134 out_mount:
3135 unregister_filesystem(&sock_fs_type);
3136 goto out;
3137 }
3138
3139 core_initcall(sock_init); /* early initcall */
3140
3141 #ifdef CONFIG_PROC_FS
3142 void socket_seq_show(struct seq_file *seq)
3143 {
3144 seq_printf(seq, "sockets: used %d\n",
3145 sock_inuse_get(seq->private));
3146 }
3147 #endif /* CONFIG_PROC_FS */
3148
3149 /* Handle the fact that while struct ifreq has the same *layout* on
3150 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3151 * which are handled elsewhere, it still has different *size* due to
3152 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3153 * resulting in struct ifreq being 32 and 40 bytes respectively).
3154 * As a result, if the struct happens to be at the end of a page and
3155 * the next page isn't readable/writable, we get a fault. To prevent
3156 * that, copy back and forth to the full size.
3157 */
3158 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3159 {
3160 if (in_compat_syscall()) {
3161 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3162
3163 memset(ifr, 0, sizeof(*ifr));
3164 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3165 return -EFAULT;
3166
3167 if (ifrdata)
3168 *ifrdata = compat_ptr(ifr32->ifr_data);
3169
3170 return 0;
3171 }
3172
3173 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3174 return -EFAULT;
3175
3176 if (ifrdata)
3177 *ifrdata = ifr->ifr_data;
3178
3179 return 0;
3180 }
3181 EXPORT_SYMBOL(get_user_ifreq);
3182
3183 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3184 {
3185 size_t size = sizeof(*ifr);
3186
3187 if (in_compat_syscall())
3188 size = sizeof(struct compat_ifreq);
3189
3190 if (copy_to_user(arg, ifr, size))
3191 return -EFAULT;
3192
3193 return 0;
3194 }
3195 EXPORT_SYMBOL(put_user_ifreq);
3196
3197 #ifdef CONFIG_COMPAT
3198 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3199 {
3200 compat_uptr_t uptr32;
3201 struct ifreq ifr;
3202 void __user *saved;
3203 int err;
3204
3205 if (get_user_ifreq(&ifr, NULL, uifr32))
3206 return -EFAULT;
3207
3208 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3209 return -EFAULT;
3210
3211 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3212 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3213
3214 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3215 if (!err) {
3216 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3217 if (put_user_ifreq(&ifr, uifr32))
3218 err = -EFAULT;
3219 }
3220 return err;
3221 }
3222
3223 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3224 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3225 struct compat_ifreq __user *u_ifreq32)
3226 {
3227 struct ifreq ifreq;
3228 void __user *data;
3229
3230 if (!is_socket_ioctl_cmd(cmd))
3231 return -ENOTTY;
3232 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3233 return -EFAULT;
3234 ifreq.ifr_data = data;
3235
3236 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3237 }
3238
3239 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3240 * for some operations; this forces use of the newer bridge-utils that
3241 * use compatible ioctls
3242 */
3243 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3244 {
3245 compat_ulong_t tmp;
3246
3247 if (get_user(tmp, argp))
3248 return -EFAULT;
3249 if (tmp == BRCTL_GET_VERSION)
3250 return BRCTL_VERSION + 1;
3251 return -EINVAL;
3252 }
3253
3254 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3255 unsigned int cmd, unsigned long arg)
3256 {
3257 void __user *argp = compat_ptr(arg);
3258 struct sock *sk = sock->sk;
3259 struct net *net = sock_net(sk);
3260
3261 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3262 return sock_ioctl(file, cmd, (unsigned long)argp);
3263
3264 switch (cmd) {
3265 case SIOCSIFBR:
3266 case SIOCGIFBR:
3267 return old_bridge_ioctl(argp);
3268 case SIOCWANDEV:
3269 return compat_siocwandev(net, argp);
3270 case SIOCGSTAMP_OLD:
3271 case SIOCGSTAMPNS_OLD:
3272 if (!sock->ops->gettstamp)
3273 return -ENOIOCTLCMD;
3274 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3275 !COMPAT_USE_64BIT_TIME);
3276
3277 case SIOCETHTOOL:
3278 case SIOCBONDSLAVEINFOQUERY:
3279 case SIOCBONDINFOQUERY:
3280 case SIOCSHWTSTAMP:
3281 case SIOCGHWTSTAMP:
3282 return compat_ifr_data_ioctl(net, cmd, argp);
3283
3284 case FIOSETOWN:
3285 case SIOCSPGRP:
3286 case FIOGETOWN:
3287 case SIOCGPGRP:
3288 case SIOCBRADDBR:
3289 case SIOCBRDELBR:
3290 case SIOCGIFVLAN:
3291 case SIOCSIFVLAN:
3292 case SIOCGSKNS:
3293 case SIOCGSTAMP_NEW:
3294 case SIOCGSTAMPNS_NEW:
3295 case SIOCGIFCONF:
3296 return sock_ioctl(file, cmd, arg);
3297
3298 case SIOCGIFFLAGS:
3299 case SIOCSIFFLAGS:
3300 case SIOCGIFMAP:
3301 case SIOCSIFMAP:
3302 case SIOCGIFMETRIC:
3303 case SIOCSIFMETRIC:
3304 case SIOCGIFMTU:
3305 case SIOCSIFMTU:
3306 case SIOCGIFMEM:
3307 case SIOCSIFMEM:
3308 case SIOCGIFHWADDR:
3309 case SIOCSIFHWADDR:
3310 case SIOCADDMULTI:
3311 case SIOCDELMULTI:
3312 case SIOCGIFINDEX:
3313 case SIOCGIFADDR:
3314 case SIOCSIFADDR:
3315 case SIOCSIFHWBROADCAST:
3316 case SIOCDIFADDR:
3317 case SIOCGIFBRDADDR:
3318 case SIOCSIFBRDADDR:
3319 case SIOCGIFDSTADDR:
3320 case SIOCSIFDSTADDR:
3321 case SIOCGIFNETMASK:
3322 case SIOCSIFNETMASK:
3323 case SIOCSIFPFLAGS:
3324 case SIOCGIFPFLAGS:
3325 case SIOCGIFTXQLEN:
3326 case SIOCSIFTXQLEN:
3327 case SIOCBRADDIF:
3328 case SIOCBRDELIF:
3329 case SIOCGIFNAME:
3330 case SIOCSIFNAME:
3331 case SIOCGMIIPHY:
3332 case SIOCGMIIREG:
3333 case SIOCSMIIREG:
3334 case SIOCBONDENSLAVE:
3335 case SIOCBONDRELEASE:
3336 case SIOCBONDSETHWADDR:
3337 case SIOCBONDCHANGEACTIVE:
3338 case SIOCSARP:
3339 case SIOCGARP:
3340 case SIOCDARP:
3341 case SIOCOUTQ:
3342 case SIOCOUTQNSD:
3343 case SIOCATMARK:
3344 return sock_do_ioctl(net, sock, cmd, arg);
3345 }
3346
3347 return -ENOIOCTLCMD;
3348 }
3349
3350 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3351 unsigned long arg)
3352 {
3353 struct socket *sock = file->private_data;
3354 int ret = -ENOIOCTLCMD;
3355 struct sock *sk;
3356 struct net *net;
3357
3358 sk = sock->sk;
3359 net = sock_net(sk);
3360
3361 if (sock->ops->compat_ioctl)
3362 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3363
3364 if (ret == -ENOIOCTLCMD &&
3365 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3366 ret = compat_wext_handle_ioctl(net, cmd, arg);
3367
3368 if (ret == -ENOIOCTLCMD)
3369 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3370
3371 return ret;
3372 }
3373 #endif
3374
3375 /**
3376 * kernel_bind - bind an address to a socket (kernel space)
3377 * @sock: socket
3378 * @addr: address
3379 * @addrlen: length of address
3380 *
3381 * Returns 0 or an error.
3382 */
3383
3384 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3385 {
3386 return sock->ops->bind(sock, addr, addrlen);
3387 }
3388 EXPORT_SYMBOL(kernel_bind);
3389
3390 /**
3391 * kernel_listen - move socket to listening state (kernel space)
3392 * @sock: socket
3393 * @backlog: pending connections queue size
3394 *
3395 * Returns 0 or an error.
3396 */
3397
3398 int kernel_listen(struct socket *sock, int backlog)
3399 {
3400 return sock->ops->listen(sock, backlog);
3401 }
3402 EXPORT_SYMBOL(kernel_listen);
3403
3404 /**
3405 * kernel_accept - accept a connection (kernel space)
3406 * @sock: listening socket
3407 * @newsock: new connected socket
3408 * @flags: flags
3409 *
3410 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3411 * If it fails, @newsock is guaranteed to be %NULL.
3412 * Returns 0 or an error.
3413 */
3414
3415 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3416 {
3417 struct sock *sk = sock->sk;
3418 int err;
3419
3420 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3421 newsock);
3422 if (err < 0)
3423 goto done;
3424
3425 err = sock->ops->accept(sock, *newsock, flags, true);
3426 if (err < 0) {
3427 sock_release(*newsock);
3428 *newsock = NULL;
3429 goto done;
3430 }
3431
3432 (*newsock)->ops = sock->ops;
3433 __module_get((*newsock)->ops->owner);
3434
3435 done:
3436 return err;
3437 }
3438 EXPORT_SYMBOL(kernel_accept);
3439
3440 /**
3441 * kernel_connect - connect a socket (kernel space)
3442 * @sock: socket
3443 * @addr: address
3444 * @addrlen: address length
3445 * @flags: flags (O_NONBLOCK, ...)
3446 *
3447 * For datagram sockets, @addr is the address to which datagrams are sent
3448 * by default, and the only address from which datagrams are received.
3449 * For stream sockets, attempts to connect to @addr.
3450 * Returns 0 or an error code.
3451 */
3452
3453 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3454 int flags)
3455 {
3456 return sock->ops->connect(sock, addr, addrlen, flags);
3457 }
3458 EXPORT_SYMBOL(kernel_connect);
3459
3460 /**
3461 * kernel_getsockname - get the address which the socket is bound (kernel space)
3462 * @sock: socket
3463 * @addr: address holder
3464 *
3465 * Fills the @addr pointer with the address which the socket is bound.
3466 * Returns 0 or an error code.
3467 */
3468
3469 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3470 {
3471 return sock->ops->getname(sock, addr, 0);
3472 }
3473 EXPORT_SYMBOL(kernel_getsockname);
3474
3475 /**
3476 * kernel_getpeername - get the address which the socket is connected (kernel space)
3477 * @sock: socket
3478 * @addr: address holder
3479 *
3480 * Fills the @addr pointer with the address which the socket is connected.
3481 * Returns 0 or an error code.
3482 */
3483
3484 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3485 {
3486 return sock->ops->getname(sock, addr, 1);
3487 }
3488 EXPORT_SYMBOL(kernel_getpeername);
3489
3490 /**
3491 * kernel_sendpage - send a &page through a socket (kernel space)
3492 * @sock: socket
3493 * @page: page
3494 * @offset: page offset
3495 * @size: total size in bytes
3496 * @flags: flags (MSG_DONTWAIT, ...)
3497 *
3498 * Returns the total amount sent in bytes or an error.
3499 */
3500
3501 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3502 size_t size, int flags)
3503 {
3504 if (sock->ops->sendpage) {
3505 /* Warn in case the improper page to zero-copy send */
3506 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3507 return sock->ops->sendpage(sock, page, offset, size, flags);
3508 }
3509 return sock_no_sendpage(sock, page, offset, size, flags);
3510 }
3511 EXPORT_SYMBOL(kernel_sendpage);
3512
3513 /**
3514 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3515 * @sk: sock
3516 * @page: page
3517 * @offset: page offset
3518 * @size: total size in bytes
3519 * @flags: flags (MSG_DONTWAIT, ...)
3520 *
3521 * Returns the total amount sent in bytes or an error.
3522 * Caller must hold @sk.
3523 */
3524
3525 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3526 size_t size, int flags)
3527 {
3528 struct socket *sock = sk->sk_socket;
3529
3530 if (sock->ops->sendpage_locked)
3531 return sock->ops->sendpage_locked(sk, page, offset, size,
3532 flags);
3533
3534 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3535 }
3536 EXPORT_SYMBOL(kernel_sendpage_locked);
3537
3538 /**
3539 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3540 * @sock: socket
3541 * @how: connection part
3542 *
3543 * Returns 0 or an error.
3544 */
3545
3546 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3547 {
3548 return sock->ops->shutdown(sock, how);
3549 }
3550 EXPORT_SYMBOL(kernel_sock_shutdown);
3551
3552 /**
3553 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3554 * @sk: socket
3555 *
3556 * This routine returns the IP overhead imposed by a socket i.e.
3557 * the length of the underlying IP header, depending on whether
3558 * this is an IPv4 or IPv6 socket and the length from IP options turned
3559 * on at the socket. Assumes that the caller has a lock on the socket.
3560 */
3561
3562 u32 kernel_sock_ip_overhead(struct sock *sk)
3563 {
3564 struct inet_sock *inet;
3565 struct ip_options_rcu *opt;
3566 u32 overhead = 0;
3567 #if IS_ENABLED(CONFIG_IPV6)
3568 struct ipv6_pinfo *np;
3569 struct ipv6_txoptions *optv6 = NULL;
3570 #endif /* IS_ENABLED(CONFIG_IPV6) */
3571
3572 if (!sk)
3573 return overhead;
3574
3575 switch (sk->sk_family) {
3576 case AF_INET:
3577 inet = inet_sk(sk);
3578 overhead += sizeof(struct iphdr);
3579 opt = rcu_dereference_protected(inet->inet_opt,
3580 sock_owned_by_user(sk));
3581 if (opt)
3582 overhead += opt->opt.optlen;
3583 return overhead;
3584 #if IS_ENABLED(CONFIG_IPV6)
3585 case AF_INET6:
3586 np = inet6_sk(sk);
3587 overhead += sizeof(struct ipv6hdr);
3588 if (np)
3589 optv6 = rcu_dereference_protected(np->opt,
3590 sock_owned_by_user(sk));
3591 if (optv6)
3592 overhead += (optv6->opt_flen + optv6->opt_nflen);
3593 return overhead;
3594 #endif /* IS_ENABLED(CONFIG_IPV6) */
3595 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3596 return overhead;
3597 }
3598 }
3599 EXPORT_SYMBOL(kernel_sock_ip_overhead);