]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/socket.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
412
413 d_instantiate(path.dentry, SOCK_INODE(sock));
414
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
422 }
423
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
436 return fd;
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 kmemcheck_annotate_bitfield(sock, type);
572 inode->i_ino = get_next_ino();
573 inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_op = &sockfs_inode_ops;
577
578 this_cpu_add(sockets_in_use, 1);
579 return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582
583 /**
584 * sock_release - close a socket
585 * @sock: socket to close
586 *
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
590 */
591
592 void sock_release(struct socket *sock)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 sock->ops->release(sock);
598 sock->ops = NULL;
599 module_put(owner);
600 }
601
602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 pr_err("%s: fasync list not empty!\n", __func__);
604
605 this_cpu_sub(sockets_in_use, 1);
606 if (!sock->file) {
607 iput(SOCK_INODE(sock));
608 return;
609 }
610 sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
635 return ret;
636 }
637
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 int err = security_socket_sendmsg(sock, msg,
641 msg_data_left(msg));
642
643 return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
649 {
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654
655 static bool skb_is_err_queue(const struct sk_buff *skb)
656 {
657 /* pkt_type of skbs enqueued on the error queue are set to
658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 * in recvmsg, since skbs received on a local socket will never
660 * have a pkt_type of PACKET_OUTGOING.
661 */
662 return skb->pkt_type == PACKET_OUTGOING;
663 }
664
665 /* On transmit, software and hardware timestamps are returned independently.
666 * As the two skb clones share the hardware timestamp, which may be updated
667 * before the software timestamp is received, a hardware TX timestamp may be
668 * returned only if there is no software TX timestamp. Ignore false software
669 * timestamps, which may be made in the __sock_recv_timestamp() call when the
670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
671 * hardware timestamp.
672 */
673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
674 {
675 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
676 }
677
678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
679 {
680 struct scm_ts_pktinfo ts_pktinfo;
681 struct net_device *orig_dev;
682
683 if (!skb_mac_header_was_set(skb))
684 return;
685
686 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
687
688 rcu_read_lock();
689 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
690 if (orig_dev)
691 ts_pktinfo.if_index = orig_dev->ifindex;
692 rcu_read_unlock();
693
694 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
695 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
696 sizeof(ts_pktinfo), &ts_pktinfo);
697 }
698
699 /*
700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701 */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 struct sk_buff *skb)
704 {
705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 struct scm_timestamping tss;
707 int empty = 1, false_tstamp = 0;
708 struct skb_shared_hwtstamps *shhwtstamps =
709 skb_hwtstamps(skb);
710
711 /* Race occurred between timestamp enabling and packet
712 receiving. Fill in the current time for now. */
713 if (need_software_tstamp && skb->tstamp == 0) {
714 __net_timestamp(skb);
715 false_tstamp = 1;
716 }
717
718 if (need_software_tstamp) {
719 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
720 struct timeval tv;
721 skb_get_timestamp(skb, &tv);
722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
723 sizeof(tv), &tv);
724 } else {
725 struct timespec ts;
726 skb_get_timestampns(skb, &ts);
727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
728 sizeof(ts), &ts);
729 }
730 }
731
732 memset(&tss, 0, sizeof(tss));
733 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
734 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
735 empty = 0;
736 if (shhwtstamps &&
737 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
738 !skb_is_swtx_tstamp(skb, false_tstamp) &&
739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
740 empty = 0;
741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
742 !skb_is_err_queue(skb))
743 put_ts_pktinfo(msg, skb);
744 }
745 if (!empty) {
746 put_cmsg(msg, SOL_SOCKET,
747 SCM_TIMESTAMPING, sizeof(tss), &tss);
748
749 if (skb_is_err_queue(skb) && skb->len &&
750 SKB_EXT_ERR(skb)->opt_stats)
751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
752 skb->len, skb->data);
753 }
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
756
757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
758 struct sk_buff *skb)
759 {
760 int ack;
761
762 if (!sock_flag(sk, SOCK_WIFI_STATUS))
763 return;
764 if (!skb->wifi_acked_valid)
765 return;
766
767 ack = skb->wifi_acked;
768
769 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
772
773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
774 struct sk_buff *skb)
775 {
776 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
777 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
778 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
779 }
780
781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
782 struct sk_buff *skb)
783 {
784 sock_recv_timestamp(msg, sk, skb);
785 sock_recv_drops(msg, sk, skb);
786 }
787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
788
789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
790 int flags)
791 {
792 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
793 }
794
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
796 {
797 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
798
799 return err ?: sock_recvmsg_nosec(sock, msg, flags);
800 }
801 EXPORT_SYMBOL(sock_recvmsg);
802
803 /**
804 * kernel_recvmsg - Receive a message from a socket (kernel space)
805 * @sock: The socket to receive the message from
806 * @msg: Received message
807 * @vec: Input s/g array for message data
808 * @num: Size of input s/g array
809 * @size: Number of bytes to read
810 * @flags: Message flags (MSG_DONTWAIT, etc...)
811 *
812 * On return the msg structure contains the scatter/gather array passed in the
813 * vec argument. The array is modified so that it consists of the unfilled
814 * portion of the original array.
815 *
816 * The returned value is the total number of bytes received, or an error.
817 */
818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
819 struct kvec *vec, size_t num, size_t size, int flags)
820 {
821 mm_segment_t oldfs = get_fs();
822 int result;
823
824 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
825 set_fs(KERNEL_DS);
826 result = sock_recvmsg(sock, msg, flags);
827 set_fs(oldfs);
828 return result;
829 }
830 EXPORT_SYMBOL(kernel_recvmsg);
831
832 static ssize_t sock_sendpage(struct file *file, struct page *page,
833 int offset, size_t size, loff_t *ppos, int more)
834 {
835 struct socket *sock;
836 int flags;
837
838 sock = file->private_data;
839
840 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
842 flags |= more;
843
844 return kernel_sendpage(sock, page, offset, size, flags);
845 }
846
847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
848 struct pipe_inode_info *pipe, size_t len,
849 unsigned int flags)
850 {
851 struct socket *sock = file->private_data;
852
853 if (unlikely(!sock->ops->splice_read))
854 return -EINVAL;
855
856 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
857 }
858
859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
860 {
861 struct file *file = iocb->ki_filp;
862 struct socket *sock = file->private_data;
863 struct msghdr msg = {.msg_iter = *to,
864 .msg_iocb = iocb};
865 ssize_t res;
866
867 if (file->f_flags & O_NONBLOCK)
868 msg.msg_flags = MSG_DONTWAIT;
869
870 if (iocb->ki_pos != 0)
871 return -ESPIPE;
872
873 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
874 return 0;
875
876 res = sock_recvmsg(sock, &msg, msg.msg_flags);
877 *to = msg.msg_iter;
878 return res;
879 }
880
881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
882 {
883 struct file *file = iocb->ki_filp;
884 struct socket *sock = file->private_data;
885 struct msghdr msg = {.msg_iter = *from,
886 .msg_iocb = iocb};
887 ssize_t res;
888
889 if (iocb->ki_pos != 0)
890 return -ESPIPE;
891
892 if (file->f_flags & O_NONBLOCK)
893 msg.msg_flags = MSG_DONTWAIT;
894
895 if (sock->type == SOCK_SEQPACKET)
896 msg.msg_flags |= MSG_EOR;
897
898 res = sock_sendmsg(sock, &msg);
899 *from = msg.msg_iter;
900 return res;
901 }
902
903 /*
904 * Atomic setting of ioctl hooks to avoid race
905 * with module unload.
906 */
907
908 static DEFINE_MUTEX(br_ioctl_mutex);
909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
910
911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
912 {
913 mutex_lock(&br_ioctl_mutex);
914 br_ioctl_hook = hook;
915 mutex_unlock(&br_ioctl_mutex);
916 }
917 EXPORT_SYMBOL(brioctl_set);
918
919 static DEFINE_MUTEX(vlan_ioctl_mutex);
920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
921
922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
923 {
924 mutex_lock(&vlan_ioctl_mutex);
925 vlan_ioctl_hook = hook;
926 mutex_unlock(&vlan_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(vlan_ioctl_set);
929
930 static DEFINE_MUTEX(dlci_ioctl_mutex);
931 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
932
933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
934 {
935 mutex_lock(&dlci_ioctl_mutex);
936 dlci_ioctl_hook = hook;
937 mutex_unlock(&dlci_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(dlci_ioctl_set);
940
941 static long sock_do_ioctl(struct net *net, struct socket *sock,
942 unsigned int cmd, unsigned long arg)
943 {
944 int err;
945 void __user *argp = (void __user *)arg;
946
947 err = sock->ops->ioctl(sock, cmd, arg);
948
949 /*
950 * If this ioctl is unknown try to hand it down
951 * to the NIC driver.
952 */
953 if (err == -ENOIOCTLCMD)
954 err = dev_ioctl(net, cmd, argp);
955
956 return err;
957 }
958
959 /*
960 * With an ioctl, arg may well be a user mode pointer, but we don't know
961 * what to do with it - that's up to the protocol still.
962 */
963
964 static struct ns_common *get_net_ns(struct ns_common *ns)
965 {
966 return &get_net(container_of(ns, struct net, ns))->ns;
967 }
968
969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
970 {
971 struct socket *sock;
972 struct sock *sk;
973 void __user *argp = (void __user *)arg;
974 int pid, err;
975 struct net *net;
976
977 sock = file->private_data;
978 sk = sock->sk;
979 net = sock_net(sk);
980 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
981 err = dev_ioctl(net, cmd, argp);
982 } else
983 #ifdef CONFIG_WEXT_CORE
984 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
985 err = dev_ioctl(net, cmd, argp);
986 } else
987 #endif
988 switch (cmd) {
989 case FIOSETOWN:
990 case SIOCSPGRP:
991 err = -EFAULT;
992 if (get_user(pid, (int __user *)argp))
993 break;
994 err = f_setown(sock->file, pid, 1);
995 break;
996 case FIOGETOWN:
997 case SIOCGPGRP:
998 err = put_user(f_getown(sock->file),
999 (int __user *)argp);
1000 break;
1001 case SIOCGIFBR:
1002 case SIOCSIFBR:
1003 case SIOCBRADDBR:
1004 case SIOCBRDELBR:
1005 err = -ENOPKG;
1006 if (!br_ioctl_hook)
1007 request_module("bridge");
1008
1009 mutex_lock(&br_ioctl_mutex);
1010 if (br_ioctl_hook)
1011 err = br_ioctl_hook(net, cmd, argp);
1012 mutex_unlock(&br_ioctl_mutex);
1013 break;
1014 case SIOCGIFVLAN:
1015 case SIOCSIFVLAN:
1016 err = -ENOPKG;
1017 if (!vlan_ioctl_hook)
1018 request_module("8021q");
1019
1020 mutex_lock(&vlan_ioctl_mutex);
1021 if (vlan_ioctl_hook)
1022 err = vlan_ioctl_hook(net, argp);
1023 mutex_unlock(&vlan_ioctl_mutex);
1024 break;
1025 case SIOCADDDLCI:
1026 case SIOCDELDLCI:
1027 err = -ENOPKG;
1028 if (!dlci_ioctl_hook)
1029 request_module("dlci");
1030
1031 mutex_lock(&dlci_ioctl_mutex);
1032 if (dlci_ioctl_hook)
1033 err = dlci_ioctl_hook(cmd, argp);
1034 mutex_unlock(&dlci_ioctl_mutex);
1035 break;
1036 case SIOCGSKNS:
1037 err = -EPERM;
1038 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1039 break;
1040
1041 err = open_related_ns(&net->ns, get_net_ns);
1042 break;
1043 default:
1044 err = sock_do_ioctl(net, sock, cmd, arg);
1045 break;
1046 }
1047 return err;
1048 }
1049
1050 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1051 {
1052 int err;
1053 struct socket *sock = NULL;
1054
1055 err = security_socket_create(family, type, protocol, 1);
1056 if (err)
1057 goto out;
1058
1059 sock = sock_alloc();
1060 if (!sock) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
1064
1065 sock->type = type;
1066 err = security_socket_post_create(sock, family, type, protocol, 1);
1067 if (err)
1068 goto out_release;
1069
1070 out:
1071 *res = sock;
1072 return err;
1073 out_release:
1074 sock_release(sock);
1075 sock = NULL;
1076 goto out;
1077 }
1078 EXPORT_SYMBOL(sock_create_lite);
1079
1080 /* No kernel lock held - perfect */
1081 static unsigned int sock_poll(struct file *file, poll_table *wait)
1082 {
1083 unsigned int busy_flag = 0;
1084 struct socket *sock;
1085
1086 /*
1087 * We can't return errors to poll, so it's either yes or no.
1088 */
1089 sock = file->private_data;
1090
1091 if (sk_can_busy_loop(sock->sk)) {
1092 /* this socket can poll_ll so tell the system call */
1093 busy_flag = POLL_BUSY_LOOP;
1094
1095 /* once, only if requested by syscall */
1096 if (wait && (wait->_key & POLL_BUSY_LOOP))
1097 sk_busy_loop(sock->sk, 1);
1098 }
1099
1100 return busy_flag | sock->ops->poll(file, sock, wait);
1101 }
1102
1103 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1104 {
1105 struct socket *sock = file->private_data;
1106
1107 return sock->ops->mmap(file, sock, vma);
1108 }
1109
1110 static int sock_close(struct inode *inode, struct file *filp)
1111 {
1112 sock_release(SOCKET_I(inode));
1113 return 0;
1114 }
1115
1116 /*
1117 * Update the socket async list
1118 *
1119 * Fasync_list locking strategy.
1120 *
1121 * 1. fasync_list is modified only under process context socket lock
1122 * i.e. under semaphore.
1123 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1124 * or under socket lock
1125 */
1126
1127 static int sock_fasync(int fd, struct file *filp, int on)
1128 {
1129 struct socket *sock = filp->private_data;
1130 struct sock *sk = sock->sk;
1131 struct socket_wq *wq;
1132
1133 if (sk == NULL)
1134 return -EINVAL;
1135
1136 lock_sock(sk);
1137 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1138 fasync_helper(fd, filp, on, &wq->fasync_list);
1139
1140 if (!wq->fasync_list)
1141 sock_reset_flag(sk, SOCK_FASYNC);
1142 else
1143 sock_set_flag(sk, SOCK_FASYNC);
1144
1145 release_sock(sk);
1146 return 0;
1147 }
1148
1149 /* This function may be called only under rcu_lock */
1150
1151 int sock_wake_async(struct socket_wq *wq, int how, int band)
1152 {
1153 if (!wq || !wq->fasync_list)
1154 return -1;
1155
1156 switch (how) {
1157 case SOCK_WAKE_WAITD:
1158 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1159 break;
1160 goto call_kill;
1161 case SOCK_WAKE_SPACE:
1162 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1163 break;
1164 /* fall through */
1165 case SOCK_WAKE_IO:
1166 call_kill:
1167 kill_fasync(&wq->fasync_list, SIGIO, band);
1168 break;
1169 case SOCK_WAKE_URG:
1170 kill_fasync(&wq->fasync_list, SIGURG, band);
1171 }
1172
1173 return 0;
1174 }
1175 EXPORT_SYMBOL(sock_wake_async);
1176
1177 int __sock_create(struct net *net, int family, int type, int protocol,
1178 struct socket **res, int kern)
1179 {
1180 int err;
1181 struct socket *sock;
1182 const struct net_proto_family *pf;
1183
1184 /*
1185 * Check protocol is in range
1186 */
1187 if (family < 0 || family >= NPROTO)
1188 return -EAFNOSUPPORT;
1189 if (type < 0 || type >= SOCK_MAX)
1190 return -EINVAL;
1191
1192 /* Compatibility.
1193
1194 This uglymoron is moved from INET layer to here to avoid
1195 deadlock in module load.
1196 */
1197 if (family == PF_INET && type == SOCK_PACKET) {
1198 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1199 current->comm);
1200 family = PF_PACKET;
1201 }
1202
1203 err = security_socket_create(family, type, protocol, kern);
1204 if (err)
1205 return err;
1206
1207 /*
1208 * Allocate the socket and allow the family to set things up. if
1209 * the protocol is 0, the family is instructed to select an appropriate
1210 * default.
1211 */
1212 sock = sock_alloc();
1213 if (!sock) {
1214 net_warn_ratelimited("socket: no more sockets\n");
1215 return -ENFILE; /* Not exactly a match, but its the
1216 closest posix thing */
1217 }
1218
1219 sock->type = type;
1220
1221 #ifdef CONFIG_MODULES
1222 /* Attempt to load a protocol module if the find failed.
1223 *
1224 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1225 * requested real, full-featured networking support upon configuration.
1226 * Otherwise module support will break!
1227 */
1228 if (rcu_access_pointer(net_families[family]) == NULL)
1229 request_module("net-pf-%d", family);
1230 #endif
1231
1232 rcu_read_lock();
1233 pf = rcu_dereference(net_families[family]);
1234 err = -EAFNOSUPPORT;
1235 if (!pf)
1236 goto out_release;
1237
1238 /*
1239 * We will call the ->create function, that possibly is in a loadable
1240 * module, so we have to bump that loadable module refcnt first.
1241 */
1242 if (!try_module_get(pf->owner))
1243 goto out_release;
1244
1245 /* Now protected by module ref count */
1246 rcu_read_unlock();
1247
1248 err = pf->create(net, sock, protocol, kern);
1249 if (err < 0)
1250 goto out_module_put;
1251
1252 /*
1253 * Now to bump the refcnt of the [loadable] module that owns this
1254 * socket at sock_release time we decrement its refcnt.
1255 */
1256 if (!try_module_get(sock->ops->owner))
1257 goto out_module_busy;
1258
1259 /*
1260 * Now that we're done with the ->create function, the [loadable]
1261 * module can have its refcnt decremented
1262 */
1263 module_put(pf->owner);
1264 err = security_socket_post_create(sock, family, type, protocol, kern);
1265 if (err)
1266 goto out_sock_release;
1267 *res = sock;
1268
1269 return 0;
1270
1271 out_module_busy:
1272 err = -EAFNOSUPPORT;
1273 out_module_put:
1274 sock->ops = NULL;
1275 module_put(pf->owner);
1276 out_sock_release:
1277 sock_release(sock);
1278 return err;
1279
1280 out_release:
1281 rcu_read_unlock();
1282 goto out_sock_release;
1283 }
1284 EXPORT_SYMBOL(__sock_create);
1285
1286 int sock_create(int family, int type, int protocol, struct socket **res)
1287 {
1288 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1289 }
1290 EXPORT_SYMBOL(sock_create);
1291
1292 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1293 {
1294 return __sock_create(net, family, type, protocol, res, 1);
1295 }
1296 EXPORT_SYMBOL(sock_create_kern);
1297
1298 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1299 {
1300 int retval;
1301 struct socket *sock;
1302 int flags;
1303
1304 /* Check the SOCK_* constants for consistency. */
1305 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1306 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1307 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1308 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1309
1310 flags = type & ~SOCK_TYPE_MASK;
1311 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1312 return -EINVAL;
1313 type &= SOCK_TYPE_MASK;
1314
1315 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1316 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1317
1318 retval = sock_create(family, type, protocol, &sock);
1319 if (retval < 0)
1320 goto out;
1321
1322 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1323 if (retval < 0)
1324 goto out_release;
1325
1326 out:
1327 /* It may be already another descriptor 8) Not kernel problem. */
1328 return retval;
1329
1330 out_release:
1331 sock_release(sock);
1332 return retval;
1333 }
1334
1335 /*
1336 * Create a pair of connected sockets.
1337 */
1338
1339 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1340 int __user *, usockvec)
1341 {
1342 struct socket *sock1, *sock2;
1343 int fd1, fd2, err;
1344 struct file *newfile1, *newfile2;
1345 int flags;
1346
1347 flags = type & ~SOCK_TYPE_MASK;
1348 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349 return -EINVAL;
1350 type &= SOCK_TYPE_MASK;
1351
1352 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355 /*
1356 * Obtain the first socket and check if the underlying protocol
1357 * supports the socketpair call.
1358 */
1359
1360 err = sock_create(family, type, protocol, &sock1);
1361 if (err < 0)
1362 goto out;
1363
1364 err = sock_create(family, type, protocol, &sock2);
1365 if (err < 0)
1366 goto out_release_1;
1367
1368 err = sock1->ops->socketpair(sock1, sock2);
1369 if (err < 0)
1370 goto out_release_both;
1371
1372 fd1 = get_unused_fd_flags(flags);
1373 if (unlikely(fd1 < 0)) {
1374 err = fd1;
1375 goto out_release_both;
1376 }
1377
1378 fd2 = get_unused_fd_flags(flags);
1379 if (unlikely(fd2 < 0)) {
1380 err = fd2;
1381 goto out_put_unused_1;
1382 }
1383
1384 newfile1 = sock_alloc_file(sock1, flags, NULL);
1385 if (IS_ERR(newfile1)) {
1386 err = PTR_ERR(newfile1);
1387 goto out_put_unused_both;
1388 }
1389
1390 newfile2 = sock_alloc_file(sock2, flags, NULL);
1391 if (IS_ERR(newfile2)) {
1392 err = PTR_ERR(newfile2);
1393 goto out_fput_1;
1394 }
1395
1396 err = put_user(fd1, &usockvec[0]);
1397 if (err)
1398 goto out_fput_both;
1399
1400 err = put_user(fd2, &usockvec[1]);
1401 if (err)
1402 goto out_fput_both;
1403
1404 audit_fd_pair(fd1, fd2);
1405
1406 fd_install(fd1, newfile1);
1407 fd_install(fd2, newfile2);
1408 /* fd1 and fd2 may be already another descriptors.
1409 * Not kernel problem.
1410 */
1411
1412 return 0;
1413
1414 out_fput_both:
1415 fput(newfile2);
1416 fput(newfile1);
1417 put_unused_fd(fd2);
1418 put_unused_fd(fd1);
1419 goto out;
1420
1421 out_fput_1:
1422 fput(newfile1);
1423 put_unused_fd(fd2);
1424 put_unused_fd(fd1);
1425 sock_release(sock2);
1426 goto out;
1427
1428 out_put_unused_both:
1429 put_unused_fd(fd2);
1430 out_put_unused_1:
1431 put_unused_fd(fd1);
1432 out_release_both:
1433 sock_release(sock2);
1434 out_release_1:
1435 sock_release(sock1);
1436 out:
1437 return err;
1438 }
1439
1440 /*
1441 * Bind a name to a socket. Nothing much to do here since it's
1442 * the protocol's responsibility to handle the local address.
1443 *
1444 * We move the socket address to kernel space before we call
1445 * the protocol layer (having also checked the address is ok).
1446 */
1447
1448 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1449 {
1450 struct socket *sock;
1451 struct sockaddr_storage address;
1452 int err, fput_needed;
1453
1454 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1455 if (sock) {
1456 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1457 if (err >= 0) {
1458 err = security_socket_bind(sock,
1459 (struct sockaddr *)&address,
1460 addrlen);
1461 if (!err)
1462 err = sock->ops->bind(sock,
1463 (struct sockaddr *)
1464 &address, addrlen);
1465 }
1466 fput_light(sock->file, fput_needed);
1467 }
1468 return err;
1469 }
1470
1471 /*
1472 * Perform a listen. Basically, we allow the protocol to do anything
1473 * necessary for a listen, and if that works, we mark the socket as
1474 * ready for listening.
1475 */
1476
1477 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1478 {
1479 struct socket *sock;
1480 int err, fput_needed;
1481 int somaxconn;
1482
1483 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 if (sock) {
1485 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1486 if ((unsigned int)backlog > somaxconn)
1487 backlog = somaxconn;
1488
1489 err = security_socket_listen(sock, backlog);
1490 if (!err)
1491 err = sock->ops->listen(sock, backlog);
1492
1493 fput_light(sock->file, fput_needed);
1494 }
1495 return err;
1496 }
1497
1498 /*
1499 * For accept, we attempt to create a new socket, set up the link
1500 * with the client, wake up the client, then return the new
1501 * connected fd. We collect the address of the connector in kernel
1502 * space and move it to user at the very end. This is unclean because
1503 * we open the socket then return an error.
1504 *
1505 * 1003.1g adds the ability to recvmsg() to query connection pending
1506 * status to recvmsg. We need to add that support in a way thats
1507 * clean when we restucture accept also.
1508 */
1509
1510 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1511 int __user *, upeer_addrlen, int, flags)
1512 {
1513 struct socket *sock, *newsock;
1514 struct file *newfile;
1515 int err, len, newfd, fput_needed;
1516 struct sockaddr_storage address;
1517
1518 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1519 return -EINVAL;
1520
1521 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1522 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1523
1524 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 if (!sock)
1526 goto out;
1527
1528 err = -ENFILE;
1529 newsock = sock_alloc();
1530 if (!newsock)
1531 goto out_put;
1532
1533 newsock->type = sock->type;
1534 newsock->ops = sock->ops;
1535
1536 /*
1537 * We don't need try_module_get here, as the listening socket (sock)
1538 * has the protocol module (sock->ops->owner) held.
1539 */
1540 __module_get(newsock->ops->owner);
1541
1542 newfd = get_unused_fd_flags(flags);
1543 if (unlikely(newfd < 0)) {
1544 err = newfd;
1545 sock_release(newsock);
1546 goto out_put;
1547 }
1548 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1549 if (IS_ERR(newfile)) {
1550 err = PTR_ERR(newfile);
1551 put_unused_fd(newfd);
1552 sock_release(newsock);
1553 goto out_put;
1554 }
1555
1556 err = security_socket_accept(sock, newsock);
1557 if (err)
1558 goto out_fd;
1559
1560 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1561 if (err < 0)
1562 goto out_fd;
1563
1564 if (upeer_sockaddr) {
1565 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1566 &len, 2) < 0) {
1567 err = -ECONNABORTED;
1568 goto out_fd;
1569 }
1570 err = move_addr_to_user(&address,
1571 len, upeer_sockaddr, upeer_addrlen);
1572 if (err < 0)
1573 goto out_fd;
1574 }
1575
1576 /* File flags are not inherited via accept() unlike another OSes. */
1577
1578 fd_install(newfd, newfile);
1579 err = newfd;
1580
1581 out_put:
1582 fput_light(sock->file, fput_needed);
1583 out:
1584 return err;
1585 out_fd:
1586 fput(newfile);
1587 put_unused_fd(newfd);
1588 goto out_put;
1589 }
1590
1591 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592 int __user *, upeer_addrlen)
1593 {
1594 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1595 }
1596
1597 /*
1598 * Attempt to connect to a socket with the server address. The address
1599 * is in user space so we verify it is OK and move it to kernel space.
1600 *
1601 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1602 * break bindings
1603 *
1604 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1605 * other SEQPACKET protocols that take time to connect() as it doesn't
1606 * include the -EINPROGRESS status for such sockets.
1607 */
1608
1609 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1610 int, addrlen)
1611 {
1612 struct socket *sock;
1613 struct sockaddr_storage address;
1614 int err, fput_needed;
1615
1616 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617 if (!sock)
1618 goto out;
1619 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1620 if (err < 0)
1621 goto out_put;
1622
1623 err =
1624 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1625 if (err)
1626 goto out_put;
1627
1628 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1629 sock->file->f_flags);
1630 out_put:
1631 fput_light(sock->file, fput_needed);
1632 out:
1633 return err;
1634 }
1635
1636 /*
1637 * Get the local address ('name') of a socket object. Move the obtained
1638 * name to user space.
1639 */
1640
1641 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1642 int __user *, usockaddr_len)
1643 {
1644 struct socket *sock;
1645 struct sockaddr_storage address;
1646 int len, err, fput_needed;
1647
1648 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 if (!sock)
1650 goto out;
1651
1652 err = security_socket_getsockname(sock);
1653 if (err)
1654 goto out_put;
1655
1656 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1657 if (err)
1658 goto out_put;
1659 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1660
1661 out_put:
1662 fput_light(sock->file, fput_needed);
1663 out:
1664 return err;
1665 }
1666
1667 /*
1668 * Get the remote address ('name') of a socket object. Move the obtained
1669 * name to user space.
1670 */
1671
1672 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1673 int __user *, usockaddr_len)
1674 {
1675 struct socket *sock;
1676 struct sockaddr_storage address;
1677 int len, err, fput_needed;
1678
1679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 if (sock != NULL) {
1681 err = security_socket_getpeername(sock);
1682 if (err) {
1683 fput_light(sock->file, fput_needed);
1684 return err;
1685 }
1686
1687 err =
1688 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1689 1);
1690 if (!err)
1691 err = move_addr_to_user(&address, len, usockaddr,
1692 usockaddr_len);
1693 fput_light(sock->file, fput_needed);
1694 }
1695 return err;
1696 }
1697
1698 /*
1699 * Send a datagram to a given address. We move the address into kernel
1700 * space and check the user space data area is readable before invoking
1701 * the protocol.
1702 */
1703
1704 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1705 unsigned int, flags, struct sockaddr __user *, addr,
1706 int, addr_len)
1707 {
1708 struct socket *sock;
1709 struct sockaddr_storage address;
1710 int err;
1711 struct msghdr msg;
1712 struct iovec iov;
1713 int fput_needed;
1714
1715 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1716 if (unlikely(err))
1717 return err;
1718 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1719 if (!sock)
1720 goto out;
1721
1722 msg.msg_name = NULL;
1723 msg.msg_control = NULL;
1724 msg.msg_controllen = 0;
1725 msg.msg_namelen = 0;
1726 if (addr) {
1727 err = move_addr_to_kernel(addr, addr_len, &address);
1728 if (err < 0)
1729 goto out_put;
1730 msg.msg_name = (struct sockaddr *)&address;
1731 msg.msg_namelen = addr_len;
1732 }
1733 if (sock->file->f_flags & O_NONBLOCK)
1734 flags |= MSG_DONTWAIT;
1735 msg.msg_flags = flags;
1736 err = sock_sendmsg(sock, &msg);
1737
1738 out_put:
1739 fput_light(sock->file, fput_needed);
1740 out:
1741 return err;
1742 }
1743
1744 /*
1745 * Send a datagram down a socket.
1746 */
1747
1748 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1749 unsigned int, flags)
1750 {
1751 return sys_sendto(fd, buff, len, flags, NULL, 0);
1752 }
1753
1754 /*
1755 * Receive a frame from the socket and optionally record the address of the
1756 * sender. We verify the buffers are writable and if needed move the
1757 * sender address from kernel to user space.
1758 */
1759
1760 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1761 unsigned int, flags, struct sockaddr __user *, addr,
1762 int __user *, addr_len)
1763 {
1764 struct socket *sock;
1765 struct iovec iov;
1766 struct msghdr msg;
1767 struct sockaddr_storage address;
1768 int err, err2;
1769 int fput_needed;
1770
1771 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1772 if (unlikely(err))
1773 return err;
1774 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 if (!sock)
1776 goto out;
1777
1778 msg.msg_control = NULL;
1779 msg.msg_controllen = 0;
1780 /* Save some cycles and don't copy the address if not needed */
1781 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1782 /* We assume all kernel code knows the size of sockaddr_storage */
1783 msg.msg_namelen = 0;
1784 msg.msg_iocb = NULL;
1785 msg.msg_flags = 0;
1786 if (sock->file->f_flags & O_NONBLOCK)
1787 flags |= MSG_DONTWAIT;
1788 err = sock_recvmsg(sock, &msg, flags);
1789
1790 if (err >= 0 && addr != NULL) {
1791 err2 = move_addr_to_user(&address,
1792 msg.msg_namelen, addr, addr_len);
1793 if (err2 < 0)
1794 err = err2;
1795 }
1796
1797 fput_light(sock->file, fput_needed);
1798 out:
1799 return err;
1800 }
1801
1802 /*
1803 * Receive a datagram from a socket.
1804 */
1805
1806 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1807 unsigned int, flags)
1808 {
1809 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1810 }
1811
1812 /*
1813 * Set a socket option. Because we don't know the option lengths we have
1814 * to pass the user mode parameter for the protocols to sort out.
1815 */
1816
1817 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1818 char __user *, optval, int, optlen)
1819 {
1820 int err, fput_needed;
1821 struct socket *sock;
1822
1823 if (optlen < 0)
1824 return -EINVAL;
1825
1826 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827 if (sock != NULL) {
1828 err = security_socket_setsockopt(sock, level, optname);
1829 if (err)
1830 goto out_put;
1831
1832 if (level == SOL_SOCKET)
1833 err =
1834 sock_setsockopt(sock, level, optname, optval,
1835 optlen);
1836 else
1837 err =
1838 sock->ops->setsockopt(sock, level, optname, optval,
1839 optlen);
1840 out_put:
1841 fput_light(sock->file, fput_needed);
1842 }
1843 return err;
1844 }
1845
1846 /*
1847 * Get a socket option. Because we don't know the option lengths we have
1848 * to pass a user mode parameter for the protocols to sort out.
1849 */
1850
1851 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1852 char __user *, optval, int __user *, optlen)
1853 {
1854 int err, fput_needed;
1855 struct socket *sock;
1856
1857 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 if (sock != NULL) {
1859 err = security_socket_getsockopt(sock, level, optname);
1860 if (err)
1861 goto out_put;
1862
1863 if (level == SOL_SOCKET)
1864 err =
1865 sock_getsockopt(sock, level, optname, optval,
1866 optlen);
1867 else
1868 err =
1869 sock->ops->getsockopt(sock, level, optname, optval,
1870 optlen);
1871 out_put:
1872 fput_light(sock->file, fput_needed);
1873 }
1874 return err;
1875 }
1876
1877 /*
1878 * Shutdown a socket.
1879 */
1880
1881 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1882 {
1883 int err, fput_needed;
1884 struct socket *sock;
1885
1886 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887 if (sock != NULL) {
1888 err = security_socket_shutdown(sock, how);
1889 if (!err)
1890 err = sock->ops->shutdown(sock, how);
1891 fput_light(sock->file, fput_needed);
1892 }
1893 return err;
1894 }
1895
1896 /* A couple of helpful macros for getting the address of the 32/64 bit
1897 * fields which are the same type (int / unsigned) on our platforms.
1898 */
1899 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1900 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1901 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1902
1903 struct used_address {
1904 struct sockaddr_storage name;
1905 unsigned int name_len;
1906 };
1907
1908 static int copy_msghdr_from_user(struct msghdr *kmsg,
1909 struct user_msghdr __user *umsg,
1910 struct sockaddr __user **save_addr,
1911 struct iovec **iov)
1912 {
1913 struct sockaddr __user *uaddr;
1914 struct iovec __user *uiov;
1915 size_t nr_segs;
1916 ssize_t err;
1917
1918 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1919 __get_user(uaddr, &umsg->msg_name) ||
1920 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1921 __get_user(uiov, &umsg->msg_iov) ||
1922 __get_user(nr_segs, &umsg->msg_iovlen) ||
1923 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1924 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1925 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1926 return -EFAULT;
1927
1928 if (!uaddr)
1929 kmsg->msg_namelen = 0;
1930
1931 if (kmsg->msg_namelen < 0)
1932 return -EINVAL;
1933
1934 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1935 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1936
1937 if (save_addr)
1938 *save_addr = uaddr;
1939
1940 if (uaddr && kmsg->msg_namelen) {
1941 if (!save_addr) {
1942 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1943 kmsg->msg_name);
1944 if (err < 0)
1945 return err;
1946 }
1947 } else {
1948 kmsg->msg_name = NULL;
1949 kmsg->msg_namelen = 0;
1950 }
1951
1952 if (nr_segs > UIO_MAXIOV)
1953 return -EMSGSIZE;
1954
1955 kmsg->msg_iocb = NULL;
1956
1957 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1958 UIO_FASTIOV, iov, &kmsg->msg_iter);
1959 }
1960
1961 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1962 struct msghdr *msg_sys, unsigned int flags,
1963 struct used_address *used_address,
1964 unsigned int allowed_msghdr_flags)
1965 {
1966 struct compat_msghdr __user *msg_compat =
1967 (struct compat_msghdr __user *)msg;
1968 struct sockaddr_storage address;
1969 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1970 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1971 __aligned(sizeof(__kernel_size_t));
1972 /* 20 is size of ipv6_pktinfo */
1973 unsigned char *ctl_buf = ctl;
1974 int ctl_len;
1975 ssize_t err;
1976
1977 msg_sys->msg_name = &address;
1978
1979 if (MSG_CMSG_COMPAT & flags)
1980 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1981 else
1982 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1983 if (err < 0)
1984 return err;
1985
1986 err = -ENOBUFS;
1987
1988 if (msg_sys->msg_controllen > INT_MAX)
1989 goto out_freeiov;
1990 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1991 ctl_len = msg_sys->msg_controllen;
1992 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1993 err =
1994 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1995 sizeof(ctl));
1996 if (err)
1997 goto out_freeiov;
1998 ctl_buf = msg_sys->msg_control;
1999 ctl_len = msg_sys->msg_controllen;
2000 } else if (ctl_len) {
2001 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2002 CMSG_ALIGN(sizeof(struct cmsghdr)));
2003 if (ctl_len > sizeof(ctl)) {
2004 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2005 if (ctl_buf == NULL)
2006 goto out_freeiov;
2007 }
2008 err = -EFAULT;
2009 /*
2010 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2011 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2012 * checking falls down on this.
2013 */
2014 if (copy_from_user(ctl_buf,
2015 (void __user __force *)msg_sys->msg_control,
2016 ctl_len))
2017 goto out_freectl;
2018 msg_sys->msg_control = ctl_buf;
2019 }
2020 msg_sys->msg_flags = flags;
2021
2022 if (sock->file->f_flags & O_NONBLOCK)
2023 msg_sys->msg_flags |= MSG_DONTWAIT;
2024 /*
2025 * If this is sendmmsg() and current destination address is same as
2026 * previously succeeded address, omit asking LSM's decision.
2027 * used_address->name_len is initialized to UINT_MAX so that the first
2028 * destination address never matches.
2029 */
2030 if (used_address && msg_sys->msg_name &&
2031 used_address->name_len == msg_sys->msg_namelen &&
2032 !memcmp(&used_address->name, msg_sys->msg_name,
2033 used_address->name_len)) {
2034 err = sock_sendmsg_nosec(sock, msg_sys);
2035 goto out_freectl;
2036 }
2037 err = sock_sendmsg(sock, msg_sys);
2038 /*
2039 * If this is sendmmsg() and sending to current destination address was
2040 * successful, remember it.
2041 */
2042 if (used_address && err >= 0) {
2043 used_address->name_len = msg_sys->msg_namelen;
2044 if (msg_sys->msg_name)
2045 memcpy(&used_address->name, msg_sys->msg_name,
2046 used_address->name_len);
2047 }
2048
2049 out_freectl:
2050 if (ctl_buf != ctl)
2051 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2052 out_freeiov:
2053 kfree(iov);
2054 return err;
2055 }
2056
2057 /*
2058 * BSD sendmsg interface
2059 */
2060
2061 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2062 {
2063 int fput_needed, err;
2064 struct msghdr msg_sys;
2065 struct socket *sock;
2066
2067 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2068 if (!sock)
2069 goto out;
2070
2071 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2072
2073 fput_light(sock->file, fput_needed);
2074 out:
2075 return err;
2076 }
2077
2078 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2079 {
2080 if (flags & MSG_CMSG_COMPAT)
2081 return -EINVAL;
2082 return __sys_sendmsg(fd, msg, flags);
2083 }
2084
2085 /*
2086 * Linux sendmmsg interface
2087 */
2088
2089 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2090 unsigned int flags)
2091 {
2092 int fput_needed, err, datagrams;
2093 struct socket *sock;
2094 struct mmsghdr __user *entry;
2095 struct compat_mmsghdr __user *compat_entry;
2096 struct msghdr msg_sys;
2097 struct used_address used_address;
2098 unsigned int oflags = flags;
2099
2100 if (vlen > UIO_MAXIOV)
2101 vlen = UIO_MAXIOV;
2102
2103 datagrams = 0;
2104
2105 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2106 if (!sock)
2107 return err;
2108
2109 used_address.name_len = UINT_MAX;
2110 entry = mmsg;
2111 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2112 err = 0;
2113 flags |= MSG_BATCH;
2114
2115 while (datagrams < vlen) {
2116 if (datagrams == vlen - 1)
2117 flags = oflags;
2118
2119 if (MSG_CMSG_COMPAT & flags) {
2120 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2121 &msg_sys, flags, &used_address, MSG_EOR);
2122 if (err < 0)
2123 break;
2124 err = __put_user(err, &compat_entry->msg_len);
2125 ++compat_entry;
2126 } else {
2127 err = ___sys_sendmsg(sock,
2128 (struct user_msghdr __user *)entry,
2129 &msg_sys, flags, &used_address, MSG_EOR);
2130 if (err < 0)
2131 break;
2132 err = put_user(err, &entry->msg_len);
2133 ++entry;
2134 }
2135
2136 if (err)
2137 break;
2138 ++datagrams;
2139 if (msg_data_left(&msg_sys))
2140 break;
2141 cond_resched();
2142 }
2143
2144 fput_light(sock->file, fput_needed);
2145
2146 /* We only return an error if no datagrams were able to be sent */
2147 if (datagrams != 0)
2148 return datagrams;
2149
2150 return err;
2151 }
2152
2153 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2154 unsigned int, vlen, unsigned int, flags)
2155 {
2156 if (flags & MSG_CMSG_COMPAT)
2157 return -EINVAL;
2158 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2159 }
2160
2161 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2162 struct msghdr *msg_sys, unsigned int flags, int nosec)
2163 {
2164 struct compat_msghdr __user *msg_compat =
2165 (struct compat_msghdr __user *)msg;
2166 struct iovec iovstack[UIO_FASTIOV];
2167 struct iovec *iov = iovstack;
2168 unsigned long cmsg_ptr;
2169 int len;
2170 ssize_t err;
2171
2172 /* kernel mode address */
2173 struct sockaddr_storage addr;
2174
2175 /* user mode address pointers */
2176 struct sockaddr __user *uaddr;
2177 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2178
2179 msg_sys->msg_name = &addr;
2180
2181 if (MSG_CMSG_COMPAT & flags)
2182 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2183 else
2184 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2185 if (err < 0)
2186 return err;
2187
2188 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2189 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2190
2191 /* We assume all kernel code knows the size of sockaddr_storage */
2192 msg_sys->msg_namelen = 0;
2193
2194 if (sock->file->f_flags & O_NONBLOCK)
2195 flags |= MSG_DONTWAIT;
2196 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2197 if (err < 0)
2198 goto out_freeiov;
2199 len = err;
2200
2201 if (uaddr != NULL) {
2202 err = move_addr_to_user(&addr,
2203 msg_sys->msg_namelen, uaddr,
2204 uaddr_len);
2205 if (err < 0)
2206 goto out_freeiov;
2207 }
2208 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2209 COMPAT_FLAGS(msg));
2210 if (err)
2211 goto out_freeiov;
2212 if (MSG_CMSG_COMPAT & flags)
2213 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2214 &msg_compat->msg_controllen);
2215 else
2216 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2217 &msg->msg_controllen);
2218 if (err)
2219 goto out_freeiov;
2220 err = len;
2221
2222 out_freeiov:
2223 kfree(iov);
2224 return err;
2225 }
2226
2227 /*
2228 * BSD recvmsg interface
2229 */
2230
2231 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2232 {
2233 int fput_needed, err;
2234 struct msghdr msg_sys;
2235 struct socket *sock;
2236
2237 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2238 if (!sock)
2239 goto out;
2240
2241 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2242
2243 fput_light(sock->file, fput_needed);
2244 out:
2245 return err;
2246 }
2247
2248 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2249 unsigned int, flags)
2250 {
2251 if (flags & MSG_CMSG_COMPAT)
2252 return -EINVAL;
2253 return __sys_recvmsg(fd, msg, flags);
2254 }
2255
2256 /*
2257 * Linux recvmmsg interface
2258 */
2259
2260 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2261 unsigned int flags, struct timespec *timeout)
2262 {
2263 int fput_needed, err, datagrams;
2264 struct socket *sock;
2265 struct mmsghdr __user *entry;
2266 struct compat_mmsghdr __user *compat_entry;
2267 struct msghdr msg_sys;
2268 struct timespec64 end_time;
2269 struct timespec64 timeout64;
2270
2271 if (timeout &&
2272 poll_select_set_timeout(&end_time, timeout->tv_sec,
2273 timeout->tv_nsec))
2274 return -EINVAL;
2275
2276 datagrams = 0;
2277
2278 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2279 if (!sock)
2280 return err;
2281
2282 err = sock_error(sock->sk);
2283 if (err) {
2284 datagrams = err;
2285 goto out_put;
2286 }
2287
2288 entry = mmsg;
2289 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2290
2291 while (datagrams < vlen) {
2292 /*
2293 * No need to ask LSM for more than the first datagram.
2294 */
2295 if (MSG_CMSG_COMPAT & flags) {
2296 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2297 &msg_sys, flags & ~MSG_WAITFORONE,
2298 datagrams);
2299 if (err < 0)
2300 break;
2301 err = __put_user(err, &compat_entry->msg_len);
2302 ++compat_entry;
2303 } else {
2304 err = ___sys_recvmsg(sock,
2305 (struct user_msghdr __user *)entry,
2306 &msg_sys, flags & ~MSG_WAITFORONE,
2307 datagrams);
2308 if (err < 0)
2309 break;
2310 err = put_user(err, &entry->msg_len);
2311 ++entry;
2312 }
2313
2314 if (err)
2315 break;
2316 ++datagrams;
2317
2318 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2319 if (flags & MSG_WAITFORONE)
2320 flags |= MSG_DONTWAIT;
2321
2322 if (timeout) {
2323 ktime_get_ts64(&timeout64);
2324 *timeout = timespec64_to_timespec(
2325 timespec64_sub(end_time, timeout64));
2326 if (timeout->tv_sec < 0) {
2327 timeout->tv_sec = timeout->tv_nsec = 0;
2328 break;
2329 }
2330
2331 /* Timeout, return less than vlen datagrams */
2332 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2333 break;
2334 }
2335
2336 /* Out of band data, return right away */
2337 if (msg_sys.msg_flags & MSG_OOB)
2338 break;
2339 cond_resched();
2340 }
2341
2342 if (err == 0)
2343 goto out_put;
2344
2345 if (datagrams == 0) {
2346 datagrams = err;
2347 goto out_put;
2348 }
2349
2350 /*
2351 * We may return less entries than requested (vlen) if the
2352 * sock is non block and there aren't enough datagrams...
2353 */
2354 if (err != -EAGAIN) {
2355 /*
2356 * ... or if recvmsg returns an error after we
2357 * received some datagrams, where we record the
2358 * error to return on the next call or if the
2359 * app asks about it using getsockopt(SO_ERROR).
2360 */
2361 sock->sk->sk_err = -err;
2362 }
2363 out_put:
2364 fput_light(sock->file, fput_needed);
2365
2366 return datagrams;
2367 }
2368
2369 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2370 unsigned int, vlen, unsigned int, flags,
2371 struct timespec __user *, timeout)
2372 {
2373 int datagrams;
2374 struct timespec timeout_sys;
2375
2376 if (flags & MSG_CMSG_COMPAT)
2377 return -EINVAL;
2378
2379 if (!timeout)
2380 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2381
2382 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2383 return -EFAULT;
2384
2385 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2386
2387 if (datagrams > 0 &&
2388 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2389 datagrams = -EFAULT;
2390
2391 return datagrams;
2392 }
2393
2394 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2395 /* Argument list sizes for sys_socketcall */
2396 #define AL(x) ((x) * sizeof(unsigned long))
2397 static const unsigned char nargs[21] = {
2398 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2399 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2400 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2401 AL(4), AL(5), AL(4)
2402 };
2403
2404 #undef AL
2405
2406 /*
2407 * System call vectors.
2408 *
2409 * Argument checking cleaned up. Saved 20% in size.
2410 * This function doesn't need to set the kernel lock because
2411 * it is set by the callees.
2412 */
2413
2414 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2415 {
2416 unsigned long a[AUDITSC_ARGS];
2417 unsigned long a0, a1;
2418 int err;
2419 unsigned int len;
2420
2421 if (call < 1 || call > SYS_SENDMMSG)
2422 return -EINVAL;
2423
2424 len = nargs[call];
2425 if (len > sizeof(a))
2426 return -EINVAL;
2427
2428 /* copy_from_user should be SMP safe. */
2429 if (copy_from_user(a, args, len))
2430 return -EFAULT;
2431
2432 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2433 if (err)
2434 return err;
2435
2436 a0 = a[0];
2437 a1 = a[1];
2438
2439 switch (call) {
2440 case SYS_SOCKET:
2441 err = sys_socket(a0, a1, a[2]);
2442 break;
2443 case SYS_BIND:
2444 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2445 break;
2446 case SYS_CONNECT:
2447 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2448 break;
2449 case SYS_LISTEN:
2450 err = sys_listen(a0, a1);
2451 break;
2452 case SYS_ACCEPT:
2453 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2454 (int __user *)a[2], 0);
2455 break;
2456 case SYS_GETSOCKNAME:
2457 err =
2458 sys_getsockname(a0, (struct sockaddr __user *)a1,
2459 (int __user *)a[2]);
2460 break;
2461 case SYS_GETPEERNAME:
2462 err =
2463 sys_getpeername(a0, (struct sockaddr __user *)a1,
2464 (int __user *)a[2]);
2465 break;
2466 case SYS_SOCKETPAIR:
2467 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2468 break;
2469 case SYS_SEND:
2470 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2471 break;
2472 case SYS_SENDTO:
2473 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2474 (struct sockaddr __user *)a[4], a[5]);
2475 break;
2476 case SYS_RECV:
2477 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2478 break;
2479 case SYS_RECVFROM:
2480 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2481 (struct sockaddr __user *)a[4],
2482 (int __user *)a[5]);
2483 break;
2484 case SYS_SHUTDOWN:
2485 err = sys_shutdown(a0, a1);
2486 break;
2487 case SYS_SETSOCKOPT:
2488 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2489 break;
2490 case SYS_GETSOCKOPT:
2491 err =
2492 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2493 (int __user *)a[4]);
2494 break;
2495 case SYS_SENDMSG:
2496 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2497 break;
2498 case SYS_SENDMMSG:
2499 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2500 break;
2501 case SYS_RECVMSG:
2502 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2503 break;
2504 case SYS_RECVMMSG:
2505 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2506 (struct timespec __user *)a[4]);
2507 break;
2508 case SYS_ACCEPT4:
2509 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2510 (int __user *)a[2], a[3]);
2511 break;
2512 default:
2513 err = -EINVAL;
2514 break;
2515 }
2516 return err;
2517 }
2518
2519 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2520
2521 /**
2522 * sock_register - add a socket protocol handler
2523 * @ops: description of protocol
2524 *
2525 * This function is called by a protocol handler that wants to
2526 * advertise its address family, and have it linked into the
2527 * socket interface. The value ops->family corresponds to the
2528 * socket system call protocol family.
2529 */
2530 int sock_register(const struct net_proto_family *ops)
2531 {
2532 int err;
2533
2534 if (ops->family >= NPROTO) {
2535 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2536 return -ENOBUFS;
2537 }
2538
2539 spin_lock(&net_family_lock);
2540 if (rcu_dereference_protected(net_families[ops->family],
2541 lockdep_is_held(&net_family_lock)))
2542 err = -EEXIST;
2543 else {
2544 rcu_assign_pointer(net_families[ops->family], ops);
2545 err = 0;
2546 }
2547 spin_unlock(&net_family_lock);
2548
2549 pr_info("NET: Registered protocol family %d\n", ops->family);
2550 return err;
2551 }
2552 EXPORT_SYMBOL(sock_register);
2553
2554 /**
2555 * sock_unregister - remove a protocol handler
2556 * @family: protocol family to remove
2557 *
2558 * This function is called by a protocol handler that wants to
2559 * remove its address family, and have it unlinked from the
2560 * new socket creation.
2561 *
2562 * If protocol handler is a module, then it can use module reference
2563 * counts to protect against new references. If protocol handler is not
2564 * a module then it needs to provide its own protection in
2565 * the ops->create routine.
2566 */
2567 void sock_unregister(int family)
2568 {
2569 BUG_ON(family < 0 || family >= NPROTO);
2570
2571 spin_lock(&net_family_lock);
2572 RCU_INIT_POINTER(net_families[family], NULL);
2573 spin_unlock(&net_family_lock);
2574
2575 synchronize_rcu();
2576
2577 pr_info("NET: Unregistered protocol family %d\n", family);
2578 }
2579 EXPORT_SYMBOL(sock_unregister);
2580
2581 static int __init sock_init(void)
2582 {
2583 int err;
2584 /*
2585 * Initialize the network sysctl infrastructure.
2586 */
2587 err = net_sysctl_init();
2588 if (err)
2589 goto out;
2590
2591 /*
2592 * Initialize skbuff SLAB cache
2593 */
2594 skb_init();
2595
2596 /*
2597 * Initialize the protocols module.
2598 */
2599
2600 init_inodecache();
2601
2602 err = register_filesystem(&sock_fs_type);
2603 if (err)
2604 goto out_fs;
2605 sock_mnt = kern_mount(&sock_fs_type);
2606 if (IS_ERR(sock_mnt)) {
2607 err = PTR_ERR(sock_mnt);
2608 goto out_mount;
2609 }
2610
2611 /* The real protocol initialization is performed in later initcalls.
2612 */
2613
2614 #ifdef CONFIG_NETFILTER
2615 err = netfilter_init();
2616 if (err)
2617 goto out;
2618 #endif
2619
2620 ptp_classifier_init();
2621
2622 out:
2623 return err;
2624
2625 out_mount:
2626 unregister_filesystem(&sock_fs_type);
2627 out_fs:
2628 goto out;
2629 }
2630
2631 core_initcall(sock_init); /* early initcall */
2632
2633 #ifdef CONFIG_PROC_FS
2634 void socket_seq_show(struct seq_file *seq)
2635 {
2636 int cpu;
2637 int counter = 0;
2638
2639 for_each_possible_cpu(cpu)
2640 counter += per_cpu(sockets_in_use, cpu);
2641
2642 /* It can be negative, by the way. 8) */
2643 if (counter < 0)
2644 counter = 0;
2645
2646 seq_printf(seq, "sockets: used %d\n", counter);
2647 }
2648 #endif /* CONFIG_PROC_FS */
2649
2650 #ifdef CONFIG_COMPAT
2651 static int do_siocgstamp(struct net *net, struct socket *sock,
2652 unsigned int cmd, void __user *up)
2653 {
2654 mm_segment_t old_fs = get_fs();
2655 struct timeval ktv;
2656 int err;
2657
2658 set_fs(KERNEL_DS);
2659 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2660 set_fs(old_fs);
2661 if (!err)
2662 err = compat_put_timeval(&ktv, up);
2663
2664 return err;
2665 }
2666
2667 static int do_siocgstampns(struct net *net, struct socket *sock,
2668 unsigned int cmd, void __user *up)
2669 {
2670 mm_segment_t old_fs = get_fs();
2671 struct timespec kts;
2672 int err;
2673
2674 set_fs(KERNEL_DS);
2675 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2676 set_fs(old_fs);
2677 if (!err)
2678 err = compat_put_timespec(&kts, up);
2679
2680 return err;
2681 }
2682
2683 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2684 {
2685 struct ifreq __user *uifr;
2686 int err;
2687
2688 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2689 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2690 return -EFAULT;
2691
2692 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2693 if (err)
2694 return err;
2695
2696 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2697 return -EFAULT;
2698
2699 return 0;
2700 }
2701
2702 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2703 {
2704 struct compat_ifconf ifc32;
2705 struct ifconf ifc;
2706 struct ifconf __user *uifc;
2707 struct compat_ifreq __user *ifr32;
2708 struct ifreq __user *ifr;
2709 unsigned int i, j;
2710 int err;
2711
2712 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2713 return -EFAULT;
2714
2715 memset(&ifc, 0, sizeof(ifc));
2716 if (ifc32.ifcbuf == 0) {
2717 ifc32.ifc_len = 0;
2718 ifc.ifc_len = 0;
2719 ifc.ifc_req = NULL;
2720 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2721 } else {
2722 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2723 sizeof(struct ifreq);
2724 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2725 ifc.ifc_len = len;
2726 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2727 ifr32 = compat_ptr(ifc32.ifcbuf);
2728 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2729 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2730 return -EFAULT;
2731 ifr++;
2732 ifr32++;
2733 }
2734 }
2735 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2736 return -EFAULT;
2737
2738 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2739 if (err)
2740 return err;
2741
2742 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2743 return -EFAULT;
2744
2745 ifr = ifc.ifc_req;
2746 ifr32 = compat_ptr(ifc32.ifcbuf);
2747 for (i = 0, j = 0;
2748 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2749 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2750 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2751 return -EFAULT;
2752 ifr32++;
2753 ifr++;
2754 }
2755
2756 if (ifc32.ifcbuf == 0) {
2757 /* Translate from 64-bit structure multiple to
2758 * a 32-bit one.
2759 */
2760 i = ifc.ifc_len;
2761 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2762 ifc32.ifc_len = i;
2763 } else {
2764 ifc32.ifc_len = i;
2765 }
2766 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2767 return -EFAULT;
2768
2769 return 0;
2770 }
2771
2772 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2773 {
2774 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2775 bool convert_in = false, convert_out = false;
2776 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2777 struct ethtool_rxnfc __user *rxnfc;
2778 struct ifreq __user *ifr;
2779 u32 rule_cnt = 0, actual_rule_cnt;
2780 u32 ethcmd;
2781 u32 data;
2782 int ret;
2783
2784 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2785 return -EFAULT;
2786
2787 compat_rxnfc = compat_ptr(data);
2788
2789 if (get_user(ethcmd, &compat_rxnfc->cmd))
2790 return -EFAULT;
2791
2792 /* Most ethtool structures are defined without padding.
2793 * Unfortunately struct ethtool_rxnfc is an exception.
2794 */
2795 switch (ethcmd) {
2796 default:
2797 break;
2798 case ETHTOOL_GRXCLSRLALL:
2799 /* Buffer size is variable */
2800 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2801 return -EFAULT;
2802 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2803 return -ENOMEM;
2804 buf_size += rule_cnt * sizeof(u32);
2805 /* fall through */
2806 case ETHTOOL_GRXRINGS:
2807 case ETHTOOL_GRXCLSRLCNT:
2808 case ETHTOOL_GRXCLSRULE:
2809 case ETHTOOL_SRXCLSRLINS:
2810 convert_out = true;
2811 /* fall through */
2812 case ETHTOOL_SRXCLSRLDEL:
2813 buf_size += sizeof(struct ethtool_rxnfc);
2814 convert_in = true;
2815 break;
2816 }
2817
2818 ifr = compat_alloc_user_space(buf_size);
2819 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2820
2821 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2822 return -EFAULT;
2823
2824 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2825 &ifr->ifr_ifru.ifru_data))
2826 return -EFAULT;
2827
2828 if (convert_in) {
2829 /* We expect there to be holes between fs.m_ext and
2830 * fs.ring_cookie and at the end of fs, but nowhere else.
2831 */
2832 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2833 sizeof(compat_rxnfc->fs.m_ext) !=
2834 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2835 sizeof(rxnfc->fs.m_ext));
2836 BUILD_BUG_ON(
2837 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2838 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2839 offsetof(struct ethtool_rxnfc, fs.location) -
2840 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2841
2842 if (copy_in_user(rxnfc, compat_rxnfc,
2843 (void __user *)(&rxnfc->fs.m_ext + 1) -
2844 (void __user *)rxnfc) ||
2845 copy_in_user(&rxnfc->fs.ring_cookie,
2846 &compat_rxnfc->fs.ring_cookie,
2847 (void __user *)(&rxnfc->fs.location + 1) -
2848 (void __user *)&rxnfc->fs.ring_cookie) ||
2849 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2850 sizeof(rxnfc->rule_cnt)))
2851 return -EFAULT;
2852 }
2853
2854 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2855 if (ret)
2856 return ret;
2857
2858 if (convert_out) {
2859 if (copy_in_user(compat_rxnfc, rxnfc,
2860 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2861 (const void __user *)rxnfc) ||
2862 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2863 &rxnfc->fs.ring_cookie,
2864 (const void __user *)(&rxnfc->fs.location + 1) -
2865 (const void __user *)&rxnfc->fs.ring_cookie) ||
2866 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2867 sizeof(rxnfc->rule_cnt)))
2868 return -EFAULT;
2869
2870 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2871 /* As an optimisation, we only copy the actual
2872 * number of rules that the underlying
2873 * function returned. Since Mallory might
2874 * change the rule count in user memory, we
2875 * check that it is less than the rule count
2876 * originally given (as the user buffer size),
2877 * which has been range-checked.
2878 */
2879 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2880 return -EFAULT;
2881 if (actual_rule_cnt < rule_cnt)
2882 rule_cnt = actual_rule_cnt;
2883 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2884 &rxnfc->rule_locs[0],
2885 rule_cnt * sizeof(u32)))
2886 return -EFAULT;
2887 }
2888 }
2889
2890 return 0;
2891 }
2892
2893 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2894 {
2895 void __user *uptr;
2896 compat_uptr_t uptr32;
2897 struct ifreq __user *uifr;
2898
2899 uifr = compat_alloc_user_space(sizeof(*uifr));
2900 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2901 return -EFAULT;
2902
2903 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2904 return -EFAULT;
2905
2906 uptr = compat_ptr(uptr32);
2907
2908 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2909 return -EFAULT;
2910
2911 return dev_ioctl(net, SIOCWANDEV, uifr);
2912 }
2913
2914 static int bond_ioctl(struct net *net, unsigned int cmd,
2915 struct compat_ifreq __user *ifr32)
2916 {
2917 struct ifreq kifr;
2918 mm_segment_t old_fs;
2919 int err;
2920
2921 switch (cmd) {
2922 case SIOCBONDENSLAVE:
2923 case SIOCBONDRELEASE:
2924 case SIOCBONDSETHWADDR:
2925 case SIOCBONDCHANGEACTIVE:
2926 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2927 return -EFAULT;
2928
2929 old_fs = get_fs();
2930 set_fs(KERNEL_DS);
2931 err = dev_ioctl(net, cmd,
2932 (struct ifreq __user __force *) &kifr);
2933 set_fs(old_fs);
2934
2935 return err;
2936 default:
2937 return -ENOIOCTLCMD;
2938 }
2939 }
2940
2941 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2942 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2943 struct compat_ifreq __user *u_ifreq32)
2944 {
2945 struct ifreq __user *u_ifreq64;
2946 char tmp_buf[IFNAMSIZ];
2947 void __user *data64;
2948 u32 data32;
2949
2950 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2951 IFNAMSIZ))
2952 return -EFAULT;
2953 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2954 return -EFAULT;
2955 data64 = compat_ptr(data32);
2956
2957 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2958
2959 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2960 IFNAMSIZ))
2961 return -EFAULT;
2962 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2963 return -EFAULT;
2964
2965 return dev_ioctl(net, cmd, u_ifreq64);
2966 }
2967
2968 static int dev_ifsioc(struct net *net, struct socket *sock,
2969 unsigned int cmd, struct compat_ifreq __user *uifr32)
2970 {
2971 struct ifreq __user *uifr;
2972 int err;
2973
2974 uifr = compat_alloc_user_space(sizeof(*uifr));
2975 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2976 return -EFAULT;
2977
2978 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2979
2980 if (!err) {
2981 switch (cmd) {
2982 case SIOCGIFFLAGS:
2983 case SIOCGIFMETRIC:
2984 case SIOCGIFMTU:
2985 case SIOCGIFMEM:
2986 case SIOCGIFHWADDR:
2987 case SIOCGIFINDEX:
2988 case SIOCGIFADDR:
2989 case SIOCGIFBRDADDR:
2990 case SIOCGIFDSTADDR:
2991 case SIOCGIFNETMASK:
2992 case SIOCGIFPFLAGS:
2993 case SIOCGIFTXQLEN:
2994 case SIOCGMIIPHY:
2995 case SIOCGMIIREG:
2996 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2997 err = -EFAULT;
2998 break;
2999 }
3000 }
3001 return err;
3002 }
3003
3004 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3005 struct compat_ifreq __user *uifr32)
3006 {
3007 struct ifreq ifr;
3008 struct compat_ifmap __user *uifmap32;
3009 mm_segment_t old_fs;
3010 int err;
3011
3012 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3013 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3014 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3015 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3016 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3017 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3018 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3019 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3020 if (err)
3021 return -EFAULT;
3022
3023 old_fs = get_fs();
3024 set_fs(KERNEL_DS);
3025 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3026 set_fs(old_fs);
3027
3028 if (cmd == SIOCGIFMAP && !err) {
3029 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3030 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3031 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3032 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3033 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3034 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3035 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3036 if (err)
3037 err = -EFAULT;
3038 }
3039 return err;
3040 }
3041
3042 struct rtentry32 {
3043 u32 rt_pad1;
3044 struct sockaddr rt_dst; /* target address */
3045 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3046 struct sockaddr rt_genmask; /* target network mask (IP) */
3047 unsigned short rt_flags;
3048 short rt_pad2;
3049 u32 rt_pad3;
3050 unsigned char rt_tos;
3051 unsigned char rt_class;
3052 short rt_pad4;
3053 short rt_metric; /* +1 for binary compatibility! */
3054 /* char * */ u32 rt_dev; /* forcing the device at add */
3055 u32 rt_mtu; /* per route MTU/Window */
3056 u32 rt_window; /* Window clamping */
3057 unsigned short rt_irtt; /* Initial RTT */
3058 };
3059
3060 struct in6_rtmsg32 {
3061 struct in6_addr rtmsg_dst;
3062 struct in6_addr rtmsg_src;
3063 struct in6_addr rtmsg_gateway;
3064 u32 rtmsg_type;
3065 u16 rtmsg_dst_len;
3066 u16 rtmsg_src_len;
3067 u32 rtmsg_metric;
3068 u32 rtmsg_info;
3069 u32 rtmsg_flags;
3070 s32 rtmsg_ifindex;
3071 };
3072
3073 static int routing_ioctl(struct net *net, struct socket *sock,
3074 unsigned int cmd, void __user *argp)
3075 {
3076 int ret;
3077 void *r = NULL;
3078 struct in6_rtmsg r6;
3079 struct rtentry r4;
3080 char devname[16];
3081 u32 rtdev;
3082 mm_segment_t old_fs = get_fs();
3083
3084 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3085 struct in6_rtmsg32 __user *ur6 = argp;
3086 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3087 3 * sizeof(struct in6_addr));
3088 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3089 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3090 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3091 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3092 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3093 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3094 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3095
3096 r = (void *) &r6;
3097 } else { /* ipv4 */
3098 struct rtentry32 __user *ur4 = argp;
3099 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3100 3 * sizeof(struct sockaddr));
3101 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3102 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3103 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3104 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3105 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3106 ret |= get_user(rtdev, &(ur4->rt_dev));
3107 if (rtdev) {
3108 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3109 r4.rt_dev = (char __user __force *)devname;
3110 devname[15] = 0;
3111 } else
3112 r4.rt_dev = NULL;
3113
3114 r = (void *) &r4;
3115 }
3116
3117 if (ret) {
3118 ret = -EFAULT;
3119 goto out;
3120 }
3121
3122 set_fs(KERNEL_DS);
3123 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3124 set_fs(old_fs);
3125
3126 out:
3127 return ret;
3128 }
3129
3130 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3131 * for some operations; this forces use of the newer bridge-utils that
3132 * use compatible ioctls
3133 */
3134 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3135 {
3136 compat_ulong_t tmp;
3137
3138 if (get_user(tmp, argp))
3139 return -EFAULT;
3140 if (tmp == BRCTL_GET_VERSION)
3141 return BRCTL_VERSION + 1;
3142 return -EINVAL;
3143 }
3144
3145 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3146 unsigned int cmd, unsigned long arg)
3147 {
3148 void __user *argp = compat_ptr(arg);
3149 struct sock *sk = sock->sk;
3150 struct net *net = sock_net(sk);
3151
3152 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3153 return compat_ifr_data_ioctl(net, cmd, argp);
3154
3155 switch (cmd) {
3156 case SIOCSIFBR:
3157 case SIOCGIFBR:
3158 return old_bridge_ioctl(argp);
3159 case SIOCGIFNAME:
3160 return dev_ifname32(net, argp);
3161 case SIOCGIFCONF:
3162 return dev_ifconf(net, argp);
3163 case SIOCETHTOOL:
3164 return ethtool_ioctl(net, argp);
3165 case SIOCWANDEV:
3166 return compat_siocwandev(net, argp);
3167 case SIOCGIFMAP:
3168 case SIOCSIFMAP:
3169 return compat_sioc_ifmap(net, cmd, argp);
3170 case SIOCBONDENSLAVE:
3171 case SIOCBONDRELEASE:
3172 case SIOCBONDSETHWADDR:
3173 case SIOCBONDCHANGEACTIVE:
3174 return bond_ioctl(net, cmd, argp);
3175 case SIOCADDRT:
3176 case SIOCDELRT:
3177 return routing_ioctl(net, sock, cmd, argp);
3178 case SIOCGSTAMP:
3179 return do_siocgstamp(net, sock, cmd, argp);
3180 case SIOCGSTAMPNS:
3181 return do_siocgstampns(net, sock, cmd, argp);
3182 case SIOCBONDSLAVEINFOQUERY:
3183 case SIOCBONDINFOQUERY:
3184 case SIOCSHWTSTAMP:
3185 case SIOCGHWTSTAMP:
3186 return compat_ifr_data_ioctl(net, cmd, argp);
3187
3188 case FIOSETOWN:
3189 case SIOCSPGRP:
3190 case FIOGETOWN:
3191 case SIOCGPGRP:
3192 case SIOCBRADDBR:
3193 case SIOCBRDELBR:
3194 case SIOCGIFVLAN:
3195 case SIOCSIFVLAN:
3196 case SIOCADDDLCI:
3197 case SIOCDELDLCI:
3198 case SIOCGSKNS:
3199 return sock_ioctl(file, cmd, arg);
3200
3201 case SIOCGIFFLAGS:
3202 case SIOCSIFFLAGS:
3203 case SIOCGIFMETRIC:
3204 case SIOCSIFMETRIC:
3205 case SIOCGIFMTU:
3206 case SIOCSIFMTU:
3207 case SIOCGIFMEM:
3208 case SIOCSIFMEM:
3209 case SIOCGIFHWADDR:
3210 case SIOCSIFHWADDR:
3211 case SIOCADDMULTI:
3212 case SIOCDELMULTI:
3213 case SIOCGIFINDEX:
3214 case SIOCGIFADDR:
3215 case SIOCSIFADDR:
3216 case SIOCSIFHWBROADCAST:
3217 case SIOCDIFADDR:
3218 case SIOCGIFBRDADDR:
3219 case SIOCSIFBRDADDR:
3220 case SIOCGIFDSTADDR:
3221 case SIOCSIFDSTADDR:
3222 case SIOCGIFNETMASK:
3223 case SIOCSIFNETMASK:
3224 case SIOCSIFPFLAGS:
3225 case SIOCGIFPFLAGS:
3226 case SIOCGIFTXQLEN:
3227 case SIOCSIFTXQLEN:
3228 case SIOCBRADDIF:
3229 case SIOCBRDELIF:
3230 case SIOCSIFNAME:
3231 case SIOCGMIIPHY:
3232 case SIOCGMIIREG:
3233 case SIOCSMIIREG:
3234 return dev_ifsioc(net, sock, cmd, argp);
3235
3236 case SIOCSARP:
3237 case SIOCGARP:
3238 case SIOCDARP:
3239 case SIOCATMARK:
3240 return sock_do_ioctl(net, sock, cmd, arg);
3241 }
3242
3243 return -ENOIOCTLCMD;
3244 }
3245
3246 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3247 unsigned long arg)
3248 {
3249 struct socket *sock = file->private_data;
3250 int ret = -ENOIOCTLCMD;
3251 struct sock *sk;
3252 struct net *net;
3253
3254 sk = sock->sk;
3255 net = sock_net(sk);
3256
3257 if (sock->ops->compat_ioctl)
3258 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3259
3260 if (ret == -ENOIOCTLCMD &&
3261 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3262 ret = compat_wext_handle_ioctl(net, cmd, arg);
3263
3264 if (ret == -ENOIOCTLCMD)
3265 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3266
3267 return ret;
3268 }
3269 #endif
3270
3271 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3272 {
3273 return sock->ops->bind(sock, addr, addrlen);
3274 }
3275 EXPORT_SYMBOL(kernel_bind);
3276
3277 int kernel_listen(struct socket *sock, int backlog)
3278 {
3279 return sock->ops->listen(sock, backlog);
3280 }
3281 EXPORT_SYMBOL(kernel_listen);
3282
3283 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3284 {
3285 struct sock *sk = sock->sk;
3286 int err;
3287
3288 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3289 newsock);
3290 if (err < 0)
3291 goto done;
3292
3293 err = sock->ops->accept(sock, *newsock, flags, true);
3294 if (err < 0) {
3295 sock_release(*newsock);
3296 *newsock = NULL;
3297 goto done;
3298 }
3299
3300 (*newsock)->ops = sock->ops;
3301 __module_get((*newsock)->ops->owner);
3302
3303 done:
3304 return err;
3305 }
3306 EXPORT_SYMBOL(kernel_accept);
3307
3308 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3309 int flags)
3310 {
3311 return sock->ops->connect(sock, addr, addrlen, flags);
3312 }
3313 EXPORT_SYMBOL(kernel_connect);
3314
3315 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3316 int *addrlen)
3317 {
3318 return sock->ops->getname(sock, addr, addrlen, 0);
3319 }
3320 EXPORT_SYMBOL(kernel_getsockname);
3321
3322 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3323 int *addrlen)
3324 {
3325 return sock->ops->getname(sock, addr, addrlen, 1);
3326 }
3327 EXPORT_SYMBOL(kernel_getpeername);
3328
3329 int kernel_getsockopt(struct socket *sock, int level, int optname,
3330 char *optval, int *optlen)
3331 {
3332 mm_segment_t oldfs = get_fs();
3333 char __user *uoptval;
3334 int __user *uoptlen;
3335 int err;
3336
3337 uoptval = (char __user __force *) optval;
3338 uoptlen = (int __user __force *) optlen;
3339
3340 set_fs(KERNEL_DS);
3341 if (level == SOL_SOCKET)
3342 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3343 else
3344 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3345 uoptlen);
3346 set_fs(oldfs);
3347 return err;
3348 }
3349 EXPORT_SYMBOL(kernel_getsockopt);
3350
3351 int kernel_setsockopt(struct socket *sock, int level, int optname,
3352 char *optval, unsigned int optlen)
3353 {
3354 mm_segment_t oldfs = get_fs();
3355 char __user *uoptval;
3356 int err;
3357
3358 uoptval = (char __user __force *) optval;
3359
3360 set_fs(KERNEL_DS);
3361 if (level == SOL_SOCKET)
3362 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3363 else
3364 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3365 optlen);
3366 set_fs(oldfs);
3367 return err;
3368 }
3369 EXPORT_SYMBOL(kernel_setsockopt);
3370
3371 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3372 size_t size, int flags)
3373 {
3374 if (sock->ops->sendpage)
3375 return sock->ops->sendpage(sock, page, offset, size, flags);
3376
3377 return sock_no_sendpage(sock, page, offset, size, flags);
3378 }
3379 EXPORT_SYMBOL(kernel_sendpage);
3380
3381 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3382 {
3383 mm_segment_t oldfs = get_fs();
3384 int err;
3385
3386 set_fs(KERNEL_DS);
3387 err = sock->ops->ioctl(sock, cmd, arg);
3388 set_fs(oldfs);
3389
3390 return err;
3391 }
3392 EXPORT_SYMBOL(kernel_sock_ioctl);
3393
3394 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3395 {
3396 return sock->ops->shutdown(sock, how);
3397 }
3398 EXPORT_SYMBOL(kernel_sock_shutdown);
3399
3400 /* This routine returns the IP overhead imposed by a socket i.e.
3401 * the length of the underlying IP header, depending on whether
3402 * this is an IPv4 or IPv6 socket and the length from IP options turned
3403 * on at the socket. Assumes that the caller has a lock on the socket.
3404 */
3405 u32 kernel_sock_ip_overhead(struct sock *sk)
3406 {
3407 struct inet_sock *inet;
3408 struct ip_options_rcu *opt;
3409 u32 overhead = 0;
3410 bool owned_by_user;
3411 #if IS_ENABLED(CONFIG_IPV6)
3412 struct ipv6_pinfo *np;
3413 struct ipv6_txoptions *optv6 = NULL;
3414 #endif /* IS_ENABLED(CONFIG_IPV6) */
3415
3416 if (!sk)
3417 return overhead;
3418
3419 owned_by_user = sock_owned_by_user(sk);
3420 switch (sk->sk_family) {
3421 case AF_INET:
3422 inet = inet_sk(sk);
3423 overhead += sizeof(struct iphdr);
3424 opt = rcu_dereference_protected(inet->inet_opt,
3425 owned_by_user);
3426 if (opt)
3427 overhead += opt->opt.optlen;
3428 return overhead;
3429 #if IS_ENABLED(CONFIG_IPV6)
3430 case AF_INET6:
3431 np = inet6_sk(sk);
3432 overhead += sizeof(struct ipv6hdr);
3433 if (np)
3434 optv6 = rcu_dereference_protected(np->opt,
3435 owned_by_user);
3436 if (optv6)
3437 overhead += (optv6->opt_flen + optv6->opt_nflen);
3438 return overhead;
3439 #endif /* IS_ENABLED(CONFIG_IPV6) */
3440 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3441 return overhead;
3442 }
3443 }
3444 EXPORT_SYMBOL(kernel_sock_ip_overhead);