]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/socket.c
bcm2835-camera: Correct port_parameter_get return value
[mirror_ubuntu-zesty-kernel.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static int init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
302 }
303
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
308 };
309
310 /*
311 * sockfs_dname() is called from d_path().
312 */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
317 }
318
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
321 };
322
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
326 {
327 if (value) {
328 if (dentry->d_name.len + 1 > size)
329 return -ERANGE;
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331 }
332 return dentry->d_name.len + 1;
333 }
334
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338
339 static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
342 };
343
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 struct dentry *dentry, struct inode *inode,
346 const char *suffix, const void *value,
347 size_t size, int flags)
348 {
349 /* Handled by LSM. */
350 return -EAGAIN;
351 }
352
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 .prefix = XATTR_SECURITY_PREFIX,
355 .set = sockfs_security_xattr_set,
356 };
357
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 &sockfs_xattr_handler,
360 &sockfs_security_xattr_handler,
361 NULL
362 };
363
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 int flags, const char *dev_name, void *data)
366 {
367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 sockfs_xattr_handlers,
369 &sockfs_dentry_operations, SOCKFS_MAGIC);
370 }
371
372 static struct vfsmount *sock_mnt __read_mostly;
373
374 static struct file_system_type sock_fs_type = {
375 .name = "sockfs",
376 .mount = sockfs_mount,
377 .kill_sb = kill_anon_super,
378 };
379
380 /*
381 * Obtains the first available file descriptor and sets it up for use.
382 *
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
390 *
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
395 */
396
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
398 {
399 struct qstr name = { .name = "" };
400 struct path path;
401 struct file *file;
402
403 if (dname) {
404 name.name = dname;
405 name.len = strlen(name.name);
406 } else if (sock->sk) {
407 name.name = sock->sk->sk_prot_creator->name;
408 name.len = strlen(name.name);
409 }
410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 if (unlikely(!path.dentry))
412 return ERR_PTR(-ENOMEM);
413 path.mnt = mntget(sock_mnt);
414
415 d_instantiate(path.dentry, SOCK_INODE(sock));
416
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 return file;
424 }
425
426 sock->file = file;
427 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 file->private_data = sock;
429 return file;
430 }
431 EXPORT_SYMBOL(sock_alloc_file);
432
433 static int sock_map_fd(struct socket *sock, int flags)
434 {
435 struct file *newfile;
436 int fd = get_unused_fd_flags(flags);
437 if (unlikely(fd < 0))
438 return fd;
439
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
443 return fd;
444 }
445
446 put_unused_fd(fd);
447 return PTR_ERR(newfile);
448 }
449
450 struct socket *sock_from_file(struct file *file, int *err)
451 {
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
454
455 *err = -ENOTSOCK;
456 return NULL;
457 }
458 EXPORT_SYMBOL(sock_from_file);
459
460 /**
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
464 *
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
469 *
470 * On a success the socket object pointer is returned.
471 */
472
473 struct socket *sockfd_lookup(int fd, int *err)
474 {
475 struct file *file;
476 struct socket *sock;
477
478 file = fget(fd);
479 if (!file) {
480 *err = -EBADF;
481 return NULL;
482 }
483
484 sock = sock_from_file(file, err);
485 if (!sock)
486 fput(file);
487 return sock;
488 }
489 EXPORT_SYMBOL(sockfd_lookup);
490
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
492 {
493 struct fd f = fdget(fd);
494 struct socket *sock;
495
496 *err = -EBADF;
497 if (f.file) {
498 sock = sock_from_file(f.file, err);
499 if (likely(sock)) {
500 *fput_needed = f.flags;
501 return sock;
502 }
503 fdput(f);
504 }
505 return NULL;
506 }
507
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 size_t size)
510 {
511 ssize_t len;
512 ssize_t used = 0;
513
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 if (len < 0)
516 return len;
517 used += len;
518 if (buffer) {
519 if (size < used)
520 return -ERANGE;
521 buffer += len;
522 }
523
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 used += len;
526 if (buffer) {
527 if (size < used)
528 return -ERANGE;
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 buffer += len;
531 }
532
533 return used;
534 }
535
536 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
537 {
538 int err = simple_setattr(dentry, iattr);
539
540 if (!err && (iattr->ia_valid & ATTR_UID)) {
541 struct socket *sock = SOCKET_I(d_inode(dentry));
542
543 sock->sk->sk_uid = iattr->ia_uid;
544 }
545
546 return err;
547 }
548
549 static const struct inode_operations sockfs_inode_ops = {
550 .listxattr = sockfs_listxattr,
551 .setattr = sockfs_setattr,
552 };
553
554 /**
555 * sock_alloc - allocate a socket
556 *
557 * Allocate a new inode and socket object. The two are bound together
558 * and initialised. The socket is then returned. If we are out of inodes
559 * NULL is returned.
560 */
561
562 struct socket *sock_alloc(void)
563 {
564 struct inode *inode;
565 struct socket *sock;
566
567 inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 if (!inode)
569 return NULL;
570
571 sock = SOCKET_I(inode);
572
573 kmemcheck_annotate_bitfield(sock, type);
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
579
580 this_cpu_add(sockets_in_use, 1);
581 return sock;
582 }
583 EXPORT_SYMBOL(sock_alloc);
584
585 /**
586 * sock_release - close a socket
587 * @sock: socket to close
588 *
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
592 */
593
594 void sock_release(struct socket *sock)
595 {
596 if (sock->ops) {
597 struct module *owner = sock->ops->owner;
598
599 sock->ops->release(sock);
600 sock->ops = NULL;
601 module_put(owner);
602 }
603
604 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
605 pr_err("%s: fasync list not empty!\n", __func__);
606
607 this_cpu_sub(sockets_in_use, 1);
608 if (!sock->file) {
609 iput(SOCK_INODE(sock));
610 return;
611 }
612 sock->file = NULL;
613 }
614 EXPORT_SYMBOL(sock_release);
615
616 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
617 {
618 u8 flags = *tx_flags;
619
620 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
621 flags |= SKBTX_HW_TSTAMP;
622
623 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
624 flags |= SKBTX_SW_TSTAMP;
625
626 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
627 flags |= SKBTX_SCHED_TSTAMP;
628
629 *tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632
633 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
634 {
635 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
636 BUG_ON(ret == -EIOCBQUEUED);
637 return ret;
638 }
639
640 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
641 {
642 int err = security_socket_sendmsg(sock, msg,
643 msg_data_left(msg));
644
645 return err ?: sock_sendmsg_nosec(sock, msg);
646 }
647 EXPORT_SYMBOL(sock_sendmsg);
648
649 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
650 struct kvec *vec, size_t num, size_t size)
651 {
652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
653 return sock_sendmsg(sock, msg);
654 }
655 EXPORT_SYMBOL(kernel_sendmsg);
656
657 static bool skb_is_err_queue(const struct sk_buff *skb)
658 {
659 /* pkt_type of skbs enqueued on the error queue are set to
660 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
661 * in recvmsg, since skbs received on a local socket will never
662 * have a pkt_type of PACKET_OUTGOING.
663 */
664 return skb->pkt_type == PACKET_OUTGOING;
665 }
666
667 /*
668 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
669 */
670 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
671 struct sk_buff *skb)
672 {
673 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
674 struct scm_timestamping tss;
675 int empty = 1;
676 struct skb_shared_hwtstamps *shhwtstamps =
677 skb_hwtstamps(skb);
678
679 /* Race occurred between timestamp enabling and packet
680 receiving. Fill in the current time for now. */
681 if (need_software_tstamp && skb->tstamp == 0)
682 __net_timestamp(skb);
683
684 if (need_software_tstamp) {
685 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
686 struct timeval tv;
687 skb_get_timestamp(skb, &tv);
688 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
689 sizeof(tv), &tv);
690 } else {
691 struct timespec ts;
692 skb_get_timestampns(skb, &ts);
693 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
694 sizeof(ts), &ts);
695 }
696 }
697
698 memset(&tss, 0, sizeof(tss));
699 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
700 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
701 empty = 0;
702 if (shhwtstamps &&
703 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
704 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
705 empty = 0;
706 if (!empty) {
707 put_cmsg(msg, SOL_SOCKET,
708 SCM_TIMESTAMPING, sizeof(tss), &tss);
709
710 if (skb_is_err_queue(skb) && skb->len &&
711 SKB_EXT_ERR(skb)->opt_stats)
712 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
713 skb->len, skb->data);
714 }
715 }
716 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
717
718 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
719 struct sk_buff *skb)
720 {
721 int ack;
722
723 if (!sock_flag(sk, SOCK_WIFI_STATUS))
724 return;
725 if (!skb->wifi_acked_valid)
726 return;
727
728 ack = skb->wifi_acked;
729
730 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
731 }
732 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
733
734 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
735 struct sk_buff *skb)
736 {
737 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
738 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
739 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
740 }
741
742 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
743 struct sk_buff *skb)
744 {
745 sock_recv_timestamp(msg, sk, skb);
746 sock_recv_drops(msg, sk, skb);
747 }
748 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
749
750 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
751 int flags)
752 {
753 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
754 }
755
756 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
757 {
758 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
759
760 return err ?: sock_recvmsg_nosec(sock, msg, flags);
761 }
762 EXPORT_SYMBOL(sock_recvmsg);
763
764 /**
765 * kernel_recvmsg - Receive a message from a socket (kernel space)
766 * @sock: The socket to receive the message from
767 * @msg: Received message
768 * @vec: Input s/g array for message data
769 * @num: Size of input s/g array
770 * @size: Number of bytes to read
771 * @flags: Message flags (MSG_DONTWAIT, etc...)
772 *
773 * On return the msg structure contains the scatter/gather array passed in the
774 * vec argument. The array is modified so that it consists of the unfilled
775 * portion of the original array.
776 *
777 * The returned value is the total number of bytes received, or an error.
778 */
779 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
780 struct kvec *vec, size_t num, size_t size, int flags)
781 {
782 mm_segment_t oldfs = get_fs();
783 int result;
784
785 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
786 set_fs(KERNEL_DS);
787 result = sock_recvmsg(sock, msg, flags);
788 set_fs(oldfs);
789 return result;
790 }
791 EXPORT_SYMBOL(kernel_recvmsg);
792
793 static ssize_t sock_sendpage(struct file *file, struct page *page,
794 int offset, size_t size, loff_t *ppos, int more)
795 {
796 struct socket *sock;
797 int flags;
798
799 sock = file->private_data;
800
801 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
802 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
803 flags |= more;
804
805 return kernel_sendpage(sock, page, offset, size, flags);
806 }
807
808 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
809 struct pipe_inode_info *pipe, size_t len,
810 unsigned int flags)
811 {
812 struct socket *sock = file->private_data;
813
814 if (unlikely(!sock->ops->splice_read))
815 return -EINVAL;
816
817 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
818 }
819
820 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
821 {
822 struct file *file = iocb->ki_filp;
823 struct socket *sock = file->private_data;
824 struct msghdr msg = {.msg_iter = *to,
825 .msg_iocb = iocb};
826 ssize_t res;
827
828 if (file->f_flags & O_NONBLOCK)
829 msg.msg_flags = MSG_DONTWAIT;
830
831 if (iocb->ki_pos != 0)
832 return -ESPIPE;
833
834 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
835 return 0;
836
837 res = sock_recvmsg(sock, &msg, msg.msg_flags);
838 *to = msg.msg_iter;
839 return res;
840 }
841
842 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
843 {
844 struct file *file = iocb->ki_filp;
845 struct socket *sock = file->private_data;
846 struct msghdr msg = {.msg_iter = *from,
847 .msg_iocb = iocb};
848 ssize_t res;
849
850 if (iocb->ki_pos != 0)
851 return -ESPIPE;
852
853 if (file->f_flags & O_NONBLOCK)
854 msg.msg_flags = MSG_DONTWAIT;
855
856 if (sock->type == SOCK_SEQPACKET)
857 msg.msg_flags |= MSG_EOR;
858
859 res = sock_sendmsg(sock, &msg);
860 *from = msg.msg_iter;
861 return res;
862 }
863
864 /*
865 * Atomic setting of ioctl hooks to avoid race
866 * with module unload.
867 */
868
869 static DEFINE_MUTEX(br_ioctl_mutex);
870 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
871
872 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
873 {
874 mutex_lock(&br_ioctl_mutex);
875 br_ioctl_hook = hook;
876 mutex_unlock(&br_ioctl_mutex);
877 }
878 EXPORT_SYMBOL(brioctl_set);
879
880 static DEFINE_MUTEX(vlan_ioctl_mutex);
881 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
882
883 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
884 {
885 mutex_lock(&vlan_ioctl_mutex);
886 vlan_ioctl_hook = hook;
887 mutex_unlock(&vlan_ioctl_mutex);
888 }
889 EXPORT_SYMBOL(vlan_ioctl_set);
890
891 static DEFINE_MUTEX(dlci_ioctl_mutex);
892 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
893
894 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
895 {
896 mutex_lock(&dlci_ioctl_mutex);
897 dlci_ioctl_hook = hook;
898 mutex_unlock(&dlci_ioctl_mutex);
899 }
900 EXPORT_SYMBOL(dlci_ioctl_set);
901
902 static long sock_do_ioctl(struct net *net, struct socket *sock,
903 unsigned int cmd, unsigned long arg)
904 {
905 int err;
906 void __user *argp = (void __user *)arg;
907
908 err = sock->ops->ioctl(sock, cmd, arg);
909
910 /*
911 * If this ioctl is unknown try to hand it down
912 * to the NIC driver.
913 */
914 if (err == -ENOIOCTLCMD)
915 err = dev_ioctl(net, cmd, argp);
916
917 return err;
918 }
919
920 /*
921 * With an ioctl, arg may well be a user mode pointer, but we don't know
922 * what to do with it - that's up to the protocol still.
923 */
924
925 static struct ns_common *get_net_ns(struct ns_common *ns)
926 {
927 return &get_net(container_of(ns, struct net, ns))->ns;
928 }
929
930 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
931 {
932 struct socket *sock;
933 struct sock *sk;
934 void __user *argp = (void __user *)arg;
935 int pid, err;
936 struct net *net;
937
938 sock = file->private_data;
939 sk = sock->sk;
940 net = sock_net(sk);
941 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
942 err = dev_ioctl(net, cmd, argp);
943 } else
944 #ifdef CONFIG_WEXT_CORE
945 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
946 err = dev_ioctl(net, cmd, argp);
947 } else
948 #endif
949 switch (cmd) {
950 case FIOSETOWN:
951 case SIOCSPGRP:
952 err = -EFAULT;
953 if (get_user(pid, (int __user *)argp))
954 break;
955 f_setown(sock->file, pid, 1);
956 err = 0;
957 break;
958 case FIOGETOWN:
959 case SIOCGPGRP:
960 err = put_user(f_getown(sock->file),
961 (int __user *)argp);
962 break;
963 case SIOCGIFBR:
964 case SIOCSIFBR:
965 case SIOCBRADDBR:
966 case SIOCBRDELBR:
967 err = -ENOPKG;
968 if (!br_ioctl_hook)
969 request_module("bridge");
970
971 mutex_lock(&br_ioctl_mutex);
972 if (br_ioctl_hook)
973 err = br_ioctl_hook(net, cmd, argp);
974 mutex_unlock(&br_ioctl_mutex);
975 break;
976 case SIOCGIFVLAN:
977 case SIOCSIFVLAN:
978 err = -ENOPKG;
979 if (!vlan_ioctl_hook)
980 request_module("8021q");
981
982 mutex_lock(&vlan_ioctl_mutex);
983 if (vlan_ioctl_hook)
984 err = vlan_ioctl_hook(net, argp);
985 mutex_unlock(&vlan_ioctl_mutex);
986 break;
987 case SIOCADDDLCI:
988 case SIOCDELDLCI:
989 err = -ENOPKG;
990 if (!dlci_ioctl_hook)
991 request_module("dlci");
992
993 mutex_lock(&dlci_ioctl_mutex);
994 if (dlci_ioctl_hook)
995 err = dlci_ioctl_hook(cmd, argp);
996 mutex_unlock(&dlci_ioctl_mutex);
997 break;
998 case SIOCGSKNS:
999 err = -EPERM;
1000 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1001 break;
1002
1003 err = open_related_ns(&net->ns, get_net_ns);
1004 break;
1005 default:
1006 err = sock_do_ioctl(net, sock, cmd, arg);
1007 break;
1008 }
1009 return err;
1010 }
1011
1012 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1013 {
1014 int err;
1015 struct socket *sock = NULL;
1016
1017 err = security_socket_create(family, type, protocol, 1);
1018 if (err)
1019 goto out;
1020
1021 sock = sock_alloc();
1022 if (!sock) {
1023 err = -ENOMEM;
1024 goto out;
1025 }
1026
1027 sock->type = type;
1028 err = security_socket_post_create(sock, family, type, protocol, 1);
1029 if (err)
1030 goto out_release;
1031
1032 out:
1033 *res = sock;
1034 return err;
1035 out_release:
1036 sock_release(sock);
1037 sock = NULL;
1038 goto out;
1039 }
1040 EXPORT_SYMBOL(sock_create_lite);
1041
1042 /* No kernel lock held - perfect */
1043 static unsigned int sock_poll(struct file *file, poll_table *wait)
1044 {
1045 unsigned int busy_flag = 0;
1046 struct socket *sock;
1047
1048 /*
1049 * We can't return errors to poll, so it's either yes or no.
1050 */
1051 sock = file->private_data;
1052
1053 if (sk_can_busy_loop(sock->sk)) {
1054 /* this socket can poll_ll so tell the system call */
1055 busy_flag = POLL_BUSY_LOOP;
1056
1057 /* once, only if requested by syscall */
1058 if (wait && (wait->_key & POLL_BUSY_LOOP))
1059 sk_busy_loop(sock->sk, 1);
1060 }
1061
1062 return busy_flag | sock->ops->poll(file, sock, wait);
1063 }
1064
1065 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1066 {
1067 struct socket *sock = file->private_data;
1068
1069 return sock->ops->mmap(file, sock, vma);
1070 }
1071
1072 static int sock_close(struct inode *inode, struct file *filp)
1073 {
1074 sock_release(SOCKET_I(inode));
1075 return 0;
1076 }
1077
1078 /*
1079 * Update the socket async list
1080 *
1081 * Fasync_list locking strategy.
1082 *
1083 * 1. fasync_list is modified only under process context socket lock
1084 * i.e. under semaphore.
1085 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1086 * or under socket lock
1087 */
1088
1089 static int sock_fasync(int fd, struct file *filp, int on)
1090 {
1091 struct socket *sock = filp->private_data;
1092 struct sock *sk = sock->sk;
1093 struct socket_wq *wq;
1094
1095 if (sk == NULL)
1096 return -EINVAL;
1097
1098 lock_sock(sk);
1099 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1100 fasync_helper(fd, filp, on, &wq->fasync_list);
1101
1102 if (!wq->fasync_list)
1103 sock_reset_flag(sk, SOCK_FASYNC);
1104 else
1105 sock_set_flag(sk, SOCK_FASYNC);
1106
1107 release_sock(sk);
1108 return 0;
1109 }
1110
1111 /* This function may be called only under rcu_lock */
1112
1113 int sock_wake_async(struct socket_wq *wq, int how, int band)
1114 {
1115 if (!wq || !wq->fasync_list)
1116 return -1;
1117
1118 switch (how) {
1119 case SOCK_WAKE_WAITD:
1120 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1121 break;
1122 goto call_kill;
1123 case SOCK_WAKE_SPACE:
1124 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1125 break;
1126 /* fall through */
1127 case SOCK_WAKE_IO:
1128 call_kill:
1129 kill_fasync(&wq->fasync_list, SIGIO, band);
1130 break;
1131 case SOCK_WAKE_URG:
1132 kill_fasync(&wq->fasync_list, SIGURG, band);
1133 }
1134
1135 return 0;
1136 }
1137 EXPORT_SYMBOL(sock_wake_async);
1138
1139 int __sock_create(struct net *net, int family, int type, int protocol,
1140 struct socket **res, int kern)
1141 {
1142 int err;
1143 struct socket *sock;
1144 const struct net_proto_family *pf;
1145
1146 /*
1147 * Check protocol is in range
1148 */
1149 if (family < 0 || family >= NPROTO)
1150 return -EAFNOSUPPORT;
1151 if (type < 0 || type >= SOCK_MAX)
1152 return -EINVAL;
1153
1154 /* Compatibility.
1155
1156 This uglymoron is moved from INET layer to here to avoid
1157 deadlock in module load.
1158 */
1159 if (family == PF_INET && type == SOCK_PACKET) {
1160 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1161 current->comm);
1162 family = PF_PACKET;
1163 }
1164
1165 err = security_socket_create(family, type, protocol, kern);
1166 if (err)
1167 return err;
1168
1169 /*
1170 * Allocate the socket and allow the family to set things up. if
1171 * the protocol is 0, the family is instructed to select an appropriate
1172 * default.
1173 */
1174 sock = sock_alloc();
1175 if (!sock) {
1176 net_warn_ratelimited("socket: no more sockets\n");
1177 return -ENFILE; /* Not exactly a match, but its the
1178 closest posix thing */
1179 }
1180
1181 sock->type = type;
1182
1183 #ifdef CONFIG_MODULES
1184 /* Attempt to load a protocol module if the find failed.
1185 *
1186 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1187 * requested real, full-featured networking support upon configuration.
1188 * Otherwise module support will break!
1189 */
1190 if (rcu_access_pointer(net_families[family]) == NULL)
1191 request_module("net-pf-%d", family);
1192 #endif
1193
1194 rcu_read_lock();
1195 pf = rcu_dereference(net_families[family]);
1196 err = -EAFNOSUPPORT;
1197 if (!pf)
1198 goto out_release;
1199
1200 /*
1201 * We will call the ->create function, that possibly is in a loadable
1202 * module, so we have to bump that loadable module refcnt first.
1203 */
1204 if (!try_module_get(pf->owner))
1205 goto out_release;
1206
1207 /* Now protected by module ref count */
1208 rcu_read_unlock();
1209
1210 err = pf->create(net, sock, protocol, kern);
1211 if (err < 0)
1212 goto out_module_put;
1213
1214 /*
1215 * Now to bump the refcnt of the [loadable] module that owns this
1216 * socket at sock_release time we decrement its refcnt.
1217 */
1218 if (!try_module_get(sock->ops->owner))
1219 goto out_module_busy;
1220
1221 /*
1222 * Now that we're done with the ->create function, the [loadable]
1223 * module can have its refcnt decremented
1224 */
1225 module_put(pf->owner);
1226 err = security_socket_post_create(sock, family, type, protocol, kern);
1227 if (err)
1228 goto out_sock_release;
1229 *res = sock;
1230
1231 return 0;
1232
1233 out_module_busy:
1234 err = -EAFNOSUPPORT;
1235 out_module_put:
1236 sock->ops = NULL;
1237 module_put(pf->owner);
1238 out_sock_release:
1239 sock_release(sock);
1240 return err;
1241
1242 out_release:
1243 rcu_read_unlock();
1244 goto out_sock_release;
1245 }
1246 EXPORT_SYMBOL(__sock_create);
1247
1248 int sock_create(int family, int type, int protocol, struct socket **res)
1249 {
1250 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1251 }
1252 EXPORT_SYMBOL(sock_create);
1253
1254 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1255 {
1256 return __sock_create(net, family, type, protocol, res, 1);
1257 }
1258 EXPORT_SYMBOL(sock_create_kern);
1259
1260 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1261 {
1262 int retval;
1263 struct socket *sock;
1264 int flags;
1265
1266 /* Check the SOCK_* constants for consistency. */
1267 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1268 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1269 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1270 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1271
1272 flags = type & ~SOCK_TYPE_MASK;
1273 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1274 return -EINVAL;
1275 type &= SOCK_TYPE_MASK;
1276
1277 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1278 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1279
1280 retval = sock_create(family, type, protocol, &sock);
1281 if (retval < 0)
1282 goto out;
1283
1284 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1285 if (retval < 0)
1286 goto out_release;
1287
1288 out:
1289 /* It may be already another descriptor 8) Not kernel problem. */
1290 return retval;
1291
1292 out_release:
1293 sock_release(sock);
1294 return retval;
1295 }
1296
1297 /*
1298 * Create a pair of connected sockets.
1299 */
1300
1301 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1302 int __user *, usockvec)
1303 {
1304 struct socket *sock1, *sock2;
1305 int fd1, fd2, err;
1306 struct file *newfile1, *newfile2;
1307 int flags;
1308
1309 flags = type & ~SOCK_TYPE_MASK;
1310 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1311 return -EINVAL;
1312 type &= SOCK_TYPE_MASK;
1313
1314 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1315 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1316
1317 /*
1318 * Obtain the first socket and check if the underlying protocol
1319 * supports the socketpair call.
1320 */
1321
1322 err = sock_create(family, type, protocol, &sock1);
1323 if (err < 0)
1324 goto out;
1325
1326 err = sock_create(family, type, protocol, &sock2);
1327 if (err < 0)
1328 goto out_release_1;
1329
1330 err = sock1->ops->socketpair(sock1, sock2);
1331 if (err < 0)
1332 goto out_release_both;
1333
1334 fd1 = get_unused_fd_flags(flags);
1335 if (unlikely(fd1 < 0)) {
1336 err = fd1;
1337 goto out_release_both;
1338 }
1339
1340 fd2 = get_unused_fd_flags(flags);
1341 if (unlikely(fd2 < 0)) {
1342 err = fd2;
1343 goto out_put_unused_1;
1344 }
1345
1346 newfile1 = sock_alloc_file(sock1, flags, NULL);
1347 if (IS_ERR(newfile1)) {
1348 err = PTR_ERR(newfile1);
1349 goto out_put_unused_both;
1350 }
1351
1352 newfile2 = sock_alloc_file(sock2, flags, NULL);
1353 if (IS_ERR(newfile2)) {
1354 err = PTR_ERR(newfile2);
1355 goto out_fput_1;
1356 }
1357
1358 err = put_user(fd1, &usockvec[0]);
1359 if (err)
1360 goto out_fput_both;
1361
1362 err = put_user(fd2, &usockvec[1]);
1363 if (err)
1364 goto out_fput_both;
1365
1366 audit_fd_pair(fd1, fd2);
1367
1368 fd_install(fd1, newfile1);
1369 fd_install(fd2, newfile2);
1370 /* fd1 and fd2 may be already another descriptors.
1371 * Not kernel problem.
1372 */
1373
1374 return 0;
1375
1376 out_fput_both:
1377 fput(newfile2);
1378 fput(newfile1);
1379 put_unused_fd(fd2);
1380 put_unused_fd(fd1);
1381 goto out;
1382
1383 out_fput_1:
1384 fput(newfile1);
1385 put_unused_fd(fd2);
1386 put_unused_fd(fd1);
1387 sock_release(sock2);
1388 goto out;
1389
1390 out_put_unused_both:
1391 put_unused_fd(fd2);
1392 out_put_unused_1:
1393 put_unused_fd(fd1);
1394 out_release_both:
1395 sock_release(sock2);
1396 out_release_1:
1397 sock_release(sock1);
1398 out:
1399 return err;
1400 }
1401
1402 /*
1403 * Bind a name to a socket. Nothing much to do here since it's
1404 * the protocol's responsibility to handle the local address.
1405 *
1406 * We move the socket address to kernel space before we call
1407 * the protocol layer (having also checked the address is ok).
1408 */
1409
1410 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1411 {
1412 struct socket *sock;
1413 struct sockaddr_storage address;
1414 int err, fput_needed;
1415
1416 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1417 if (sock) {
1418 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1419 if (err >= 0) {
1420 err = security_socket_bind(sock,
1421 (struct sockaddr *)&address,
1422 addrlen);
1423 if (!err)
1424 err = sock->ops->bind(sock,
1425 (struct sockaddr *)
1426 &address, addrlen);
1427 }
1428 fput_light(sock->file, fput_needed);
1429 }
1430 return err;
1431 }
1432
1433 /*
1434 * Perform a listen. Basically, we allow the protocol to do anything
1435 * necessary for a listen, and if that works, we mark the socket as
1436 * ready for listening.
1437 */
1438
1439 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1440 {
1441 struct socket *sock;
1442 int err, fput_needed;
1443 int somaxconn;
1444
1445 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1446 if (sock) {
1447 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1448 if ((unsigned int)backlog > somaxconn)
1449 backlog = somaxconn;
1450
1451 err = security_socket_listen(sock, backlog);
1452 if (!err)
1453 err = sock->ops->listen(sock, backlog);
1454
1455 fput_light(sock->file, fput_needed);
1456 }
1457 return err;
1458 }
1459
1460 /*
1461 * For accept, we attempt to create a new socket, set up the link
1462 * with the client, wake up the client, then return the new
1463 * connected fd. We collect the address of the connector in kernel
1464 * space and move it to user at the very end. This is unclean because
1465 * we open the socket then return an error.
1466 *
1467 * 1003.1g adds the ability to recvmsg() to query connection pending
1468 * status to recvmsg. We need to add that support in a way thats
1469 * clean when we restucture accept also.
1470 */
1471
1472 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1473 int __user *, upeer_addrlen, int, flags)
1474 {
1475 struct socket *sock, *newsock;
1476 struct file *newfile;
1477 int err, len, newfd, fput_needed;
1478 struct sockaddr_storage address;
1479
1480 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1481 return -EINVAL;
1482
1483 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1484 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1485
1486 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1487 if (!sock)
1488 goto out;
1489
1490 err = -ENFILE;
1491 newsock = sock_alloc();
1492 if (!newsock)
1493 goto out_put;
1494
1495 newsock->type = sock->type;
1496 newsock->ops = sock->ops;
1497
1498 /*
1499 * We don't need try_module_get here, as the listening socket (sock)
1500 * has the protocol module (sock->ops->owner) held.
1501 */
1502 __module_get(newsock->ops->owner);
1503
1504 newfd = get_unused_fd_flags(flags);
1505 if (unlikely(newfd < 0)) {
1506 err = newfd;
1507 sock_release(newsock);
1508 goto out_put;
1509 }
1510 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1511 if (IS_ERR(newfile)) {
1512 err = PTR_ERR(newfile);
1513 put_unused_fd(newfd);
1514 sock_release(newsock);
1515 goto out_put;
1516 }
1517
1518 err = security_socket_accept(sock, newsock);
1519 if (err)
1520 goto out_fd;
1521
1522 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1523 if (err < 0)
1524 goto out_fd;
1525
1526 if (upeer_sockaddr) {
1527 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1528 &len, 2) < 0) {
1529 err = -ECONNABORTED;
1530 goto out_fd;
1531 }
1532 err = move_addr_to_user(&address,
1533 len, upeer_sockaddr, upeer_addrlen);
1534 if (err < 0)
1535 goto out_fd;
1536 }
1537
1538 /* File flags are not inherited via accept() unlike another OSes. */
1539
1540 fd_install(newfd, newfile);
1541 err = newfd;
1542
1543 out_put:
1544 fput_light(sock->file, fput_needed);
1545 out:
1546 return err;
1547 out_fd:
1548 fput(newfile);
1549 put_unused_fd(newfd);
1550 goto out_put;
1551 }
1552
1553 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1554 int __user *, upeer_addrlen)
1555 {
1556 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1557 }
1558
1559 /*
1560 * Attempt to connect to a socket with the server address. The address
1561 * is in user space so we verify it is OK and move it to kernel space.
1562 *
1563 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1564 * break bindings
1565 *
1566 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1567 * other SEQPACKET protocols that take time to connect() as it doesn't
1568 * include the -EINPROGRESS status for such sockets.
1569 */
1570
1571 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1572 int, addrlen)
1573 {
1574 struct socket *sock;
1575 struct sockaddr_storage address;
1576 int err, fput_needed;
1577
1578 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1579 if (!sock)
1580 goto out;
1581 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1582 if (err < 0)
1583 goto out_put;
1584
1585 err =
1586 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1587 if (err)
1588 goto out_put;
1589
1590 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1591 sock->file->f_flags);
1592 out_put:
1593 fput_light(sock->file, fput_needed);
1594 out:
1595 return err;
1596 }
1597
1598 /*
1599 * Get the local address ('name') of a socket object. Move the obtained
1600 * name to user space.
1601 */
1602
1603 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1604 int __user *, usockaddr_len)
1605 {
1606 struct socket *sock;
1607 struct sockaddr_storage address;
1608 int len, err, fput_needed;
1609
1610 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1611 if (!sock)
1612 goto out;
1613
1614 err = security_socket_getsockname(sock);
1615 if (err)
1616 goto out_put;
1617
1618 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1619 if (err)
1620 goto out_put;
1621 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1622
1623 out_put:
1624 fput_light(sock->file, fput_needed);
1625 out:
1626 return err;
1627 }
1628
1629 /*
1630 * Get the remote address ('name') of a socket object. Move the obtained
1631 * name to user space.
1632 */
1633
1634 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1635 int __user *, usockaddr_len)
1636 {
1637 struct socket *sock;
1638 struct sockaddr_storage address;
1639 int len, err, fput_needed;
1640
1641 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1642 if (sock != NULL) {
1643 err = security_socket_getpeername(sock);
1644 if (err) {
1645 fput_light(sock->file, fput_needed);
1646 return err;
1647 }
1648
1649 err =
1650 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1651 1);
1652 if (!err)
1653 err = move_addr_to_user(&address, len, usockaddr,
1654 usockaddr_len);
1655 fput_light(sock->file, fput_needed);
1656 }
1657 return err;
1658 }
1659
1660 /*
1661 * Send a datagram to a given address. We move the address into kernel
1662 * space and check the user space data area is readable before invoking
1663 * the protocol.
1664 */
1665
1666 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1667 unsigned int, flags, struct sockaddr __user *, addr,
1668 int, addr_len)
1669 {
1670 struct socket *sock;
1671 struct sockaddr_storage address;
1672 int err;
1673 struct msghdr msg;
1674 struct iovec iov;
1675 int fput_needed;
1676
1677 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1678 if (unlikely(err))
1679 return err;
1680 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1681 if (!sock)
1682 goto out;
1683
1684 msg.msg_name = NULL;
1685 msg.msg_control = NULL;
1686 msg.msg_controllen = 0;
1687 msg.msg_namelen = 0;
1688 if (addr) {
1689 err = move_addr_to_kernel(addr, addr_len, &address);
1690 if (err < 0)
1691 goto out_put;
1692 msg.msg_name = (struct sockaddr *)&address;
1693 msg.msg_namelen = addr_len;
1694 }
1695 if (sock->file->f_flags & O_NONBLOCK)
1696 flags |= MSG_DONTWAIT;
1697 msg.msg_flags = flags;
1698 err = sock_sendmsg(sock, &msg);
1699
1700 out_put:
1701 fput_light(sock->file, fput_needed);
1702 out:
1703 return err;
1704 }
1705
1706 /*
1707 * Send a datagram down a socket.
1708 */
1709
1710 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1711 unsigned int, flags)
1712 {
1713 return sys_sendto(fd, buff, len, flags, NULL, 0);
1714 }
1715
1716 /*
1717 * Receive a frame from the socket and optionally record the address of the
1718 * sender. We verify the buffers are writable and if needed move the
1719 * sender address from kernel to user space.
1720 */
1721
1722 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1723 unsigned int, flags, struct sockaddr __user *, addr,
1724 int __user *, addr_len)
1725 {
1726 struct socket *sock;
1727 struct iovec iov;
1728 struct msghdr msg;
1729 struct sockaddr_storage address;
1730 int err, err2;
1731 int fput_needed;
1732
1733 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1734 if (unlikely(err))
1735 return err;
1736 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1737 if (!sock)
1738 goto out;
1739
1740 msg.msg_control = NULL;
1741 msg.msg_controllen = 0;
1742 /* Save some cycles and don't copy the address if not needed */
1743 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1744 /* We assume all kernel code knows the size of sockaddr_storage */
1745 msg.msg_namelen = 0;
1746 msg.msg_iocb = NULL;
1747 if (sock->file->f_flags & O_NONBLOCK)
1748 flags |= MSG_DONTWAIT;
1749 err = sock_recvmsg(sock, &msg, flags);
1750
1751 if (err >= 0 && addr != NULL) {
1752 err2 = move_addr_to_user(&address,
1753 msg.msg_namelen, addr, addr_len);
1754 if (err2 < 0)
1755 err = err2;
1756 }
1757
1758 fput_light(sock->file, fput_needed);
1759 out:
1760 return err;
1761 }
1762
1763 /*
1764 * Receive a datagram from a socket.
1765 */
1766
1767 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1768 unsigned int, flags)
1769 {
1770 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1771 }
1772
1773 /*
1774 * Set a socket option. Because we don't know the option lengths we have
1775 * to pass the user mode parameter for the protocols to sort out.
1776 */
1777
1778 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1779 char __user *, optval, int, optlen)
1780 {
1781 int err, fput_needed;
1782 struct socket *sock;
1783
1784 if (optlen < 0)
1785 return -EINVAL;
1786
1787 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1788 if (sock != NULL) {
1789 err = security_socket_setsockopt(sock, level, optname);
1790 if (err)
1791 goto out_put;
1792
1793 if (level == SOL_SOCKET)
1794 err =
1795 sock_setsockopt(sock, level, optname, optval,
1796 optlen);
1797 else
1798 err =
1799 sock->ops->setsockopt(sock, level, optname, optval,
1800 optlen);
1801 out_put:
1802 fput_light(sock->file, fput_needed);
1803 }
1804 return err;
1805 }
1806
1807 /*
1808 * Get a socket option. Because we don't know the option lengths we have
1809 * to pass a user mode parameter for the protocols to sort out.
1810 */
1811
1812 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1813 char __user *, optval, int __user *, optlen)
1814 {
1815 int err, fput_needed;
1816 struct socket *sock;
1817
1818 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1819 if (sock != NULL) {
1820 err = security_socket_getsockopt(sock, level, optname);
1821 if (err)
1822 goto out_put;
1823
1824 if (level == SOL_SOCKET)
1825 err =
1826 sock_getsockopt(sock, level, optname, optval,
1827 optlen);
1828 else
1829 err =
1830 sock->ops->getsockopt(sock, level, optname, optval,
1831 optlen);
1832 out_put:
1833 fput_light(sock->file, fput_needed);
1834 }
1835 return err;
1836 }
1837
1838 /*
1839 * Shutdown a socket.
1840 */
1841
1842 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1843 {
1844 int err, fput_needed;
1845 struct socket *sock;
1846
1847 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 if (sock != NULL) {
1849 err = security_socket_shutdown(sock, how);
1850 if (!err)
1851 err = sock->ops->shutdown(sock, how);
1852 fput_light(sock->file, fput_needed);
1853 }
1854 return err;
1855 }
1856
1857 /* A couple of helpful macros for getting the address of the 32/64 bit
1858 * fields which are the same type (int / unsigned) on our platforms.
1859 */
1860 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1861 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1862 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1863
1864 struct used_address {
1865 struct sockaddr_storage name;
1866 unsigned int name_len;
1867 };
1868
1869 static int copy_msghdr_from_user(struct msghdr *kmsg,
1870 struct user_msghdr __user *umsg,
1871 struct sockaddr __user **save_addr,
1872 struct iovec **iov)
1873 {
1874 struct sockaddr __user *uaddr;
1875 struct iovec __user *uiov;
1876 size_t nr_segs;
1877 ssize_t err;
1878
1879 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1880 __get_user(uaddr, &umsg->msg_name) ||
1881 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1882 __get_user(uiov, &umsg->msg_iov) ||
1883 __get_user(nr_segs, &umsg->msg_iovlen) ||
1884 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1885 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1886 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1887 return -EFAULT;
1888
1889 if (!uaddr)
1890 kmsg->msg_namelen = 0;
1891
1892 if (kmsg->msg_namelen < 0)
1893 return -EINVAL;
1894
1895 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1896 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1897
1898 if (save_addr)
1899 *save_addr = uaddr;
1900
1901 if (uaddr && kmsg->msg_namelen) {
1902 if (!save_addr) {
1903 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1904 kmsg->msg_name);
1905 if (err < 0)
1906 return err;
1907 }
1908 } else {
1909 kmsg->msg_name = NULL;
1910 kmsg->msg_namelen = 0;
1911 }
1912
1913 if (nr_segs > UIO_MAXIOV)
1914 return -EMSGSIZE;
1915
1916 kmsg->msg_iocb = NULL;
1917
1918 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1919 UIO_FASTIOV, iov, &kmsg->msg_iter);
1920 }
1921
1922 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1923 struct msghdr *msg_sys, unsigned int flags,
1924 struct used_address *used_address,
1925 unsigned int allowed_msghdr_flags)
1926 {
1927 struct compat_msghdr __user *msg_compat =
1928 (struct compat_msghdr __user *)msg;
1929 struct sockaddr_storage address;
1930 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1931 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1932 __aligned(sizeof(__kernel_size_t));
1933 /* 20 is size of ipv6_pktinfo */
1934 unsigned char *ctl_buf = ctl;
1935 int ctl_len;
1936 ssize_t err;
1937
1938 msg_sys->msg_name = &address;
1939
1940 if (MSG_CMSG_COMPAT & flags)
1941 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1942 else
1943 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1944 if (err < 0)
1945 return err;
1946
1947 err = -ENOBUFS;
1948
1949 if (msg_sys->msg_controllen > INT_MAX)
1950 goto out_freeiov;
1951 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1952 ctl_len = msg_sys->msg_controllen;
1953 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1954 err =
1955 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1956 sizeof(ctl));
1957 if (err)
1958 goto out_freeiov;
1959 ctl_buf = msg_sys->msg_control;
1960 ctl_len = msg_sys->msg_controllen;
1961 } else if (ctl_len) {
1962 if (ctl_len > sizeof(ctl)) {
1963 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1964 if (ctl_buf == NULL)
1965 goto out_freeiov;
1966 }
1967 err = -EFAULT;
1968 /*
1969 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1970 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1971 * checking falls down on this.
1972 */
1973 if (copy_from_user(ctl_buf,
1974 (void __user __force *)msg_sys->msg_control,
1975 ctl_len))
1976 goto out_freectl;
1977 msg_sys->msg_control = ctl_buf;
1978 }
1979 msg_sys->msg_flags = flags;
1980
1981 if (sock->file->f_flags & O_NONBLOCK)
1982 msg_sys->msg_flags |= MSG_DONTWAIT;
1983 /*
1984 * If this is sendmmsg() and current destination address is same as
1985 * previously succeeded address, omit asking LSM's decision.
1986 * used_address->name_len is initialized to UINT_MAX so that the first
1987 * destination address never matches.
1988 */
1989 if (used_address && msg_sys->msg_name &&
1990 used_address->name_len == msg_sys->msg_namelen &&
1991 !memcmp(&used_address->name, msg_sys->msg_name,
1992 used_address->name_len)) {
1993 err = sock_sendmsg_nosec(sock, msg_sys);
1994 goto out_freectl;
1995 }
1996 err = sock_sendmsg(sock, msg_sys);
1997 /*
1998 * If this is sendmmsg() and sending to current destination address was
1999 * successful, remember it.
2000 */
2001 if (used_address && err >= 0) {
2002 used_address->name_len = msg_sys->msg_namelen;
2003 if (msg_sys->msg_name)
2004 memcpy(&used_address->name, msg_sys->msg_name,
2005 used_address->name_len);
2006 }
2007
2008 out_freectl:
2009 if (ctl_buf != ctl)
2010 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2011 out_freeiov:
2012 kfree(iov);
2013 return err;
2014 }
2015
2016 /*
2017 * BSD sendmsg interface
2018 */
2019
2020 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2021 {
2022 int fput_needed, err;
2023 struct msghdr msg_sys;
2024 struct socket *sock;
2025
2026 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2027 if (!sock)
2028 goto out;
2029
2030 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2031
2032 fput_light(sock->file, fput_needed);
2033 out:
2034 return err;
2035 }
2036
2037 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2038 {
2039 if (flags & MSG_CMSG_COMPAT)
2040 return -EINVAL;
2041 return __sys_sendmsg(fd, msg, flags);
2042 }
2043
2044 /*
2045 * Linux sendmmsg interface
2046 */
2047
2048 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2049 unsigned int flags)
2050 {
2051 int fput_needed, err, datagrams;
2052 struct socket *sock;
2053 struct mmsghdr __user *entry;
2054 struct compat_mmsghdr __user *compat_entry;
2055 struct msghdr msg_sys;
2056 struct used_address used_address;
2057 unsigned int oflags = flags;
2058
2059 if (vlen > UIO_MAXIOV)
2060 vlen = UIO_MAXIOV;
2061
2062 datagrams = 0;
2063
2064 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065 if (!sock)
2066 return err;
2067
2068 used_address.name_len = UINT_MAX;
2069 entry = mmsg;
2070 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2071 err = 0;
2072 flags |= MSG_BATCH;
2073
2074 while (datagrams < vlen) {
2075 if (datagrams == vlen - 1)
2076 flags = oflags;
2077
2078 if (MSG_CMSG_COMPAT & flags) {
2079 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2080 &msg_sys, flags, &used_address, MSG_EOR);
2081 if (err < 0)
2082 break;
2083 err = __put_user(err, &compat_entry->msg_len);
2084 ++compat_entry;
2085 } else {
2086 err = ___sys_sendmsg(sock,
2087 (struct user_msghdr __user *)entry,
2088 &msg_sys, flags, &used_address, MSG_EOR);
2089 if (err < 0)
2090 break;
2091 err = put_user(err, &entry->msg_len);
2092 ++entry;
2093 }
2094
2095 if (err)
2096 break;
2097 ++datagrams;
2098 if (msg_data_left(&msg_sys))
2099 break;
2100 cond_resched();
2101 }
2102
2103 fput_light(sock->file, fput_needed);
2104
2105 /* We only return an error if no datagrams were able to be sent */
2106 if (datagrams != 0)
2107 return datagrams;
2108
2109 return err;
2110 }
2111
2112 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2113 unsigned int, vlen, unsigned int, flags)
2114 {
2115 if (flags & MSG_CMSG_COMPAT)
2116 return -EINVAL;
2117 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2118 }
2119
2120 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2121 struct msghdr *msg_sys, unsigned int flags, int nosec)
2122 {
2123 struct compat_msghdr __user *msg_compat =
2124 (struct compat_msghdr __user *)msg;
2125 struct iovec iovstack[UIO_FASTIOV];
2126 struct iovec *iov = iovstack;
2127 unsigned long cmsg_ptr;
2128 int len;
2129 ssize_t err;
2130
2131 /* kernel mode address */
2132 struct sockaddr_storage addr;
2133
2134 /* user mode address pointers */
2135 struct sockaddr __user *uaddr;
2136 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2137
2138 msg_sys->msg_name = &addr;
2139
2140 if (MSG_CMSG_COMPAT & flags)
2141 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2142 else
2143 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2144 if (err < 0)
2145 return err;
2146
2147 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2148 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2149
2150 /* We assume all kernel code knows the size of sockaddr_storage */
2151 msg_sys->msg_namelen = 0;
2152
2153 if (sock->file->f_flags & O_NONBLOCK)
2154 flags |= MSG_DONTWAIT;
2155 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2156 if (err < 0)
2157 goto out_freeiov;
2158 len = err;
2159
2160 if (uaddr != NULL) {
2161 err = move_addr_to_user(&addr,
2162 msg_sys->msg_namelen, uaddr,
2163 uaddr_len);
2164 if (err < 0)
2165 goto out_freeiov;
2166 }
2167 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2168 COMPAT_FLAGS(msg));
2169 if (err)
2170 goto out_freeiov;
2171 if (MSG_CMSG_COMPAT & flags)
2172 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2173 &msg_compat->msg_controllen);
2174 else
2175 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2176 &msg->msg_controllen);
2177 if (err)
2178 goto out_freeiov;
2179 err = len;
2180
2181 out_freeiov:
2182 kfree(iov);
2183 return err;
2184 }
2185
2186 /*
2187 * BSD recvmsg interface
2188 */
2189
2190 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2191 {
2192 int fput_needed, err;
2193 struct msghdr msg_sys;
2194 struct socket *sock;
2195
2196 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2197 if (!sock)
2198 goto out;
2199
2200 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2201
2202 fput_light(sock->file, fput_needed);
2203 out:
2204 return err;
2205 }
2206
2207 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2208 unsigned int, flags)
2209 {
2210 if (flags & MSG_CMSG_COMPAT)
2211 return -EINVAL;
2212 return __sys_recvmsg(fd, msg, flags);
2213 }
2214
2215 /*
2216 * Linux recvmmsg interface
2217 */
2218
2219 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2220 unsigned int flags, struct timespec *timeout)
2221 {
2222 int fput_needed, err, datagrams;
2223 struct socket *sock;
2224 struct mmsghdr __user *entry;
2225 struct compat_mmsghdr __user *compat_entry;
2226 struct msghdr msg_sys;
2227 struct timespec64 end_time;
2228 struct timespec64 timeout64;
2229
2230 if (timeout &&
2231 poll_select_set_timeout(&end_time, timeout->tv_sec,
2232 timeout->tv_nsec))
2233 return -EINVAL;
2234
2235 datagrams = 0;
2236
2237 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2238 if (!sock)
2239 return err;
2240
2241 err = sock_error(sock->sk);
2242 if (err) {
2243 datagrams = err;
2244 goto out_put;
2245 }
2246
2247 entry = mmsg;
2248 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2249
2250 while (datagrams < vlen) {
2251 /*
2252 * No need to ask LSM for more than the first datagram.
2253 */
2254 if (MSG_CMSG_COMPAT & flags) {
2255 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2256 &msg_sys, flags & ~MSG_WAITFORONE,
2257 datagrams);
2258 if (err < 0)
2259 break;
2260 err = __put_user(err, &compat_entry->msg_len);
2261 ++compat_entry;
2262 } else {
2263 err = ___sys_recvmsg(sock,
2264 (struct user_msghdr __user *)entry,
2265 &msg_sys, flags & ~MSG_WAITFORONE,
2266 datagrams);
2267 if (err < 0)
2268 break;
2269 err = put_user(err, &entry->msg_len);
2270 ++entry;
2271 }
2272
2273 if (err)
2274 break;
2275 ++datagrams;
2276
2277 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2278 if (flags & MSG_WAITFORONE)
2279 flags |= MSG_DONTWAIT;
2280
2281 if (timeout) {
2282 ktime_get_ts64(&timeout64);
2283 *timeout = timespec64_to_timespec(
2284 timespec64_sub(end_time, timeout64));
2285 if (timeout->tv_sec < 0) {
2286 timeout->tv_sec = timeout->tv_nsec = 0;
2287 break;
2288 }
2289
2290 /* Timeout, return less than vlen datagrams */
2291 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2292 break;
2293 }
2294
2295 /* Out of band data, return right away */
2296 if (msg_sys.msg_flags & MSG_OOB)
2297 break;
2298 cond_resched();
2299 }
2300
2301 if (err == 0)
2302 goto out_put;
2303
2304 if (datagrams == 0) {
2305 datagrams = err;
2306 goto out_put;
2307 }
2308
2309 /*
2310 * We may return less entries than requested (vlen) if the
2311 * sock is non block and there aren't enough datagrams...
2312 */
2313 if (err != -EAGAIN) {
2314 /*
2315 * ... or if recvmsg returns an error after we
2316 * received some datagrams, where we record the
2317 * error to return on the next call or if the
2318 * app asks about it using getsockopt(SO_ERROR).
2319 */
2320 sock->sk->sk_err = -err;
2321 }
2322 out_put:
2323 fput_light(sock->file, fput_needed);
2324
2325 return datagrams;
2326 }
2327
2328 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2329 unsigned int, vlen, unsigned int, flags,
2330 struct timespec __user *, timeout)
2331 {
2332 int datagrams;
2333 struct timespec timeout_sys;
2334
2335 if (flags & MSG_CMSG_COMPAT)
2336 return -EINVAL;
2337
2338 if (!timeout)
2339 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2340
2341 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2342 return -EFAULT;
2343
2344 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2345
2346 if (datagrams > 0 &&
2347 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2348 datagrams = -EFAULT;
2349
2350 return datagrams;
2351 }
2352
2353 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2354 /* Argument list sizes for sys_socketcall */
2355 #define AL(x) ((x) * sizeof(unsigned long))
2356 static const unsigned char nargs[21] = {
2357 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2358 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2359 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2360 AL(4), AL(5), AL(4)
2361 };
2362
2363 #undef AL
2364
2365 /*
2366 * System call vectors.
2367 *
2368 * Argument checking cleaned up. Saved 20% in size.
2369 * This function doesn't need to set the kernel lock because
2370 * it is set by the callees.
2371 */
2372
2373 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2374 {
2375 unsigned long a[AUDITSC_ARGS];
2376 unsigned long a0, a1;
2377 int err;
2378 unsigned int len;
2379
2380 if (call < 1 || call > SYS_SENDMMSG)
2381 return -EINVAL;
2382
2383 len = nargs[call];
2384 if (len > sizeof(a))
2385 return -EINVAL;
2386
2387 /* copy_from_user should be SMP safe. */
2388 if (copy_from_user(a, args, len))
2389 return -EFAULT;
2390
2391 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2392 if (err)
2393 return err;
2394
2395 a0 = a[0];
2396 a1 = a[1];
2397
2398 switch (call) {
2399 case SYS_SOCKET:
2400 err = sys_socket(a0, a1, a[2]);
2401 break;
2402 case SYS_BIND:
2403 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2404 break;
2405 case SYS_CONNECT:
2406 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2407 break;
2408 case SYS_LISTEN:
2409 err = sys_listen(a0, a1);
2410 break;
2411 case SYS_ACCEPT:
2412 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2413 (int __user *)a[2], 0);
2414 break;
2415 case SYS_GETSOCKNAME:
2416 err =
2417 sys_getsockname(a0, (struct sockaddr __user *)a1,
2418 (int __user *)a[2]);
2419 break;
2420 case SYS_GETPEERNAME:
2421 err =
2422 sys_getpeername(a0, (struct sockaddr __user *)a1,
2423 (int __user *)a[2]);
2424 break;
2425 case SYS_SOCKETPAIR:
2426 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2427 break;
2428 case SYS_SEND:
2429 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2430 break;
2431 case SYS_SENDTO:
2432 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2433 (struct sockaddr __user *)a[4], a[5]);
2434 break;
2435 case SYS_RECV:
2436 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2437 break;
2438 case SYS_RECVFROM:
2439 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2440 (struct sockaddr __user *)a[4],
2441 (int __user *)a[5]);
2442 break;
2443 case SYS_SHUTDOWN:
2444 err = sys_shutdown(a0, a1);
2445 break;
2446 case SYS_SETSOCKOPT:
2447 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2448 break;
2449 case SYS_GETSOCKOPT:
2450 err =
2451 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2452 (int __user *)a[4]);
2453 break;
2454 case SYS_SENDMSG:
2455 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2456 break;
2457 case SYS_SENDMMSG:
2458 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2459 break;
2460 case SYS_RECVMSG:
2461 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2462 break;
2463 case SYS_RECVMMSG:
2464 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2465 (struct timespec __user *)a[4]);
2466 break;
2467 case SYS_ACCEPT4:
2468 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2469 (int __user *)a[2], a[3]);
2470 break;
2471 default:
2472 err = -EINVAL;
2473 break;
2474 }
2475 return err;
2476 }
2477
2478 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2479
2480 /**
2481 * sock_register - add a socket protocol handler
2482 * @ops: description of protocol
2483 *
2484 * This function is called by a protocol handler that wants to
2485 * advertise its address family, and have it linked into the
2486 * socket interface. The value ops->family corresponds to the
2487 * socket system call protocol family.
2488 */
2489 int sock_register(const struct net_proto_family *ops)
2490 {
2491 int err;
2492
2493 if (ops->family >= NPROTO) {
2494 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2495 return -ENOBUFS;
2496 }
2497
2498 spin_lock(&net_family_lock);
2499 if (rcu_dereference_protected(net_families[ops->family],
2500 lockdep_is_held(&net_family_lock)))
2501 err = -EEXIST;
2502 else {
2503 rcu_assign_pointer(net_families[ops->family], ops);
2504 err = 0;
2505 }
2506 spin_unlock(&net_family_lock);
2507
2508 pr_info("NET: Registered protocol family %d\n", ops->family);
2509 return err;
2510 }
2511 EXPORT_SYMBOL(sock_register);
2512
2513 /**
2514 * sock_unregister - remove a protocol handler
2515 * @family: protocol family to remove
2516 *
2517 * This function is called by a protocol handler that wants to
2518 * remove its address family, and have it unlinked from the
2519 * new socket creation.
2520 *
2521 * If protocol handler is a module, then it can use module reference
2522 * counts to protect against new references. If protocol handler is not
2523 * a module then it needs to provide its own protection in
2524 * the ops->create routine.
2525 */
2526 void sock_unregister(int family)
2527 {
2528 BUG_ON(family < 0 || family >= NPROTO);
2529
2530 spin_lock(&net_family_lock);
2531 RCU_INIT_POINTER(net_families[family], NULL);
2532 spin_unlock(&net_family_lock);
2533
2534 synchronize_rcu();
2535
2536 pr_info("NET: Unregistered protocol family %d\n", family);
2537 }
2538 EXPORT_SYMBOL(sock_unregister);
2539
2540 static int __init sock_init(void)
2541 {
2542 int err;
2543 /*
2544 * Initialize the network sysctl infrastructure.
2545 */
2546 err = net_sysctl_init();
2547 if (err)
2548 goto out;
2549
2550 /*
2551 * Initialize skbuff SLAB cache
2552 */
2553 skb_init();
2554
2555 /*
2556 * Initialize the protocols module.
2557 */
2558
2559 init_inodecache();
2560
2561 err = register_filesystem(&sock_fs_type);
2562 if (err)
2563 goto out_fs;
2564 sock_mnt = kern_mount(&sock_fs_type);
2565 if (IS_ERR(sock_mnt)) {
2566 err = PTR_ERR(sock_mnt);
2567 goto out_mount;
2568 }
2569
2570 /* The real protocol initialization is performed in later initcalls.
2571 */
2572
2573 #ifdef CONFIG_NETFILTER
2574 err = netfilter_init();
2575 if (err)
2576 goto out;
2577 #endif
2578
2579 ptp_classifier_init();
2580
2581 out:
2582 return err;
2583
2584 out_mount:
2585 unregister_filesystem(&sock_fs_type);
2586 out_fs:
2587 goto out;
2588 }
2589
2590 core_initcall(sock_init); /* early initcall */
2591
2592 #ifdef CONFIG_PROC_FS
2593 void socket_seq_show(struct seq_file *seq)
2594 {
2595 int cpu;
2596 int counter = 0;
2597
2598 for_each_possible_cpu(cpu)
2599 counter += per_cpu(sockets_in_use, cpu);
2600
2601 /* It can be negative, by the way. 8) */
2602 if (counter < 0)
2603 counter = 0;
2604
2605 seq_printf(seq, "sockets: used %d\n", counter);
2606 }
2607 #endif /* CONFIG_PROC_FS */
2608
2609 #ifdef CONFIG_COMPAT
2610 static int do_siocgstamp(struct net *net, struct socket *sock,
2611 unsigned int cmd, void __user *up)
2612 {
2613 mm_segment_t old_fs = get_fs();
2614 struct timeval ktv;
2615 int err;
2616
2617 set_fs(KERNEL_DS);
2618 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2619 set_fs(old_fs);
2620 if (!err)
2621 err = compat_put_timeval(&ktv, up);
2622
2623 return err;
2624 }
2625
2626 static int do_siocgstampns(struct net *net, struct socket *sock,
2627 unsigned int cmd, void __user *up)
2628 {
2629 mm_segment_t old_fs = get_fs();
2630 struct timespec kts;
2631 int err;
2632
2633 set_fs(KERNEL_DS);
2634 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2635 set_fs(old_fs);
2636 if (!err)
2637 err = compat_put_timespec(&kts, up);
2638
2639 return err;
2640 }
2641
2642 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2643 {
2644 struct ifreq __user *uifr;
2645 int err;
2646
2647 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2648 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2649 return -EFAULT;
2650
2651 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2652 if (err)
2653 return err;
2654
2655 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2656 return -EFAULT;
2657
2658 return 0;
2659 }
2660
2661 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2662 {
2663 struct compat_ifconf ifc32;
2664 struct ifconf ifc;
2665 struct ifconf __user *uifc;
2666 struct compat_ifreq __user *ifr32;
2667 struct ifreq __user *ifr;
2668 unsigned int i, j;
2669 int err;
2670
2671 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2672 return -EFAULT;
2673
2674 memset(&ifc, 0, sizeof(ifc));
2675 if (ifc32.ifcbuf == 0) {
2676 ifc32.ifc_len = 0;
2677 ifc.ifc_len = 0;
2678 ifc.ifc_req = NULL;
2679 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2680 } else {
2681 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2682 sizeof(struct ifreq);
2683 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2684 ifc.ifc_len = len;
2685 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2686 ifr32 = compat_ptr(ifc32.ifcbuf);
2687 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2688 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2689 return -EFAULT;
2690 ifr++;
2691 ifr32++;
2692 }
2693 }
2694 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2695 return -EFAULT;
2696
2697 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2698 if (err)
2699 return err;
2700
2701 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2702 return -EFAULT;
2703
2704 ifr = ifc.ifc_req;
2705 ifr32 = compat_ptr(ifc32.ifcbuf);
2706 for (i = 0, j = 0;
2707 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2708 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2709 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2710 return -EFAULT;
2711 ifr32++;
2712 ifr++;
2713 }
2714
2715 if (ifc32.ifcbuf == 0) {
2716 /* Translate from 64-bit structure multiple to
2717 * a 32-bit one.
2718 */
2719 i = ifc.ifc_len;
2720 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2721 ifc32.ifc_len = i;
2722 } else {
2723 ifc32.ifc_len = i;
2724 }
2725 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2726 return -EFAULT;
2727
2728 return 0;
2729 }
2730
2731 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2732 {
2733 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2734 bool convert_in = false, convert_out = false;
2735 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2736 struct ethtool_rxnfc __user *rxnfc;
2737 struct ifreq __user *ifr;
2738 u32 rule_cnt = 0, actual_rule_cnt;
2739 u32 ethcmd;
2740 u32 data;
2741 int ret;
2742
2743 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2744 return -EFAULT;
2745
2746 compat_rxnfc = compat_ptr(data);
2747
2748 if (get_user(ethcmd, &compat_rxnfc->cmd))
2749 return -EFAULT;
2750
2751 /* Most ethtool structures are defined without padding.
2752 * Unfortunately struct ethtool_rxnfc is an exception.
2753 */
2754 switch (ethcmd) {
2755 default:
2756 break;
2757 case ETHTOOL_GRXCLSRLALL:
2758 /* Buffer size is variable */
2759 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2760 return -EFAULT;
2761 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2762 return -ENOMEM;
2763 buf_size += rule_cnt * sizeof(u32);
2764 /* fall through */
2765 case ETHTOOL_GRXRINGS:
2766 case ETHTOOL_GRXCLSRLCNT:
2767 case ETHTOOL_GRXCLSRULE:
2768 case ETHTOOL_SRXCLSRLINS:
2769 convert_out = true;
2770 /* fall through */
2771 case ETHTOOL_SRXCLSRLDEL:
2772 buf_size += sizeof(struct ethtool_rxnfc);
2773 convert_in = true;
2774 break;
2775 }
2776
2777 ifr = compat_alloc_user_space(buf_size);
2778 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2779
2780 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2781 return -EFAULT;
2782
2783 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2784 &ifr->ifr_ifru.ifru_data))
2785 return -EFAULT;
2786
2787 if (convert_in) {
2788 /* We expect there to be holes between fs.m_ext and
2789 * fs.ring_cookie and at the end of fs, but nowhere else.
2790 */
2791 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2792 sizeof(compat_rxnfc->fs.m_ext) !=
2793 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2794 sizeof(rxnfc->fs.m_ext));
2795 BUILD_BUG_ON(
2796 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2797 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2798 offsetof(struct ethtool_rxnfc, fs.location) -
2799 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2800
2801 if (copy_in_user(rxnfc, compat_rxnfc,
2802 (void __user *)(&rxnfc->fs.m_ext + 1) -
2803 (void __user *)rxnfc) ||
2804 copy_in_user(&rxnfc->fs.ring_cookie,
2805 &compat_rxnfc->fs.ring_cookie,
2806 (void __user *)(&rxnfc->fs.location + 1) -
2807 (void __user *)&rxnfc->fs.ring_cookie) ||
2808 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2809 sizeof(rxnfc->rule_cnt)))
2810 return -EFAULT;
2811 }
2812
2813 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2814 if (ret)
2815 return ret;
2816
2817 if (convert_out) {
2818 if (copy_in_user(compat_rxnfc, rxnfc,
2819 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2820 (const void __user *)rxnfc) ||
2821 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2822 &rxnfc->fs.ring_cookie,
2823 (const void __user *)(&rxnfc->fs.location + 1) -
2824 (const void __user *)&rxnfc->fs.ring_cookie) ||
2825 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2826 sizeof(rxnfc->rule_cnt)))
2827 return -EFAULT;
2828
2829 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2830 /* As an optimisation, we only copy the actual
2831 * number of rules that the underlying
2832 * function returned. Since Mallory might
2833 * change the rule count in user memory, we
2834 * check that it is less than the rule count
2835 * originally given (as the user buffer size),
2836 * which has been range-checked.
2837 */
2838 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2839 return -EFAULT;
2840 if (actual_rule_cnt < rule_cnt)
2841 rule_cnt = actual_rule_cnt;
2842 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2843 &rxnfc->rule_locs[0],
2844 rule_cnt * sizeof(u32)))
2845 return -EFAULT;
2846 }
2847 }
2848
2849 return 0;
2850 }
2851
2852 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2853 {
2854 void __user *uptr;
2855 compat_uptr_t uptr32;
2856 struct ifreq __user *uifr;
2857
2858 uifr = compat_alloc_user_space(sizeof(*uifr));
2859 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2860 return -EFAULT;
2861
2862 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2863 return -EFAULT;
2864
2865 uptr = compat_ptr(uptr32);
2866
2867 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2868 return -EFAULT;
2869
2870 return dev_ioctl(net, SIOCWANDEV, uifr);
2871 }
2872
2873 static int bond_ioctl(struct net *net, unsigned int cmd,
2874 struct compat_ifreq __user *ifr32)
2875 {
2876 struct ifreq kifr;
2877 mm_segment_t old_fs;
2878 int err;
2879
2880 switch (cmd) {
2881 case SIOCBONDENSLAVE:
2882 case SIOCBONDRELEASE:
2883 case SIOCBONDSETHWADDR:
2884 case SIOCBONDCHANGEACTIVE:
2885 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2886 return -EFAULT;
2887
2888 old_fs = get_fs();
2889 set_fs(KERNEL_DS);
2890 err = dev_ioctl(net, cmd,
2891 (struct ifreq __user __force *) &kifr);
2892 set_fs(old_fs);
2893
2894 return err;
2895 default:
2896 return -ENOIOCTLCMD;
2897 }
2898 }
2899
2900 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2901 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2902 struct compat_ifreq __user *u_ifreq32)
2903 {
2904 struct ifreq __user *u_ifreq64;
2905 char tmp_buf[IFNAMSIZ];
2906 void __user *data64;
2907 u32 data32;
2908
2909 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2910 IFNAMSIZ))
2911 return -EFAULT;
2912 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2913 return -EFAULT;
2914 data64 = compat_ptr(data32);
2915
2916 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2917
2918 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2919 IFNAMSIZ))
2920 return -EFAULT;
2921 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2922 return -EFAULT;
2923
2924 return dev_ioctl(net, cmd, u_ifreq64);
2925 }
2926
2927 static int dev_ifsioc(struct net *net, struct socket *sock,
2928 unsigned int cmd, struct compat_ifreq __user *uifr32)
2929 {
2930 struct ifreq __user *uifr;
2931 int err;
2932
2933 uifr = compat_alloc_user_space(sizeof(*uifr));
2934 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2935 return -EFAULT;
2936
2937 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2938
2939 if (!err) {
2940 switch (cmd) {
2941 case SIOCGIFFLAGS:
2942 case SIOCGIFMETRIC:
2943 case SIOCGIFMTU:
2944 case SIOCGIFMEM:
2945 case SIOCGIFHWADDR:
2946 case SIOCGIFINDEX:
2947 case SIOCGIFADDR:
2948 case SIOCGIFBRDADDR:
2949 case SIOCGIFDSTADDR:
2950 case SIOCGIFNETMASK:
2951 case SIOCGIFPFLAGS:
2952 case SIOCGIFTXQLEN:
2953 case SIOCGMIIPHY:
2954 case SIOCGMIIREG:
2955 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2956 err = -EFAULT;
2957 break;
2958 }
2959 }
2960 return err;
2961 }
2962
2963 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2964 struct compat_ifreq __user *uifr32)
2965 {
2966 struct ifreq ifr;
2967 struct compat_ifmap __user *uifmap32;
2968 mm_segment_t old_fs;
2969 int err;
2970
2971 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2972 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2973 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2974 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2975 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2976 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2977 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2978 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2979 if (err)
2980 return -EFAULT;
2981
2982 old_fs = get_fs();
2983 set_fs(KERNEL_DS);
2984 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2985 set_fs(old_fs);
2986
2987 if (cmd == SIOCGIFMAP && !err) {
2988 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2989 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2990 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2991 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2992 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2993 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2994 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2995 if (err)
2996 err = -EFAULT;
2997 }
2998 return err;
2999 }
3000
3001 struct rtentry32 {
3002 u32 rt_pad1;
3003 struct sockaddr rt_dst; /* target address */
3004 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3005 struct sockaddr rt_genmask; /* target network mask (IP) */
3006 unsigned short rt_flags;
3007 short rt_pad2;
3008 u32 rt_pad3;
3009 unsigned char rt_tos;
3010 unsigned char rt_class;
3011 short rt_pad4;
3012 short rt_metric; /* +1 for binary compatibility! */
3013 /* char * */ u32 rt_dev; /* forcing the device at add */
3014 u32 rt_mtu; /* per route MTU/Window */
3015 u32 rt_window; /* Window clamping */
3016 unsigned short rt_irtt; /* Initial RTT */
3017 };
3018
3019 struct in6_rtmsg32 {
3020 struct in6_addr rtmsg_dst;
3021 struct in6_addr rtmsg_src;
3022 struct in6_addr rtmsg_gateway;
3023 u32 rtmsg_type;
3024 u16 rtmsg_dst_len;
3025 u16 rtmsg_src_len;
3026 u32 rtmsg_metric;
3027 u32 rtmsg_info;
3028 u32 rtmsg_flags;
3029 s32 rtmsg_ifindex;
3030 };
3031
3032 static int routing_ioctl(struct net *net, struct socket *sock,
3033 unsigned int cmd, void __user *argp)
3034 {
3035 int ret;
3036 void *r = NULL;
3037 struct in6_rtmsg r6;
3038 struct rtentry r4;
3039 char devname[16];
3040 u32 rtdev;
3041 mm_segment_t old_fs = get_fs();
3042
3043 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3044 struct in6_rtmsg32 __user *ur6 = argp;
3045 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3046 3 * sizeof(struct in6_addr));
3047 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3048 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3049 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3050 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3051 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3052 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3053 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3054
3055 r = (void *) &r6;
3056 } else { /* ipv4 */
3057 struct rtentry32 __user *ur4 = argp;
3058 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3059 3 * sizeof(struct sockaddr));
3060 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3061 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3062 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3063 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3064 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3065 ret |= get_user(rtdev, &(ur4->rt_dev));
3066 if (rtdev) {
3067 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3068 r4.rt_dev = (char __user __force *)devname;
3069 devname[15] = 0;
3070 } else
3071 r4.rt_dev = NULL;
3072
3073 r = (void *) &r4;
3074 }
3075
3076 if (ret) {
3077 ret = -EFAULT;
3078 goto out;
3079 }
3080
3081 set_fs(KERNEL_DS);
3082 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3083 set_fs(old_fs);
3084
3085 out:
3086 return ret;
3087 }
3088
3089 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3090 * for some operations; this forces use of the newer bridge-utils that
3091 * use compatible ioctls
3092 */
3093 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3094 {
3095 compat_ulong_t tmp;
3096
3097 if (get_user(tmp, argp))
3098 return -EFAULT;
3099 if (tmp == BRCTL_GET_VERSION)
3100 return BRCTL_VERSION + 1;
3101 return -EINVAL;
3102 }
3103
3104 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3105 unsigned int cmd, unsigned long arg)
3106 {
3107 void __user *argp = compat_ptr(arg);
3108 struct sock *sk = sock->sk;
3109 struct net *net = sock_net(sk);
3110
3111 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3112 return compat_ifr_data_ioctl(net, cmd, argp);
3113
3114 switch (cmd) {
3115 case SIOCSIFBR:
3116 case SIOCGIFBR:
3117 return old_bridge_ioctl(argp);
3118 case SIOCGIFNAME:
3119 return dev_ifname32(net, argp);
3120 case SIOCGIFCONF:
3121 return dev_ifconf(net, argp);
3122 case SIOCETHTOOL:
3123 return ethtool_ioctl(net, argp);
3124 case SIOCWANDEV:
3125 return compat_siocwandev(net, argp);
3126 case SIOCGIFMAP:
3127 case SIOCSIFMAP:
3128 return compat_sioc_ifmap(net, cmd, argp);
3129 case SIOCBONDENSLAVE:
3130 case SIOCBONDRELEASE:
3131 case SIOCBONDSETHWADDR:
3132 case SIOCBONDCHANGEACTIVE:
3133 return bond_ioctl(net, cmd, argp);
3134 case SIOCADDRT:
3135 case SIOCDELRT:
3136 return routing_ioctl(net, sock, cmd, argp);
3137 case SIOCGSTAMP:
3138 return do_siocgstamp(net, sock, cmd, argp);
3139 case SIOCGSTAMPNS:
3140 return do_siocgstampns(net, sock, cmd, argp);
3141 case SIOCBONDSLAVEINFOQUERY:
3142 case SIOCBONDINFOQUERY:
3143 case SIOCSHWTSTAMP:
3144 case SIOCGHWTSTAMP:
3145 return compat_ifr_data_ioctl(net, cmd, argp);
3146
3147 case FIOSETOWN:
3148 case SIOCSPGRP:
3149 case FIOGETOWN:
3150 case SIOCGPGRP:
3151 case SIOCBRADDBR:
3152 case SIOCBRDELBR:
3153 case SIOCGIFVLAN:
3154 case SIOCSIFVLAN:
3155 case SIOCADDDLCI:
3156 case SIOCDELDLCI:
3157 case SIOCGSKNS:
3158 return sock_ioctl(file, cmd, arg);
3159
3160 case SIOCGIFFLAGS:
3161 case SIOCSIFFLAGS:
3162 case SIOCGIFMETRIC:
3163 case SIOCSIFMETRIC:
3164 case SIOCGIFMTU:
3165 case SIOCSIFMTU:
3166 case SIOCGIFMEM:
3167 case SIOCSIFMEM:
3168 case SIOCGIFHWADDR:
3169 case SIOCSIFHWADDR:
3170 case SIOCADDMULTI:
3171 case SIOCDELMULTI:
3172 case SIOCGIFINDEX:
3173 case SIOCGIFADDR:
3174 case SIOCSIFADDR:
3175 case SIOCSIFHWBROADCAST:
3176 case SIOCDIFADDR:
3177 case SIOCGIFBRDADDR:
3178 case SIOCSIFBRDADDR:
3179 case SIOCGIFDSTADDR:
3180 case SIOCSIFDSTADDR:
3181 case SIOCGIFNETMASK:
3182 case SIOCSIFNETMASK:
3183 case SIOCSIFPFLAGS:
3184 case SIOCGIFPFLAGS:
3185 case SIOCGIFTXQLEN:
3186 case SIOCSIFTXQLEN:
3187 case SIOCBRADDIF:
3188 case SIOCBRDELIF:
3189 case SIOCSIFNAME:
3190 case SIOCGMIIPHY:
3191 case SIOCGMIIREG:
3192 case SIOCSMIIREG:
3193 return dev_ifsioc(net, sock, cmd, argp);
3194
3195 case SIOCSARP:
3196 case SIOCGARP:
3197 case SIOCDARP:
3198 case SIOCATMARK:
3199 return sock_do_ioctl(net, sock, cmd, arg);
3200 }
3201
3202 return -ENOIOCTLCMD;
3203 }
3204
3205 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3206 unsigned long arg)
3207 {
3208 struct socket *sock = file->private_data;
3209 int ret = -ENOIOCTLCMD;
3210 struct sock *sk;
3211 struct net *net;
3212
3213 sk = sock->sk;
3214 net = sock_net(sk);
3215
3216 if (sock->ops->compat_ioctl)
3217 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3218
3219 if (ret == -ENOIOCTLCMD &&
3220 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3221 ret = compat_wext_handle_ioctl(net, cmd, arg);
3222
3223 if (ret == -ENOIOCTLCMD)
3224 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3225
3226 return ret;
3227 }
3228 #endif
3229
3230 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3231 {
3232 return sock->ops->bind(sock, addr, addrlen);
3233 }
3234 EXPORT_SYMBOL(kernel_bind);
3235
3236 int kernel_listen(struct socket *sock, int backlog)
3237 {
3238 return sock->ops->listen(sock, backlog);
3239 }
3240 EXPORT_SYMBOL(kernel_listen);
3241
3242 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3243 {
3244 struct sock *sk = sock->sk;
3245 int err;
3246
3247 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3248 newsock);
3249 if (err < 0)
3250 goto done;
3251
3252 err = sock->ops->accept(sock, *newsock, flags);
3253 if (err < 0) {
3254 sock_release(*newsock);
3255 *newsock = NULL;
3256 goto done;
3257 }
3258
3259 (*newsock)->ops = sock->ops;
3260 __module_get((*newsock)->ops->owner);
3261
3262 done:
3263 return err;
3264 }
3265 EXPORT_SYMBOL(kernel_accept);
3266
3267 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3268 int flags)
3269 {
3270 return sock->ops->connect(sock, addr, addrlen, flags);
3271 }
3272 EXPORT_SYMBOL(kernel_connect);
3273
3274 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3275 int *addrlen)
3276 {
3277 return sock->ops->getname(sock, addr, addrlen, 0);
3278 }
3279 EXPORT_SYMBOL(kernel_getsockname);
3280
3281 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3282 int *addrlen)
3283 {
3284 return sock->ops->getname(sock, addr, addrlen, 1);
3285 }
3286 EXPORT_SYMBOL(kernel_getpeername);
3287
3288 int kernel_getsockopt(struct socket *sock, int level, int optname,
3289 char *optval, int *optlen)
3290 {
3291 mm_segment_t oldfs = get_fs();
3292 char __user *uoptval;
3293 int __user *uoptlen;
3294 int err;
3295
3296 uoptval = (char __user __force *) optval;
3297 uoptlen = (int __user __force *) optlen;
3298
3299 set_fs(KERNEL_DS);
3300 if (level == SOL_SOCKET)
3301 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3302 else
3303 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3304 uoptlen);
3305 set_fs(oldfs);
3306 return err;
3307 }
3308 EXPORT_SYMBOL(kernel_getsockopt);
3309
3310 int kernel_setsockopt(struct socket *sock, int level, int optname,
3311 char *optval, unsigned int optlen)
3312 {
3313 mm_segment_t oldfs = get_fs();
3314 char __user *uoptval;
3315 int err;
3316
3317 uoptval = (char __user __force *) optval;
3318
3319 set_fs(KERNEL_DS);
3320 if (level == SOL_SOCKET)
3321 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3322 else
3323 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3324 optlen);
3325 set_fs(oldfs);
3326 return err;
3327 }
3328 EXPORT_SYMBOL(kernel_setsockopt);
3329
3330 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3331 size_t size, int flags)
3332 {
3333 if (sock->ops->sendpage)
3334 return sock->ops->sendpage(sock, page, offset, size, flags);
3335
3336 return sock_no_sendpage(sock, page, offset, size, flags);
3337 }
3338 EXPORT_SYMBOL(kernel_sendpage);
3339
3340 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3341 {
3342 mm_segment_t oldfs = get_fs();
3343 int err;
3344
3345 set_fs(KERNEL_DS);
3346 err = sock->ops->ioctl(sock, cmd, arg);
3347 set_fs(oldfs);
3348
3349 return err;
3350 }
3351 EXPORT_SYMBOL(kernel_sock_ioctl);
3352
3353 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3354 {
3355 return sock->ops->shutdown(sock, how);
3356 }
3357 EXPORT_SYMBOL(kernel_sock_shutdown);